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ABSTRACT: 
 
With the increasing degree of global climate change, bushfires are becoming a major threat to human life and property. A risk 
assessment of bushfires is dependent on the availability of suitable information on the environment and human activities. Most of  
the spatial information for fire behaviour prediction is time-dependent, so it is both quite difficult and potentially very expensive to 
maintain and ensure the reliability of such data. A suitable source of wide coverage is high resolution (≤1m) satellite imagery for 
risk assessment in bushfire areas. Our objective is to exploit high-resolution stereo data such as IKONOS and extract all possible 
information such as the vertical dimensions of a forest, the crown size and shape of some individual trees, the location of tree and 
grass areas, the topography of bare land and the location of housing areas.  This was achieved  by extracting a DSM, DTM and 
landcover from IKONOS stereo multispectral imagery. Then we employed FARSITE (Fire Area Simulator http://www.farsite.org) 
to simulate fire behaviour with several different ignition points in order to assess the risk to housing within residential areas which 
can be detected by our classification scheme.  This case study shows how high resolution stereo images can be exploited to cope 
with a natural disaster by extracting detailed information on both the natural and man-made environment.  
  
 
 

                                                                 
 

1. BACKGROUND 

Recently bushfires have become one of the major targets of 
remote sensing research through early warning systems 
developed for medium resolution satellite data and prediction 
and hazard assessment systems implemented for bushfires. The 
latter parts are subject to human activity and time dependent 
environments (e.g. tree crown and human residence 
information) so there is strong demand for active and updated 
GIS construction. According to Chen and McAneney (2003), 
bushfires can penetrate into residential areas from the bushland-
urban interface at distances up to 700 metres. This means, that a 
time dependent landscape database construction is crucial for 
bushfire protection and decision making. Since ground surveys 
for this purpose are high cost, high resolution satellite imagery 
analysis is proposed as an alternative method.  There are several 
methods which have sought to classify residential area’s 
landcover or even to detect individual trees or building objects. 
Moreover, recent research work to construct DTMs, which is 
indispensable for hazard assessment and behaviour prediction 
of bushfire, from high resolution 3D range data have shown 
good enough quality for such application. In this work, we 
apply landcover classification as well as DTM extraction by 
combining multi-spectral imagery and stereo IKONOS in order 
to extract geo-spatial information. This is then input into a third 
party fire simulator which is called FARSITE to yield risk maps 
dependent on the location of simulated (or real) fire locations. 
Using this method, the potential of high resolution satellite 
imagery for hazard assessment and fire behaviour prediction for 
a bushfire can be assured. The main technological challenge of 
this research is the extraction of reliable topographic 
information and landcover classification. To address this need 
we developed and have exploited a multi stage DSM-DTM 
extractor and classifier fusing 3D range data with multi-spectral 
imagery.      
 

2. DATA SETS AND TEST AREA DESCRIPTION 

The test data employed here is the IKONOS stereo and multi-
resolution images provided by the ISPRS 
(http://www.isprs.org/data/ikonos_hobart/) over the area 
surrounding Hobart ,Tasmania, Australia where bushfires 
continue to pose a significant risk, especially due to the severe 
drought conditions at present. These data consist of one stereo 
image pair and multi-spectral IKONOS imagery. In addition, 
the University of Melbourne provided GPS measurements for 
GCP setting.    
In 1967, the Tasmanian fire claimed 52 lives and destroyed 
1400 homes in the Hobart area within a single day (Emergency 
Management Australia 2006a). More recently, a bushfire in 
1998 burned 30 square km in the Hobart area (Emergency 
Management Australia 2006b). During summer and autumn 
seasons, the hot and dry weather in Southern Australia (Bureau 
of Meteorology Australia, 2003) causes the grass and forest to 
be tinder-dry so there is a high probability that any bushfire will 
threaten the suburban areas of Hobart as it is a mixture of  
houses and bushland.    
An auxiliary data set of a  9 second resolution (approximately 
250m) DTM of the Hobart area (Geoscience Australia, 2005) 
was employed for initial image rectification and eventual stereo 
DTM verification. 
 

