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ABSTRACT: 
 

Traffic monitoring requires mobile and flexible systems that are able to extract densely sampled spatial and temporal traffic data in 
large areas in near-real time. Video-based systems mounted on aerial platforms meet these requirements, however, at the expense of 
a limited field of view. To overcome this limitation of video cameras, we are currently developing a system for automatic derivation 
of traffic flow data which is designed for commercial medium format cameras with a resolution of 25-40 cm and a rather low frame 
rate of only 1-3 Hz. In addition, the frame rate is not assumed to be constant over time. Novel camera systems as for instance DLR’s 
3K camera image a scene with “bursts”, thereby each burst consisting of several frames. After a time gap of few seconds for readout, 
the next burst starts etc. This kind of imaging results in an along-track overlap of 90% (and more) during bursts and less than 50% 
between bursts. These peculiarities need to be considered in the design of an airborne traffic monitoring system. We tested the 
system with data of several flight campaigns, for which also ground-truth data in form of car tracks is available. The evaluation of 
the results shows the applicability and the potentials of this approach. 
 

                                                                 

1.1 

1.2 

* Please see CD or online version for color figures of this article. 

1. INTRODUCTION 

Motivation 

Traffic monitoring is a very important task in today’s traffic 
control and flow management. The acquisition of traffic data in 
almost real-time is essential to swiftly react to current 
situations. Stationary data collectors such as induction loops 
and video cameras mounted on bridges or traffic lights are 
matured methods. However, they only deliver local data and are 
not able to observe the global traffic situation. Space borne 
sensors do cover very large areas. Because of their relatively 
short acquisition time and their long revisit period, such 
systems contribute to the periodic collection of statistical traffic 
data to validate and improve certain traffic models. However, 
often, monitoring on demand is necessary. Especially for major 
public events, mobile and flexible systems are desired, which 
are able to gather data about traffic density, average velocity, 
and traffic flow, in particular, origin-destination flow. Systems 
based medium or large format cameras mounted on airborne 
platforms meet the demands of flexibility and mobility. While 
they have the capability of covering large areas, they can 
deliver both temporally and spatially densely sampled data. 
Yet, in contrast to video cameras, approaches relying on these 
types of cameras have to cope with a much lower frame rate. 
 
An extensive overview on current developments and potentials 
of airborne and spaceborne traffic monitoring systems is given 
in (Hinz et al., 2006). In the sequel, we will focus on related 
approaches that influenced our work to a large extent. 
 

Related Work 

In the last decades, a variety of approaches for automatic 
tracking and velocity calculation have been developed. Starting 
with the pioneering work of Nagel and co-workers based on 
optical flow (Dreschler and Nagel 1982; Haag and Nagel, 
1999), the usage of stationary cameras for traffic applications 
has been thoroughly studied. Further examples for this category 
of approaches are (Dubuisson-Jolly et al., 1996; Tan et al., 

1998, Rajagopalan et al., 1999; Meffert et al., 2005; Kang et al., 
2005; Yu et al., 2006). Some of the ideas incorporated in these 
approaches have influenced our work. Though, a 
straightforward adoption is hardly possible since these 
approaches exploit oblique views on vehicles as well as a 
higher frame rate – both, however, at the expense of a limited 
field-of-view. Another group of approaches uses images taken 
by a photogrammetric camera with a high resolution of 5-15cm 
on ground (e.g., (Zhao and Nevatia, 2003; Hinz, 2004; 
Punvatavungkour and Shibasaki, 2004)). Also, these approaches 
are hardly applicable since the vehicle’s substructures which are 
necessary for matching a wire-frame model are no more 
dominant in images of lower resolution. 
 
