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ABSTRACT:

Spatial information Web services are beginning to be used for disseminating general purpose (mapping-grade) geographic information.
They allow integrated use of geolocated data from varied sources by first transforming them to a common reference frame, typically
referred to a “WGS84”.
Applying this paradigm in a geodetic context meets two problems. Firstly, one must, as for mapping-grade geographic information,
bring traditional co-ordinate information from various local sources onto a unified geocentric GPS datum, typically a locally canonical
realization of WGS84. Secondly, on this precision level, the concept WGS84 is no longer uniquely defined. Instead, different realiza-
tions, all geocentric on the cm level, are in use in differentlocales. They must be brought from the locally canonical realization onto a
common globally valid geocentric datum.
In geodesy, traditionally the propagation of co-ordinate precision has been carefully managed by designing networks hierarchically,
creating a well-behaved spatial variance structure in which the inter-point precision of points located close together is never unduly
large in relation to their distance. Then, “criterion matrices” are used to formally describe this precision behaviour.
In this paper, we tentatively develop, with a view to geodetic co-ordinate Web services, methods for bringing geodetic co-ordinate data
onto a common geocentric reference frame through a two-stepdatum transformation procedure addressing these two problems. We
design simple criterion variance structures to describe the spatial precision behaviour of co-ordinates in both steps.

1 INTRODUCTION

In geodesy we produce and manage highly precise co-ordinate
data. Traditionally we do this by successive, controlled prop-
agation of precise measurements down ahierarchy of progres-
sively more localized and detailed network densifications:work-
ing “from the large to the small”.

Compared to the market for geographic information used for
mapping applications, where precision is less critical andoften
in the range±0.1 − 1 m, geodetically precision-controlled co-
ordinate data forms a much smaller field of application. How-
ever, this field is vitally important, including the precisecadas-
tral, urban planning and construction surveys that make modern
society possible. Bringing this area of activity within thescope of
geographic information services would require adapting these to
the management of the spatial precisionstructuresfound in these
network hierarchies, codifying traditional geodetic practice.

One of us (KK) has studied in detail the technical aspects of co-
ordinate Web services for geodesy (Kollo, 2004).

In geodesy, the complexity of describing the precision of point
sets is often handled by defining simplecriterion functionsthat
model the point co-ordinates’ overall variance behaviour as a
function of relative point location, without having to specify a
detailed covariance matrix.

Next we shall first briefly present the current state of spatial infor-
mation services for the World Wide Web, including co-ordinate
transformation services. Then we discuss geodetic networks, net-
work hierarchies, error propagation and criterion matrices.

We propose to bring sets of geodetic co-ordinate data upon a
globally unique realization of WGS84 by a two-step procedure:

1. Perform an overdetermined tie of the given geodetic net-
work (which may be a traditionally measured, pre-GPS,
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one) by a triangle-wise affine (bi-linear) transformation to
a given set of GPS-positioned points. This technique is cur-
rently in use in Finland, cf. (Anon., 2003) appendix 5; after
this, the network will be in the national realization EUREF-
FIN of WGS84, i.e. the locally canonical realization for the
territory of Finland.

2. Perform a three-dimensional Helmert transformation of the
result to a single, globally unique WGS84 realization. In
this operation the given set of GPS points, which could be
considered errorless in the EUREF-FIN datum, will acquire
a non-zero variance structure again.

We derive criterion functions modelling the variance propagation
behaviour of both steps.

2 SPATIAL DATA WEB SERVICES

Geographic information services as existing today supply spa-
tial information over the World-Wide Web. They are commonly
based upon standards established by the Open Geospatial Con-
sortium (OGC), an international non-profit geospatial informa-
tion standards group. Using these standards, one may extract ge-
ographic data from a variety of conforming data sources, which
may all be in different datums or co-ordinate reference systems.

Services of this kind can be classified as Web Map Services
(WMS, (OGC, 2001)), Web Feature Services (WFS, (OGC,
2002)), and many others.

