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ABSTRACT: 
 
This paper presents a mathematical framework for dealing with area-based image co-registration problems in a generic and modular 
way. Based on this framework an efficient implementation is devised allowing “plug & play” support for a whole gamut of 
geometric transformations, image similarity measures (criteria) and optimisation methods. A typical drawback of area-based 
methods is the exhaustive use of memory and the slow optimisation speed. Therefore, this paper outlines an effective subsampling 
strategy that considerably speeds up the registration process. The final part of the paper is devoted to an extensive evaluation of the 
algorithm using both ground-truth data and a series of challenging real examples.    
 
 

1. INTRODUCTION 

1.1 Image Co-registration 

Accurate co-registration of remotely sensed imagery is an 
important step in the analysis of Earth Observation data. For 
example, time series analysis, data fusion and change detection 
all require accurately co-registered images in order to produce 
useful and meaningful results. 
The problem of image registration has been studied extensively 
from different viewpoints among which computer vision, 
medical imaging and remote sensing. Currently, a whole gamut 
of registration techniques is available, many of which rely on 
the interaction of a human operator. The classical approach 
requires the manual selection of homologue points. The global 
transformation is than interpolated from the known 
displacements of these points using different methods. It is 
important to note that the image content is only used by the 
human operator when selecting and matching the control points. 
Automatic co-registration, on the other hand, exploits the image 
content for finding the correct alignment of images. A first class 
of automatic registration approaches attempts to automate the 
process of feature selection and feature matching. These 
feature-based methods are fast and work particularly well when 
the images at hand have similar spectral content. Special care 
must be taken to use robust descriptors and matching techniques 
that account for, or are invariant to, deformations of the image. 
Features can be corners (e.g. [1]), wavelet features (e.g. [3]), 
edges, contours (e.g. [2]) or even entire image segments that 
resulted from an image segmentation. In the literature, a second 
broad class of automated approaches is categorised as area-
based registration. In this case, information from all pixels is 
accounted for. These approaches are much slower and memory 
consuming but have proven successful in registering multi-
modal or heterogeneous data types. Unlike feature-based 
methods, the initial alignment of the two images should be 
reasonably well. Fortunately, in remote sensing, most image 
data is accompanied with a (rough) georeference. For a more 

elaborate overview of past and current registration techniques 
we refer to surveys in the literature: [4],[5]. 
 
1.2 Outline of the paper 

This paper describes a framework that gives rise to a generic 
and modular implementation of area-based registration 
methods. To overcome the slow optimisation, inherent to area-
based methods, a subsampling procedure is proposed, giving 
rise to a hybrid registration method. 
The rest of this paper is organised as follows. Section 2 
introduces the necessary mathematics for formulating the 
registration problem as an optimisation problem. 
Implementation issues as well as improvements (multi-
resolution strategy and subsampling) are discussed. Next, 
section 3 and 4 elaborate respectively on the geometric 
transformations and similarity measures that are supported by 
the framework. In section 5 a series of experiments is carried 
out on ground-truth and real data. Finally, section 6 concludes 
the paper with a summary of the registration results and a 
discussion on how the current framework can be improved and 
extended towards applications such as change detection. 
 

2. MATHEMATICAL FORMULATION 

2.1 Generic Co-registration Framework 

For the sake of clarity, we start with a few notational 
conventions that will considerably simplify the expressions in 
this section. An image function is a differentiable function I, 
that maps pixels x = [x y]T from a domain D ⊂ IR2 to an n-
dimensional set of spectral values. A raster image I is 
considered as a sampled version of I. Given a grid of sample 
coordinates (usually a lattice) {xi , i = 1…N}, the raster image I 
is constructed as a vector of grey values: 
 

 1( )... ( ) T
NI I= ⎡ ⎤⎣ ⎦I x x  (1) 



 

