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Abstract— We propose a new way to initialize the mass function of the
Dempster-Shafer theory of evidence. The new initialization process is based
on a fuzzy statistical approach and uses the FSEM algorithm (Fuzzy Statis-
tical Estimation Maximization). This allows to classify image in "pure" and
"fuzzy" regions, and thus enable an optimal estimation of the inaccuracy
and uncertainty of the classification.

We apply our new evidential reasoning approach for the fusion of a
Landsat multispectral image with vegetation indices and a digital elevation
model.
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INTRODUCTION

This article describes a new data fusion algorithm which is
a part of the SITI project (Intelligent System of Image Proces-
sing). The purpose of this project is to design and develop new
algorithms for analysing, segmenting and extracting information
based on an expert fusion process of optical, radar or auxiliary
data.

Data fusion related to a same object or a same scene becomes
more and more essential in remote sensing applications. It is of-
ten necessary to associate additional and/or redundant informa-
tion, in order to reject, confirm or create a decision. A definition
of data fusion was formulated by Bloch and Maître [3] : “data
fusion is the joint use of heterogeneous information for the as-
sistance with the decision-making”. This definition emphasizes
the essential points of a fusion process :

- the heterogeneity of the data makes it possible to provide
additional information for sources of similar or different nature ;

- the joint use of information enables to specify the impor-
tance of the final decision. Indeed, if a decision is made for each
kind of data separately, then the process can not be considered
as a fusion process anymore ;

- the goal of fusion is to provide an aid in the decision-making
process.

There are mainly three models of fusion operators cited in
the scientific literature : probabilistic bayesian models , fuzzy
models and models resulting from the Dempster-Shafer theory
of evidence.

The probabilistic bayesian models are the most cited models ;
the concept of fusion is deduced from the Bayes rule. However,
in the bayesian models there is a confusion between two antago-
nist concepts : the uncertainty and the inaccuracy. Moreover, we
have to note that the performances of the bayesian data fusion
tend to be decrease when the number of information sources in-
creases.

One of the most known non-probabilistic techniques is the
fuzzy theory. This technique, introduced by Zadeh [13], repre-
sents information in the form of explicit functions of member-

ship. The disadvantage of the fuzzy theory is that it characterizes
the uncertainty in an implicit way, only the inaccurate property
of information is represented [3].

The Demspter-Shafer (DS) theory of evidence allows to re-
present at the same time the inaccuracy and uncertainty using
confidence, plausibility and credibility functions. It defines a
framework of understanding representing all the subsets of the
classes space. The principal advantage of this theory is to af-
fect a degree of confidence which is calledmass functionto all
simple and composed classes, and to take into account the igno-
rance of the information. However, there is no generic method
to define the mass functions. Most of the time, they are compu-
ted using an empirical method which depend on the nature of
the information. Thus, we will present, in the next sections, a
new global solution with a more rigorous way to deal with the
concepts of uncertainty and inaccuracy in the DS theory.

THE DEMPSTER-SHAFER THEORY OF EVIDENCE

The DS theory of evidence was first introduced by Demps-
ter [6] and formalized by Shafer [11]. This mathematical theory
is composed of three distinct parts : the definition of the mass
functions, the combination process and the decision-making.

The definition of the mass definition

A mass function can be compared with a degree of confidence
one can have in the studied data. It have to be set between values
0 and 1, where 1 stands for a total confidence and 0 for no confi-
dence at all. In the terminology of Dempster and Shafer, we do
not define anymore data or classes, but only "hypotheses". Then,
a mass function will be defined on a hypotheses set, called the
frame of discernment. It represents a set of mutually exclusive
and exhaustive propositions.

Let us note the hypotheses setΘ composed of single mutually
exclusive subsetθi. The DS fusion works on a single hypothe-
sis, but it works also on all subset composed of several single
hypotheses. So the DS fusion process is based on2Θ elements
calledpropositions.

