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ABSTRACT:

In this paper we estimate the motion between time-lagged Synthetic Aperture Radar (SAR) image pairs via an implicit quad-tree
scheme. The algorithm provides a means to estimate motion at a spatial resolution that is an order of magnitude greater than the
currently available data products. Since the motion is extracted from the image data iteratively, the estimated field provides an accurate
picture of the underlying discontinuous motion. Experimental tests indicate that the algorithm is also computationally efficient. This is
extremely valuable when attempting to localize leads and ridges that are created in sea ice.

1 INTRODUCTION

The dynamics of heat variation on the surface of the Earth has
been intimately connected with the thermal regulators of the planet
- the polar icecaps. The formation and melting of the sea ice
gives us an improved understanding of the dynamics that is tak-
ing place there. With the availability of ‘high spatial resolution
all-weather’ Synthetic Aperture Radar (SAR) imagery, we now
have an important component that could provide us with comple-
mentary information when observed in tandem with the in situ
buoys.

Thus given a pair of time-lagged SAR images, the relative motion
taking place between the two images would provide an indication
of the non rigid dynamics that is taking place. This problem of
estimating the relative displacement has been a significant area
of research in computer vision since the work on optical flow by
Horn and Schunck (Horn and Schunck, 1981). Since then there
have been several variants that have been developed to tackle var-
ious difficulties in estimating the apparent motion. The readers
are referred to (Barron et al., 1994) and the references therein, for
a broader perspective of the computation of motion using the op-
tic flow constraint. In typical high frame-rate imagery, the optic
flow method has been applied to achieve impressive results. But
when handling satellite imagery, the low temporal sampling rate
(polar repeat rate of 1∼3 days) tend to alias the nonrigid motion
that might be occurring at a frequency higher than the repeat rate
of the satellite. In addition to these difficulties, when analyzing
large imagery (15000×15000 pixels), computational efficiency
of the algorithm becomes a criterion that is as important as the
robustness of the technique.

We have, in this work, made an attempt to tackle the above stated
problems in a computationally efficient and robust manner via an
implicit quad-tree decomposition scheme. We specifically con-
sider remote sensed data to show the reliability of our mechanism
but inherently this algorithm is general enough to warrant its ap-
plication to other problems. With regards to the data set that was
used for testing, the “Surface Heat Budget of the Arctic Ocean”
(SHEBA) data set (Stern and Moritz, 2002) provide a valuable
test bed to evaluate the robustness and accuracy of the algorithm.

The organization of the paper is as follows. We begin with a brief
overview of the currently available techniques for motion estima-

tion and a description of the SHEBA data set. We subsequently
describe the algorithm that we developed to tackle the observed
motion. We then analyze the performance of the algorithm with
real data sets having large discontinuous motion and finally con-
clude with possible future directions.

2 RELEVANT BACKGROUND

When analyzing satellite images, one of the biggest obstacle is
that the high spatial resolution of satellite data is limited by its low
temporal resolution. Under the influence of fast moving storms,
significant non-linear changes in discontinuities can occur at tem-
poral scales much lesser than 3 days. Within this duration, sea ice
can deform rapidly resulting in large changes in the orientation,
distribution, and size of continuous and discontinuous regions.
The estimation of this deformation would thus require algorithms
that can tackle these non linearities when computing the motion
when compared to the traditional optical flow algorithms.

Traditional optic flow algorithms, (Horn and Schunck, 1981) and
its variants, assume that the temporal resolution and the observed
motion is relatively very small. Under this assumption, the op-
tic flow equation is considered valid and many techniques have
been developed to estimate the flow field (Lucas and Kanade,
1981), (Nagel and Enkelmann, 1986). Robust techniques (Black
and Anandan, 1993), (Bab-Hadiashar and Suter, 1998), (Ong and
Spann, 1999) have also emerged to handle the large noise and/or
the failure of the underlying image motion model. But most of
the above methods guarantee a plausible solution only when the
observed motion is relatively small. In the presence of large mo-
tion, many of the techniques do not converge efficiently and/or
accurately to a valid solution.

Within the field of sea ice, the problem of extracting the deforma-
tion using satellite images is addressed using a variety of methods
including cross correlation (Kwok et al., 1990), (Liu and Cav-
alieri, 1998), (Kwok et al., 1998), (Drinkwater, 1998) and 2D
wavelets (Fily and Rothrock, 1987). But unfortunately typical
data products are computed at a very coarse resolution (lowest
resolution is 5km), which provides a limited information of the
underlying dynamics. In contrast, our algorithm attempts to esti-
mate the motion at a resolution of ∼400m, which is a magnitude
greater than typically available data products. This estimate is



obtained directly from the image data without using any form
of data interpolation. This high resolution estimate provides a
means to accurately localize discontinuous regions and be able to
visualize motion at close proximity to the discontinuities.

