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ABSTRACT:

Currently, there is a multiplicity of geographical information to describe the same reality. Nevertheless, we realise that there is
independence between databases that represent the same reality and this affects both data users and producers. Integration seems to
be the issue to that problem. One of the steps of the integration process is the data matching process that furthermore represents our
issue. The purpose of this paper is to define a data matching approach based on the Theory of Evidence. The goal is to model
explicitly the imperfection and to fusion many criteria of data matching in order to improve the quality of the results. Our approach
is carried out in threes steps, consisting in computing the basic belief masses and fusioning criteria and assumptions. The basic
belief assignments for each source are modelled in order to allow to weight a possible matching and to weaken it, in the contrary
case. Fusion process based on combination of distinct sources may generate conflict. In this paper, different operator are tested in

order to manage conflict and we show that the choice of an appropriate operator is crucial.

1. INTRODUCTION

At present, there is a multiplicity of geographical databases
(GDB) to describe the same reality at different spatial and
semantic resolutions. Many applications, like quality
evaluations, propagation of updates, incoherence detection and
study of several adjacent zones require the integration of
geographical databases.

The integration process (Devogele et al., 1998; Sheeren, et al.,
2004) is usually carried out in three stages. The first one is a
pre-integration stage that consists in enriching schemas and
modelling standardisation to use a common model. The second
stage contains two processes, schema matching and data
matching which are not completely independent. Finally, the
last stage called integration, is about defining an integrated
schema and data specification, and actually populating the
integrated GDB.

In this context, we focus on the data matching process and our
aim is firstly, to study how the quality of geographical data
influences it and secondly, how imperfection could be managed
in order to improve it. Thus, the Theory of Evidence is used to
model imperfection but also to fusion different knowledge
provided by different sources in order to make a decision in the
matching process.

The paper is organised as follows. In Section 2, the related
work is discussed. Section 3 describes the frame of the
Evidence theory. Our approach and some results using the
theory of evidence in the matching process are given in Section
4. Finally, section 5 concludes the paper and gives some future
issues.

2. DATA MATCHING PROCESS
2.1 Related work

Data matching process (Walter and Fritsch, 1999) is a tool that
can be used to find corresponding elements in different
databases.

The data matching process is used in many fields handling
geographical information such as integration of geographical
data (Devogele, 1997; Samal et al., 2004; Volz, 2006; Mustiére,
2006), automated updates propagation from one database to
another (Badard, 1998; Gombosi et al., 2003), quality analysis
(Bel Hadj Ali, 2001) or difference and inconsistency detection
between databases (Bruns and Egenhofer, 1996; Sheeren ef al.,
2004).

Many matching methods developed in the literature have
revealed good results and efficiency on certain data types in
selected test areas. Matching algorithms depend on the
geometry of the geographical feature to match, the topological
relations, the databases scales, and last but not least, the
semantic properties.

In the following section, some existing methods for matching
different geographical databases are presented. The methods
are differentiated according to the types of features. We
distinguish two important methods: methods for isolated data,
i.e. data that are relatively independent from each other and
methods for networks.

In (Bel Hadj Ali, 2001) a matching algorithm proposed for
polygonal data uses geometrical tools as intersection, surfacic
distance, etc. (Beeri et al, 2004) proposed four methods based
on geometrical criteria and the approach relies on a probabilistic
consideration. A semantic matching is also possible for isolated
data when a toponym is present in the databases. Many works,
which compare string distance metrics, were proposed in the
literature (Levensthein, 1965; Cohen et al., 2003).

Concerning linear networks, many matching algorithms have
been developed in the literature. (Walter and Fritsch, 1999)



developed a method that match features in two different
databases defined at similar scales and based on geometrical
and topological criteria. It relies on a statistical approach.

More generally, many matching algorithms for two network
databases at similar scale (Voltz 2006; Haunert, 2005) or
different scale (Devogele, 1997; Zhang et al., 2005; Mustiére
2006) were proposed. Generally, the matching process is based
on different criteria and it is carried out in several steps.

We take note that all the methods seen, either applied to
ponctual, linear or polygon data, or employed to match two
databases at different scales or at the same scale, use
geometrical, semantic, or topological criteria. All the criteria
are usually applied one by one and, more importantly, most
approaches do not explicitly model data imprecision.

