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ABSTRACT: 
 
Building reconstruction is essential in applications such as urban planning, telecommunication network planning, flight simulation and 
vehicle navigation which are of increasing importance in urban areas. This paper introduces a new method for automated building 
reconstruction by fusing airborne optical data with LiDAR point clouds. The data consists of aerial digital imagery acquired with the 
Leica ADS40, and LiDAR data from the ALS50, representing Leica’s headquarter facilities in Heerbrugg, Switzerland and the 
surrounding region. The method employs a semi automated technique for generating the building hypothesis by fusing LiDAR data with 
stereo matched points extracted from the stereo model. The final refinement of the building outline is performed for each linear segment 
using the filtered stereo matched points with a least squares adjustment. The roof reconstruction is achieved by implementing a least 
squares-plane fitting algorithm on the LiDAR point cloud and subsequently neighbouring planes are merged using Boolean operations 
for the generation of solid features. The report proposes a robust method for the estimation of the vertical accuracy that includes the 
generation of raster Digital Surface Models for each building. With the use of DSMs, functions such as overlaying and subtraction with 
the reference DSMs can provide a robust estimation of the vertical accuracy using statistical parameters. The assessment is particularly 
encouraging with the building detection percentage of 96% and the overall quality in the range of 89-90%. Based on the reference 
building models a vertical accuracy assessment is performed, for a selection of 17 buildings, indicating a mean vertical shift of -14cm 
and a standard deviation of 45cm. 
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1. INTRODUCTION 

Building reconstruction is of primary importance in many 
applications, including urban planning, telecommunication 
network planning and vehicle navigation which are of 
increasing importance in urban areas. Unfortunately, manual 
reconstruction from photogrammetric techniques is time 
consuming, and not a cost effective solution. Automated 
techniques and tools for data acquisition from remotely sensed 
imagery are needed and this is the focus of many current 
research efforts. Currently most approaches are not designed to 
reconstruct roof details for dormer windows, chimneys and 
small building recesses, except where very high density LiDAR 
data are available. Therefore the goal of an automatic algorithm 
is to provide a generic building reconstruction function that can 
be efficient in a variety of different situations. It should present 
reliable results with data collected from different sensors, and 
for projects with different specifications regarding the 
geometric accuracy and the desired level of detail.  

Due to varying complexity of different urban scenes, automatic 
or semi-automatic workflows for building reconstruction should 
be accompanied by robust quality assurance tools. The 
existence of these tools is critical to the adoption of automated 
algorithms in the industry to ensure the final products meet 
client requirements and project specifications. So far most 
accuracy assessment studies have been focused on assessing 3D 
City Models using abstract methods by assessing either the 
planimetric accuracy of the building footprints or selectively 
analysing roof shapes. This research presents a robust semi-
automated approach for a comprehensive planimetric and 

vertical accuracy assessment of all the reconstructed roof 
structures. It should be noted that the design and reliability of 
automatic quality assurance methods is a function of the Level 
of Detail (LoD) of the City Models. The methods described in 
this report were designed for the lower and mid LoD City 
Models up to LOD2 (Bildstein, 2005). Figure 1 represents an 
example of the LoD definition for 3D City Models. 

 

Figure 1. LoD definition for City Models, 
adapted from Bildstein, (2005) 



 

1.1 Research in Data fusion for 3D City Modelling 

Several research efforts confirm that fusion techniques of 
different datasets for building reconstruction yield superior 
results. A combination of calibrated aerial images and DSM, 
produced from LiDAR datasets, was introduced by IGN for 
several test sites (Kaartinen et al., 2005). The aerial images 
were used for the semi-automatic production of pseudo-
cadastral maps, that described accurately the building outlines, 
as well as for the automatic production of true-orthophoto.  