3 DATA DESCRIPTION

The Surface Heat Budget of the Arctic Ocean (SHEBA) camp
was launched from October 1997 to October 1998. Coincident
with the launch of the camp, the Canadian RADARSAT satellite
collected 195 synthetic aperture radar (SAR) images of the camp
site between the 1st of November 1997 and the 8th of October
1998. The images were captured using a C band (5.3 GHz) active
microwave instrument. The swath of the satellite was 460 km
leading to a pixel resolution of 50m with a polar repeat rate of
∼1-3 days (Stern and Moritz, 2002). The images were collected
at Alaska SAR facility in Fairbanks and were subsequently pro-
jected to the SSM/I polar stereographic projection (Drinkwater,
1998).

−1800 −1700 −1600 −1500 −1400 −1300 −1200 −1100 −1000 −900

100

200

300

400

500

600

700

distance [kms]

di
st

an
ce

 [k
m

s]

Nov 20th

Nov 17th

3072 ´  3072 pixels

Figure 1: SHEBA camp shown in tandem with the bounding box
of the satellite imagery in SSM/I.

The position of the SHEBA camp, in SSM/I stereographic pro-
jection, through the entire duration of time is shown in figure 1.
The two large rectangular boxes are the bounding boxes of the
actual images obtained from the satellite on the 17th and 20th of
November, 1997. The asterisk indicates the position of the camp
co-located with the satellite image on the 17th. The two inner
rectangular boxes indicates an analysis window of 3072×3072
pixels, where the high resolution motion was estimated. The
readers are referred to the Applied Physics Laboratory at the Uni-
versity of Washington, Seattle1 for detailed information and data
description of SHEBA camp.

4 DESCRIPTION OF THE ALGORITHM

It is essential to stress that unlike the typical motion estimation
problem, here we used in situ buoy information to construct a
Lagrangian Frame of Reference (LFR) to estimate the differen-
tial motion. Despite the use of in situ buoys as tie points, the
differential motion that is typically observed between the image
pair is still significantly large (figure 8(b)). The LFR is obtained
by using the image time stamp to linearly interpolate the spatio-
temporal position of the camp (GPS data from the camp available

1http://psc.apl.washington.edu/Harry/Radarsat/

at 10 minutes intervals). Given this LFR for the image pair, the
deformation can be subsequently estimated using our algorithm.

Figure 2: The quad-tree decomposition for the motion estimation.

To estimate the motion, we use a cascade of implicit quad-tree de-
compositions (Figure 2). Typically, a quad tree based algorithm
requires the maintenance of a data structure to manage the vari-
ous aspects of the tree linkage (Thomas et al., 2000). In our im-
plementation, the decomposition occurs without an explicit data
structure. The flow of information from the parent node to the
child occurs due to the organization of the analysis modules and
hence it can be perceived as an implicit quad-tree decomposition.

4.1 Cascaded Motion Estimation

In our previous works (Thomas et al., 2004), (Thomas et al.,
2005a), we have shown the efficacy of using phase correlation
for estimating motion in ERS-1 imagery. But unlike the ERS-
1 images, the motion that is observed in RADARSAT images
involved extremely large discontinuous motion with basin-wide
leads being observed. This type of dynamics indicate a quasi-
rigid motion field (Kambhamettu et al., 1994) unlike the motion
that is present in the ERS-1 imagery. To handle such quasi-rigid
motion, we use the multi-scale motion estimation property of the
quad tree decomposition.

Figure 3: The “V-cycle” to perform the estimation-regularization-
sampling cycle for robust estimation of motion.

To provide a better explanation of the quad decomposition, the
estimation process can be compared with the full V-cycle method
of multi-grid technique (Wesseling, 2004). This is shown in fig-
ure 3, where a circle indicates an estimation point and a diago-
nal line connecting any two circles indicate a data regularization
step with up-sampling/down-sampling. Each V-cycle, thus de-
notes an estimation-regularization framework with the resolution
of the flow field scaled by a factor of 2n at the nth cascade. The
main advantage of this mechanism is that the estimation at earlier
stages of the cascade tend to be more robust, thereby directing
subsequent estimation stages in the correct direction.
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Figure 4: Data flow architecture within a cascade.

The data flow architecture within a cascade can be observed in
figure 4. Two parameters that are used for the computation are
the window size and the block size. The window size defines
the dimension of the analysis window that is used to perform
the phase correlation while the block size defines the sliding fre-
quency. The block size provides a relationship of the overlap ratio
between adjacent analysis windows. The smaller the block size,
the greater the overlap between adjacent windows and vice versa.
The minimum overlap of half the window size occurs at the finest
level of the image resolution. The changing overlap ratio defines
the smoothness of the estimated motion field with greater overlap
leading to a smoother motion field.
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Figure 5: Flow chart for creating the multi resolution image pyra-
mid.