Web standards are based on the XML (Extensible Modeling Lan-
guage) description language; OGC has defined the GML (Geo-
graphical Mark-up Language) for this (OGC, 2003). The lan-
guage provides for specifying position precisions of points and
point sets, either as individual point position precisions, or as
between-points relative position precisions. Additionally it al-
lows specification of a full variance-covariance matrix. The stan-
dard speaks of “data quality” (dataQuality.xsd).



More recent work on data quality is going on in ISO, the Inter-
national Standards Organization: e.g.. ISO 19113 “QualityPrin-
ciples” and ISO 19138 “Data Quality Measures” (A. Jakobsson,
personal comm.). Clearly co-ordinate precision is only a small
part of what the concept “quality” covers when applied to spa-
tial information. Conversely, however, there is much more to
co-ordinate quality than is often understood, about which more
later.

In practical implementations such as GeoServer (Anon., 2005d)
or MapServer (Anon., 2005b) we tend to see a limited set of
predefined datums (e.g., the European Petroleum Survey Group
(EPSG) set, cf. (European Petroleum Survey Group, 2005)) and
projections and transformations (e.g., the PROJ.4 set, cf.(Anon.,
2005c)) being included. A more scalable approach is using a
co-ordinate service specification for the Web. Both standard-
ization and implementation work in this direction is now being
done in a number of places. There exist a WCTS (Web Co-
ordinate Transformation Server) specification and experimental
implementations (see, e.g., (Anon., 2005a)).

Spatial data Web services as currently designed are aimed atthe
large, complex market of users of various map products for a
broad range of applications. These products are often of limited
resolution and precision, co-ordinate precision not beingtheir fo-
cus. To some extent this is also a cultural difference, cf., e.g.,
(Jones, Winter 2005/2006).

3 CHOOSING A “ROSETTA FRAME”

A well known spatial data application like PROJ.4, e.g., does
not distinguish between the various realizations of WGS84,such
as the different international ITRF and European ETRF frames
(F. Warmerdam, email). As long as we work within a domain
where there is only one canonical realization, like EUREF-FIN
in Finland, this is a valid procedure. PROJ.4 uses WGS84 as the
common “exchange datum” to which all other datums are trans-
formed, typically by applying (after, if necessary, transformation
to 3D Cartesian using a reference ellipsoid model) either a three
parameter shift, or a seven parameter Helmert transformation.

For geodetic use, it is not enough to consider the various real-
izations of WGS84 as representing the same datum. The differ-
ences between the various regional and national “canonicalreal-
izations” – as well as between the successively produced interna-
tional realizations of ITRS/ETRS – are on the several-centimetre
level. To illustrate this, we mention a recent report (Jivall et al.,
2005) which derives the transformation parameters betweenthe
various Nordic national realizations of ETRS 89, and a common,
truly geocentric system referred to as ITRF2000 epoch 2003.75.
This allows the combination of co-ordinate data from these coun-
tries in an unambiguous way.

4 NETWORK HIERARCHY IN THE GPS AGE

Some claim that in the GPS age the notion of network hierarchy
has become obsolete. We can measure point positions anywhere
on Earth, using the satellite constellation directly, without refer-
ring to higher order terrestrial reference points. In reality, if again
robustly achieving the highest possible precision is the aim, this
isn’t quite true.

Measurements using the satellite constellation directly violate the
“from the large to the small” principle. If we measure, e.g.,in-
dependently absolute positions in a terrestrial GPS network on
an area of1000 × 1000 km using satellites at least20000 km
away, we will not obtain the best possiblerelative positions be-
tween these terrestrial points. Rather, one should measurevectors

between the terrestrial points, processing measurements made si-
multaneously from these points to the same satellites, to obtain
co-ordinatedifferencesbetween the points. This,relative GPS
measurement, is the standard for precise geodetic GPS.