In (Ernst et al., 2005), a matured monitoring system for real 
time traffic data acquisition is presented. Here, a camera system 
consisting of an infrared and an optical sensor is mounted on 
slowly moving air vehicles like an airship or a helicopter, but 
also tests with aircrafts have been conducted. Traffic parameter 
estimation is based on vehicle tracking in consecutive image 
frames collected with a frame rate of 5 Hz and more. While the 
results are promising, a major limitation of this system is the 
narrow field of view (the width of one single road) due to the 
low flying altitude that is necessary to obtain a reasonable 
resolution on ground.  
 
Considering the data characteristics, the most related 
approaches are (Lachaise, 2005) and (Reinartz et al., 2005, 
2006). Like us, they use aerial image sequences taken with a 
frame rate of 1-3 Hz and having a resolution of 25-40cm. 
Vehicle detection is done by analyzing difference images of 
two consecutive frames. This method is quite robust to detect 
moving objects and to quickly find possible locations for car 
tracking. Yet, with this approach, it is not possible to detect cars 
that are not moving, which often also happens for active 
vehicles if they are stuck in a traffic jam or waiting at a traffic 
light or stop sign. Furthermore, tracking of detected vehicles 
includes an interactive component at the current state of 
implementation. 



 

The boundary conditions of our work are primarily defined by 
the use of medium format cameras of moderate cost. They 
allow a large coverage and still yield a resolution of roughly 
25cm. However, due to the high amount of data for each image, 
the frame rate must be kept rather low, i.e. 1 up to a maximum 
of 3 Hz. Before describing the methodology of detection and 
tracking in more detail in Sects. 2, 3 and 4, we outline the 
overall concept of our approach, which is designed to deal with 
these constraints.  
 
1.3 System Overview 

The underlying goal of the concept outlined in the following is 
the fulfillment of near real time requirements for vehicle 
tracking and derivation of traffic parameters from image 
sequences. The general work flow is depicted in Fig. 1. 
 

 
Figure 1. Overall work flow  

 
The images are co-registered and approximately geo-referenced 
after acquisition. This process is commonly supported by 
simultaneously recorded navigation data of an INS-/GPS-
System. GIS road data, e.g. stemming from NAVTEQ or 
ATKIS data bases, are mapped onto the geo-referenced images 
and approximate regions of interest (RoI) are  delineated (so-
called road sections). Thus, the search area for the following 
automatic vehicle detection can be significantly reduced.  
 
To acquire data of both flowing traffic and traffic jams, vehicle 
detection is intentionally separated from tracking; i.e. 
techniques like optical flow or background estimation by 
simply subtracting consecutive frames are not included here, 
since they inherently rely on vehicle velocity as basic feature. 
Instead – besides of using GIS-road axes as coarse auxiliary 
data – we incorporate ideas borrowed from automatic road 
extraction to estimate the local layout and color of a certain 
road segment under investigation. We focus on color features, 
since cars on the road may considerably disturb any geometric 
regularity of the road surface. The final extraction of the cars is 
done by applying color analysis, dynamic thresholding w.r.t. 
the estimated road surface, and geometric constraints. 
 
After their detection in the first image, the cars are tracked 
using image triplets. Since time gaps between frames may get 
large, tracking is done by matching the cars of the first image 
(i.e. car patches as reference patches) over the next two images. 
To this end, an adaptive shape-based matching algorithm is 
employed including internal evaluation and consistency checks. 
For each image the reference patch is updated so that 
illumination and aspect variation are accommodated for. To 
predict possible locations of previously detected vehicles in the 
succeeding images a simple motion model is incorporated. This 

model focuses on smooth tracks and smooth velocity profile, 
yet with braking cars allowed. From the results of car tracking, 
various traffic parameters are calculated. These are most 
importantly vehicle speed, vehicle density per road segment, as 
well as traffic flow, i.e. the product of traffic density and 
average speed, eventually yielding the number of cars passing a 
point in a certain time interval. 
 
Currently, geo-referencing and GIS integration are simulated, 
thereby accounting for potential impreciseness and uncertainty 
of the data. The remaining three modules (see gray boxes in 
Fig. 1) are outlined in the following. 

