EXPLORATION FOR URANIUM AND THORIUM MINERALIZATIONS AT WADI UM LASEIFA AREA, CENTRAL EASTERN DESERT, EGYPT: USING REMOTE SENSING TECHNIQUE

T. M. Ramadan, S. A. El Mongy and S. Salah El Dein,

a National Authority for Remote Sensing and Space Sciences, Egypt, ramadan_narss2002@yahoo.com
b National Center for Nuclear Safety and Radiation Control

KEY WORDS: Remote sensing, Uranium mineralizations, Airborne radiometric data, Eastern Desert, Granitic rocks, Radiometric materials, Gamma ray spectrometry

ABSTRACT:

This research aims at integrating airborne radiometric and remote sensing satellite data to prospect for radioactivity of the rocks at Wadi Um Laseifa, located in the Central Eastern Desert of Egypt. The study recorded some uranium anomalies along NNE-SSW trending fault zones within the granitic rocks. These occurrences are associated with alkali granites, pegmatitic and manganese veins, trachytic dykes (Gabal Hamrat Ghanam, Gabal El Delihmi, Gabal Nusla and Gabal Abu El Tiyur). Gamma ray spectrometer measurements for representative samples indicate the presence of U up to 17.2 ppm in the trachytic dykes, 12 ppm in the pegmatites and 9 ppm in the manganese veins. Results demonstrate the accuracy of airborne radiometric data and the suitability of remote sensing techniques as a powerful tool in exploration for radioactive materials.

1. INTRODUCTION

The study region lies in the central part of the Eastern Desert of Egypt between Lat. 25° 30’ and 25° 55’ N and Long. 34° 00’ and 34° 40’ E. This study aims at integrating airborne radiometric and Landsat Thematic Mapper (TM) data for detecting radioactive anomalies in this area.

In the present work, the airborne radiometric maps for the investigated area were processed to show the distribution and intensities of uranium (U), thorium (Th) and potassium (K⁴⁰) within the studied area. These maps were correlated with geologic and structural maps prepared by using Landsat TM images, to show the lithological and structural features.

2. METHODOLOGY

Spatial integration of various data sets such as geological map (1:100,000 scale), Landsat TM images (1:100,000 scale) and airborne radiometric data is applied to show the distribution and intensities of uranium (U), thorium (Th) and potassium (K⁴⁰) within the studied area. Geographic Information System (GIS) model has been designed and implemented based on the intersection of the buffering zones of each input layer.

2.1 Remote sensing analysis

2.1.1 Landsat TM Data: Landsat Thematic Mapper (TM) data for the study area was processed for geological and structural mapping using the ERDAS imagine 8.5 at the NARSS’s Image Processing Lab. A single Landsat TM scene (Path 174 , Row 42, date 1986) covering the investigated area has been geometrically corrected and radiometrically balanced and digitally processed. Digital processing of Landsat TM image for the study area generated several products ranging from single band images, false color composite images (7, 4, 2 in RGB), principal component images (4, 2, 1 in RGB) to ratio images (bands 5/7, 5/1 and band 4/3), (4/3, 3/1, 5/7) in R, G, B (scale 1:100,000). Landsat TM images (bands 7, 4, 2) and Principal component analysis of bands 4, 3 and 2 were used for detecting the regional tectonic structures in the study area. Ratio images (5/7, 5/1, 4/3) and (4/3, 3/1, 5/7) in R, G, B were used for lithological discrimination of different rock types. In such images the investigated ultramafic rocks are indicated by green color, the granodiorites are indicated by red to pinky color, the younger granitic rocks are indicated by purple color (Fig. 2).

2.1.2 Airborne Gamma-ray Survey: Wadi Um Laseifa area was included in the airborne gamma-ray spectrometric survey conducted by Aero-Service over a large segment of the central and southern Eastern Desert, Egypt, designated as area-II (Aero-Service 1985). Airborne radiometric data represent measurements of the gamma-ray flux above the earth’s surface, caused by the radioactive decay of U, Th and K⁴⁰ with resolution of 200 m. The survey was flown along a set of parallel traverse flight lines oriented in a northeast-southwest direction, at 1 km spacing, while tie lines were flown northwest-southeast at 10 km intervals. The
high-sensitivity multi-channel radiometric measurements were made at 92 meters interval, using twin-engine Cessna-404, Titan type aircraft. A high sensitivity 256-Channel airborne gamma-ray spectrometer-having approximately 50 liters NaI (TI) detector was used as the primary sensor elements in the Aero-Service CODAS/AGRS 3000 F computer based digital data acquisition system (Aero Service 1985). The obtained data were displayed in stacked profiles or contour maps, and interpreted visually.