In relative GPS positioning within a small area, one point may
be kept fixed to its conventionally known co-ordinates, defining
a local datum. From this datum point outward, precision dete-
riorates due to the various error contributions of geodeticGPS.
For covering a larger area, one should keep more than one point
fixed. These points are typically taken from a globally adjusted
point network, like the well known ITRF or ETRF solutions. In
Finland, e.g., one uses points in the EUREF-FIN datum, a na-
tional realization of WGS84 providing a field of fixed points cov-
ering Finland. To bring a geodetic network into the EUREF-FIN
datum, it must be attached to a number of these points, which
formally, in the EUREF-FIN datum, are “errorless”.

5 VARIANCE BEHAVIOUR UNDER DATUM
TRANSFORMATION

Any realistic description of a geodetic network’s precision should
capture itsspatial structure, the fact that inter-point position pre-
cision between adjacent points is the better, the closer together
the two points are. For points far apart, precision may be poorer,
but that will be of no practical consequence. What matters isthe
relative precision, e.g., expressed in ppm of the inter-point dis-
tance.

The precision structure of a network depends on itsdatum, the
set of conventionally adopted reference points that are used to
calculate the network points’ co-ordinates. E.g., in the plane,
two fixed points may be used to define a co-ordinate datum; the
co-ordinates of those points, being conventionally agreed, will
be errorless. Plotting the uncertainty ellipses describing the co-
ordinate imprecision of the other points, we will see them grow
outward from the datum points in all directions.

Choosing a different set of datum points will produce a different-
looking pattern of ellipses: zero now on, and growing in all di-
rections outward from, these new datum points. Yet, the preci-
sion structuredescribed is the same, and well defined transfor-
mations exist between the two patterns:datum transformations,
also called S-transformations.

6 CRITERION FUNCTIONS

We refer to the work of (Baarda, 1973) for the notion of criterion
matrices, as well as the related notion of S- or datum transfor-
mations. The precision of a set of network points can be de-
scribed collectively by avariance-covariance matrix, giving the
variances and covariances of network point co-ordinates. If all
point positions are approximately known, as well as the precision
of all geodetic measurements made between them, this variance
matrix is obtained as a result of the least squares adjustment of
the network.

In a three-dimensional network ofn points there will be9n2 el-
ements to the variance matrix – or3

2
n (3n + 1)essentially dif-

ferent ones –, so this precision representation doesn’t scale very
favourably. Also, the original measurements and their precisions
may be uncertain or not readily available. For this reason, geode-
sists have been looking for ways of describing the precisionstruc-
ture of a geodetic network – realistically, if only approximately
– using a small number of defining parameters. Such synthetic
variance matrices are calledcriterion matricesand their generat-
ing functionscriterion functions.

Criterion functions are an attractive and parsimonious wayto de-
scribe the precision structure of geodetic point sets or corpora of



spatial information. They offer a more complete description than
point or inter-point co-ordinate precision, yet take less space than
full variance matrices, while in practice being likely justas good.

A formal requirement to be placed upon criterion matrices is, that
they transform under datum transformations in the same way as
real variance-covariance matrices would do. As this is known
geodetic theory, we will not elaborate further.

7 GEOCENTRIC VARIANCE STRUCTURE OF A GPS
NETWORK

Let us first derive a rough but plausible, geocentric expression for
the variance-covariance structure of a typical geodetic network.
The true error propagation of GPS measurements is an extremely
complex subject. Here, we try to represent the bulk co-ordinate
precision behaviour in a simple but plausible way.

Also the full theory of criterion matrices and datum transforma-
tions is complicated (Baarda, 1973, Vermeer et al., 2004). Here
we shall cut some corners. We assume that the inter-point posi-
tion variance between two network pointsA andB, co-ordinates
(XA, YA, ZA) and(XB , YB, ZB), is of the form

Var(rB − rA) =

= Q0

`

(XB − XA)2 + (YB − YA)2 + (ZB − ZA)2
´

k
2

= Q0d
k
AB, (1)

with k andQ0 as the free parameters (assumed constant for now),
anddAB = ‖rB − rA‖ theA − B inter-point distance.

