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ABSTRACT

This paper concerns the evaluation of a feature selection and classification techniques for land cover classification and potential mon-
itoring of temporal changes. For the purposes of our study, an ASTER satellite image was used, acquired on 5 October, 2001, with
14 spectral bands resampled at the spatial resolution of 15 m. The study area concerns the geographic area of the water basin of Lake
Vegoritis, that is located in the northern part of Greece. A variety of industrial and agricultural activities take place in the Vegoritis lake
basin, which result to constant lowering of the lake water table and the change of land use, and subsequently, lead to degrading of the
lake environment.
Besides the intensity level of the original bands, several features were created including spectral indices (e.g. NDVI), band ratios and
products among selected bands, and Haralick texture features together with their second order combinations. The total of the features
was used as input to a novel feature selection process, the Greedy Non-Redundant (GreeNRed ) feature selection algorithm. This
algorithm is based on information theory, and greedily selects features with no redundant information. The algorithm succeeded in
keeping the complexity at low levels by restraining evaluations in one-dimensional feature spaces, whereas non-redundancy is achieved
by a boosting-like sample weighting.
After the feature selection process different categories of classification methods were applied, namely, K-nearest neighbors and support
vector machine. Classification accuracy assessment followed in order to derive the best classification method and consequently, to
give further feedback as far as the performance of the feature selection algorithm is concerned and the usefulness of machine learning
algorithms for land cover classification as a prerequisite for the assessment of the extended lake environment.

1 INTRODUCTION

The use of multispectral sensor technology has given significant
rise to Earth observation and monitoring, because it provided
a quite rich amount of information for forest fire monitoring,
agricultural and forestry activities and inventories, protected area
management, analysis of the quality of coastal waters, land use
classification, etc. Nevertheless, redundancy in information among
the bands, opens provides the opportunity to explore the opti-
mal selection of bands for analysis. Theoretically, using images
with more bands should increase automatic classification accu-
racy. However, this is not always the case. As the dimensionality
of the feature space increases subject to the number of bands, the
number of training samples needed for image classification has to
increase too. If training samples are insufficient for the need, pa-
rameter estimation becomes inaccurate. The classification accu-
racy first grows and then declines as the number of spectral bands
increases, which is often referred to as the Hughes phenomenon
(Hughes, 2003).

In this work the efficiency of a novel information-theoretic based
feature selection technique for selecting suitable bands of multi-
spectral images used for land cover classification, was examined.
This algorithm was applied on ASTER multispectral data of the
water basin of Lake Vegoritis, Greece. After the feature selec-
tion process, different classification methods were applied and
assessed (e.g. artificial neural networks and Support Vector Ma-
chine algorithms) in order to give further feedback concerning

the feature selection algorithm, and to assess the usefulness of
machine learning algorithms for land cover classification for es-
timating the extended environment for water quality monitoring
purposes.

2 METHODOLOGY

2.1 Study Area and Data Used

For the implementation and evaluation of the Feature Selection
algorithm, an ASTER multispectral image was used. The satel-
lite image was acquired on 5 October, 2001, 9:33:34, includes
14 spectral bands and has a spatial resolution of 15 m for the
VIS/NIR (3 used out of 4 bands), 30 m for the SWIR (6 bands)
and 90 m for the TIR spectral range (5 bands). The image covered
a part of the lake basin of Vegoritis, NW Greece (Figure 1). The
river basin of the extended geographic area of Vegoritis includes
four (4) inland lakes, while agricultural and mining activities are
taking place. In the subset area only two of them are portrayed.
Current agricultural practices may affect the space and time vari-
ability of the lake dynamics, sediment transport, water pollution
(point and non-point releases of pollutants, discharge of wastew-
aters, etc). Therefore, monitoring of land cover and its dynamic
change is a prerequisite for water quality assessment.



Figure 1: RGB composite of the ASTER image of the study area
(Lake basin of Vegoritis). On Red, the NIR band (band 3N) of
ASTER is displayed, on Green, the Red band of ASTER (band
2) is displayed and on Blue the green band (band 1) of ASTER is
displayed.

2.2 Data Preparation and Pre-processing

In the pre-processing stage, all ASTER bands were resampled
to 15m spatial resolution, so as to achieve the same pixel size,
and further geodetically transformed into the Transverse Mer-
cator Projection using the Hellenic Geodetic Reference System
(HGRS’87). The image was cropped so as to keep the geographic
area of interest that contained distinct land cover classes.

The land cover classes selected as tags for input to the feature
selection algorithm were coded as followed: 30: pastures and
shrubland (3 subclasses), 40: non- irrigated and irrigated arable
land (5 subclasses), 50: permanent crops(3 subclasses) and 90:
lakes (2 subclases), i.e. 13 different classes in total. The training
set selection based on these classes was performed by delineating
of small polygonal regions from each identified land cover type
using Photointerpretation. 1500 training and validation samples
were obtained for input to the GreeNRed algorithm.