Multi-band raster images can be represented as matrices, storing 
the different spectral bands in different columns. In the 
following, we will consider one-dimensional (grey-value) raster 
images to avoid complex notations. The reader should bear in 
mind that the results of this section apply to multi-band images.  
In practice, the image function I is not known. In fact, all that is 
known is a sampling of I on a certain  grid (a raster image I). 
Because the continuity (and smoothness) of I is crucial to our 
approach, the image function I is defined as an interpolation of 
the available raster image I. For our experiments we used 
bilinear interpolation which is fast and meets the desired 
smoothness property. 
A geometric transformation T maps points x in the plane to 
other points in the plane. Parametric transformations T(•;p) can 
be described completely by means of a parameter vector p. For 
example, a rigid transformation has three parameters: the two 
components of the translation vector and a rotation angle. 
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If we want to transform a raster image, this is done by adjusting 
its sampling grid according to the transformation. 
  

 1( ) ( ( ; ))... ( ( ; )) T
NI T I T= ⎡ ⎤⎣ ⎦I p x p x p  (3) 

 
Similarity of raster images is expressed by a real-valued 
similarity measure or criterion function C, that takes two vector 
(matrix) arguments of the same size. 
 
 : ( , ) ( , )C CX Y X Ya  (4) 
 
For example, the Sum of Squared Differences (SSD) criterion 
computes the Euclidian distance between the vectors X and Y. 
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Co-registration of an image I2 (called the “slave” image) with a 
“master” image I1 boils down to finding the correct parameter 
vector p that yields an “optimal” criterion value, i.e. 
 
 ( )1 2( ) , ( )f C=p I I p  (6) 
 
attains an extremum at p. The nature (maximum or minimum) 
of this extremum depends on the criterion. The problem of co-
registration has now been formulated as an optimisation 
problem. The evaluation of the objective function f for a given 
parameter vector p is computed in 3 steps. 
 

1. compute the transformed grid T(xi;p) 
2. create I2(p) by sampling I2 
3. compute C(I1,I2(p)) 

 
Most analytic optimisation algorithms require the gradient of 
the objective function to implement an efficient strategy for 
attaining the optimum (e.g. gradient ascent). In our case the 
gradient of the objective function takes on the form 
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where we applied the chain rule to resolve the dependencies. 
Here, <•,•> denotes the inner product in IR2. It is certainly 
worthwhile taking a closer look at the expression for the 
derivative in equation (7), as a few components represent well-
known quantities. The first factor is the derivative of the 
criterion with respect to its second argument. The second factor 
is the image gradient function of the slave image and the third 
factor is the Jacobian of the transformation. In summary, 
computing the gradient of the objective function consists of the 
following consecutive steps: 
  

1. Compute the Jacobian of T on the grid points 
2. Evaluate the image gradient of I2 on the transformed 

grid points. 
3. Compute the derivative w.r.t. its second argument and 

evaluate it on the master image and the transformed 
slave image. 

4. Combine the results of 1,2 and 3 using (7). 
 
2.2 Object Oriented Implementation 

Object oriented programming allows generic and modular 
implementation of the proposed co-registration framework.  
 

 
Figure 1 Simplified Object Model for co-registration. The 

registration algorithm is formulated as an 
optimisation problem. Hence it is a derived class 
from Optimisable. The latter object is required to 
implement the objective function f and its gradient 
df. Registration will provide this implementation 
using concatenations of implementations from 
Criterion and Transformation. For the sake of 
clarity, image data has been left out of the diagram. 

 
Based on the principle of polymorphisms, it suffices to create 
abstract classes (interfaces) for a criterion, a transformation and 
an optimisation method. Then, specific implementations for 
criteria and transformations can be derived from these 
interfaces, provided that they implement evaluations and 
derivatives. As we formulated the co-registration as an 
optimisation problem, the co-registration class itself is a derived 
class from an optimisation problem (i.c. optimisable class). An 
optimisable class is required to implement an objective function 
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and a gradient. The latter can be obtained from its members: a 
criterion, a transformation and the images. Different 
optimisation strategies can avail of this information to attain the 
desired optimum. Figure 1 summarises this scheme. 
 