A mass function for one source and for one proposition is
defined as follows :

m : 2Θ → [0, 1] (1)
∑

A∈2Θ

m(A) = 1 (2)

m(φ) = 0 (3)

By using this representation model one can assign a confi-
dence value to a set of composed hypotheses. This value shows
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that it is impossible to dissociate the set of assigned hypotheses.
It is the main advantage but also the principal difficulty of the
DS method. Indeed, there is no generic method to define a mass
value on a single or a composed hypothesis.

Evidence combination

The greatest advantage of DS theory is the robustness of its
way of combining information coming from various sources
with the DS orthogonal rule. For instance, let us denote two
mass distributionsm1 andm2 from two sources. Then, the DS
combination can be represented by the following orthogonal
rule :

(m1 ⊕m2)(A) =

∑
B1∩B2=A

m1(B1)m2(B2)

1−K
, K 6= 1 (4)

K =
∑

B1∩B2=φ

m1(B1)m2(B2) (5)

K is considered as a normalization factor and is interpreted as
a measure of conflict between the various sources. In addition,
it is a representation of the empty set mass function. Thus, the
largerK, the more the sources conflict and the less sense their
combination has. IfK = 1, then the sources are totally contra-
dictory.

Decision making

Unlike the bayesian theory, where the decision criterion is of-
ten the maximum of likelihood, the DS theory gives many so-
lutions to take a decision. The are several ways to decide which
is the most reliable hypothesis from single or unions of proposi-
tions.

The decision making rules that are the generally used are :
maximum of belief, maximum of plausibility or compromises
between them. We can find an exhaustive list of decision crite-
rion in [4].

MASS FUNCTION DEFINITION

Initialization methods for the mass function in the DS theory
are various and depend on the considered application framework
considered. According to the method applied for the initializa-
tion process, we can set with a correctly way the mass functions
were selected, it is possible to more or less correctly translate the
various aspects of uncertainty and the inaccuracy. There are cur-
rently two main categories of applications for the mass function
initialization. The first one is based on probabilistic methods and
lead to method like the consonant, partially consonant or diso-
nant distributions [4][8]. The drawback of these methods is that
they are defined in an empirical way for the composed propo-
sitions. They do not take into account fuzzy data. The second
mass function initialization category is based on fuzzy analysis
[2][12]. These techniques use the membership functions as mass
function, but they do not respect highly incertain information as
the presence of noise on image for example. The originality of
this project is to use a fuzzy statistical algorithm based on the
FSEM (Fuzzy Stochastic Estimation Maximization) in order to
better characterize the concepts of uncertainty and inaccuracy in
the mass function definition.

FUZZY STATISTICAL CLASSIFICATION METHOD

Principle of the fuzzy SEM algorithm

Classification processes of remote sensing images do not re-
present the complex reality of a studied area. In fact, let us consi-
der the problem of segmenting a satellite image into two classes :
“water” and “vegetation”. There may be some pixels with only
vegetation or water, but others, as in a boggy area, in which wa-
ter and vegetation are simultaneously present. In the first case,
the pixel will be called apure pixel and in the second case, it
will be called amixedpixel.

Some people proposed solutions to resolve this problem,
Caillol et al.[5] introduced fuzzy data in some classical statical
models. To counter this drawback, some algorithms introduce a
fuzzy version of statistical modelling. Thus, parameter estima-
tion stochastic algorithms have been modified to take fuzzy data
into account such as the Expectation Maximisation (EM), Sto-
chastic Expectation Maximization(SEM) and Iterative Conditio-
nal Estimation (ICE) algorithm. All theses algorithms only ap-
ply for the case of a maximum of two pure classes. Estimation
algorithms become too complex if the number of pure classes
increases.

In the following section, we propose to generalize the Fuzzy
SEM (FSEM) forK classes with the following hypothesis :
a fuzzy class or a mixed class cannot be composed of more
than two "pure" classes [7]. This hypothesis is widely ob-
served in pratice, like “water-vegetation”, “trees-house” and
“agricultural-vegetation” fuzzy classes, whereas “trees-houses-
agricultural” mixed classes or others are fairly unusual.

