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ABSTRACT: 
 
Today, colour or multichannel satellite and aerial images are increasingly becoming available due to the commercial availability of 
multispectral digital sensors and pansharpening function of the commercial remote sensing software tools. Comparing to their 
monochromic counterparts, colour image data can offer not only more useful information about landscape but also the correlations 
among channels. Recently, multivariate mathematical morphology has received increased attention due to its rigorous mathematical 
theory and its powerful utility in multichannel image analysis. In this paper, a new morphological method for multichannel remotely 
sensed image processing is presented and analyzed. The proposed method utilizes a multivariate ordering principle based on 
principal component analysis. To define the colour morphology the colour vectors are ordered by using the first principal component 
analysis. On the basis of this ordering, new infimum and supremum are defined. Using the new infimum and supremum, the 
fundamental erosion and dilation operations are defined. Two series of experiments have been prepared to test the performance of 
the proposed method by using Ikonos and QuickBird pansharpened images and colour aerial images acquired over a built-up area. 
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1. INTRODUCTION 

As a methodology analyzing spatial structures in remotely 
sensed image data, mathematical morphology has become more 
and more popular in the image processing community not only 
due to its rigorous mathematical theory but also its powerful 
utility in image analysis. Generally speaking, mathematical 
morphology uses the morphological operations to analyze and 
recognize geometrical properties and structure of objects in 
images. So far, mathematical morphology has been developed 
as a complete and efficient tool for analyzing the spatial 
organization in binary and grayscale images (Serra, 1982). It is 
categorized into binary morphology and grayscale morphology.  
 
Initially, mathematical morphology was proposed by Matheron 
(1975) for investigating the geometry of the objects of a binary 
image in his classical book on random set. In the grayscale case, 
complete lattices are used as the mathematical basis for the 
grayscale morphology. The basic idea behind the grayscale 
morphology is on the assumption that the set of all possible 
images forms a complete lattice. Based on this assumption, the 
set of all operators mapping one grayscale image into another 
also constitutes a complete lattice. 

Both from a practical and theoretical point of view, colour 
mathematical morphology can be of great interest. First, colour 
is known to play a significant role in human visual perception 
and is becoming more and more relevant to computer vision as 
colour sensors become more widely available. It is well known 
that in an image a great deal of extra information may be 
contained in the colour, and this extra information can then be 
used to simplify image analysis, e.g., object identification and 
feature extraction based on colour. So it is necessary to develop 
a new effective technique to analyze colour images. Secondly, 
since binary mathematical morphology and grayscale 
mathematical morphology are intended to analyze binary 
images and gray-scale images, respectively, it would be 

interesting, from a pure theoretical point of view, to extend 
morphological theory to process colour images. 
 
Although some techniques developed for grayscale 
mathematical morphology can be extended to colour images by 
applying the operators to each channel of a colour image 
separately, for example, the most straightforward scheme for the 
extension is to treat a colour image as an independent 
monochrome image and the grayscale morphological operator is 
directly applied to each colour component separately. 
Unfortunately, this procedure has some drawbacks, e.g., 
producing new colours that are not contained in the original 
image and may lead missing of the correlations between 
components (Astola et al., 1990; Goutsias et al., 1995). 
 
The extension of concepts from grayscale morphology to colour 
morphology raises some important problem (Louverdis, 2002; 
Vardavoulia, 2002). First, an appropriate colours ordering must 
be found to define colours morphological operations that will 
retain the basic properties of their grayscale counterparts.   
Secondly, a colour space that determines the way in which 
colours are represented must be chosen. Third, an infimum and 
a supremum operator in the selected colour space should be 
defined well. It would be perfect for the two operators to be 
vector preserving, so that they do not introduce new colours that 
do not exist in the original image. 
 
In this paper, a new reduced ordering based on fuzzy first 
principal component in RGB colour space is proposed. On the 
basis of the vectors ordering, new infimum and supremum 
operators that are both vector preserving are defined. Then, 
colour morphology, which takes into consideration the vector 
nature of colours, is introduced. Using new infimum and 
supremum operators, the basic morphological operations in 
RGB colour space: erosion, dilation, opening, and closing, are 
defined. Last, as an example, the proposed colour morphology 



 

is used to colour edge detection and building roof extraction 
from remotely sensed images.  
 