Raw intensities are usually not sufficient for successful land cover
classification. Therefore, for each band, and for each pixel, we
additionally evaluated a number of textural and other features on
a sliding window centered on each image pixel. The list of fea-
tures used, together with their definitions, are shown in Table 1.
In particular, the textural features were calculated as functions of
the co-occurrence matrix Pφ,d(a1, a2), which is a matrix describ-
ing how frequently pixels with intensities a1 and a2 appear in the
window of size h×w around the pixel, with a specified distance d
in direction φ between them. Hence, there are in total 10 textural
features per band (5 for vertical and 5 for horizontal displacement
for the formation of the co-occurrence matrix). Adding the pixel
intensity value as an 11th feature for each band, as well as the
band combination features, we end up with a feature vector for
each pixel composed by a total of 11× 14 different features. For
illustration purposes, a projection of a subset of the aquired sam-
ples in the NIR- REDplane is shown in figure 2.2, where only the
four main classes are distinguished. Notice that even though the
plane is informative, classes have a relatively big overlap.

Band Combinations

NDVI
NIR − RED

NIR + RED
R14

SWIR1

SWIR4

DIFF NIR − RED R15
SWIR1

SWIR5

SDIFF √
NIR − RED R16

SWIR1

SWIR6

TH
TIR1

TIR4 R31
SWIR3

SWIR1

Texture

energy

X

i,j

P (i, j)2

entropy
X

i,j

P (i, j) · log P (i, j)

contrast

X

i,j

(i− j)2 · P (i, j)

inv. diff. moment
X

i,j,i6=j

P (i, j)

1 + (i− j)2

correlation
P

i,j
[i · j · P (i, j)] − µi · µj

σi · σj

Table 1: Original set of features. The RED, NIR, TIR1 . . . TIR4
and SWIR1 . . . SWIR6 refer to the corresponding Aster bands,
whereas µi, µj , σi and σj are 1st and 2nd order -based statistics
of the co-occurrence matrix P = P 2

φ,d.

2.3 The GreeNRed algorithm : Description and Implemen-
tation

The GreeNRed (GREEdy Non REDundant) feature selection al-
gorithm is an information - theoretic based algorithm that effi-
ciently searches for a minimal set of features of non overlapping
information. The feature efficiency is measured as the mutual in-
formation between the feature and the classification variable. In
the context of multi-band remotely sensed images, each feature,
denoted henceforth by xi, corresponds to the intensity value of a
band or to some band combination or textural feature previously
evaluated, as explained in the previous section. The classification
variable, denoted henceforth by Ω, corresponds to the land usage.

The main characteristic of the algorithm is that it focuses not only
on finding useful features, but also on ensuring that the selected
features are as much “independent” as possible, i.e. they don’t
contain overlapping information concerning a specific classifica-
tion task. This is important, since it allows for further reducing
the total number of features to be selected. Most importantly, the
search for independent features is done by evaluations in individ-
ual feature space, without needing to consider at all their joint
space, thus ensuring algorithm robustness and efficiency.

In the following we will assume that the reader is familiar with
information theory, and especially with Shannon entropy and mu-
tual information. For an introduction to information theory see,
for instance, (1) or (3).

2.3.1 Locally Sufficient Features The algorithm is based on
the concepts of redundancy and local sufficiency, expressed via
information measures. Given two features x1, x2 and the class



Figure 2: Projection of samples in the RED-NIR plane.

variable Ω, feature x2 is said to be locally redundant with respect
to x1 in the region A of the observation space, if

IA(x1, x2; Ω) = IA(x1; Ω)

i.e. the mutual information of the joint features with the class
equals the information of the first feature with the class. Notice
that region A doesn’t refer to a geographical region but to a region
defined via feature values in the joint feature space of all features.

Extending this concept for many features {xi}, we call feature i
locally sufficient at A with respect to features j 6= i, if

IA({xj}, xi; Ω) = IA(xi; Ω)

Local sufficiency implies that, in the specific region, we can dis-
card all but one feature without loss of discriminative informa-
tion. The aim of the algorithm is to effectively partition the ob-
servation space in a suitable way, such that a minimum number
of sufficient features can cover the whole region of interest.

Using the mutual information criterion has two advantages. First,
mutual information is closely connected to the optimal misclas-
sification error, or Bayes error, by means of lower and upper
bounds

H(Ω|X) − 1

log(K − 1)
< Pe(X, Ω) <

1

2
H(Ω|X) (1)

The lower bound is known as the Fano inequality.