3. ALGORITHMS AND PROCESSING 

Firstly, the IKONOS sensor information was updated using 
GCPs which were provided by the University of Melbourne. 
Then a multi-stage stereo image matcher consisting first of an 
image matcher exploiting the epi-polarity of an IKONOS stereo 
pair, and then using an Adaptive Least Squared Correlation 
(ALSC) was applied.  Improved sensor information is used to 
define a search area within the epi-polar rectified image. The 
subsequent IKONOS stereo DEM was then used for the 



 

construction of a bare earth DTM through a hierarchical slope 
analysis and then combined with multi-spectral data.  Then by 
fusing the IKONOS multi-spectral information with a 
normalised DEM (DEM-DTM), a fine resolution classification 
was performed. In this manner tree, grass and some residential 
areas are identified. In addition, large sized building and tree 
footprints can be individually reconstructed. For better 
individual landcover object identification, which is less 
influenced by topography and illumination conditions, a 
classification scheme based on a FCFM (Looney, 2002) was 
introduced. Also from a high resolution stereo analysis, the 
slope, aspect and height data are extracted. Secondary 
information such as the canopy height is calculated combining 
such landcover information and the normalised DEM.   
 
3.1 IKONOS RPC updating 

IKONOS Geo products normally have 15-metre CE90 
positioning accuracy (Space Imaging, 2005). This means that 
the sensor model needs to be updated to derive accurate 3D 
data.  
RPCs (Rational Polynomial Coefficients) are provided instead 
of physical sensor information with each IKONOS image. 
Therefore, the first starting point in IKONOS stereo processing 
is to update the RPCs.  A detailed specification for RPCs is 
fully described in the Earth Image Geometry models of the 
Open GIS abstract specification (Open GIS Consortium, 2001). 
In brief, RPCs use a ratio of two polynomial functions to 
transform ground X, Y and Z coordinates to image row and 
column number as follows: 
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where p1,p2 are the numerators of the RPCs and q1,q2 are the 
denominators of the RPC. 
Usually the format of a generic polynomial can be given as: 
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where aijk is the polynomial coefficient in i,j,k order, Xn is the x 
ground coordinate , Yn is the y ground coordinate and Zn is the 
elevation of the ground level above a reference surface. 
Grodecki and Dial (2003) proposed using a bundle block 
adjustment of RPC but a simpler method employed here is the 
RPC update with only 2 constant terms as Hanley et al. (2002) 
proposed. A bias corrected RPC uses the following 
relationships:  
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where 2,...BAo  are the bias factors, (r,c) are the image row and 
column and p1,..p4 are the RPCs. 
Therefore bias-corrected RPCs, incorporating shift terms A0, B0 
can be given by: 
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We tested the accuracy of bias-corrected RPCs with GPS 
measurements which are provided by the University of 
Melbourne. As seen in Table 1, the positioning accuracy is 
within a maximum of 1-2 pixels in any IKONOS image. This 
implies that this accuracy is sufficient for accurate enough co-
registration between stereo derived height points and the 
IKONOS multi spectral image. 
 

RMS error of 
check points Max of checks shift Image name 

(Number of 
GCPs=23, number of 

Check points=12) X Y X Y 

Left stereo image 
(po162796_pan0000000) 0.859  0.833 1.754 3.159 

Right stereo image 
(po162796_pan0001000) 0.925 0.734 1.818 2.604 

Multi-spectral image  
(po162775_pan0001000) 1.065 0.717 2.811 2.077 

Table 1. Errors of bias compensated RPC 

 
3.2 Stereo DSM extraction 

The starting point of our IKONOS stereo DSM extraction is the 
exploitation of epi-polarity. Unfortunately, the IKONOS stereo 
in Hobart area is not rectified along epi-polar lines and the 
generic sensor information doesn’t exist. We therefore used 
indirect epi-polar resampling, based on parallel projection 
(Morgan et al., 2004).  With this method, the epi-polarity can be 
derived from the initial equation 
 

14321 =+++ rrll rGcGrGcG   (5) 
where (cl,rl) and (cr,rr) are the image coordinates of 
corresponding tie points which can be manually or 
automatically selected.   
Then, the coordinates in the epi-polar rectified image can be 
found by the transformations as below 
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where (cn,rn) is the coordinate of epi-polar rectified image and 
(c,r) is the original image coordinate. The scale factor S, 
rotational angle θ and shift value ∆r can be derived from the 
coefficients G1-G4. The details of this process and theory can 
be found in Morgan et al., (2004).   
Since the target area is a very steep area where the height range 
is almost 1100m, even after making epi-polar rectified image 
pair by the indirect transformation, the x-disparity range, which 
is consequently the search area in image matching process, is 
likely to be too large. This problem was addressed by 
introducing a hierarchical rectification and improved RPC. 
Combining 1) and 5), the initial estimated coordinates of 
(cnl,rnl) and (cnr,rnr) can be calculated if there is a normalized 
coordinate of Zn which can be taken from an existing initial 
DEM (GEODATA 9 in here). For the full exploitation of this 
scheme, we adopt a matching system. The improved DEM, 
which is hierarchically extracted from the GEODATA 9 is also 
applied with the RPC. Then the search range for the next level 
image matcher can be estimated. The Zitnick and Kanade 
(2001) algorithm (hereafter referred to as ZK) was introduced 