The paper is organized as follows. Section 2 is devoted to a 
series of background notions in vector ordering, multivariate 
data analysis, and colour morphology. In Section 3, a new 
reduced ordering based on ordinal first principal component 
analysis is introduced. The basic morphological operations such 
as dilation, erosion, closing, and opening based on the new 
vector ordering are proposed in Section 4. Section 5 is devoted 
to the applications of the proposed morphological operators to 
colour edge detection and building roof extraction. In Section 6, 
preliminary results of building extraction from pansharpened 
Ikonos and QuickBird and colour aerial imagery are given 
followed by discussion and outlook in Section 7. 
 

2. BACKGROUND 

2.1 Ordering Vector 

A set of multivariate data consisting of n m-dimension random 
vectors can be modeled as an n × m data matrix X. The rows of 
the matrix X will be written with 

nXXX �,, 21
 corresponding 

to n observations. The columns of the matrix X will be written 

with mxxx �,, 21  corresponding to p variables. The 

element locating at the row i and the column j in the matrix X is 
xij representing jth variable on the ith observation, i.e.,   
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where, [ ] )1,2,( , ,,  21 nixxx miiii �� ==X                    (2) 

and [ ] )1,2,( , ,, 21 mjxxx njjjj �� ==x   (3) 

The aim of ordering multivariate data X is to arrange them to 
the form 

kji XXX ����  according to each variable xj, j 

= 1, 2, …, m, where the symbol �  means less preferred to and 
the subscripts i, j, …, k range over  mutually exclusive and 
exhaustive subsets of integers 1,2, …, n. 
  
Unfortunately, ordering multivariate data are not 
straightforward, because there is not the notion of the natural 
ordering in a vector field as in the one-dimensional case. 
Although there is no unambiguous form of multivariate data 
ordering scheme, much work has still been done to order the 
data. Barnett (1976) proposed the so-called sub-ordering 
principles to rule the ordering. The sub-ordering principles are 
classified in four groups: (1) marginal ordering (M-ordering), in 
which multivariate data is ordered along each one of its m-
dimensions independently; (2) condition ordering (C-ordering), 
in which the multivariate vectors are ordered conditionally on 
one of components. Thus, one of the components is tanked and 
other components of each vector are listed according to the 
position of their ranked component; (3) partial ordering (P-
ordering), in which multivariate data is to partition the vectors 
into groups, such that the groups can be distinguished with 
respect to order, rank, or extremeness (Titterington, 1978); and 
(4) reduced ordering (R-ordering), it reduces vectors to a scalar 
value according to a measure criterion. Mardia (1976) further 
developed the sub-classification of reduced ordering: distance 
ordering and projection ordering. The distance ordering refers 
to the use of any specific measures of distance, and the 

projection ordering considers ordering the sample by using the 
first principal component (PC1) or higher.  

2.2 First Principal Component Analysis 

An obvious extension of the univariate notion of mean and 
variance leads to the following definitions (Mardia et al., 

1979).The mean of jth variable, T
njjjj xxx ],,,[ 21 �=x , 

is defined as 
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The variance of the jth variable, T
njjjj xxx ],,,[ 21 �=x , 

is defined as 
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The covariance between the ith variable, 

T
niiii xxx ],,,[ 21 �=x , and jth variables, 

T
njjjj xxx ],,,[ 21 �=x , is defined as 
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The vector of means, or mean of the matrix X, is 

[ ] �
=

=′==
n

r
rm nn

xxx
1

21 '
11

,,, 1XXX �     (7) 

where 1 is a column vector of n one, i.e., [ ]T1,,1,1 �=1 . Also 

the variance-covariance matrix S of the matrix X is 
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where '
1 11IH
N

−=  denotes the centering matrix and I 

denotes identity. 
 