Second, the selected features are optimal, regardless of the spe-
cific classifier that is to be used later for the classification pro-
cess. This implies a clear distinction between the feature selec-
tion and classification processes, that allows a freedom of choice
of a more or less sophisticated classifier, whose training is likely
to be greatly facilitated by the reduction of the input space dimen-
sion.

Mutual information has been used in the past as a criterion for
feature selection (2), (7), though its use may be considered as lim-
ited because of complexity and lack of robustness in its evaluation
via numerical methods. However, our algorithm minimizes the
implications of these issues by considering only one-dimensional
mutual information evaluations with the class, which make eval-
uations both robust and linear with respect to the number of sam-
ples.

Algorithm 1 Greedy Sufficient Feature Selection Procedure

1: F ← {xi}ni=1, S ← ∅
2: A← X , j ← 1
3: repeat
4: xj ← argmax

xi∈FIA(xi; Ω)
5: F ← F \ xj , S ← S ∪ xj

6: Aj = {x : x ∈ A, i(xj ; Ω) > isuf}, Ac
j = A/Aj

7: A← Ac
j , j = j + 1

8: until Ac
j < Aε or j = M

2.3.2 Greedy Feature Selection The proposed algorithm is
greedy in respect to the number of features to be found. At each
step, features are examined, one by one, in respect to their suit-
ability for discriminating the classes in the region of the obser-
vation space not yet covered by previously found features, and
the best one is chosen. This is repeated until enough features are
found. A formal description of the proposed greedy procedure is
outlined in Algorithm 1.

The greedy approach offers three advantages. First, it allows us
an adaptive control of the number of features to be selected, by
inspection of the classification ability of those already selected.
Second, it ensures linear algorithmic complexity with respect to
the number of features to be selected. This complexity is far more
satisfying than an exhaustive search of all the feature combina-
tions. Finally, in this particular algorithm, the greedy approach
guarantees effectiveness and self-containment of the features. In-
deed, one should notice that not only should the selected features
be locally sufficient but, also, the total of the selected features
should determine the limits of the sufficiency regions, since oth-
erwise the discrimination information would be lost. This can be
better seen by denoting local mutual information as

IA(xi; Ω) = I(xi; Ω|X ∈ A)

which implies that local mutual information exists only by knowl-
edge of the sufficiency regions.

Thus, at each step of the algorithm, the local sufficiency are al-
ways implicitly defined via the feature to be selected and the al-
ready selected features, which guarantees that the limits are in-
deed defined by the selected features.

As a price to pay for these benefits, it should be stressed that the
greedy search is not guaranteed to provide the optimal minimum
feature set, although it is very probable that the set of sufficient
features selected will include most of the optimal sufficient fea-
tures.

2.3.3 Soft sufficiency regions The implementation of the lo-
cal sufficiency feature search with the greedy approach described
above requires a way of finding sufficiency regions. Here, we pro-
pose to indirectly specifying the covering of regions by means of
soft inclusion of samples in them. Namely, a region is defined
as a set of weights {wp} having 1-to-1 correspondence with the
samples {xp}, p = 1 . . . P . When wp = 0, the correspond-
ing sample xp is not included in the considered region, whereas
when wp = 1, a sample is maximally included. Intermediate
values are interpretated as ”soft inclusion” of samples, indicating
that the region around those samples is partially covered.

Instance-based soft sufficieny regions defintion has two important
advantages. First, it provides a smooth partitioning of the space,
increasing the robustness of the algorithm. Second, it allows for
implicitly defining the regions, without the need of denoting the
limits in terms of feature coordinates. Thus, the limits are im-
plicit presence, even when evaluating local suitability of features,



Algorithm 2 The GreeNRed Feature Selection Algorithm

1: D ← {xp}P1
2: w = [· · · 1

P
· · · ], w ∈ R

n

3: F ← {xi}Ni=1, S ← ∅.
4: repeat
5: ∀xi ∈ F, xp ∈ D, Iip ← IW (xi

p; Ω)
6: ∀xi ∈ F, Ii ←

P

p
Iip

7: X̂← argmaxxi
Ii

8: F ← F \ X̂, S ← S ∪ X̂

9: ∀wp ∈W, wp ← 1−maxi∈F Iip.
10: ∀wp ∈W, wp ← wp/

PP

i=1
wp

11: until enough features are selected

which may not necessarily be involved in the definition of the
regions. This is a key observation for evaluating local mutual in-
formation with the class in one dimension : Mutual information
is evaluated as

IA(xi; Ω) = Iw(xi; Ω),

i.e region A is specified by weights, and,

Iw(xi, Ω) = Hw(xi)−Hw(xi|Ω)

= −
Z

pw(xi) log pw(xi)+

X

k

Z

pw(xi|ωk) log pw(xi|ωk) (2)

where pw is a parzen estimate of the probability density function
evaluated as

pw(x) =
X

allp

wpN (x|xp, σp)

and
pw(x|ωk) =

X

p7→Ωk

wpN (x|xp, σp)

where the σ is automatically adjusted for each sample,N (·, m, σ)
denotes the normal probability density function with mean m and
standard deviation σ, and {ωk} are the set of values the classifi-
cation variable takes (i.e ‘lake’, “grass” etc).