2.3 Multi-resolution approach 

Non-convex optimisation often suffers from local minima, 
especially when the initial “guess” is too far off. Therefore, for 
each image, a pyramid of downsampled versions is created. The 
effect of this operation is twofold: at higher pyramid levels the 
amount of geometric distortion decreases (in terms of pixel 
displacement) and the objective function becomes smoother as 
the image data is smoothed. 
The co-registration is started at the highest pyramid level, level 
0 and works is way down the pyramid as follows. After 
optimisation, the “solution” pi at pyramid level i is “upscaled” 
to level i+1 (pi+1) and used as an initialisation for the next 
pyramid level. The upscaling for each parameter pi has to be 
done carefully, as the upscaling transform causes not only a 
scaling but also a small offset of the canonical coordinate 
system of both image rasters.  
 
2.4 Subsampling 

One of the obvious shortcomings of area-based co-registration 
is that the exhaustive use of all pixels causes the algorithm to 
run slowly, especially for criteria that yield a high 
computational complexity. Both the objective function and its 
gradient can be approximated using only a subset of the pixels: 
the raster image I1 can be reduced to a percentage of all pixels 
accompanied by their locations x. This set of locations can be 
considered as a special grid. In general, a random sample of the 
master image domain will provide arbitrarily good 
approximations, depending on the number of samples. In some 
cases, a smaller, biased sample could be more efficient (e.g. 
interest points).  
 
2.5 Optimisation methods 

We experimented with different optimisation methods, 
including conjugate gradient, quasi-newton (DFP and BFGS) 
and variable step gradient descent. We obtained the best results 
with the simple gradient descent optimisation strategy. 
Furthermore, gradient descent also compares favourable to the 
other methods in terms of execution time. The reason for this 
probably lies in the non-convexity of the image co-registration 
criterion functions. 
 

3. GEOMETRIC TRANSFORMATIONS 

In our framework we distinguish between parametric 
transformations and non-parametric transformations. The main 
reason for this is that the optimisation techniques for both types 
are quite different. 
 
3.1 Parametric Transformations 

The tool supports all well-known parametric transformations: 
translation, rigid transformation (2), similarity transformation, 
affine transformation, planar homography and linear spline. 
These “classical” parametric transformations account for global 
differences in alignment. 
In case of depth or relief related disparities a localised 
transformation model is required. Examples of such families are 
thin-plate splines (TPS), higher order polynomials, weighted 

mean (WM), piecewise linear (PL),… A recent study [6] 
pinpoints the pro’s and cons of these non-rigid transformations. 
Most of these transformation families require a set of 
homologue points identifying matches between the master and 
slave image. In our setting, envisaging fully automatic 
registration,  such information is not available. However, if a 
set of control points is available only for the master image, such 
transformations can be parameterised in terms of the 
displacements of the control points, i.e. 
 

 1 1 ... T
n ndx dy dx dy= ⎡ ⎤⎣ ⎦p  (8) 

 
Control points (xi,yi) can be either automatically selected on a 
regular grid, or using an interest point detector.  
 
3.2 Non-Parametric Transformations 

A broad-purpose type of geometric distortion is optical flow 
(OF). Here, the displacement of pixels is only constrained by a 
global (or local) smoothness. As such, OF is able to recover 
from local discontinuities without needing to identify a control 
point in this neighbourhood. The usage of optical flow for co-
registration is explained thoroughly in [9]. 
 

4. SIMILARITY MEASURES 

Similarity measures quantify the match between the spectral 
content of the master and slave image. Depending on the type 
of both images (sensor, camera parameters,…) the measure 
should account for the spectral transformation at hand. In this 
paper, we discuss three criteria, with increasing complexity: 
Sum of Squared Differences (SSD) (5), Normalised Cross-
correlation (NCC) and Mutual Information (MI). SSD should be 
used when the master and slave image are captured with the 
same sensor under similar conditions, i.e. the photometric 
transformation between corresponding spectral values should be 
close to the identity transformation. When, due to different 
illumination conditions, an (approximately) linear photometric 
transformation occurs between master and slave, NCC is able to 
account for this. Finally, if the data is heterogeneous (different 
sensor, different number of bands, …) MI is the only remaining 
choice. 
 