It is obvious that S is symmetric and position semi-definite. By 
the spectral decomposition theorem, the variance-covariance 
matrix S may be written in the form 

'GLGS =         (9) 
where L is a diagonal matrix of the eigenvalues of S, that is 

�
�
�
�

�

�

�
�
�
�

�

�

=

mλ

λ
λ

        0      0
                 

0             0

0        0     

2

1

�

����

�

�

L     (10) 

where 0,,  21 ≥≥≥≥ mλλλ � , G is an orthogonal matrix, its 

column vectors gi (i = 1, 2, …, m) is the standardized 
eigenvectors corresponding to the eigenvalues �i (i = 1, 2, …, 
m) of S, i.e., 

[ ]mgggG ,,, 21 �=      (11) 

 
According to the eigenvectors, PC1 is defined as 

11 )'( gX1Xy −=     (12) 

The eigenvalue �1 of the sample variance-covariance matrix S 
can be written as 
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where ),( 1
2 yx jr  is the sample correlation coefficient 

between xj and y1. Let T
maaa ),,( 21 �=a  be a standardized 

vector, i.e., 1' =aa . Then Xa givens n observations on a new 
variable defined as a weighted sum of the columns of X. The 
sample variance of this new variable is Saa  ′ . 
 
Theorem 1 No standardized linear combination (SLC) of Xi (i 
= 1, 2, …, n) has a variance larger than �1, the variance of PC1 
(Mardia et al., 1979). 
 
From Theorem 1, not surprisingly, the standardized linear 
combination with the largest variance is PC1. 
 

2.3 Colour Morphology 

Similar to the extension from binary morphology to grayscale 
morphology, the extension of concepts of grayscale morphology 
to colour image processing also need some rules to organize 
colour values. Today, complete lattices are considered as the 
right mathematical framework for colour morphology, not only 
because the framework will retain the basic properties of its 
grayscale counterparts, but also it could be used in applications 
similar to those of the corresponding grayscale operations. An 
inherent difficulty in the framework is that there is not an 
obvious and unambiguous method of fully ordering colours 
(vectors). So far, there is not a unified colour morphology 
theory, due to the variety of ordering schemes and colour spaces 
that can be used. Different approaches to colour morphologies 
can be classified by following the classification of ordering 
schemes stated in Section 2.2: marginal morphologies (Talbot et 
al., 1998), partial morphology (Vardavoulia et al., 2002), and 
reduced morphologies (Comer and Del, 1998). 

3. ORDERING VECTORS  

Although principal component analysis is an important and 
essential technique for data reduction and has been widely used 
in remote sensing image processing, when the variables are 
ambiguous, it makes no sense to estimate PC1 as the linear 
combination of variables with standardized weights having 
maximal, because the linear combination of ambiguous 
variables is not well defined. However, according to Theorem 1 
in Section 2.2, Eq. (13) provides an alternative way to define a 
sample PC1, ordinal PC1 (Korhonen and Siljamaki, 1998). 
 

Definition 1 Vector nR∈y  is PC1 of the centered variables 

Hxj, j = 1, 2, …, m, if y is a solution vector of the following: 
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From the Definition 1 on PC1, we can extend the definition of 
the PC1 to cases in which some restrictions are imposed on the 
vector y and variance sjj. 
 
Definition 2 The ordinal PC1 based on fuzzy pair wise 

comparison matrix nZ∈y  is a vector, },,2,1{ nyi �∈ , i = 1, 

2, …, n, and kiyy ki ≠∀≠ , , which determines a rank 

order for observations such that the sum of products on squares 
of some correlation coefficients between the variables xj, j = 1, 

2, …, m, and y with the variance of variable xj, j = 1, 2, …, m is 
maximal. That is 
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where r (xj, y) is a correlation coefficients between the variables 
xj, j = 1, 2, …, m, and y, and sjj is the variance of variable xj, j = 
1, 2, …, m. 
 

Definition 3 Let variable T
njjjj xxx ],,,[ 21 �=x , 

jijij XxZx ≤∀∈∀ + , . The nn ×  matrix M(xj) = [�hk(xj)] is 

a fuzzy pair wise comparison matrix describing the fuzzy rank 
order of observation according to variable xj if 

nkhxx
X hjkj

j
jhk   , ,2  ,1,      ),(

1
)( �=∀−=xµ   (16) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As defined in Definition 3, the �hk denotes the membership 
grades representing the comparison relationship between xhj and 
xkj according to the rank C. The value of the membership grades 
calculated by Eq. (16) is in [-1, 1], which shows not only the 
degree of the relationship between xhj and xkj, but also the fact 
that these two elements are positively or negatively related. We 
have illustrated the membership function of Eq. (16) in Figure 
1. 
 