For this to be meaningful, we must know what is meant by the
variance or covariance of vectors. In three dimensions, we inter-
pret this as:
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i.e., a3× 3 elements tensorial function. AlsoQ0 is in this case a
3 × 3 tensor. The approach is not restricted to three dimensions,
however.

Eq. 1 is fairly realistic for a broad range of geodetic networks:
for (one-dimensional) levelling networks we know thatk = 1
gives good results. In this case

√
Q0 = σ0, a scalar called

the kilometre precisionis expressed inmm/
√

km. For two-
dimensional networks on the Earth’s surface, we have due to
isotropyQ0 = σ2

0I2, with I2 the2 × 2 unit matrix. This is valid
in a small enough area for the Earth’s curvature to be negligible,
so that map projection co-ordinates(x, y) can be used.

Also for GPS networks an exponent ofk = 1 has been found ap-
propriate (e.g., (Beutler et al., 1989)). The3 × 3 matrixQ0 con-
tains the component variances and will, in a local horizon system
(x, y, H) in a small enough area, typically be diagonal:

Q0,hor =

2

4

σ2
h

σ2
h

σ2
v

3

5 ,

whereσ2
h andσ2

v are the separate horizontal and vertical stan-
dard variances. In a geocentric system we get then the location-
dependent expression

Q0 (r) = R (r) Q0,horR
T (r) ,

with R (r)the rotation matrix from geocentric to local horizon
orientation for locationr.

Now if we choose the following expressions for the variance and
covariance of absolute (geocentric) position vectors:

Var(rA) = Q0 (rA) Rk,

Var(rB) = Q0 (rB) Rk

Cov(rA, rB) = Q0,AB

»

Rk − 1

2
dk

AB

–

,

with R the Earth’s mean radius, then we obtain the following,
generalized expression for the difference vector:

Var(rB − rA) = Q0,ABdk
AB,

with Q0,AB ≡ 1
2

[Q0 (rA) + Q0 (rB)]. This yields a consistent
variance structure.

In practice, the transformation to a common geocentric frame
will be done using known parameters found in the literature
(Boucher and Altamimi, 12.04.2001) for a number of combina-
tions ITRFxx/ETRFyy, where xx/yy are year numbers. Our con-
cern here is only the precision of the co-ordinates thus obtained.
We need to know this precision when combining GPS data sets
from domains having different canonical WGS84 realizations, re-
quiring their transformation to a suitable common frame.

8 AFFINE TRANSFORMATION ONTO SUPPORT
POINTS

Often, one connects traditional local datums to a global datum by
an overdetermined Helmert transformation with least-squares es-
timated parameters. While this will work well in a small area, it
doesn’t yield geodetic precision over larger national or continen-
tal domains.

The PROJ.4 software models such transformations more pre-
cisely by augmenting the Helmert transformation by a regular
“shift grid” of sufficient density describing a residual deforma-
tion field between the two datums. Unfortunately this technique
obfuscates how these shifts were originally determined, usually
by using a field of irregularly located “common points” knownin
both global and local systems.

We may derive a plausible variance structure for the current
Finnish practice documented in (Anon., 2003), of transforming
existing oldkkj network co-ordinates into the new EUREF-FIN
datum by a per-triangle affine transformation applied to a Delau-
nay triangulation of the set of points common to both datums.
The parameters of this transformation follow from the shiftvec-
tors in a triangle’s corner points and produce an overall transfor-
mation continuous over triangle boundaries. We abstract from the
actual process producing those local measurements and postulate
a formal covariance structure.

Let a given network be transformed to a network of support points
assumed exact, forming a (e.g., Delaunay-) triangulation.Let one
triangle beABC and the target pointP inside it. The transfor-
mation takes the form

r
(ABC)
P = rP − pA

“

rA − r
(ABC)
A

”

−

−pB
“

rB − r
(ABC)
B

”

− pC
“

rC − r
(ABC)
C

”

,

wherepA, pB, pC are pointP ’s barycentric co-ordinateswithin
triangleABC (cf. (Vermeer et al., 2004) and Figure 1), with
alwayspA + pB + pC = 1. These are readily computable.
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Figure 1: Barycentric co-ordinates illustrated. Every barycentric
co-ordinate is the quotient of two triangle surface areasω: e.g.,
pC is the area of triangleABP divided by the total surface area
of ABC.