Therefore, our objective is to find a matching approach that
takes into account all the criteria at the same time and also
imperfection.

2.2 Quality of Geographical Data

Geographical data are represented at various levels of
abstraction. They could be vague, inaccurate or incomplete.
However, these divergences between reality and representation
could be acceptable within the framework of certain
applications. Quality has a major impact when a decision must
be made.

There are some concepts like uncertainty,
vagueness, error, etc., that are used in the field of geographic
information to measure the quality. There is no standard
definition of these terms so that conflicts may appear between
the definitions used in the field of geographic information and
artificial intelligence (Al), but also between the ways of using
these concepts by different authors in the geographic
information field.

So, the concept of uncertainty is generally used in order to
describe imperfect data. Many taxonomies are carried out and
in most of the cases, uncertainty is the base node of the
taxonomy (Devillers 2004; Fisher, 2003). The proposed
taxonomies aim at describing what kind of uncertainty appears
in the data when the database is instantiated. This taxonomy is
guided by the distinction between uncertainties arising from
well-defined objects and poorly defined objects. In those
taxonomies concepts like error, vagueness, ambiguity, discord
and non-specificity are employed.

In Al three types of imperfection are distinguished (Bouchon-
Meunier, 1989; Colot, 2000):

e Imprecision: it is related to the difficulty of expressing
clearly and precisely the information (e.g. The surface
of a forest is approximately of 3 knm??).

e  Uncertainty: it is related to a doubt about the
information’s validity (e.g. Is this forest really a
coniferous forest?).

e Incompleteness: it refers to the absence of information
(e.g. The toponym of the forest is not filled up).

imprecision,

Quality of data has been the core of many researches in the last
few years. Therefore, imprecision must be taken into account
when a decision must be made. Generally, in order to model
imprecision, mathematical theories such as Fuzzy set Theory
(Zadeh, 1965), Possibility Theory (Dubois and Prade, 1985)
and the Theory of Evidence (Shafer, 1976) are employed.

We think that the concepts of the imperfect data in Al are
sufficient for identifying all types of data imperfection that
interest us in the matching process.

We also consider that the Theory of Evidence is useful in our
case because on one hand, it allows to model imprecision,
uncertainty and incompleteness and on the other hand, it allows
to fusion knowledge and to make combined hypothesis.

3. THE FRAME OF THE THEORY OF EVIDENCE

The Theory of Evidence, also called the Dempster-Shafer theory
was introduced by Dempster in 1967. His work concerns the
lower and upper probability distributions. Based on Dempster’s
work, Shafer, (Shafer, 1976) introduced a model called
Dempster-Shafer model, which is based on belief functions.
The description of the Dempster-Shafer model is the object of
this section.

3.1 The Frame of Discernment

Let ® be a set of N hypotheses H;, i= 1..N, that corresponds to
the potential solution of a given problem. This set of
hypotheses is called the frame of discernment being defined as
follows: {

O={H,Hy, Hy} (1)

where N is the number of hypotheses

From the frame of discernment, let 2° denote the set of all
subset of ® defined by:

28 ={H\,.. Hy {H |, Hy},.\H\, Hq,.H y_{}, 0} 2)

where {H;, Hj} = represents hypothesis that the solution of a
problem is one of them, i.e. either H; or H;. We will call
it a composite hypothesis or proposition.

The Theory of Evidence is based on the basic belief assignment
(bba), i.e. a function that assigns to each assumption, Ae 2 a
value that represents how much a source believes in it. The bba
is defined as follows:

m:2° 5[0,1],

Zm(A) =1, ?3)
AcO®

m(@)=0

m(A), Ae2°, is called the basic belief mass (bbm)
m(J) = the conflicting mass; it represents the mass of
belief allocated to the empty set because sources are
in conflict.

where

For example, if we consider that a matching process is based on
geometry of the features, then the closer two features are, the



more the criterion believes that the features are homologous,
and so the value of the bbm is important.

The bbm could be thought of as a probability measure, but the
difference is that the mass of belief is assigned not only to the
singletons hypotheses but also to any proposition of 2°, i.e. to
the composite hypotheses.

Each proposition Ac®, such as m(A)>0 is called a focal
element of m.