  
2. VEHICLE DETECTION 

The detection process is divided into two stages. In a first step, 
vehicles with significant color features are extracted by a 
channel differencing approach. The second step is devoted to 
detect the remaining gray-scaled vehicles and applies dynamic 
thresholding constrained to blob-like structures. 

Geo-referencing and Co-registration

GIS Integration 

Car Detection 

Car Tracking 

Calculation of Traffic Parameters 

 
Roads normally appear as gray objects in RGB images. In 
contrast, vehicles may show very strong color information (Fig. 
2). In color space, such an object deviates from the gray line 
while road pixels usually lay close to this line. Therefore, 
subtracting color channels helps to suppress road structures like 
lane marks and pronounces colored vehicles (Fig. 2). Initial 
hypotheses can be extracted by thresholding and unifying the 
difference images. Simple morphological operations are applied 
to eliminate clutter and smooth noisy region boundaries. 
Afterwards, the remaining regions’ radii and orientations of the 
surrounding ellipse are calculated and further false alarms are 
eliminated using the known road direction and assuming that 
active traffic must be parallel to this direction. In addition, the 
radii are used to discriminate between blob-like structures 
which are supposed to be vehicles and elongated objects which 
mainly represent road borders or marks. Therefore, the ratio 
between the semi-major and the semi-minor axis must not 
exceed an appropriate value. In our tests, the ratio of 4:1 
delivered reliable results. 
 
However, there are still many cars that do not show big 
differences in the spectral channels, so that they are hardly 
detectable using the scheme above. Therefore, the second part 
of the extraction focuses on blob-like structures in grayscale 
channel. Here, instead of substracting the color channels, a 
dynamic threshold is applied to the grayscale image for 
detecting initial hypotheses. First, a smoothed version of the 
original image is calculated by convolution with a Gaussian 
kernel. Using a minimum threshold ( t ) for the contrast to the 
road surface, the condition for regions containing light pixel is 

o tg g t≥ +  and for dark pixel o tg g t≤ − og where represents 
the original image and tg  the smoothed image.  Figure 4 
exemplifies the extracted regions for pixels which are brighter 
than the background. The remaining steps follow as decribed 
above, i.e. the regions are cleaned and have to fulfill constraints 
concerning geometry and orientation. Results of the overall 
detection algorithm are depicted in Fig. 5. It appears that nearly 
all vehicles are extracted. This result is mainly conditional upon 
the simple detection and verification process, which even 
extracts only partial blob-like structures through the use of 
surrounding ellipses. However, this algorithm also tends to 
extract a certain number of false hypotheses like shadows. Still, 
nearly all of these incorrect detections can be eliminated during 



 

the tracking process when comparing their “velocity” to the 
surrounding objects.  
 
The complete extraction process takes less than 1 second on a 
normal PC. Reminding of the low frame rate of 1Hz, it can be 
concluded that the detection results are available even before 
the tracking starts. 

 

       
Figure 2. Example of a red car in color image and in the color difference 
image. 

 

 
Figure 3. Detection of bright blobs 

 

 
Figure 4. Example of the automatic car detection 

 
3. VEHICLE TRACKING 

In the current implementation of the vehicle tracking, we focus 
on tracking single cars over image triplets. In addition, GIS-
road axes are introduced, which will be referred to as “road 
polygons” in the sequel. They consist of “polygon points”, 
while two of these enclose a “polygon segment”. For each 
segment, the length as well as the orientation angle are 
determined. 
 