2.3.4 The algorithm The algorithm is outlined in Algorithm 2.
It consists of the following steps: The set of features under con-
sideration and the selected features are initialized to contain all
the features and no feature respectively. Each sample is initially
given a weight 1

P
, where P are the number of samples. Then for

each feature to be selected the following are done.

1. The suitability of each feature under consideration is evalu-
ated as the mutual information of the feature with the class
variable, given the weighted samples

2. The best feature is added to the selected features and re-
moved from the features under consideration

3. The cover of the region with respect to the classification
is evaluated as the local mutual information at the sample.
New weights are given to the samples, according to how
“uncovered” they are from the already selected features. The
weights are normalized, so that they sum up to 1.

When the “covering” of the region is judged adequate, according
to the local mutual information around the samples, the algorithm
stops.

Feature Set 3-NN SVM

14 B 0.87 0.90

14 B + Cmb 0.82 0.88

14 Bds + 5R 0.85 0.90

14 Bds + 5R + Cmb 0.86 0.90

GreeNRed 0.89 0.92

Table 2: Generalisation accuracy of the K-NN and SVM algo-
rithms. Each of the 4 first rows corresponds to the classifica-
tion accuracy achieved by a manually constructed feature sub-
set. The last row corresponds to the feature subsect selected by
GreeNRed . It can be seen that for both the K-NN and the SVM
algorithms, the GreeNRed feature subset achieved better perfor-
mance.

3 CLASSIFICATION AND ACCURACY ASSESSMENT

In order both to obtain feedback regarding the features relative for
land cover and to evaluate the GreeNRed algorithm, we applied
it to the feature space described in section 2.2. The evaluation
aimed at comparing the generalisation performance of classifica-
tion techinques with and without the GreeNRed feature selection.
The classifiers used were the K-nearest neighbors (K-NN ) and
the linear support vector machine (SVM ) which belong to dif-
ferent families, namely memory-based classifiers and linear clas-
sifiers. The sample set was formed by randomly choosing 500
points of the area under consideration where the 13 classes of
land use were equally represented.

Table 2 presents the classification accuracies achieved with K-
NN and SVM using 4 different feature ad-hoc assembled sets as
well as the feature set constructed by the GreeNRed algorithm.
The four subsets correspond to (a) the 14 original aster bands, (b)
the 14 origninal band together with their second order combina-
tions (119 features), (c) the orginal bands plus the ad-hoc feature
combinations, as described in section 2.2 (19 features) and (d) the
total of features with their second order combinations (299 fea-
tures). Texture features are ommited from the tables since they
have proven non-significant for the classification process when
tested with varying number of graying levels, angle and displac-
ment step. Furthermore, the ”GreeNRed ” feature set has been
prduced by feeding the GreeNRed algorithm with the totality of
features.. The 2 columns show the average correct rates of 10-
fold cross validation sets, using 90% of the data for training and
the remaining 10% for testing.

As a first observation, notice that the SVM achieved better overall
performance for the task than the K-NN classifier. Most impor-
tantly, however notice that, in both cases, GreeNRed manages to
increase generalisation performance. Notice that a big number of
features doesn’t guarantee an increase in classification accuracy,
since these features may be irrelevant to classification and hence
act as noise to the classification process. In figure 3, a function of
the performance of the K-NN in respect to the number of features
extracted by the GreeNRed algorithm is presented. In contrast,
the performance of the classifier when a similar greedy but not
redundancy-aware search was conducted.

4 CONCLUSION

From the examination of the results of the applied feature se-
lection algorithm, the following conclusions were derived: The
texture features did not provide significant results probably be-
cause of the relatively low spatial resolution of the ASTER image
(15m), where patterns were prevented from being recognized. On
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Figure 3: GreeNRed -greedy comparaison with the 3-NN algo-
rithm

the other hand, second order combinations of bands (e.g. band
products, etc.) turned out to provide more information, although
some of them were considered as noise. At this point, the use of
features selected by the GreeNRed algorithm improved the clas-
sification accuracy, as it kept the features that carried all useful in-
formation and ignored those that added noise to the dataset. From
the analysis of the results presented in Table 2, it was concluded
that, the used classification algorithms provided results of very
high accuracy (90%), especially the SVM algorithm. However,
the classification results were further improved by using partici-
pating features from the GreeNRed algorithms (92%), rather than
using all combinatorial features (90%).
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