A complete description of the FSEM algorithm can be find in
[7]. Let us define the unobservable random fieldX = (Xs)s∈S

taking its values in a finite set of classesΘ. We denoteY =
(Ys)s∈S the observed random field which is a corrupted version
of X, andS be the set of pixelsS = {1, ..., n}.

Let us define two independant gaussian random variablesyi

and yj associated with the two pure classesθi and θj . The
gaussian densitiesfi and fj are defined by the distributions
ℵ(mi, σi) andℵ(mj , σj) respectively. The fuzzy density defi-
ned for a fuzzy class betweenθi andθj can be simply obtained
by the following linear relation [10] :

ys = εyi + (1− ε)yj , ε ∈]0, 1[ij (6)

whereε is the mixture coefficient betweenθi andθj .

In this context, we show that the fuzzy distribution is a gaus-
sian densityℵ(mij(ε), σij(ε)) :

mij(ε) = (1− ε)mi + εmj (7)

σ2
ij(ε) = (1− ε)2σ2

i + ε2σ2
j (8)

Finally, the pure distribution density is defined by :

fi(y) =
1√
2πσ2

i

e
− (y−mi)

2

2σ2
i (9)

and the fuzzy distribution density :
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fij(ε, y) =
1√

2πσ2
ij(ε)

e
− (y−mij(ε))2

2σ2
ij

(ε) (10)

Thus, by generalizing the approach defined in Caillolet al.
[5], the pixel density is given by the following formula :

p(ys) =
K∑

i=1

πifi(ys) +
K−1∑

i=1

K∑

j=i+1

∫ 1

0

πijfij(ε, ys)dε (11)

whereπi andπij correspond to, respectively, thea priori proba-
bility of the pure and the fuzzy classes.

With the bayesian theory, we can describe thea posteriori
probability for each class :

- for the set of pure classes :

P (xs = θi/Ys = ys) =
πifi(ys)
p(ys)

(12)

- for the set of fuzzy classes :

P (xs = θfij /Ys = ys) =

∫ 1

0
πijf(ε, ys)dε

p(ys)
(13)

From the definition of the above probabilities we can esti-
mate the unknown parameters :πi, πj , πij ,mi,mj , σi, σj from
a sample ofX. A full description of the FSEM algorithm can be
found in [7].

FSEM applied to multispectral data

The fuzzy statistical analysis described previously is defined
for only one spectral band. However the data on which we work
are are made of several, sayN , bands. ThoseN images have
to be analysed, so in this context the unobservable random field
can ne represented byXN = (XN

s )s∈S .
The introduction of the multidimensionnal property of the

data increases the algorithmic complexity of the problem. The
generalization of the equations (12,13) toN bands is not trivial.
The solution is to set a simplifying hypothesis in order to make
the algorithm practically realizable. The most used hypothesis
is the conditional independencewhich stipulates that, knowing
the classθi, the joint density of two variablesy1

s andy2
s is the

product of the densities of each variable :

fi(y1
s , y2

s) = fi(y1
s).fi(y2

s) (14)

This hypothesis can be reinforce by applying a principal com-
ponent analysis (PCA) which reduces the inter-band correlation
and decrease the number of spectral bands. The equation (11) is
written for a numberN of spectral bands in the following way :

p(yN
s ) =

K∑

i=1

πifi(yN
s )+

K−1∑

i=1

K∑

j=i+1

∫ 1

0

πijfij(ε, yN
s )dε (15)

The simplification of equation 15 with the independence
conditional hypothesis result in the following formula :

p(yN
s ) =

K∑

i=1

πi

N∏
n=1

fi(ys)+
K−1∑

i=1

K∑

j=i+1

∫ 1

0

πij

N∏
n=1

fij(ε, ys)dε

(16)

FUZZY STATISTICAL METHOD FOR MASS FUNCTION

INITIALIZATION

Mathematically, we can define non-normalized masses for all
the simple et composed hypotheses as follows :

m̃(θi) =
N∏

n=1

fi(ys) (17)

m̃(θi ∪ θj) =

1∫

0

N∏
n=1

fij(ε, ys)dε (18)

wherefi(ys) andfij(ε, ys) are the conditional densities des-
cribed in the previous section.