Figure 5 shows the workflow of our tracking algorithm. Image 
triplets are used in order to gain a certain redundancy allowing 
an internal evaluation of the results. Of course, one could use 
more than three images for tracking. However, vehicles that 
move towards the flying direction only appear in few images so 
that the algorithm should also deliver reliable results for a low 
number of frames. We start with the determination of two 
vehicle parameters which describe the actual state of a car, 
namely the distance to the road side polygon and the 
approximate motion direction (Sect. 3.1). Then, we create a 
vehicle image model MC by selecting a rectangle around the car 
(No. (1) in Figure 5). By using a shape-based matching 
algorithm, we try to find the car in the following images. In 
order to reduce the search, we select a RoI for the matching 

procedure based on the motion model (Sect. 3.2). The matching 
procedure delivers matches M12 in Image 1 and the matches 
M13 in Image 3 (2). It should be mentioned, that both M12 and 
M13 contain multiple match results also including some wrong 
matches (see Fig. 5). As output of the matching algorithm, we 
receive the position of the match center. 
 

 

(1) 

(2) (2) 

(3) 

(4) 

Image 1

Image 2 

Image 3 

Figure 5. Workflow chart for the vehicle tracking algorithm 
 
For each match M12, vehicle parameters are calculated and new 
vehicle image models are created based on the match positions 
of M12 (3). These models are searched in Image 3 (4), 
eventually resulting in matches M23, for which vehicle 
parameters are determined again. Finally, the results are 
evaluated and checked for consistency to determine the correct 
track combination of the matches (marked as blue circle, see 
Sect. 3.3). 
 
3.1 

3.2 

 Vehicle Parameters 

The vehicle parameters are defined and determined as follows: 
 
Distance to road polygon: The road polygon closest to a given 
vehicle is searched, and root point is determined. This point is 
needed to approximate the direction of the car’s motion. 
 
Direction: An initial vehicle’s motion direction is 
approximated as a weighted direction derived from the 
orientation angles of the three adjacent polygon segments. The 
weights are inversely proportional to the distance between the 
car and the end points of the polygon segments. Thus, we also 
consider curved road segments.  
 

Matching 

For finding possible locations of a car in another image, we are 
using the shape-based matching algorithm proposed by (Steger, 
2001) and (Ulrich, 2003). The core of this algorithm is 
visualized in Fig. 9. First, a model image has to be created. This 
is simply done by cutting out a rectangle of the first image 
around the car’s center. The size of the rectangle is selected in 
such a way that both car and shadow as well as parts of the 
surrounding background (usually road) is covered by the area of 
the rectangle. 
 



 

However, the rectangle is small enough so that no other cars or 
distracting objects should be within the rectangle. The rectangle 
is oriented in the approximate motion direction that has been 
calculated before. 
 
A gradient filter is applied to the model image and the gradient 
directions of each pixel are determined. For efficiency reasons, 
only those pixels with salient gradient amplitudes are selected 
and defined as model edge pixels or model points. Finally, the 
model image is matched to the gradient image of the search 
image by comparing the gradient directions. In particular, a 
similarity measure is calculated representing the average vector 
product of the gradient directions of the transformed model and 
the search image. This similarity measure is invariant against 
noise and illumination changes to a large extent but not against 
rotations and scale. Hence the search must be extended to a 
predefined range of rotations and scales, which can be easily 
derived from the motion model and the navigation data. To 
fulfill real-time requirements also for multiple matches, the 
whole matching procedure is done using image pyramids. For 
more details about the shape-based matching algorithm, see 
(Ulrich, 2003) and (Steger, 2001). 
 
A match is found whenever the similarity measure is above a 
certain threshold. As a result, we receive the coordinates of the 
center, the rotation angle, and the similarity measure of the 
found match. To avoid multiple match responses close to each 
other, we limited the maximum overlap of two matches to 20%. 
  

 
 

3.3 

3.3.1 

3.3.2 

Motion Model: The evaluation incorporates criteria of 
a motion model for single cars. We suppose that cars generally 
move in a controlled way, i.e. certain criteria describing speed, 
motion direction and acceleration should be met. Figure 7 
illustrates some cases of a car’s movement. For instance, there 
should be no abrupt change of direction and change of speed, 
i.e. abnormal acceleration, from one image to the others. In 
general, the correlation length of motion continuity is modeled 
depending on the respective speed of a car, i.e., for fast cars, the 
motion is expected to be straighter and almost parallel to the 
road axis. Slow cars may move forward between two 
consecutive images but cannot move perpendicular to the road 
axis or backwards in the next image. 
 