 
A method proposed by Rottensteiner and Jansa, (2002) 
combines LiDAR with aerial photographs and performs the 
polyhedral modeling using Voronoi diagrams. A method 
proposed from Sohn and Dowman (2006) merges LiDAR with 
high resolution satellite data, and includes methods for Binary 
Space Partitioning (BSP), in which a binary tree is 
incrementally expanded as child polygons are generated by the 
hyperlines. The final result of the BSP tree is a Building Unit 
Shape (BUS) adjacent graph where each node represents a BUS 
and each arc means the connectivity between neighbouring 
BUSes. A BUS grouping process merges only BUSes, which 
belong to building structures, and eliminates spurious lines 
besides building boundaries. As a result, building outlines are 
reconstructed. A method proposed by Vosselman and Dijkman, 
(2001) utilizes a 3D Hough transformation for plane extraction 
combined with existing ground plans. The ground plans can 
accurately estimate the outline of the roof face and 
subsequently yield the precise location of the vertical walls. 

Building reconstruction using more than two data sources has 
been introduced also by Chen et al. (2004). This approach 
combines LiDAR data, aerial imagery and satellite images 
obtained from the Quickbird sensor.  The proposed method is 
basically a two step procedure that initially detects building 
regions and then reconstructs the building models. In the stage 
of building detection, region-based segmentation and 
knowledge-based classification are integrated.  

1.2 Study area and raw data 

The study area is situated near Heerbrugg-Switzerland, 
representing Leica’s headquarter facilities as well as the 
surrounding region (figure 2). The study area, situated 
approximately 1km west of the centre of Heerbrugg, is 
representing mostly large industrial buildings with complex 
roof structures.  

These rural regions are very useful for evaluating the influence 
of the density of the LiDAR point cloud in the building 
reconstruction process. Various tree canopies of different shape 
and height are present in the study area, which introduce the 
necessity for designing a robust and reliable method for 
vegetation filtering from the LiDAR data. 

The data and the supporting material were kindly provided by 
Leica Geosystems, Heerbrugg for the needs of this project and 
included, a geo-referenced level 1 stereo-model acquired with 
Leica’s Airborne Digital Sensor (ADS40) and LiDAR data for 

the study region obtained with Leica’s Airborne Laser Scanner 
(ALS50). 

The ADS40 strip images were acquired from a flight altitude of 
approximately 2430m, yielding images with photo scale of 
1:38900. The entire scene represented in figure 2 is covering an 
area of 6322 acres with a Ground Sample Distance (GSD) of 
0.25m. The LiDAR data consist of two separate point clouds 
acquired from different flight paths, which intersect at 
approximately right angles over the study area, having a density 
of 3-4 points per square metre (figure 3).  

 
2. AUTOMATED CITY MODELLING 

2.1 Workflow overview 

The individual stages were designed to address the issues 
introduced in the building reconstruction process with the 
potential to be fully automated. Although the method utilizes 
the datasets provided, most of the processing steps were 
designed in order to be efficient in a variety of different 
situations. That is, the proposed method is not limited in using 
for example only sensors that collect multispectral optical data, 
but instead provide reliable results even when scanned aerial 
photographs are used. In fact the provided data were limited to 
panchromatic bands and one green band from the ADS40. 
Hence, the method had to utilize more generic approaches for 
solving certain aspects of the processing stages. Nevertheless 
the crucial aspect of this method is the use of data fusion 
techniques between two different datasets, optical and LiDAR 
data in this case, in order to enhance the overall result. The 
improvement from the proposed method is apparent in both, the 
generation of the building hypothesis and the building 
reconstruction phases (Kokkas and Dowman, 2006).  

The proposed method consists of four main stages that will be 
described in the following sections and include the extraction of 
conjugate points from the optical data, building detection, data 
fusion for optimizing building outlines and finally the building 
reconstruction stage. 
 
The process for automatic building reconstruction consists of 
four major stages that include the automatic feature extraction 
from the aerial imagery, the building detection from LiDAR or 
DSMs, the adjustment of the building outlines and small roof 
details using a geodata fusion process and finally the building 
reconstruction stage. Figure 3 provides an overview of the 
proposed method. 