To find the ordinal PC1 defined in Definition 2, it is necessary 
to define a rank correlation coefficient. Following the original 
idea of Daniels (1946), there are two ways to compute the rank 
correlation coefficients, Spearman’s and Kendall’s rank 
correlation coefficients (Kendall, 1962), as follows. 
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where rK is called Kendall’s rank correlation coefficient, and fi 
is calculated by 

T
nnnnj ],,,,,[ 1111 µµµµ ����=f   (18) 

The variance of variable T
njjjj xxx ],,,[ 21 �=x , which 

is used to measure the degree of dispersion for the variable, is 
computed by 
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xhj=X 

�hi(xj) 

xij 
Xj 

xhj=0 

xhj=Xj 

1 

0 

-1 

X 

xhj 

Fig.1 The membership function for 
fuzzy pair wise comparison matrix. 

 



 

where xRj is a referent element for xij. All referent elements 
consist to a referent variable for the variable xj. 
  
� in Eq. (13) corresponding to Kendall’s rank correlation 
coefficient can be written as. 
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To find a numerical solution to the ordinal principal component, 
a mathematical optimization model should be constructed. We 
formulate the optimal problem as an integer programming (IP) 
model: 
 
Given  
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Subject to 
njijiyyandnyyyy jii

T
n ,,2,1, ,  ,   },,2,1{,],,, [ 21 ��� =≠∀≠∈=y          

      (23) 
The combination optimization problem stated above can be 
solved by using a branch and bound approach (Winston, 1991) 
that is a basic technique for solving integer and discrete 
programming problems. The method is based on the observation 
that the enumeration of integer solutions has a tree structure. 
The main idea behind the branch and bound method is to avoid 
growing the whole tree as much as possible, because the entire 
tree is just too big in most real problems. Instead branch and 
bound grows the tree in stages, and grows only the most 
promising nodes at any stage. It determines which node is the 
most promising one by estimating a bound on the best value of 
the objective function that can be obtained by growing that 
node to later stages. 

In this paper, we model our integer programming problem 
above as a variable-integer assignment problem. We have n 
integers, 1 thought n, to assign to n variables, yi thought yn. 
Each variable can take exactly one integer, and all integers must 
have an assigned variable. The object is to maximum the total 
profit described by Eq. (22). In general, when there are n 
variables and n integers there are n possible assignments. Figure 
2 shows an example of structure tree for a three-variable-integer 
assignment problem. 

 

 

 

 

 

 
 
 
The formal branch and bound formation follows. 
• Root node in the branch and bound tree: all solutions. 
• Bud node: a partial assignment of integer to variable. For 

example, a partial assignment {1, ?, ?} represents the 
assignment of integer 1 to variable y1. 

• Leaf node: a complete assignment of integers to variables, 
e.g., a complete assignment {1, 2, 3} represents the 
assignment of integer 1 to y1, 2 to y2, and 3 to y3. 

• Objective function: for each leaf node, its objection 
function can be computed by Eq. (22). 

• Bounding function: for each bud node, we first create a 
pseudo-leaf by combining the partial assignment for this 
bud node and the maximum unassigned integer. For 
example, for the bud node {1, ?, ?}, its pseudo-leaf node is 
{1,3, 3}. Then we use the pseudo-leaf and Eq. (22) to 
compute the bounding function for the bud node. 

• Bud node selection policy: global best value of the 
bounding function. 

• Variable selection policy: choose the next variable in the 
nature order y1 to yN. 

Terminating rule: when the best solution objective function 
value is better than or equal to the bounding function value 
associated with all of the bud nodes. 
 