As the cascade proceeds from the left to the right, the analy-
sis window is reduced by half, thereby obtaining a more accu-
rate representation of the dynamics taking place. This reduction
in window size, decomposes the collocated analysis window in
each cascade into four separate windows in the subsequent cas-

cade, thereby forming the quad tree decomposition. Since the
estimate towards the left side is obtained by incorporating in-
formation from a larger area of the image, the motion tends to
be more robust. But the decrease in the analysis windows tend
to provide for a higher resolution of estimates towards the right.
Thus each cascade builds on the robustness of its parent but per-
forms the analysis at a resolution that is twice that of the parent.
This provides a mechanism to transfer the robustness from left to
right while simultaneously increasing the resolution of estimates.

4.2 Image Pyramid

As can be observed in figure 3, the horizontal lines indicate the
various resolutions in an image hierarchy. The multi resolution
image pyramid is computed as shown in the figure 5. The image
pyramid is computed once at the beginning of the processing and
is used for each stage of the cascade. This is possible because
the algorithm does not warp the image data using the estimated
vector field in the next estimation iteration. Instead the estimated
motion from each cascade is accumulated leading to the final mo-
tion field.

4.3 Block Motion

Figure 6 shows the flow chart for the block motion estimation.
Block similarity is computed using phase correlation and candi-
dates are extracted from the phase correlation surface. The best
candidate, from among the possible candidates, is selected us-
ing normalized cross correlation (NCC). This voting scheme im-
proves the reliability of the estimated vectors over a single simi-
larity metric alone. Phase correlation (Thomas, 1987), (Thomas
et al., 2004) also has the advantage of being illumination invari-
ant and can be efficiently estimated in the Fourier domain, un-
like the Normalized Cross Correlation (Proakis and Manolakis,
1996), (Lewis, 1995). This allows the algorithm to be computa-
tionally very efficient.
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Figure 6: Flow chart for estimating local motion.

Once the best estimate is computed, subpixel motion is computed
by using a 3-point Gaussian fit over the NCC values in the neigh-
borhood of the best candidate (Thomas et al., 2005b).



5 RESULTS AND DISCUSSION

The estimation procedure was tested on two types of image pairs
from the SHEBA data set. The first set constituted image pairs
with a temporal difference of 1∼3 days. These image pairs usu-
ally did not have significant discontinuities in them, and the pixel
displacements were typically in the range of 0∼100 pixels. The
second was a simulated test case using image pairs with time-lag
that were greater than 3 days. In these cases, there were sig-
nificant damage zones with the typical motion in the range of
100∼200 pixels. Figure 7 shows a sample image from the second
test set. For the motion estimation algorithm, we used 4 cascades
with 3 levels of image resolutions in each cascade. This lead to
an estimated motion field resolution of 400m when compared to
the 5km SHEBA data product (Stern and Moritz, 2002). The al-
gorithm was tested on 25 image pairs from the SHEBA data set
and we have provided results from a few of the image pairs.
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Figure 7: Image showing the second test case with extreme dis-
continuities (a) First image (b) Second Image.

In both the test cases, the motion estimation algorithm performed
very well. For visualizing the flow field, we adopted the Line

Integral Convolution (LIC) as described by Cabral and Leedom
(Cabral and Leedom, 1993). Figure 8 shows the advection of the
streamlines of motion leading to the formation of the discontinu-
ities2.
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Figure 8: Image showing the test cases with extreme discontinu-
ities (a) Motion estimated using our framework (b) Histogram of
the displacement present in the images.

Further results can be seen in figure 9 and 10, where we have
estimated the motion between image pairs with varying time dif-
ferences. The LIC shows the estimated motion field, where co-
herent structures can be accurately observed, despite the presence
of large discontinuities.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we have described an estimation framework that has
been found to be robust and computationally efficient. The noise
robustness is achieved due to the implicit quad-tree scheme while
the computational efficiency is achieved due to the Fourier com-
putations that is present in the cascaded multi-scale approach.
Our observations indicate that the algorithm can accurately esti-
mate motion in the presence of large discontinuities. This would

2Line Integral convolution code was adapted from the work by W.
Martin (www.cs.utah.edu/∼wmartin/cs523project/)



be an extremely important component in understanding the dy-
namics that is taking place at the polar icecaps from satellite im-
agery
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Figure 9: Results from high resolution motion estimation using
sample image pairs at different time-lagged intervals. Only the
first image is shown (left column) and the LIC of the estimated
motion (right column).
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Figure 10: Results from high resolution motion estimation using
sample image pairs at different time-lagged intervals. Only the
first image is shown (left column) and the LIC of the estimated
motion (right column).