In the present work, airborne radiometric digital data were converted such to images format and different image processing techniques were applied. These images were designed to show intensities distribution of U, Th and K. The preprocessing steps are as follows:

a- Converting the data of each element (U, Th, K) to an image file with a set of floating (real) density numbers (DN).

b- Merging the three elements image files to one multi-bands image that could be manipulated and processed as an ordinary image file. The composite color image representing U, Th and K distribution and intensity, i.e. blue represents high U and poor Th + K, green represents high Th and poor U + Th, and red represents high K and poor U + Th.

c- Output decision

The decision of defining the most promising areas of uranium has resulted as an output image. Figure (1) shows the concentrated areas of uranium (U>50 ppm and U/Th >10) superimposed on Landsat TM image using the above selected controlled parameters. These sites lie between Wadi Sharm El Bahari in the north and Wadi Um Greifat in the south.

2.2. Field and laboratory work

Two field trips for scintillator measurements and sampling of the recorded sites of high radioactivity. Six sites showing anomalous radioactivity > 50 ppm U on the processed airborne radiometric images were prospected in the field by scintillator and sampled. The scintillator used is a “SAPHYMO – STEL”, type S.P.P.2. NF.

Thin sections and polished surfaces for 30 samples were studied microscopically to reveal the mineralogical composition of the rock units and the hosted radioactive anomalies.

Eighteen rock samples were collected from the 6 sites representing the highly anomalous radioactivity sites. Then, laboratory gamma ray measurements for the these samples were carried out using the Hyper Pure Germanium Gamma-Spectrometers (HpGe). The collected rock samples were crushed, sieved and packed in 100 ml volume containers. The containers were then sealed for four weeks to get secular equilibrium between 232Th and its daughters. The gamma ray analyses of the samples have been carried out by HpGe detector with 8K multichannel analyser (MCA). The detector (Canberra type) has 40% efficiency with 1.95 keV resolution at 1332 keV of 60Co. The system was energy calibrated by using multi gamma ray sources; 137Cs, 60Co and 57Co. The efficiency of calibration and factors to be used for quantitative calculations of thorium and uranium were carried out. All the measurements have been carried out at the Central Laboratory for Environmental Measurements, National Center for Nuclear Safety and Radiation Control.

Uranium was identified based on its daughter transition, 63 keV of 234Th. Thorium was determined based on its daughters gamma transitions; 583keV of 208Tl and 911keV of 228Ac. The activity (A) of 234U and 232Th was calculated by the following equation:

\[A = R \cdot F_n / \rho \quad \text{Bq/Kg} \quad \ldots \ldots \ldots 1 \]

where
\[R = \text{the count rate in the specific photo peaks} \]
\[F_n = \text{the factor of normalization} \]
\[J = \text{the sample density (g/cm}^3) \]

The activities (Bq/g) of uranium and thorium were then converted to concentration in ppm (ug/g) by using the following equation:

\[A = (w/A.wt) \cdot N_f \cdot (0.693/T_{1/2}) \quad \ldots \ldots \ldots 2 \]

where
\[w = \text{the weight of } ^{238}\text{U and } ^{232}\text{Th (ug/g)} \]
\[A.wt = \text{the atomic weight of U and Th} \]
\[N_f = \text{the Avogadro’s number (6.02 x 1023)} \]
\[T_{1/2} = \text{the half life time of U and Th} \]

The IAEA’s Reference materials were used for quality control of the calculations and results.
3. RESULTS AND DISCUSSION

3.1 Lithologic interpretation

Lithological formations of Wadi Um Laseifa area were identified from the analysis and interpretation of Landsat TM data, as well as the field study. This area is covered by Pan African Precambrian basement rocks and overlain by Phanerozoic sedimentary rocks (Fig. 2).

The Pan African rocks are arranged from oldest to youngest as follows: ophiolitic ultramafic rocks, ophiolitic melange, metavolcano-sedimentary rocks, metavolcanic rocks, gabbro-diorite rocks, granodiorites, Hammamat sediments, calc-alkaline and alkali granites. These rocks are injected by pegmatite and quartz veins as well as felsitic and trachytic dykes.

