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ABSTRACT:

Positional accuracy of geographic objects is treated in this contribution. Two main sources of uncertainty that influences the positional
accuracy are considered:

• uncertainty of classification,

• uncertainty of georeferencing (image registration).

These two sources are embraced in the overall spatial precision of geographic objects. It is assumed that several geographic objects are
given as a result of Bayesian classification of a given digital (raster) image. It means that these objects are not determined precisely as
crisp objects. Georeferencing of the given image is supposed to be determined by a linear transformation, coefficients of which were
estimated by means of Bayesian approach. This transformation is therefore imprecise as well. It is designed here how to properly
combine these two partial imprecise results to get the overall spatial precision of each geographic object in the given image. The
resulting individual geographic object is expressed by its boundary which is approximated by a polygon with imprecise vertices.
Precision of the vertices is computed from the initial data by means of Bayesian estimation so that any border point between adjacent
objects is unique though imprecise. Special probability distribution (close to Gaussian) was designed to model the positional accuracy
of the vertices.

1 INTRODUCTION

There are two crucial problems in recent geoinformation technol-
ogy:

1. representation and processing of uncertain spatial data,

2. recognition of objects in raster images and description of
their shapes in vector format.

Each of them is highly complex task from the theoretical and
computational point of view. There are plenty approaches and
methods that tries to solve each of the both problems separately
on various levels of proximity, efficiency, and applicability. De-
spite the multifarious character of the two problems, they should
be solved in a unified, comprehensive way, since they usually oc-
cur simultaneously. The reasons are apparent.

1. Any observation of the earth is uncertain.

2. Raster data can be easily captured, but vector data are more
suitable for spatial analysis.

The main task of this contribution is to express uncertain bound-
ary of a geographic object in form of closed polygon with impre-
cise vertices. To correctly estimate the imprecision of the vertices
probability distribution of them is inferred by means of Bayesian
approach (see e.g. (Koch, 1990)).

It is assumed that the geographic object was recognized in a given
digital image by Bayesian classification and then transformed to
a cartographic coordinate system. Coefficients of the transforma-
tion are assumed to be estimated by means of Bayesian inference
as well. Bayesian approach serves, actually, as a glue of the two
different tasks that are partial problems of the main task men-
tioned above.

Another important approach that is fundamental for this contri-
bution is based on combination of fuzzy set theory an probability
theory. Fuzzy set theory has been successfully applied to model
uncertain regions and their mutual relation during the last decade.
Review of these attempts is presented in (Schmitz and Morris,
2006). Unfortunately, there is little effort to combine fuzzy theory
with probability theory in the field of spatial data quality and ex-
perimental data processing. Some challenging hints can be found
in book (Viertl, 1996).

2 FORMULATION OF THE PROBLEM

2.1 Given:

• result of Bayesian classification of a digital image, i.e. for
each class U ∈ U probability pU as a discrete function of
pixels of the image is defined.

pU : X → 〈0, 1〉 : [m,n] 7→ pU (m,n) ,

where
X . . . index set of pixels of the given image,
m,n . . . coordinates of a specified pixel



• random field (Markov or Gaussian) that describes mutual
dependence of position-ally close pixels.

• transformation Tθ that represents georeferencing of the im-
age.

Tθ : X → X̃ : x 7→ Tθ(x) ,

shortly expressed:
x̃ = Tθ(x) (1)

X̃ . . . small part of Earth surface, X̃ ⊂ E2

E2 . . . Euclidean plane,
x . . . position of a pixel in the image, x = [m,n]
x̃ . . . cartographic coordinates of a point on earth,
θ . . . transformation coefficients, θ ∈ T ⊂ Rm, m ∈ N

• joint probability distribution of transformation coefficients
θ. Probability density function of θ is denoted by ϕ(θ).

2.2 Required:

• closed polygon that approximates border of the given re-
gion;

• joint probability distribution of the all vertices of the poly-
gon.

3 SOLUTION

3.1 Approximation of the region boundary by a polygon

After Bayesian classification, each pixel in the image is assigned
by a probability that the pixel belongs to a specified class, say
U . These probabilities are given as values of the given function
pU . To describe the main idea clearly, let confine us to only one
region on some background. The region of class U that was rec-
ognized by the Bayesian classification can be treated as fuzzy
region whose membership function is pU . Uncertain boundary
of this fuzzy region will be approximated by a closed polygon
with imprecise vertices. The main task of this section is to esti-
mate probability density function of the vertices. Let us denote
the density function by gU .

gU : X
n → 〈0, 1〉 : [x1 , . . . ,xn] 7→ gU (x1 , . . . ,xn) .

For concise notation, let us abbreviate the vertices by x̂, i.e.:

[x1 , . . . ,xn]
4
= x̂ .

Let us imagine another probability density function of vertices x̂
that is parameterized by vector q, say fU,q It is possible, with aid
of function fU,q, to construct continuous membership function of
any closed polygon. Let us denote the function by µU,q. Value
of this membership function for an arbitrary point x stands for
probability that this point belongs to region rU incident to class
U .