4.1 Parametric Models : SSD and NCC 

Both SSD and NCC implicitly assume a parametric model for 
the transformation between spectral values: 
 

 
SSD-model ,
NCC-model , a

=
= +

s m
s m b

 (9) 

 
where m denotes the pixel value of the master image, s denotes 
the pixel value of the slave image, and a and b are the 
respective scaling and offset of the linear transformation. 
 
4.2 Non-Parametric Model : MI 

MI is non-parametric in the sense that it can capture arbitrary 
complex relations between datasets. In medical imaging, 
maximisation of MI has been demonstrated to be a general and 
reliable approach to register multimodal images [6],[8]. Unlike 
e.g. correlation based measures, MI assumes no functional 
relationship between the values of both images. Rather, it 



 

measures the statistical dependency between corresponding 
image values. 
 

 ( )KL

MI( ; ) H( ) H( ) H( , )
div ( ) ( ), ( , )

X Y X Y X Y
p p p
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where H(•) denotes an entropy measure (in our case Shannon 
entropy) and divKL(•,•) is the Kullback-Leibler divergence 
(distance) measure. The latter provides an intuitive explanation 
for MI. If two random variables X and Y are statistically 
independent, we can write p(x,y) = p(x)p(y) and consequently 
their MI is zero. The divergence therefore measures how far we 
are from this situation. The larger the MI-value, the more 
dependent both random variables are. 
As MI is a statistical measure, relying on an (unknown) joint 
density of the data, it has to be approximated by an estimator. 
Different solutions can be used. We refer to the literature for 
more details. In [9] an elaborate description and a few 
comparative experiments for different estimators are carried 
out. 
 

5. EXPERIMENTS 

The quality of any co-registration is difficult to evaluate. In this 
paper we provide three types of experiments. Firstly, a large-
scale ground-truth experiment is conducted with the sole 
purpose of evaluating the algorithm’s robustness against noise 
and the magnitude of the geometric distortion. Secondly, a 
number of experiments was carried out on a real database. Co-
registration of misaligned raster and rendered vector layers was 
evaluated using a separate set of ground control points. Finally, 
a series of challenging real examples was processed and 
evaluated qualitatively using checkerboard images as a visual 
aid. 
  
5.1 Ground-truth experiments 

A set of 24 arbitrarily chosen RGB remote sensing images of 
size 800x600 was subjected to a series of tests. Each image was 
both geometrically and photometrically distorted; for a given 
transform type T a set of images Iij is generated from I where 
i=1,2,…,6 indicates the level of geometric distortion and 
j=1,2,…,6 indicates the photometric noise level. The geometric 
distortion was obtained by means of a radially symmetric 
Gaussian distortion in 2D: 
 

 2 1 0
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Applying di to the four corners of the image grid yields a set of 
pairs (xk,di(xk)) that is fed into a least square fitting algorithm 
for the requested transform type T. The outcome (best fit) yields 
the desired ground truth transform parameters that are used to 
resample the image. 
The photometric distortion was applied on each colour band 
separately (after geometric distortion and resampling) by using 
a Gaussian noise distribution with σ = 10j. Figure 2 depicts 
details (patches) of four extreme samples generated from an 
example image. 
The accuracy of the convergence was measured by computing 
the RMSE between the ground-truth transformation and the 
result of the optimisation using all pixels from the master image 
grid. 
 

 
(a) I (b) I16 

 
(c) I61 (d) I66 

Figure 2: Details of generated raster images for ground-truth 
experiments. (a) shows a detail of the original raster 
image, (b), (c) and (d) show the corresponding 
details (patches) of the distorted raster images.  