APPLICATION TO REMOTE SENSING IMAGES

Data set

The studied zone is the region of “Grand Lake”, located in the
area of Gooze Bay, Labrador. It is mainly composed of different
forest densities and clear cuts. The last cartographic update rea-
lized in 1988.

We use the PCA on the LANDSAT image to reduce the data
to three bands containing 95% of the information. We also com-
pute the Tasseled cap images, to extract the brightness, green-
ness and wetness informations, see figure 1.b to 1.d. We also
have auxiliary information relative to the altitude of the studied
area (fig.1.e). All this complementary and redundant informa-
tion have to be extracted in a rigorous way and the orthogonal
sum of DS is used to combine them.

The extraction of the information is carried out by the FSEM
algorithm from PCA data and Tasseled Cap images. The pure
and fuzzy densities extracted are used in the initialization pro-
cess to compute simple and composed hypotheses of the eviden-
tial theory. We apply a sober filter on the altitude information,
it results in a map containing the slope information of the area.
We use this information to initialize the mass functions accor-
ding to a slope threshold above which confidence for simple and
composed hypotheses “water” or “boggy” is weak.

Results analysis

A simple probabilistic unsupervised classification based on
the SEM algorithm gives 55 % of good classification (fig.2.a).
The contribution of DS fusion initialized by the FSEM algo-
rithm with the Tasseled Cap transformation can improve the
classification quality in particular for boggy and vegetation
classes. The rate of classification is 61 % (fig.2.b). The contribu-
tion of slope information (fig.2.c) removes some natural artefact
related to LANDSAT TM data acquisition. In fact, the shadow
of some clouds is classified like “water” or “boggy” with the
SEM algorithm. Some pixels classified as water or boggy are on
high slope areas which is not realistic. Those pixels are in fact
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cloud shadows. The DS fusion removes this kind of error by de-
creasing the credibility associated to this decision. The rate of
classification after DS fusion is 63 % .

The final step is based on an evidential markovian approach.
Each classified pixel is studied with a spatial context and its own
mass function after the DS fusion [1]. The algorithm used in
this step is the evidential ICM (Iterative Conditional Mode). The
rate of good classification after this algorithm increase to 66 %
(fig.2.d).

CONCLUSION

The new evidential fusion approach can distinct in a better
way the uncertainty et inaccuracy notion in the mass functions.
The FSEM algorithm compared to others algorithms used in the
DS fusion enables possible to distribute a more realistic density
for each simple or composed hypothesis. We have seen that the
mass function initialization proposed in this article ease the fu-
sion process. The mass function are no more estimated using
an empirical approach, so the algorithm is completely automatic
and we do not need any a priori information about the data.

Application to remote sensing multispectral images with
some ecological indices and auxiliary data related to slope in-
formation give a better classification result on the final decision-
making. Redundant and heterogeneity information decrease
some ambiguities related to a lack of data and some artefacts.
Thus, the DS fusion developed method improves the result in
comparaison with the result of LANDSAT TM SEM classifica-
tion.
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(a) (b)

(c)

(d) (e)
Fig. 1. (a) image composed of 3 principal components from LANDSAT TM
multispectral images, (b) to (d) Brightness, Greenness, and Wetness Tasseled
Cap indices respectively, (e) Altitude information

(a) (b)

(c)

(d) (e)
Fig. 2. (a) SEM, (b) FSEM + Tasseled Cap fusion, (c) FSEM + Tasseled Cap
fusion + slope, (d) Evidential SEM, (e) Ground Truth