From this moment, we consider only the focal elements in order
to fusion information and to make a decision.

3.2 Dempster’s rule of combination

The Theory of Evidence presents the advantage, among others,
that it offers tools to combine several sources of information
using the Dempster’s operator.

Let us consider two sources S; and S,. Each source supports a
proposition A with a certain bbm: respectively m;(A) and
my(A). Let us denote m;, the bbm resulting from the
combination of two sources using the Dempster’s rule and that
supports the same proposition A.

M) =m (D Omy ()= S (B (C)  (5)
—m(@) L,
B,CcO®
where m(D) = Zml(B)mz(C) (6)
BNC=Y

B,CcO

Dempster’s rule is commutative and associative and it supposes
that sources to be combined are independent.

When sources are combined, a conflict may appear and it
should be modelled. In this case, the conflict is assigned to the
empty set, m(J), see equation 6, and it is used by Dempster to
normalise the resulting mass , my,. Thus, the conflicting mass is
redistributed correspondingly to the focal elements.

(Zadeh, 1986) has proved that this operator is very sensible of
little variations of the mass of belief, which could influence the
decision. Many authors (Smets, 1990; Yager, 1987; Dubois et
Prade, 1988; Colot 2000; Royere 2002) proposed solutions to
explain conflict’s origins and to manage it.

Therefore, two hypotheses were made: the first one considers
that the frame of discernment is exhaustive, which is called the
closed world assumption, thus the conflict comes from the non-
reliability of the sources. The second one, open world
assumption formulated by (Smets, 1988) supposes that the
sources are reliable and the conflict comes from the fact that
none of the elements of ® could be the solution. In this case, a
positive basic belief mass could be given to empty set, m(J)>0,
in opposition to the condition m(J)=0 established by Shafer
(Shafer, 1976).

4. THE THEORY OF EVIDENCE IN A DATA
MATCHING CONTEXT

Generally, the matching process consists in searching for each
feature belonging to the reference database for potential
candidates and then analysing them in order to determine the
final result. Geographical data have imperfections (e.g. location

could be imprecise, toponyms have different versions due to
omission, abbreviation, substitution, etc.). Using several
criteria one after the other in the matching process, errors could
be propagated and the matching results erroneous. Therefore,
imperfection should be taken into account in the matching
process and criteria should be applied at the same time to obtain
more relevant information.

The Theory of Evidence offers tools for modelling imperfection
through belief functions and to fusion different knowledge
through the Demster’s rule of combination.

In this section, we describe a data matching approach based on
the Theory of Evidence. Our approach consists in three steps,
as we can see in figure 1. The first and the second step are
considered as a local approach because candidates are
separately analysed and the third step is considered like a global
approach because candidates are analyzed together.

Each step is described in the next sections.

asic belief masses’ computation
for each candidate and each source

'

2
Fusion of sources for
each candidate
3

Fusion of candidates

Figure 1. The three steps of our data matching approach

4.1 The frame of discernment’s definition: local approach

Two databases defined by IGN France are used, that were made
for different purposes, they come from different origins and
does not have the same scale, i.e., a database is more detailed
than the other one. The more detailed database is called
comparison database and a feature that belongs to it is called
comparison feature. Similarly, the less detailed database is
called reference database and a feature belonging to it is called
reference feature.

So, for each reference feature, we look for close features in the
comparison base, which are candidates for matching. The
distance that determines how far we look for candidates is an
empirical one.

In our case, the number of assumptions that composed the
global frame of discernment is equal to the number of
candidates, i.e. each candidate could be the solution. Due to the
fact that a feature may have no homologue, we introduced a
new hypothesis *, standing for the assumption: the feature
reference is not matched at all. So, we consider the closed
world assumption, i.e. an exhaustive frame of discernment and
non-reliable sources. A similar approach was presented in
(Royere, 2002).

So, for each feature belonging to the reference database, RF ¢,
we define a frame of discernment as follows:

RF,, :0={C,C;....Cy.*} @)



N = the number of candidates,

C; = the assumption that the homologue of the
reference feature is C;,

* = the assumption that the feature is not matched

where

In order to compute the basic belief assignments, we use a local
approach i.e. each candidate is analysed separately, (Royére,
2002; Najjar, 2003). The aim is to find out if the candidate is
the right homologue of the reference feature. Moreover, a
particular case of the Theory of Evidence, called the specialised
sources is used (Appriou, 1991 ; Royére, 2002). Each source
specialises on a candidate and assigns a mass of belief to it. In
our case, a source coincides to a criterion of data matching
(toponym and geometry).