 
5.1.1 Performance of criteria and transform types 
 
A first series of experiments examines the convergence quality 
for different combinations of criteria and transforms. The 
results are depicted in Figure 3  (SSD), Figure 4 (NCC) and 
Figure 5 (MI).  
 

 
Figure 3: Convergence results for different transform types 

using the SSD criterion for all 864 experiments. 
 
The overall accuracy of the registration is very good and in the 
majority of experiments, deep sub-pixel accuracy (RMSE < 0.1) 
is achieved. SSD and NCC perform equally well, while MI 
results are significantly worse. For all the experiments a 
subsampling approach using 10000 pixels was used which, with 
the exception of MI, did not affect the RMSE that was obtained 
with dense registration. As Figure 5(b) illustrates, increasing 
the number of samples (dense equals the  use all pixels) does 
improve the RMSE for MI. This points out that the MI measure 
requires a large number of samples for providing a good 
approximation. Adjusting the kernel width of the histogram 
estimator could improve the results and will be tested in future 
experiments. 
 



 

 
Figure 4: Convergence results for different transform types 

using the NCC criterion for 864 experiments. 
 

 
(a) subsampled, 32 bins 

(b) dense, 32 bins (c) subsampled, 64 bins 
Figure 5: Convergence results for different transform types 

using the MI criterion for 864 experiments. (b) 
increasing the number of samples improves the 
result, while (c) increasing the number of bins 
barely makes a difference. 

 
When comparing the results for different transformations, it 
seems that the linear spline and the homography do particularly 
well, even with MI. This seems contradictory as the number of 
parameters for both transformations (8) is higher than for e.g. 
an affine transformation (6). An explanation can be found in the 
“nature” of the parameters. Both the linear spline and the 
homography are parameterised in terms of displacements of the 
four corners of the image. Changing either of the parameters 
has an effect of equal magnitude on the overall geometric 
distortion. For an affine transformation, scaling and translation 
behave quite differently in this respect. Eventhough the 
optimisation routine tries to balance the influence of each 
parameter proportional to the magnitude of their effect, the 
former type of parameterisation clearly remains advantageous. 
 

5.1.2 Influence of the magnitude of the geometric distortion. 
 
For this experiment, the convergence results were grouped per 
geometric distortion level. (i=1…6). Figure 6 shows that the 
amount of geometric distortion does not affect the quality of the 
convergence significantly for SSD (NCC and MI yield similar 
graphs). If the distortion grows too large, the algorithm simply 
won’t converge (notice the increase in divergences for noise 
level 6). 
 

 
Figure 6: Convergence results for different geometric 

distortion levels using the SSD criterion for 720 
experiments. 

 
5.1.3 Influence of spectral noise 
 
For this experiment the convergence results were grouped per 
spectral noise level (j=1…6). The results in Figure 7 reveal that 
image noise has a significant effect on the quality of the 
convergence of SSD (NCC and MI yield similar graphs). This is 
to be expected as the convergence process of an image-based 
registration is governed by the similarity of spectral content of 
the pixels. If this information becomes more and more 
corrupted, the matching performance will evidently deteriorate. 
Nevertheless, even at the highest evaluated spectral noise level, 
in the large majority of all experiments a sub-pixel convergence 
(RMSE < 0.5) was achieved.' 
 

 
Figure 7: Convergence results for different spectral noise 

levels using the SSD criterion for 720 experiments 
(all transformations). 

 
5.1.4 Algorithmic complexity 
 
In general, area-based method are slow due to the fact that they 
take into account information from all pixels. By using the 



 

subsampling strategy, the computational complexity is 
significantly reduced as can be seen in Figure 8 for the SSD-
criterion. The same graphs can be reproduced for NCC and MI, 
albeit that NCC is typically twice as slow as SSD and MI is 
four times as slow as SSD. All experiments were carried out on 
an AMD Athlon 64 X2 Dual Core 3800+, 1GHz PC.  
 