2.2 Data Fusion and LiDAR classification 

For the process of feature extraction the location of the edges, 
constituting the vertical walls and additional roof features, are 
extracted initially from the LiDAR point cloud or DSM and 
subsequently are refined based on the point features derived 
from the aerial imagery. The points extracted from stereo pairs 
of aerial images are automatically matched in the stereo model 
space and then projected at the object space. The information 
from the point features will not only refine and improve the 
accuracy of the building outlines but provide information for 
smaller roof details that are not modelled correctly in the case 
of using only course LiDAR data or a DSM.  

The invention classifies the vegetation using LiDAR data or a 
DSM by employing a process that scans the surface and match 
tree shapes according to a library of several tree types as 
introduced by Kokkas and Dowman, (2006). The main 
difference of the method compared to previous approaches is 
the improved robustness by using additional information from 
aerial images and a library of several tree types. The 
classification of low features, above the ground, is performed 

 

Figure 2. ADS40 Panchromatic band representing the study 
area over Heerbrugg-Switzerland 



 

after the classification of the ground points, where by low 
features that aren’t related with buildings, are filtered using a 
range of relative heights above the ground surface. 

 
The process of building detection and generating the building 
hypothesis is based on the detection of planar patches on 
LiDAR point clouds or on a DSM. The initial building 
hypothesis is subsequently refined by merging the linear 
features extracted from the aerial images. The adjustment of the 
building outline is performed for each linear segment using a 
least squares estimation (Kokkas and Dowman, 2006). 
 
2.3 Polyhedral modelling and final results 

The proposed method during the roof reconstruction process 
utilizes the adjusted building boundaries, accurately 
representing the outline of the roof face to subsequently yield 
the precise location of the vertical walls. In addition small roof 
details are efficiently reconstructed by merging the linear 
features with the 3D surface patches extracted from the LiDAR 
point cloud. Subsequently neighbouring planes are merged 
using Boolean operations for generation of solid features 
(Kokkas and Dowman, 2006) 
From the overall workflow, it can be seen that the creation of a 
building hypothesis is solely depended on the processing steps 
applied on the LiDAR points for classifying the data. This stage 
is briefly outlined in figure 3 but in fact is one of the most 
complicated stages of the entire project. Another point to note is 
that the fusion of the two data sources takes place in an 
advanced stage without having an immediate impact on the 
reconstruction of the roof planes. Instead data fusion is 
implemented at the stage of adjusting and refining the building 
outline which has a direct influence on the vertical walls and 
the adjacent roof planes. The decision not to merge the stereo 
matched points with the LiDAR point cloud was based in the 
valid assumption that a certain degree of mismatches (in the 

stereo matching algorithm) are inevitable. Therefore there is a 
high probability having various stereo matched points deviating 
from the cluster of the LiDAR points representing each 

individual roof plane. This deviation will eventually hinder the 
roof reconstruction process, because the plane fitting algorithm 
utilizes a least squares estimation with height tolerances as a 
termination criterion. Therefore, abrupt height changes between 
the merged points will potentially disrupt the reconstruction 
process.  
The final stage in the creation of polyhedral building models is 
the implementation of Boolean functions for merging adjacent 
roof planes of the same building. The Boolean merging function 
utilized, is essentially converting the “boundary representation” 
(individual planar facets) of the buildings into a solid feature. In 
order for this conversion to be performed the planar facets must 
be transformed into volume primitives and then merged 
together using the Constructive Solid Geometry (CSG). Within 
each building boundary adjacent planes are extended and 
intersected if they are located within 2m of each other. This 
buffer region is calculated similarly as the “linear tolerance” 
during the spatial cleaning, as two times the minimum plane 
size specified for the plane fitting algorithm (Kokkas and 
Dowman, 2006). 