In this case we consider N,, a subset of 2, defined as follows:

N, ={¢,.—c;.0 | ®)

C; = hypothesis that C; is the homologue of the
reference feature,

=C; ={C1,C2,...C,-_1,...CN,*} is assumption that C; is
not the homologue of the reference feature.

0 = {C,.C,...C;,..Cy ¥} is assumption that the
criterion does not know if C; is the candidate or not.

where

4.2 The basic belief masses’ computation

In this paper, we propose two criteria in order to mach data and
those criteria represent the sources in the frame of the Theory of
Evidence. The first one is a geometrical criterion based on
Euclidean distance and the second one is based on a string
distance between the toponym of the reference feature and the
toponym of the comparison feature respectively.

The two criteria are described below.

4.2.1 The geometrical criterion

The geometrical criterion is based on the Euclidean distance, dg,
between respectively the location of the reference feature
location and the location of a candidate. We suppose that, the
more the candidate is close to the reference feature the more the
belief that the candidate is the homologue of the reference
feature is high. The bba are modelled in figure 2.

In figure 2a), the selection threshold T, represents the distance
determining how far we look for candidates. The second
threshold T; is introduced in order to give less weight for
candidates that are fairly far.

4.2.2  The toponym criterion

The second criterion that we use is based on the comparison of
toponyms. A string distance dp, between two toponyms,
toponym,; and toponym, is computed using the Levenshtein
distance (Levenshtein, 1965) as follows:

4ol 1,toponymz) ©)
T max(Ly,L,)

~ d I (toponym

where  d;= Levenshtein distance, L= toponym;’s length and

L,= toponym,’s length

Note that string comparison does not take into account accents
and case.

A Q) Am(C)
1 ! ! 1 ; !
0.1 ! i | !
m-C) | L% AmCC) L g
L ! i 1 ! t
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A Y R
0.1 //\: : > / 5 >
T, T, d Tl

Figure 2. Modelling of the geometrical a) and toponym b)
criteria.

Given two toponyms « Boulevard de Général de Gaulle » and
«Boulevard de Général de Gaulle » the distance dr is equal to
0, while the distance between « Bld du Gal de Gaulle » and
« Boulevard de Général Charles de Gaulle » is equal to 0.7.

The string distance is able to accommodate minor spelling
errors but it does not take into account word transposition or
word substitution. Therefore, a less important confidence is
assigned to it, when toponyms are different and another
criterion should complement the toponym criterion.

In the figure 2 b), the bba for the toponym criterion is shown.
Here, the curves are different from the geometrical criterion, in
order to express that we are less confident on this source. Thus,
we manage the case of ambiguity, when two toponyms which
indicate the same feature are compared, but one have the
official place name whereas the other have a non-official place
name. It consists in decreasing the mass of belief associated
with the assumption "it is not Ci the homologue of the reference
feature" and increasing the mass associated with ignorance.
Thus, if the distance dr is higher than the threshold (e.g. thirty
percent of letters do not resemble each other) the masses of
belief assign to hypotheses Ci is not the right candidate and
criterion do not know are equals to 0.5.

The next step is to combine criteria using the Dempster’s rule.

4.3 The rule of combination

To combine knowledge, the following gait is followed. Firstly,
each candidate is separately analysed, criteria being combined
per candidate. Then, the results of the first step are combined
i.e. candidates are combined in order to have a global view
(Royeére, 2002). In the first step we look at candidates one by
one, not taken into account the others, while in the second step
all candidates are taken into account in the same time.