 
Figure 8: Comparison of execution times for SSD experiments 

using the dense and subsampling approach. 
 
Another interesting plot is depicted in Figure 9. Here, the 
complexity of the MI criterion is analysed in terms of the 
number of bins. The increasing number of bins considerably 
slows down the algorithm due to the necessary histogram filling 
and smoothing operations. 
 

 
Figure 9: Comparison of optimisation time for MI 

experiments carried out with 32 bins and 64 bins. 
 
5.2 Real examples 

The ground-truth examples have revealed interesting results on 
the behaviour of the algorithm in terms of image noise, criteria 
and transformation families. Whether or not the tool is able to 
tackle real co-registration problems can only be verified by 
using relevant datasets. In this way, the usage of different 
criteria and transformations can be evaluated.  
 
5.2.1 Google Earth experiment 
 
For this experiment, 11 pairs of screenshots from Google Earth 
were used. The orthophoto (raster layer) was used as the master 
image, the rendered street network was used as the slave image. 
As Figure 10 shows, at some locations, the vector layer does not 
match the raster layer very accurately. For each of the pairs, a 
set of control points was manually selected and matched 

between the master and slave image and used as ground truth. 
The RMSE of the initial situation is compared with the RMSE 
after co-registration using MI in Table 1. 
 

 
Figure 10: Example of misalignment of raster and vector layer. 
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countryside (UK) 9.7871 7.0572 6.1145 
countryside (FR) 8.0000 4.2557 1.9963 
sarrebourgh (FR) 6.5879 4.7661 5.8124 
Berlin (D) 6.9887 7.2402 7.1242 
Munchen (D) 6.4292 5.3857 6.8045 
Bologna (I) 8.3075 7.9933 7.7724 
countryside (P) 6.9642 37.5665 20.6179 
unknown (ES) 12.5300 3.1402 4.4292 
Zaragoza (ES) 10.1489 23.5197 10.8079 
countryside (USA) 6.4031 4.8768 5.3966 
Kansas City (USA) 7.0285 3.4956 2.6116 

Table 1: RMSE of Google Earth data before and after co-
registration using MI for different regions.  

 
Most of the results show an improved co-registration, although 
for a few examples the RMSE became worse. After visual 
inspection of the results, the incorrect match was found to be a 
local optimum, due to either inconsistencies in the road network 
or the absence of spectral contrast in some regions (e.g. 
Portugal countryside). 
 
5.2.2 Various experiments 
 
The experiment section is concluded with some co-registration 
examples obtained combining various sensors and data types.  
 

  
(a) initial situation (b) result 

  
(c) initial situation (d) result 

Figure 11: Details of an affine co-registration of an aerial 
image (grey) with a topographic map using MI. (a) 



 

and (c) show the initial situation, (b) and (d) the 
result.  

The results are presented as checkerboards, where the white 
squares show the contents of the master and the black squares 
the contents of the slave. Figure 11 depicts details of a 
checkerboard of a co-registration of an aerial image and a 
topographic map under affine transformation using MI. The 
example shown in Figure 12 is obtained by co-registering a 
visual and an IR image using MI and optical flow. Finally, 
Figure 13 illustrates the rigid co-registration of a visual and a 
NIR image using MI. 
 

  
(a) initial situation (b) result 

  
(c) initial situation (d) result 

Figure 12: Details of optical flow co-registration of an aerial 
image (grey) with an IR image using MI. (a) and (c) 
show the initial situation, (b) and (d) the results 

 

 
(a) initial situation (b) result 

Figure 13: Rigid co-registration of an aerial image (grey) and a 
3-band NIR image using MI. (a) shows the initial 
situation, (b) the result.  