The proposed method for building reconstruction presents 
impressive results. The method seems to be very reliable, with 
most building models visually correct. In addition, the amount 
of reconstructed roof details is impressive since ventilation 
equipment, dormers and chimneys were obtained in many 
cases, see figure 4. The level of detail of the 3D building 
models is directly related with the density of the point cloud, 
since no additional features from the aerial photographs are 
used for the inner roof structures. In contrast the vertical 
facades of the buildings are created from the refined building 
footprint with the potential of improving the overall planimetric 
accuracy of the solid models.  

ADS40 stereo model 

Apply edge detector and enhance the initial images 

Optimize stereo matching algorithm using appropriate 
strategy. Results from the stereo matching are conjugate 

points in a 3D shapefile format 

Data Fusion 
Combine initial building outline with 

stereo matched points.  

Select appropriate bands for stereo matching 

ADS40 stereo model ALS50 LiDAR data 

Classify LIDAR points and create building 
hypothesis 

Combine multiple flight paths, if available

Perform building extraction and derive initial 
building outline. 

Optimize building outline by adjusting individual linear segments 
using the filtered stereo matched points 

Utilize plane fitting algorithm to 
reconstruct the roof structures 

Merge roof planes with the vertical walls defined from the optimized building footprint 

Merge adjacent roof planes using Boolean logic to construct the final 
polyhedral building models 

Figure 3. Diagram indicating the overall workflow of the proposed method 



 

 

 
3. SEMI- AUTOMATED QUALITY ASSURANCE 

The reference data for evaluating the planimetric and vertical 
accuracy of the reconstructed building were obtained from the 
provided stereo model. The manually stereo plotted buildings 
represent Leica’s facilities and few of the surrounding 
structures.  

The accuracy assessment is divided in the quantitative and 
qualitative evaluation. The qualitative evaluation includes a 
visual comparison between the reconstructed buildings (from 
the combined and single path LiDAR point cloud) and the 
reference stereo plotted buildings. This comparison will provide 
a useful indication of the overall quality and therefore, only a 
selection of the most interesting structures will be illustrated in 
this section.  

The quantitative assessment performed on the reconstructed 
building models evaluated the planimetric and vertical 
accuracy. It consisted of a thorough comparison of 17 reference 
building models situated in Leica’s facilities and the 
surrounding region. The planimetric evaluation is conducted by 
employing the widely used building detection metrics suggested 
by Shufelt, (1999). For the vertical accuracy assessment a 
robust method is proposed for evaluating each building 
separately, in order to provide statistical parameters for the 
vertical accuracy.  

3.1 Qualitative evaluation of the reconstructed building 
models 

Figure 5 illustrates a selection of the reconstructed buildings 
that introduced significant differences compared to the 
reference models. The majority of the buildings in the study 
area, presented minor differences that weren’t able to be 
distinguished visually. 

3.2 Planimetric accuracy evaluation 

The planimetric accuracy assessment basically attempts to 
investigate the level of improvement in the horizontal accuracy 
of the adjusted footprints. The building detection metrics 
adopted for the evaluation can be defined as: 
 
Building Detection Percentage = 100*TP / (TP+FN) 
Branching Factor = FP / TP 
Quality Percentage = 100TP / (TP + FP + FN) 
 
Where TP (True Positive) is a building classified by both 
datasets, TN (True Negative) is a non-building object classified 
by both datasets, FP (False Positive) is a building defined only 
by the automated building reconstruction process, and FN 
(False Negative) is a building defined only by the reference 
stereo plotted buildings. 

 

 
 

The building detection metrics were obtained with basic GIS 
functions (overlying, clipping), using the building footprints as 
polygon entities. Consequently the detection metrics are 
expressed in square meters and not as number of pixels. Using 
area units of the polygon layers, instead of number of pixels, 
can increase the precision of the quality statistics. The accuracy 
assessment (table 1 & 2) presents promising results as the 
building detection and quality percentage are significantly high. 