 

Image 1

Image 2

Image 3

Figure 7. Examples for possible and impossible car movement 
 

Evaluation scheme: As depicted in Fig. 8, we employ 
a variety of intermediate weights that are finally aggregated to 
an overall tracking score. Basically, these weights can be 
separated into three different categories, each derived from 
different criteria: i) First, a weight for the individual matching 
runs is calculated (weights w

sgradient direction d (x, y)of search image  

model edge pixels pi
m

gradient direction vectors 
di

m of the model image at 
the model edge pixels 

(a) Model image (b) Model edges (c) Search image

Tracking Evaluation 

The matching process delivers a number of match positions for 
M12, M23, and M13. In our tests, we used a maximum number of 
the 6 best matches for each run. This means that we may 
receive up to 6 match positions for M12 and 36 match positions 
for M23 for each MC. Also having 6 match positions for M13, we 
need to evaluate 216 possible tracking combinations for one 
car. At a first glance, this seems quite cost intensive. Yet, many 
incorrect matches can be rejected through simple thresholds and 
consistency criteria so that the computational load can be 
controlled easily. 
 
 

12, w23, and w13 in Fig. 8). Here, we 
consider the single car motion model and the similarity measure 
as output of the matching algorithm which is also referred to as 
matching score. ii) Based on these weights, a combined weight 
w123 for the combination of the matching runs M12 and M23 is 
determined. In this case, the motion consistency is the 
underlying criterion. iii) Finally, weights w33 are calculated for 
the combination of the match positions M23 and M13. For a 
correct match combination, it is essential that the positions of 
M13 and M23 are identical within a small tolerance buffer. 

Figure 6. Principle of the shape-based matching method, 
taken from (Ulrich, 2003), p. 70 

 
To avoid crisp thresholds and to allow for the handling of 
uncertainties, each criterion is mathematically represented as a 
Gaussian function 
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with the parameters mean µ and standard deviation σ evaluating 
the quality of an observation with respect to the criterion. By 
this, the weights are also normalized. In the following, we will 
outline the calculation and combination of the different weights. 
 
3.3.3 Single Tracking Run: The score w  of the shape- match
based matching is already normalized (see (Ulrich, 2003) for 
details). In order to take into account the continuity criterion of 
a single car’s motion, we use the motion directions of MC and 
M12 to predict an orientation angle for the trajectory from MC to 
M12. The difference between the prediction and the actual 
orientation of the trajectory is used to compute the weight wdir. 
The combined weight w12 then calculates to 

dirmatch www ⋅=12 . 
 



 

 
Figure 8. Diagram of the match evaluation process for one car 

 
3.3.4 

3.3.5 

3.3.6 

Motion consistency: In order to exclude implausible 
combinations of matches, we examine the consistency of a car’s 
trajectory over image triplets. The first criterion of this category 
is the change of velocity. In typical traffic scenarios 
accelerations of more than 1.5m/s2 rarely happen. Again, such 
values are used to parameterize a Gaussian function resulting in 
weights wvel. In order to address the continuity of the trajectory, 
we compare the sum of the distances of the single tracks (M12 
and M23) with the distance of the direct track to M13. Doing this, 
we exclude back-and-forth motion of a car. Smaller differences 
due to bended movement are admitted by the Gaussian weight 
function which delivers wdis. The weights wvel and wdis are 
combined to w123 by multiplication.  

disvel www ⋅=123  
 

Identity of M13 and M23: As a last criterion, the 
identity of Matches M13 and M23 is checked (see Fig. 8). 
Weight w33 is simply the distance between the match positions 
of M13 and M23 plugged into a Gaussian function. 
 