µU,q(x) = P (x ∈ rU ) .

This approach that combines fuzzy set theory an probability the-
ory represents the fundamental idea of this contribution.

When the membership function µU,q becomes successfully con-
structed, it will be compared to given function pU . As a result
of the comparison, probability distribution of parameters q is in-
ferred by Bayesian approach. Let us denote probability density

function of q by hU . Function hU allows us to easily express
function gU that has been searched for.

gU (x̂) =

∫
Q

fU,q(x̂)hU (q) dq . (2)

Set Q stands for admissible values of parameter vector q.

Now the procedure of determination gU just described will be
explained in more detail.

3.1.1 Setting up auxiliary probability distribution of vertices
The auxiliary probability distribution is the one with pdf (prob-
ability density function) fU,q. It is joint probability density of
vertices x̂. For simplicity reasons, let us require the vertices to be
mutually statistically independent.

fU,q(x1 , . . . ,xn) =

n∏
i=1

fi(x1) (3)

fi is probability density function of individual vertex. It is sup-
posed that for each i ∈ {1, . . . ,m} fi is normal (Gaussian)

density with parameters [µi , σi]
4
= qi, q

4
= [q1 , . . . , qn ].

3.1.2 Construction of polygonal fuzzy region This step is
the crucial one of the whole procedure. It is so complicated that
its entire mathematical formulation exceeds the scope of this con-
tribution. Nevertheless, the main idea is quite simple.

For each point x ∈ X we integrate function fU,q over all possible
polygons of length n that cover point x. Probability density of
each polygon is given by probability density of its vertices, i.e.
by function fU,q. Since the number of vertices n is unknown,
we start with rough approximation by triangle and then increase
number n until average positional precision of vertices stabilizes.
By this iterative process, membership function µU,q and number
n are determined.

3.1.3 Bayesian estimation of auxiliary parameters qb Esti-
mation of parameters qb is possible through comparison of func-
tions µU,q and pU . Values of function pU are in fact random since
they originate from frequencies counted in training set. Statistical
behaviour of these values is supposed to be known and defined by
the given random field. Therefore probability distribution of ma-
trix pU (X) is defined as well. Let us denote its pdf by ψ. Then
matrix pU (X) can be statistically compared with matrix µU,q(X)
and thanks to Bayes theorem pdf of vector q can be inferred.

hU (q) =
ψ(pU (X)− µU,q(X)) p(q)∫
Q

ψ(pU (X)− µU,u(X)) p(u)

(4)

Function p stands for a prior pdf that has to be suitably designed
with respect to parameters contained in vector q. Result of this
step is pdf hU .

3.1.4 Determination of probability distribution of vertices
Result of this final step is pdf gU that was mentioned in advance
by equation (2).

3.2 Transformation to cartographic coordinate system

Transformation equations (1) can be rewritten to

[x̃1 , . . . , x̃n] = Tn(x1 , . . . ,xn , θ) , (5)



where

Tn : X
n×T → X̃

n : [x1 , . . . ,xn , θ] 7→ Tn(x1 , . . . ,xn , θ)

Tn(x1 , . . . ,xn , θ) = [Tθ(x1) , . . . ,Tθ(xn)] , T ⊂ Rm

Pdf of coordinates x̂ can be easily expressed as transformation
of random vectors x̂, θ with the aid of fundamental theorems of
probability theory (see e.g. (Trivedi, 1982)). The resulting pdf
gTn is as follows.

gTn(x̂) =

∫
T

g(T
−1
n (x̂ , θ))

1∣∣∣∣det
∂Tn

∂z
(T
−1
n (x̂ , θ))

∣∣∣∣ dθ ,
(6)

where

Tn : X
n×T → X̃

n×T : [ŷ , ϑ] 7→ Tn(ŷ , ϑ) = [T(ŷ , ϑ) ,ϑ],

z
4
= [ŷ , ϑ] .

Pdf g is joint pdf of random vectors ŷ, ϑ. Thus

g(ŷ , ϑ) = gU (ŷ)ϕ(ϑ) .

4 CONCLUSIONS AND FUTURE WORK

The proposed method presents general procedure for estimation
of polygonal shapes with imprecise vertices in given cartographic
coordinate system. The uncertainty of the polygon comprises un-
certainty of classification and uncertainty of georeferencing. The
resulting pdf of vertices of the required polygon is given by equa-
tion (6).

The unified methodology that was applied is based on Bayesian
approach. The proposed method is therefore purely probabilistic
and manipulates with the input data in consistent, highly correct
way.

The algorithm described in this contribution is very general and
its implementation is computationally demanding. Design of ef-
fective numerical solution of the integrals is still under prepara-
tion.

Investigating different kinds of transformation T introduced in
(1), namely nonlinear, and different families of probability dis-
tributions, namely fU,q mentioned in (3) are subject of further
research.
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