Building detection metrics for adjusted building outlines 
derived from the combined LIDAR data 

entire study region 308537 m2 
building detection 

percentage 97% 

true positive 47181.34 m2   

false positive 4055.17 m2 Branching Factor 0.0859 

false negative 1654.21 m2   

true negative 255646.28 m2 Quality Percentage 89% 

Reconstructed Building from two path LiDAR (4 p/sq.m density) 

Few of the existing dormers were 
not reconstructed

Reconstructed Building from single path LiDAR (2 p/sq.m density)

The majority of the roof details were 
not reconstructed 

Reference Building Models 

Lower structures of the building, well 
defined in the combined LiDAR 

Figure 5. Quality evaluation of the reconstructed models

Figure 4. Final reconstructed building models 

Table 1. Results from the planimetric accuracy evaluation of the 
adjusted building outlines, derived from the combined LiDAR



 

 

 

 

The Building Delineation Errors (branching factor) are caused 
when the building outlines are not properly extracted by the 
automated method. These errors are estimated with respect to 
the size of the building footprint, defined by both datasets (true 
positive) and are related to the inherent planimetric accuracy of 
the input data and subsequently with the point density of the 
LiDAR point cloud. 

 
The accuracy assessment depicted in the previous tables 
presents promising results as the building detection and quality 
percentage are significantly high. The building detection 
percentage was increased in the adjusted building outline as the 
area of the buildings defined only by the reference stereo 
plotted buildings (false negative) was decreased. It’s worth 
noting that in both cases the building areas, defined only by the 
automated procedure (false positive) were similar.  

From the estimated detection metrics, it is evident that the 
differences between the adjusted and the initial footprint are 
increased. The overall quality has been improved in the 
adjusted building outlines as it is for the other statistical 
parameters (figure 6).  

At this point it’s interesting to note that the planimetric 
accuracy from the single path LiDAR point cloud is very 
similar with that obtained from the combined LiDAR data. 
Although the density of the LiDAR data seems to have a 
significant negative impact, on the level of reconstructed roof 
details, the building outlines on the contrary are accurately 
extracted in both cases. 

3.3 Proposed method for automatic vertical accuracy 
assessment 

The proposed method for a robust estimation of the vertical 
accuracy includes the generation of raster Digital Surface 
Models for each building. With the use of DSMs, functions 

such as overlaying and subtraction 
with the reference DSMs can 
provide a robust estimation of the 
vertical accuracy using statistical 
parameters. The procedure of 
creating the DSMs from the 3D 
building models consists of two 
basic steps.  

•  Initially each separate 
roof plane of the building model 
is treated undependably to create 
a TIN plane. Each TIN plane can 
accurately represent each separate 
roof plane, since the planes are 
treated independently.  

• The next step includes 
the conversion of the TIN features 
into a grid representation. The 
grid representation has a small 
spacing to handle even the small 
boundary details, while the 
elevation information is stored as a floating point format to 
preserve the precision of the interpolated elevation values. The 
TIN to GRID conversion is performed for each roof plane 
independently. 

• Finally the GRID planes (with spacing of 5cm), 
constituting a single building are merged together using Map 
Algebra functions. The procedure can be conducted in a GIS 
environment with scripts, designed to automate the process 
since for this study area 17 buildings used in the evaluation had 
over 600 roof planes. Figure 7 depicts a created DSM for a 
building in the region. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The procedure is repeated for the reference 3D building models 
and the comparison is performed by subtracting the two DSMs. 
The result is a difference image indicating the height 
differences between automatically derived and reference roof 
planes. The difference image is estimated only where the 
buildings overlap and therefore the calculation of the standard 
deviation doesn’t take into account differences in the footprint 

Building detection metrics for initial building outlines 
derived from the combined LIDAR data 

entire study region 308537 m2 
building detection 

percentage 96 % 

true positive 47035.07 m2  

false positive 4096.58 m2 Branching Factor 0.0871 

false negative 1805.56 m2  

true negative 255599.79 m2 Quality Percentage 88% 

1.7m 
0.4m 

Figure 6 Example of improved 
planimetric accuracy at the adjusted 

building footprint. 