4. COLOUR MORPHOLOGY 

4.1 Definitions of Infimum and Supremum 

To extend the vector ordering approach to colour imagery, it is 
necessary to define the colours as vectors. In this paper, a 
colour C in RGB colour space is represented as a vector Xc = 
[Rc, Gc, Bc], where Rc, Gc, Bc denote the red, green, and blue 
components of the colour C, respectively. Therefore, a colour 
image can be viewed as a vector field. Given a colour image C 
and a pixel p in C in which the colour is Xp = [Rp, Gp, Bp]. Let 
W be the nnN ×=  window consisted of the neighbourhood 
of the pixel p. All N colours in W can be written as a (N × 3) 
data matrix X including N observations and three variables, that 
is, 

: Root Node = All Solutions. 

: y1; : y2; : y3. 

: Bud Node = Partial Assignments. 

2 
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{1, 2, 3} 

{1, 2, 3} 

{1, 2, 3} 

{1, 2, 3} 

{1, 2, 3} 

{1, 2, 3} 

Fig. 2. The structure tree for the 3 variable-
integer assignment problem. 

: Leaf Node = Complete Assignments. 
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where Xi = [Ri  Gi  Bi], i = 1,2, …, N,  
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In order to define the fundamental colour morphological 
operators, new infimum and supremum should be defined first. 
Using the vector ordering approach described in the previous 
section, we define the infimum operator ∧  in X as follows: 

},,min{},,{ 2121 NN XXXXXXX �� =∧=∧   (25) 

 
In a similar way, we define the supremum operator ∨  in X as 
follows: 

},,max{},,{ 2121 NN XXXXXXX �� =∨=∨   (26) 

 
The application of these two operators to a particular window 
W results in only one output vector that is included in the input 
window W. Consequently, it is obvious that the proposed 
operators are colour preserving since no new colour (vector), 
which is not present in the window, is generated. 
 

4.2 Definitions of Colour Morphological Operators 

As stated in Section 4.1, we model a colour image as a vector 
field. For the definition of morphological operators in the vector 
field we need to point out the structuring element G. In this 
paper, we define a small single colour image as the structuring 
element for our colour morphological operators in which its size 
is the nm ×  window W related to a pixel p and its colour is 
either the colour of the pixel p or another colour of interest 
given by the user. We use the colour as the referent vector to 
calculate the variance sjj. 
 
Definition 4 Let C is a colour image, W is a window 
corresponding to pixel p having data matrix X, and G is a 
structuring element with the same size as W and the same colour 

as p. The colour dilation G
Cδ , erosion G

Cε , closing G
Cχ , and 

opening G
Cο  of C by G is the colour image given by: 

},{)( CpCG
C ∈∀∨= Xδ     (27) 

},{)( CpCG
C ∈∀∧= Xε     (28) 

))(()( CC G
C

G
C

G
C δεχ =      (29) 

))(()( CC G
C

G
C

G
C εδο =     (30) 

 
From the Definition 4, the colour dilation of colour image C by 
the structuring element G keeps the steps as follows: 

a. First, we construct a window W at pixel p consisting of the 
neighbourhood of p as the structuring element. 

b. Then, we order all observations in data matrix X 
corresponding to W using the vector ordering approach. 

c. Step (b) results in a rank order of colours in W. we find the 
infimum (supremum) in these colours. 

d. The colour of the dilation (erosion) at the pixel p is the 
infimum chosen in above step. 

 
5. COLOUR EDGE DETECTION  

Edge detection is one of the basic techniques for many image 
processing tasks, such as image segmentation, image 
compression, feature extraction and so on. Various edge 
detection techniques have been proposed (Pratt, 1991). 
Generally, edges are defined as a discontinuity in some image 
attributes, for example, the brightness for grayscale images. For 
colour images, the situation is different. Several definitions of 
colour edges have been proposed (Pratt, 1991). First, a colour 
edge can be said to exist if and only if the luminance field 
contains an edge. This definition ignores discontinuities in hue 
and saturation that occur in regions of constant luminance. The 
second way to define a colour edge is to check if an edge exists 
in any of its constituent primary components. The third 
definition is based on forming the sum of gradients of the 
primary values or some linear or nonlinear colour component. A 
colour edge is said to exist if the gradient exceeds a threshold. 
Grayscale erosion and dilation have been successfully applied 
to extract the edges in grayscale imagery based on the 
subtraction of images (Dougherty, 1991; Lee et al., 1987). 
Unfortunately, these algorithms cannot be applied directly to 
colour imagery by means of colour erosion and dilation, since it 
does not make sense to subtract arithmetically two colours in 
RGB colour space. 
 