Then, if we postulate thea priori covariance function to be of
form

Cov(rP , rQ) = g (rQ − rP ) = g (dPQ) ,

with dAB ≡ ‖rQ − rP ‖ the P − Q inter-point distance, and
assume the “given co-ordinates”r(ABC)

A , r
(ABC)
B , r

(ABC)
C to be

error free, we get, by propagation of variances, thea posteriori
variance at pointP as

Var
“

r
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P

”

=
ˆ
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˜
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If we further postulate, implicitly definingf :

Var(rP ) = Var(rQ) = g (0) = α2,
Cov(rP , rQ) = g (dPQ) = α2 − 1

2
f (dPQ) ,

then substituting this into the above yields
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(2)

where the arbitraryα2 (assumed only to make the variance pos-
itive over the area of study) has vanished. A plausible form for
the functionf , which describes theinter-point(a priori) variance
behaviour, i.e., that of the point difference vectorrQ−rP , would
be

Var(rQ − rP ) = f (dPQ) = Q0d
k
PQ, (3)

with k andQ0 as the free parameters.

Symbolically we can describe the above as

Var
“

r
(ABC)
P

”

= pP (ABC)Q
P (ABC)
P (ABC)p

T
P (ABC),

where

pP (ABC) ≡
ˆ

1 −pA −pB −pQ

˜
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Figure 2: Example plot of point variance after transformation to
support points (assumed errorless) within a single triangle. Mat-
Lab simulation, arbitrary units.
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In Figure 2 we give for illustration one example of the point vari-
ance behaviour after tying to the three corner points of a triangle.
Cf. (Vermeer et al., 2004).

Including the uncertainty of the given points, we can write:

Var
“

r
(ABC)
P

”

= pP (ABC)

h

Q
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+ Q

ABC
ABC

i

p
T
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where we have denoted thea priori variance matrix of the given
points by

Q
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This represents the given points’ variance-covariance infor-
mation, computed geocentrically as described earlier, i.e.:
QAA = Var(rA) = Q0 (rA)Rk, QAB = Cov(rA, rB) =
ˆ

1
2
Q0 (rA + Q0 (rB))

˜ ˆ

Rk − 1
2
d2

AB

˜

, etcetera. As a result, we
will obtain thetotal point variances and covariances in ageocen-
tric, unifieddatum.

9 INTER-POINT VARIANCES

It is straightforward if laborious to derive also expressions for the
a posterioriinter-point variances:

Var
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(DEF )
Q − r
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= Var
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(DEF )
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+

+Var
“
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− 2Cov
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(DEF )
Q , r
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P

”

, (4)

by application of variance propagation like in (2); separately for
the cases ofP andQ within the same triangle, in different tri-
angles, or in different but adjacent triangles sharing a node or a



side. We obtain, for the general case of different trianglesABC
andDEF :

Cov
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From this, we obtain the general relative variance expression by
substitution into Eq. 4. Note that for a datum of this type, the
locations of the fixed points used becomepart of the datum def-
inition, though for any single variance or covariance to be com-
puted, only six point positions are needed at most.

When representing the spatial precision structure in this way, the
representation chosen should also besemantically valid, in that
it should be possible to extract both point and inter-point mean
errors for specified points, anduse them, .e.g., for detecting in-
consistencies between different data sources by statistical test-
ing. This is related to the topic of the Semantic Web and the use
of ontologies for specifying integrity constraints (K. Virrantaus,
personal comm., and (Mäs et al., 2005)).