4.3.1 The second step of the matching approach: local
approach. Candidates are analysed separately, i.e. the others
candidates are not taken into account (step two of figure 1). Let

us consider a candidate C; and two criteria S; and S,. Each
criterion assigns a bbm for each assumption as follows:
m i(Cy),my (—C),my ; (©) (10)

my; (Cy), my(—Cj),my; (O)

where  m, () is the mass of belief assigned by the criterion S,
to one of the three assumptions (C;, —C;, ®) for the
candidate C;,

m,;( ) is the mass of belief assigned by criterion S, to
one of the three assumptions (C;, —C;, @) for the

candidate C;

Sources are fusioned using the Dempster’s operator of
combination. Combined mass of belief for the candidate C;,
my,;( ), and conflict between the two criteria, my,;(J) are
obtained.

4.3.2 The third step of the matching approach: global
approach.

In the second step the results of the first one are combined, (step
three of figure 1). So, the results for two candidates are
combined, and then these results are combined with the results
for the third candidate and so on.

In order to illustrate this approach, let us consider three
candidates: C,, C,, Cs.

In equation (11), my, represents the result from the combination
between C; and candidate C, and my,;3 is the result from the
combination between m;, and candidate Cs.

my1(Cy) mlz(?)
mya 1(—Cy) m12(C2)

: my (—Cy)
m12,l(®) @ > le(_'CZ)
myp2(Cy) myp(C3 U*)
m12,2(—|C2) m12(®)
mi2,2(0) mi2 ()

D> myys (1
my»3(C3)
myp3(—C3)
my, 3(0)

When masses of belief are combined, an important conflict may
appear on the one hand, because criteria support different
candidates and on the other hand because candidates are firstly
analysed separately and then are analysed together. Therefore, a
redistribution of conflict is necessary. Many operators that
redistribute conflict exist in literature (Smets, 1990; Yager,
1987; Dubois et Prade, 1988; Colot 2000; Royére 2002). Some
of them redistribute conflict locally, i.e. conflict is redistributed
to assumptions that cause conflict, and others redistribute
conflict globally, i.e. conflict is redistributed to union of
assumptions, which caused conflict.

Some of them are associative and others are not. In
consequence, the choice of operators depends on application.

4.4 Decision

In our application, a decision has generally to be taken in favor
of a simple assumption (candidate). Within the context of the
Transferable Belief Model, Smets defines and justifies the use
of the pignistic probability decision rule (Smets 1990).

5. TEST CASES

In this section some matching results are illustrated. As we saw
in section 2, our experiments concern two different
geographical datasets containing punctual geographical data
representing the relief. In order to illustrate our approach we
chose some particular examples.

5.1 Analysis of Used Data

Two different databases of the French National Mapping
Agency representing relief made from different sources and
with different purposes were used in this study. They have
different levels of detail. Databases are illustrated in figure 1,
the less detailed named BD CARTO ®, on the left and the more
detailed database named BD TOPO, ® on the right side.

Figure 4. Relief data describing the same reality

Both databases contain information about the relief such as,
mountains, mountain passes, summits, peaks, valleys, beaches,
etc. These data are imprecise on the one hand by definition, i.e.
the limit between valleys and mountain cannot be defined
precisely, or different interpretations of concepts like summit
and peak may exist.

Following our imperfection taxonomy (see Section 2.2) the next
observations can be made.

First, locations of a feature are imprecise, and more, locations
have various accuracy. For example a valley and a peak have
not the same accuracy. Differences come from the fact that,
even if both a valley and a peak are represented by a point
defining usually the center respectively of the valley and peak, a
valley is always more larger that a peak.

Second, the toponym is a very useful knowledge to take into
account in the matching process. But toponym as well as
location, also presents imperfection. For example, there are
used names and official names, or the same toponym can be
used for several places, or there can be various interpretations
of the pronunciation, word omission, and character omission or
character substitution. The toponym, may also be uncertain
("col de peyrelue or port vieux de sallent") and incomplete
("col de louesque", "louesque").

Using only the geometrical criterion based on the distance
between locations, errors could occur. The homologue feature



is not always the closer one. In the same way, using only the
toponym criterion inconsistencies could emerge.

In order to match imprecise data, first of all the imprecision
should be modelled and secondly criteria should be combined
in the same time to have a global view and to avoid the
propagation of the errors. There are cases when the concepts
imprecision and uncertainty cannot be managed separately one
from the other. For example location of a feature can be in the
same time imprecise and uncertain.