 
6. SUMMARY AND DISCUSSION 

This paper outlined a framework for area-based co-registration. 
Considerable effort was spent on implementing the different 
building blocks in a generic, coherent and modular fashion. A 
subsampling heuristic provided an efficient strategy for 
speeding up the co-registration process. We summarise 
concisely the results and findings of the paper: 
 
 Area-based registration provides highly accurate results, 

but remains slow compared to point-based strategies. The 
framework could benefit from parallelising the 
computations and providing efficient support for large 
images (out of core processing). Also, the effect of biased 
subsampling, in order to reduce the number of samples, 
will be investigated. 

 In terms of optimisation of geometric transformation 
parameters, “grid-based” transform types are favoured, 

because of their superior convergence behaviour. Future 
extensions of the transform library should therefore also 
incorporate local transform types on regular/irregular grids, 
because of their ability to adapt to local deformations. 

 The MI criterion shows a worse convergence behaviour 
compared to SSD and NCC. Further investigation is 
required to determine whether better histogram estimators 
(e.g. different kernel width) can be deployed to obtain 
better results. 

 
In the introduction we already pinpointed a number of 
applications that rely an accurate co-registration of the 
underlying data. Change detection is an important example. The 
necessary tools for change detection are already provided by the 
proposed registration framework. A pixel x has undergone 
change when its spectral value m = I1(x) in the master image is 
not compliant with its counterpart s = I2(T(x)) in the slave 
image. The dissimilarity or change, which we will denote 
D(m,s), depends on the criterion. For SSD, this can be 
expressed in terms of Euclidean distance D(m,s) = ||m-s|| 
between the spectral values. For NCC, this is the Euclidean 
distance between the spectral value of the master and the affine 
transformed value of the slave D(m,s) = ||m-as-b||, where a and 
b are regression estimates minimizing D(m,s) for all given 
matches. For MI, the desired change is derived from the joint 
probability density function that is approximated in the 
estimation of MI.  
The joint pdf expresses the co-occurrence of spectral values m 
in the master and s in the slave image: p(m,s). The amount of 
change is then inversely proportional to the likelihood that s is 
observed for pixel T(x) given that m was observed for x. This 
quantity is called the conditional likelihood p(s|m) and is 
computed from the joint pdf as p(s|m) = p(s,m)/p(m). With a 
final refinement we can define the “probabilistic change 
measure” associated with the MI criterion as 
 
 { }( , ) max 1 ( | ),1 ( | )D p p= − −w v w v v w  (12) 
 
Notice that this dissimilarity measure takes both conditional 
likelihoods as arguments. This is neccessary because a certain 
master-slave pixel value combination (m,s) is only unlikely iff 
both conditional probabilities are low. If only one conditional 
probability is low, say p(s|m) is low but p(m|s) is high, this 
merely signals that there is a relatively low number of slave 
pixels taking on the pixel value s. In this particular example, all 
these slave pixels are in correspondence with similarly valued 
master pixels (p(m|s) is high), hence this is not an improbable 
or suspicious match. Similar arguments hold for the case in 
which p(m|s) is low but p(s|m) is high. The proposed 
dissimilarity measure has the added advantage of symmetry. 
Figure 14 shows an illustrative example of change detection on 
satellite imagery that was taken at two different instances in 
time. Clearly, the spectral content is different, yet similar 
structures are perceived. A co-registration was carried out with 
a homography using MI. The change image shown in Figure 15 
is constructed using equation (12) as follows: 
 
 ( )change 1 2( ) ( ), ( ( ))I D I I T=x x x  (13) 

 
The change image has one band and is displayed using a false 
colour map, where dark blue means low values (no change) and 
red indicates high values (change). Notice that, despite the 
multi-modal image contents, the probabilistic change map 
highlights the drying up of the lake (bright spots at the top), the 



 

appearance of a few new buildings (bright spots in the middle) 
and the appearance of a new channel (light blue in the left 
bottom). These preliminary results are promising, and the full 
exploration of this type of probabilistic change detection is part 
of future work. 
 

  
(a) old image (b) new image 

Figure 14: Example of two SPOT images captured at different 
instances in time. 
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