10 THE CASE OF UNKNOWN POINT LOCATIONS

If the locations of the common fit points are not actually known,
we may derive abulk covariance structurenot depending on
them. Assume a mean point spacingD and a uniform triangle
size. Formula (2) yields, withP = A:
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and similarly for the other corner points. Thea posteriorivari-
ance reaches its maximum in the centre of gravity of the triangle,
where the barycentric weights arepA = pB = pC = 1

3
. As-

suming furthermore that the triangle is equiangular, i.e.,dAB =
dAC = dBC ≡ D, we have also

dPA = dPB = dPC =
D√
3
,

and

Var
“

r
(ABC)
P

”

= −1

2

ˆ

1 − 1
3

− 1
3

− 1
3

˜

·

·

2

6

6

6

6

6

6

4

0 f
“

D√
3

”

f
“

D√
3

”

f
“

D√
3

”

f
“

D√
3

”

0 f (D) f (D)

f
“

D√
3

”

f (D) 0 f (D)

f
“

D√
3

”

f (D) f (D) 0

3

7

7

7

7

7

7

5

2

6

6

4

1
− 1

3

− 1
3

− 1
3

3

7

7

5

=

= f

„

D√
3

«

− 1

3
f (D) .

For power law (3) we obtain

Var
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= σ2
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Fork = 1 this becomes
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= σ2
0D · 1
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”

≈ 0.244σ2
0D.

We can symbolically write

∆k ≡ 3−k/2 − 3−1.

Use the above derived upper bound for the single point variance
and postulate the following replacement variance structure:
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“

r
(∆)
P , r

(∆)
Q

”

= ∆kσ2
0Dk − 1

2
F (dPQ) .

Note thathere, the constant∆kσ2
0Dk, unlike α2 above, is no

longer arbitrary. It does similarly vanish, however, when we de-
rive the inter-point variance:

Var
“

r
(∆)
Q − r

(∆)
P

”

= Var
“

r
(∆)
P

”

+ Var
“

r
(∆)
Q

”

−

−2Cov
“

r
(∆)
P , r

(∆)
Q

”

= F (dPQ) .

We wish to see a variance structure, in which thesea posteriori
inter-point variances behave in the following reasonable way:

1. ForP andQ close together (and often within the same tri-
angle), we want the relative variance to behave according to
thek-power law;

2. For larger distances, andP andQ in different triangles, we
want the relative variance to “level off” to a constant value.
We know it can never exceed twice the posterior variance of
a single point, which is∆kσ2

0Dk max (And never less than
0, which happens if bothP andQ coincide with nodes of
the triangulation).

Therefore we choose

F (dPQ) =
1

1/σ2

0
dk

PQ + 1/2∆kσ2

0
Dk

=

= σ2
0

1
1/dk

P Q + 1/2∆kDk
= σ2

0

2∆kdk
PQDk

dk
PQ + 2∆kDk

,

which behaves in this way, with a smooth transition between the
two regimes.



11 FINAL REMARKS

We believe that geodesists and spatial information specialists
should get better acquainted with each other’s ideas. Precise
geodetic information still commonly moves around as files of
co-ordinates, processed by dedicated software to maintainthe
highest precision. Dissemination using standard Web services
promises many practical benefits, but is not well known in geode-
tic circles and currently used only for mapping-grade geographic
information.

Now also in geodesy, awareness is growing, e.g., in connection
with the GGOS (Geodetic Global Observing System) initiative,
cf. (Neilan, 2005), that precise geodetic co-ordinate information
should be seen and integrated as part of our spatial data infrastruc-
ture. Care should then be taken to properly represent and manage
its spatial precision structure.

12 CONCLUSIONS

We have derived criterion matrix expressions for modellingthe
variance-covariance behaviour of

1. the geocentric co-ordinates of a set of GPS-determined
“fixed points”;

2. co-ordinates in a local geodetic network that has been tied
to a set of GPS-positioned points by a triangle-wise affine
(bi-linear) transformation.

We were motivated to present these derivations by their possible
use in co-ordinate Web services for geodesy. They will allow
proper co-ordinate precision modelling when bringing geode-
tic co-ordinate material from heterogeneous sources on a single
common geocentric datum.
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