Phanerozoic rocks are outcropping in the eastern flank of the area and represented by Miocene sediments (Gabal El Rosas, Abu Dabbab, Essel and Sharm El Bahari formations), Pliocene sediments (Gabir, Shagara and Wizr formations), Pliocene (Um Gheig Formation) and Quaternary deposits (Fig. 2).

3.2 Radioactive occurrences

The identified radioactive anomaly sites are classified into three groups according to their main trend and their host rocks.

- The first group trending NNE-SSW and associated with the alkali-granite, trachytic dykes, felsitic plugs and pegmatitic veins at Gabal Hamrat Ghannam, Gabal Dileihimi, Gabal Abu El Tiyur respectively.
- The second group trending NNE-SSW and associated with the manganese veins which injected the granitic rocks at Gabal Abu El Tiyur.
- The third group trending NNW-SSE associated with the Miocene sediments at the area between Wadi Sharm El Bahari and Wadi Um Greifat (Ramadan, et al., 1999).

The following is brief description for these sites according to host rocks.

3.2.1 Radioactive associations with the granitic rocks: This type of radioactive anomalies is associated with the alkali-granite, trachytic dykes, felsitic plugs and pegmatitic veins.

a. Gabal Hamrat Ghannam area

This area is covered by granodiorites and intruded by biotite and alkali granites. Several trachytic dykes trending 20° N and cut these rocks. The delineated radioactive anomalies having U > 50 ppm occur within the alkali granite and trachytic dykes in the southern part of Gabal Hamrat Ghannam (Lat. 25° 52 20” N and Long. 34° 16’ 30” E). These trachytic dykes reach up to 50 m in thickness and up to 2 km in length and trending NNE-SSW (Fig. 3). Gamma ray readings of the scintillometer in the granodiorites are ranging from 175 to 200 c/s. The HPG measurements of U and Th in the trachytic dykes show that the contents of U range from 3.2 to 10 ppm, and Th from 10 to 18 ppm (Table - 1).

b. Gabal Dileihimi area

This area is covered by granodiorites and intruded by biotite and alkali granites. Several felsitic and trachytic dykes cut these rocks and trending 20° N. The delineated radioactive anomalies having U > 50 ppm occur in the alkali granite and trachytic dykes in the northern part of Gabal Dileihimi. Gamma ray readings of the scintillometer in the granodiorites are ranging from 40 to 50 c/s and from 150 to 170 c/s in the alkali granites.

c. Gabal Abu El Tiyur area

This area is covered by biotite and alkali granite. Numerous felsitic dykes trending N-S cut these rocks. The delineated radioactive anomalies having U > 50 ppm occur within alkali granite and felsitic dykes in the northern part of Gabal Abu El Tiyur (Lat. 25° 45’ 05” N and Long. 34° 15’ 15” E). The readings of the scintillometer in the felsitic dykes are ranging from 175 to 200 c/s.

d. Gabal Nusla area

This area is covered by granodiorites and intruded by biotite and alkali granites. Several felsitic dykes and pegmatitic veins trending 20° N are injected in these rocks. The delineated radioactive anomalies having U > 50 ppm occur within felsitic dykes and pegmatitic veins at the northern part of Gabal Nusla (Fig. 3). The readings of the scintillometer in the granodiorites are ranging from 140 to 150 c/s. The HPG measurements of U and Th in the pegmatitic veins show that: the contents of U range from 9.7 to 17.2 ppm, and Th from 23 to 36 ppm (Table - 1).

e. Wadi Maktal Mohamad:

A radioactive anomaly, where U exceeds 50 ppm, is recorded at the upper reaches of Wadi Abid, representing the northern tributary of Wadi Maktal Mohamad. At this site, a felsite plug cuts the gabbroic rocks and is partially covered with Miocene clastic–carbonate formations. In this felsite plug, the readings of the scintillometer range from 150 to 160 c/s.

3.2.2 Radioactive anomalies within the manganese veins:

Several manganese veinlets injected the granitic rocks of Gabal Abu El Tiyur at its eastern side trending N-S. These veins reach up to 2 m length and 3 cm width. The readings of the scintillometer are ranging from 175 to 200 c/s. The measurements of U and Th in the manganese veins show that: the contents of U range from 0.9 to 9 ppm and Th is less than the detection limit of the gamma spectrometer (Table - 1).
Figure 1: U > 30 and U/Th > 10 (red) distribution and intensity map superimposed on Landsat TM image of the study area.