In this section, a new algorithm to detect colour edge is 
introduced by using proposed colour morphological operators. 
According to the definitions of colour edges given by Pratt 
(1991), we define a loose colour edge is defined in the context 
of vector field. Colour edges are defined as any significant 
discontinuity in the vector field representing the colour image. 
Based on these definitions, we further define a basic colour 
edge detector as follows. 
 
Definition 5 Let C is a colour image, the W is a window 
corresponding to pixel p having data matrix X, and G is a 
structuring element with the same size as W and the same colour 

as p.  The colour edge detector G
Cεδ  of is the grayscale image 

given by: 
)()()( CCC G

C
G
C

G
C εδεδ −=     (31) 

where ⋅  represents an appropriate vector norm. It is worth 

making some remarks about the meaning of this colour edge 
detector, which point out that, in a uniform area of the image C, 
where all colours will be close to each other; the output of the 
detector will be small. However, its response on an edge will be 
large since dilation of image C will be created from the colours 
on the one side of the edge, which have ‘large’ vectors while 
erosion of image C will be created from another side with 
‘small’ vectors. 
 

6. EXPERIMENTAL RESULTS 

To test the feasibility and the performance of the developed 
methodology, experiments have been conducted using real data 
(1) pansharpened 61cm resolution QuickBird satellite imagery, 
(2) pansharpened 1m resolution Ikonos satellite imagery, and 
(3) cm-level colour aerial images have been conducted. Three of 
the tested images are shown in Fig. 3. Each colour image has 24 
bits per pixel and 150×150 pixels in size. 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The overall characteristics of the colour morphological 
operations are similar to that in grayscale case, i.e., the colour 
dilation eliminates ‘dark’ details, where the vectors have 
smaller rank than its surroundings, enhance ‘light’ details, 
where the vectors have larger rank than its surroundings, 
reduces ‘dark’ objects and enlarges ‘light’ objects; the colour 
erosion eliminates ‘light’ details, enhances ‘dark’ details, 
reduces ‘light’ objects, and enlarges ‘dark’ objects; the colour 
closing typically eliminates ‘dark’ details, and the colour 
opening eliminates ‘light’ objects. The results of the proposed 
colour edge detector using simply Euclidean distance as the 
vector norm are shown in Fig. 4. All building roofs in the three 
scenes have been extracted.  
 

7. DISCUSSION AND OUTLOOK 

A novel approach to colour mathematical morphology based on 
principal component analysis has been presented. The general 
design of colour mathematical morphology is conceptually 
sound and the algorithms were tested with phansharpened 1m 
Ikonos and 61 cm QuickBird satellite images and colour aerial 
imagery acquired over a built-up area in Toronto, Ontario.   The 
proposed method extended the greyscale morphology to the 
colour morphology and provided its promising performance in 
colour image processing and feature extraction. Preliminary 
investigations suggest that building extraction can be 
automatically performed by using the developed colour edge 
detector. However, we didn’t report those results because of 
space limitations. Detailed discussion is being presented in 
another publication. In future, the main focus will be on the 
roof extraction and aim at a global robust adjustment including 
the regularities of roof structure. Automatic procedures may fail 
in recovering the correct information due to the complexity of 
the task. Therefore, interactive tools for editing the extracted 
results are necessary. Future work will also include handling of 
road networks using the proposed method within an ongoing 
project on automated manmade object extraction from high-
resolution colour satellite imagery. A strategy that integrates 
multiple cues including colour and attributed edges in a GIS 
environment will be invested and tested.  
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a b c 

Fig. 3 Original images with 150×150 pixels. (a) QuickBird, (b) Ikonos, (c) aerial. 
 

a b c 

Fig. 6 Edge mapper. (a) QuickBird, (b) Ikonos, (c) aerial imagery. 
 