Final Weight: Assuming that the five individual 
measurements w12, w23, w13, w123, and w33 reflect statistically 
nearly independent criteria (which, in fact, does not perfectly 
hold), the final evaluation score W is computed as the product 
of the five weights: 

12333132312 wwwwwW ⋅⋅⋅⋅=  
 
The correct track is selected as that particular one yielding the 
best evaluation, however, as long as it passes a lower rejection 
threshold. Otherwise, it is decided that there is no proper match 
for a particular car. This may happen when a car is occluded by 
shadow or another object, but also when it leaves the field-of-
view of the images. Fig. 9 shows some results of the tracking 
over a sequence of 5 images. As it can be seen in the 3rd clip, 
not every single car could be tracked completely. However, the 
tracking algorithm delivers a correctness of 100% while the 
lack in completeness merely results from missing matches. 
 
 
To track a car through sequences of more than three images, the 
tracking procedure is continued for further triplets and will be 
consecutively fed forward by one image. In doing so, we can 
use the already calculated preceding matches M23 and their 
measures as M12. Based on the car’s previous trajectory, we can 
also roughly estimate the future position to reduce the size of 
the RoI in the new image, which reduces significantly the 

computation time for the following tracking. Additionally, this 
increases the chances that the correct match is found. 

Image 1 

Image 2 

Image 3 

Car Model 

M13 M12 and M23

w12 

w23 w13 

w33 

w123 

 

 
Figure 9. Results of tracking over 5 images. Preceding positions are 
marked by a cross, the current (last) position is marked by the rectangle. 
The images show only small sections of the entire picture. 
 
 

4. POST-PROCESSING OF RESULTS 

Post-processing the tracking results includes a statistical 
consistency check for eliminating false alarms and the 
following computation of traffic parameters.  
 
4.1 Velocity Consistency Check  

By analyzing the output of the tracking algorithm, we are able 
to find further false detections from the car detection procedure. 
As outlined above, some detections might simply be prominent 
background structures, which do not move. This knowledge can 
be exploited depending on the respective scene context. While 
in city areas, for instance, many cars may move but also many 
may stand still, such situation is unlikely in other scene 
contexts. For highway scenes, it can be assumed that either free 
traffic exists, i.e. all cars within a certain neighborhood move 
with a significant velocity, or congestion may have happened, 
i.e. all cars are moving very slowly or not at all. 
 
Hence, we calculate the average speed and its standard 
deviation of all detected cars for a given road section. All cars 
with a speed outside a 1.5σ-interval are considered as outliers 
so that a refined mean speed and standard deviation can be 
derived. Finally, all remaining cars, which have a lower speed 
than the 3σ border are flagged as inactive and eliminated from 
further tracking procedure. Please note that slow-moving 
objects are only eliminated if they are localized at a road 
segment with dominantly fast moving traffic. In case of dense 
and slow traffic situations all detections would remain. 
 
A peculiarity of the detection is that often shadows and trailers 
are detected as separate vehicles. To avoid corruption of the 
statistical traffic data by these detections, the velocity of cars 
which are very close together is compared pair-wise. If closed-
by pairs move parallel with the same speed, one of them is 
considered as redundant. In this way also trailers can be merged 
with the truck since the trajectories are perfectly aligned. 



 

Examples of eliminated cars are marked red in Fig. 11 while 
merged detections are black. 

5. FUTURE WORK 

When tracking vehicles in longer image sequences, we are 
planning to extent the motion model by an adaptive component 
so that besides evaluating the speed and acceleration of a car, 
the relations to neighboring cars can also be integrated into the 
evaluation. This would allow a more strict limitation of the 
search area and deliver a much more precise measure for 
tracking evaluation. Another area of research would be the 
detection and integration of context information such as large 
shadow areas or partial occlusions to be able to also track 
vehicles that were partially lost during the tracking.  
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