Figure 2: Geological map of the study area, modified after EGSMA 1992.
Figure 3. Photograph showing pegmatitic vein (P) injected in the younger granites at Gabal Homret Ghannam

Figure 4. Photograph showing felsite dyke (F) cut the metavolcano-sedimentary rocks, northwest of Gabal Nusla

<table>
<thead>
<tr>
<th>Ser. No.</th>
<th>Site Code</th>
<th>Rock type</th>
<th>Scint. Readings c/s</th>
<th>(^{238}\text{U}) Bq/Kg</th>
<th>(^{238}\text{U}) ppm</th>
<th>(^{232}\text{Th}) Bq/Kg</th>
<th>(^{232}\text{Th}) ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>S5</td>
<td>Red granite</td>
<td>160</td>
<td>70.9±34</td>
<td>5.8 ppm</td>
<td>71.8±11</td>
<td>17.8 ppm</td>
</tr>
<tr>
<td>2</td>
<td>S9</td>
<td>Red granites</td>
<td>250</td>
<td>123.8±45</td>
<td>10 ppm</td>
<td>55.1±8</td>
<td>13.6 ppm</td>
</tr>
<tr>
<td>3</td>
<td>S13</td>
<td>Felsite dyke</td>
<td>175</td>
<td>38.9±15</td>
<td>3.2 ppm</td>
<td>41.8±8</td>
<td>10.3 ppm</td>
</tr>
<tr>
<td>4</td>
<td>UL1</td>
<td>Trachyte dyke</td>
<td>250</td>
<td>211±29</td>
<td>17.2 ppm</td>
<td>120.8±7.2</td>
<td>30 ppm</td>
</tr>
<tr>
<td>5</td>
<td>UL2</td>
<td>Trachyte dyke</td>
<td>200</td>
<td>118±47</td>
<td>9.6 ppm</td>
<td>116.2±12</td>
<td>29 ppm</td>
</tr>
<tr>
<td>6</td>
<td>UL4</td>
<td>Pegmatite vein</td>
<td>200</td>
<td>120±37</td>
<td>9.8 ppm</td>
<td>93±15</td>
<td>23 ppm</td>
</tr>
<tr>
<td>7</td>
<td>UL5</td>
<td>Pegmatite vein</td>
<td>230</td>
<td>144.7±89</td>
<td>12 ppm</td>
<td>145.2±16</td>
<td>36 ppm</td>
</tr>
<tr>
<td>8</td>
<td>Mn1</td>
<td>Manganese vein</td>
<td>200</td>
<td>110.1±57</td>
<td>9 ppm</td>
<td><DL</td>
<td><DL</td>
</tr>
<tr>
<td>9</td>
<td>Mn2</td>
<td>Manganese vein</td>
<td>120</td>
<td>11.2±3</td>
<td>0.9 ppm</td>
<td><DL</td>
<td><DL</td>
</tr>
</tbody>
</table>

*DL: Detection limit of the gamma spectrometer

S = Trachytic dykes of Hamrat Ghannam area
UL = Fesitic dykes of Umm Laseifa area
Mn = Manganese veins of Gabal Abu El Tiyur area

Table 1. Concentration of \(^{238}\text{U}\) and \(^{232}\text{Th}\) in ppm of the study area
4. CONCLUSION
The present work revealed the presence of several new radioactive sites in the Central part of the Eastern Desert. These occurrences are located along N-S and NNE-SSW trending fault zones, within the granitic rocks and contrary to those recorded by Ramadan et al., (1999) which occur along NW-SE trending fault zones, within the Miocene elastic-carbonate sediments. The radioactive anomalies are associated with the alkali granites, pegmatitic and manganese veins, trachytic dykes at Gabal Hamrat Ghanam, Gabal El Delihmi, Gabal Nusla and Gabal Abu El Tyrir respectively.

Detailed chemical and mineralogical studies for these uraniferous sites are recommended. The results of the present study demonstrate the accuracy of airborne radiometric data as well as the suitability of the remote sensing technique for exploration for radioactive material.

ACKNOWLEDGEMENT
The authors would like to thank Prof. M. M. Hassaan, Al Azhar University and Prof. I. El Kassas, NARSS for their sincere help and discussions.

References