 

for the matching of the epi-polar rectified image pairs. At each 
hierarchical level, the search area range becomes narrower 
resulting in a smaller window for the ZK image matcher. The 
output x-disparity ZK algorithms with resampled optical image 
pair is interpolated and used for the seed points generation of 
the UCL in-house Gruen’s Adaptive Least Squared Correlation 
(ALSC) (Gruen, 1985) for the extraction of the final disparity.  
The effect of this method is shown in Figure 1.     
Using this method, the consistency for global optimisation is 
guaranteed and the discontinuities in the urban area was 
successfully addressed. 

 
Figure 1. Stereo IKONOS DEM over test area (2m/pixel 
resolution) 

For the object boundary delineation in urban areas, we once 
more applied Okutomi and Kanade (1992)’s image matching 
algorithm on the sub-area, which is classified as the urban area 
by the process described in 3.4. The disparity map from the ZK 
image matcher is then fed in this step as the initial disparity 
values in order to define an adaptive window size    
 
3.3 DTM construction 

Since the quality of height points are not high enough, (due to 
the lack of spatial resolution) especially with regard to 
landscape object boundary, “bare earth” DTM construction 
from stereo DSM is very challenging work. In the case of 
LiDAR DSM, the “flat seed areas” which don’t include any 
landscape objects, can be defined by analysing slope and 
estimated maximum inland structure size (Muller et al. 2004). 
However, our stereo DSM includes very steep areas within the 
Hobart test area, and it is very difficult to find any flat areas 
using only slope analysis. Hence, we have defined the flat seed 
areas from an initial landcover classification. This is performed 
using a manual interpretation step wherein bare ground, 
grassland and roads are manually defined. A maximum 
likelihood classification is then performed using the multi-
spectral orthorectified image which is re-sampled using the 
DSM produced using the method described in section 3.2. The 
initial flat seed mask was extracted by such classification 
process. A low pass filter was applied to the height points 
within this mask and a thin-plate-spline 3D surface is 
reconstructed from low-pass filtered height points.  This surface 
is the initial DTM. Then by applying local minimum detection 
and region growing on n-DEM (DSM-DTM), the DTM can be 
updated hierarchically as previously described. It should be 
noted the DTM of this area, where there is dense forest and/or 
high slope topography, might not be very accurate (left bottom 

area in Figure 2). This is a consequence of the low IKONNOS 
resolution, which can’t detect the bare earth between the 
densely populated trees.    

 
Figure 2. Bare Earth DTM (15m/pixel resolution) 

3.4 Landcover classification  

An extracted DTM using such a hierarchical approach as 
described above was employed to separate all the height points 
into “above-ground” and “at ground” components. The “above-
ground” points can subsequently be separated into urban and 
forest classes using a NDVI mask. The NDVI difference for 
trees and buildings is usually significantly different such that 
the tree and building segmentation can be produced using either 
optimal thresholding or manual NDVI range assignment. It is 
then a very simple procedure to fuse 3D and optical data. The 
“at ground area” can be defined as the ‘grassland” if it has high 
NDVI and “bare filled” if the NDVI value is lower than a pre-
defined threshold value. This is a method to define reliable 
ground-truth for maximum landcover classifier. The result of 
next classification procedure is shown in Figure 3  
 

 



 

 

Figure 3. The original IKONOS image and landcover 
classification result for the Target area. 

 
3.5  Individual object detection  

With the classification processor, most of the necessary GIS 
data inputs, such as a DTM, landcover and the forest height, for 
the FARSITE model were extracted. However, some fire 
prediction tools also require the shape and location of 
individual objects to assess risk and behaviour of bushfires 
more precisely. Therefore the tree crown detection (>3-4m) 
method and the identification of individual houses were used 
with inputs from the normalised height points and multi-
spectral information.    
3.5.1 Buildings: Building footprint refinement and 
generalisation occur using simple processing of multi-spectral 
information. In the first stage, supervised classification is 
applied using the training vectors defined by NDVI together 
with 3D information. A 3D point distribution check is applied 
twice to fuse the results of the supervised classification with the 
segments produced by Fuzzy Clustering and Fuzzy Merging 
(FCFM) (Looney, 2002) of the multi-spectral image. Then a 
seeded region growing (SRG) method (Adams and Leanne, 
1994) is applied to extract the correct building roof parts as 
shown in Figure 4. An algorithm for generating 3D building 
models is not developed here; instead, a simple boundary 
generalisation is performed. Further details can also be found in 
Muller et al. (2004). 
 