Adjusted Reference Initial

Table 2. Results from the planimetric accuracy evaluation of the 
adjusted building outlines, derived from the combined LiDAR

Figure 7. Raster DSM for a 
building, created from the 

individual roof planes

Building 10 

Building 15 

Figure 8. Difference images for buildings 10 & 15, 
indicating the vertical errors of the two models

Large vertical differences due to different 
chimney sizes in the two DSMs



 

of the buildings (figure 8). The results from the vertical 
evaluation are summarized in table 3. 
 

Vertical accuracy parameters 
(3D building models from the combined LIDAR data compared to the 

reference models) 

Building 

number 

Total 

pixels 

Min. 

error 

(m) 

Max. 

error 

(m) 
Mean 

value(m) 
Standard 
deviation 

Building 1 117130 -0.65 1.1 0.34 0.35 

Building 2 554643 -0.39 0.97 0.23 0.36 

Building 3 810867 -1.27 1.56 0.21 0.53 

Building 4 154970 -0.64 2.51 0.61 0.56 

Building 5 717449 -1.42 0.36 -0.59 0.48 

Building 6 231754 -0.56 0.90 -0.26 0.30 

Building 7 133175 -0.99 0.36 -0.49 0.22 

Building 8 807336 -0.23 0.09 -0.08 0.07 

Building 9 112042 -0.09 0.54 0.16 0.13 

Building 10 195849 -2.45 3.63 -0.47 1.09 

Building 11 312927 -0.86 0.60 0.12 0.22 

Building 12 780007 -2.09 0.62 -0.84 0.39 

Building 13 514909 -1.78 0.51 -0.51 0.46 

Building 14 460316 -1.10 0.91 0.06 0.31 

Building 15 394981 -2.23 1.23 -0.75 0.78 

Building 16 605751 -1.20 1.31 0.19 0.58 

Building 17 197489 -2.94 1.23 -0.37 0.79 

Average values -0.14m 0.45m 

 

 
The results from the evaluation of the automatic building 
models, derived from the combined LiDAR point cloud, 
indicate a small overall vertical shift of -14cm. The average 
standard deviation of the 17 buildings is in the order of 45cm, 
indicating the presence of vertical errors in the reconstructed 
roof structures.  
 

4. CONCLUSION AND FURTHER PROSPECTS 

This research briefly introduced a method for automated 3D 
City Modelling previously explained in detail by Kokkas and 
Dowman. (2006) and introduced a robust approach for 
automatic accuracy assessment.  

The developed method can significantly reduce the time 
requirements for 3D building reconstruction. Given sufficiently 
high LiDAR data densities the method is able to provide an 
increased level of detail and better accuracy than other methods. 
The results from the accuracy assessment highlight the 
improvement in the planimentric accuracy of the building 
footprints and the presence of vertical errors, derived from the 
proposed method. This is evident also from the maximum and 
minimum vertical deviation, with building 10 introducing the 
largest vertical differences in the study area. The majority of the 
large vertical errors were introduced as a function of the 
planimetric deviation between the roof planes which is 
currently one of the main drawbacks of the proposed workflow. 
An example is the vertical errors introduced when planes 
representing a dormer in the two DSMs have different sizes. As 
a result, the planimetric deviations between the DSMs have a 
significant impact on the estimated standard deviation (figure 

8). The presence of vertical errors introduced in the 
reconstructed roof polygon highlight the need for automatic 
quality assurance techniques that can indicate the presence of 
vertical errors for further refinement. 
Despite the promising results of the proposed method further 
research is needed in order to assess the effectiveness of the 
simplification algorithm, during the adjustment of the building 
outlines. In addition implementing the proposed method, using 
different data sources, will be useful in order to evaluate the 
efficiency of the method in a variety of different situation and 
scales. The utilization of extracted linear features can also 
provide additional information that will enhance the roof 
reconstruction stage and this is the focus of the ongoing 
research. 
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