  
Figure 4. The detected building footprints in housing areas 

  

  
Figure 5. Tree detection process by morphological operation 
and ellipse fitting 

3.5.2 Trees: This stage consists of three steps: supervised 
classification to discriminate grass and trees and individual tree 
crown splitting and fitting. The grass and tree splitting was 
already performed with a supervised classification and NDVI 
and the n-DEM  based ground truth. Then within the tree area, 
the channel points between individual tree crowns’ pixel 
intensity are detected by the method of Wood (1996). The next 
step comprises iterative morphological filtering and ellipse 
fitting (Fitzgibbon et al., 1996). By applying morphological 
erosion continuously around the channel points, the tree crown 
can be segregated. The remnant of these iterative operations is 
called the “core” of the tree crown   and an ellipse can be fitted 
on the reconstructed boundary of the core. In our method, the 
eccentricity of fitted ellipses can be used as a verification 
parameter for the detected trees. If the fitted ellipses do not 
satisfy these criteria, then the failed part is used to provide 
feedback to unprocessed “preliminary” tree parts. Then the 
original crown shapes are reconstructed by morphological 
opening. The final result shows reasonable results in Figure 5. 
However, small shrub or young tree crowns in the bush as well 
as the individual tree crowns in very dense forest can’t be 
clearly detected (or over-segmented) by this method. The 
reason is that the correct channel point detection in such small 
reflectance objects is barely possible at current IKONOS image 
resolutions. Therefore tree crown detection is performed with 
only sizeable (>2-3m radius) or isolated trees.   
 
3.5.3 Evaluation : Ground truth of the target area is not 
available. Therefore the detected building and tree objects are 
compared with manually identified ones in sample areas. Table 
2 shows the results of these evaluations. 
   

 TP FP FN Detection 
Percentage 

Branchin
g Factor 

Quality 
Percentage 

Tree 
 230 34 48 82.733 0.147 73.717 

Buildi
ng 76 28 22 77.551 0.368 60.317 

Table 2. The accuracy of tree and building objection result 
(Detection percentage=100TP/(TP+FN), Branching 
factor=FP/TP, Quality percentage=100TP/(TP+FP+FN), TP : 
True positive, FN : False negative, FP : False positive, Shufelt 
and McKeown (2003))    
 

4. GIS ANALYSIS 

Using the automated system described above, most of the 
bushfire parameters needed for prediction was extracted. 
Exceptions to this are the weather and the chemical or the 
moisture information on fuel For the non-available data such as 
detailed fuel types, moisture and weather, the default values 
extracted from average ground truth of the Hobart area were 
interpolated. FARSITE 



 

(http://www.firemodels.org/content/view/112/143/) which is a 
fire behaviour and growth simulation system is employed. Then 
using the GIS data, two random ignition points were defined 
and the results of the simulations performed are shown in 
Figure 6. 
 

 
(a) Maximum fire spreading simulation (2007 August 8-11)  

 
(b)  Fireline intensity simulation (kW/m) (2007 July 7-8) 

Figure 6. FIRSITE fire simulation results in test area. 

 
5. CONCLUSION 

The purpose of this work was to assess whether IKONOS stereo 
and multi-spectral imagery can be employed to provide suitable 
quality GIS data such as DTM, landcover classification as well 
as to identify individual objects for fire protection and 
behaviour simulator. The quality of DTM, landcover 
classification and individual object detection appeared to be 
adequate for such purpose. A DTM was derived with 
reasonable quality compared with results from a 250m 
resolution GEODATA 9 (max error < 10m) DTM. The quality 
of landcover classification is very reliable with visual 
comparison. Also, manual assessment indicates that the partial 
tree detection algorithm works well for calculating the fire 
spreading model. The detection ratios of buildings appear a 
lower than the tree detection result. However, considering the 
building sizes in the target area, which are mostly smaller than 
the big urban area, the algorithm appears to provide a good 
enough accuracy for fire risk assessment.   
The FARSITE simulation results showed that these data sets 
which were mostly automatically extracted from IKONOS 
imagery works appear to work well with an existing fire 
combustion model. 

Combined with ignition point detection using low resolution 
(MODIS) or medium resolution (ASTER) sensor, such schemes 
could greatly facilitate the decision making process to provide  
a more reliable, effective and robust system for bushfire 
prediction. Further algorithm development is required to 
identify different fuel types (vegetation types), assess moisture 
content from multi-spectral imagery and use more sophisticated 
data mining techniques for detailed object information such as 
3D building shape detection and more reliable tree crowns for 
effective application of high resolution satellite data for 
bushfire risk assessment.      
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