Thus, we consider that an approach based on the Theory of
Evidence is appropriate to our case because it allows to model
imprecision, uncertainty and incompleteness. On the other
hand, it offers tools to combine information, to construct
simples and composites assumptions and to make a decision
adapted to application, choosing either a simple assumption
(e.g. a candidate) or a composite one (e.g. many candidates).

5.2 Casel

In this case, we want to find the homologue feature for the
RF,; feature. After the selection step, four features are
candidates. The candidate C, is the right homologue feature of
the RF ¢ feature. The frame of discernment is defined as
follows:

RF,o :0={C;,C5,C3,Cy %} (12)

C4 - C3

"roche ronde" [ ]
"plage miramar"

‘RFref
"grande plage"

W C

C "grande
F"le basta"  plage"

Figure 5. Data matching result

In figure 6, for each candidate, combinations of the two criteria
using the Dempster’s operator without normalisation are
presented. After the second step, (e.g. combination of criteria
for each candidate, see 4.3.1), we can see that criteria are in
agreement and there is not doubt for C, and |C,. Concerning
the candidate C;, criteria are in conflict, i.e. first criterion
estimates that Cs is the right homologous because it is close to
the reference feature but the second criterion estimates that Cs is
not the right homologous because its toponym is different.

So, a decision could not be made at this step.

Candidate C1 Candidate C2

1 1

08 0,8
0,6 0,6
0,4 0,4
0,2 0,2 |
0 0 0 0 0 o o

mi2,2(C2) m122(C2) m122(0) mM2,2(p)
Combination by candidate

m2,1(C1) mi21(¢1) mi2,1(0) mi2ie)
Combination by candidate

Candidate C3 Candidate C4

0,8 08
0,6 0,486 0,514 0,6 i 042
0,4 0,4
0,2 0,2
C 0 [
0 o o

m12,3(C3) m12,3(C3) mI2,3(0) mi2,3(p) mM124(C4) MI24(/C4) m12,4(0) mi12,4(g)

Combination by candidate Combinaison par candidate

Figure 6. Combinations of the criteria per candidate

Final bbm Final bbm
1 |m(C1)
c1ucs
08 0,762 1 :m( )
m(©)
0,6 0,8
0.4 0,238 0,6
0,2 0,4
° 0,2
m1234(C1) m1234 () 0 )
Dempster Dubois et Prade
Combination by candidate and criterion o . o
Combination by candidate and criterion

Figure 7. Criteria and candidate’s combination (on the left) and
conflict’s redistribution (on the right)

The third step, as we presented in section 4.3.2, consist in
combining all the results. In figure 7 on the left, a final bbm is
presented. We see that all bbm are zero except the bbm
assigned to candidate C; and the conflicting mass is important.
Therefore, a decision cannot be made. In order to make a
decision the conflict is redistributed. Many operators exist, and
we decided to test two of them: the Dempster’s operator and the
Dubois and Prade’s operator, (Dubois and Prade, 1988). The
last one proposes to reallocate the conflicting mass on the union
of sources that caused the conflict, whereas the first one
proposes to normalise all the bbm by conflicting mass.

Applying the pignistic probability to both Dempster and Dubois
and Prade’s operators the solution is C;.

5.3 Case2
& C,
"soum de louesque"
[
RFrefZ
"pic de louesque"
& &
C2 Cl
"sanctus"  col de louesque”

Figure 8. Data matching result

In this case, three features are candidates and decision is not
easy to make because no candidate is discriminated. After the
first combinations, see figure 9, we only can say that the
solution is candidate C; or Cj, so the situation is ambiguous and
no decision is obvious.



Candidate C1 Candidate C2

1 oss8s6 1 s
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Figure 9. Combinations of the criteria per candidate
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Figure 10. Criteria and candidate’s combination (on the left)
and conflict’s redistribution (on the right)

In figure 10, on the left, candidate C, is discriminated but with a
slight mass of belief in comparison with the mass of belief
assigned to empty set, i.e. the conflict. After conflict’s
redistribution candidate C; is selected following Dempster’s
operator and candidate C;, following Dubois and Prade’s
operator.

5.4 Case3

ref3
"vallee

c & de lourdions
1

"le lauré"

Figure 11. Data matching result

As we can see in figure 11, only one candidate is selected for
the reference feature. The solution of this case is: the reference
feature has no homologue.

The results are given in figure 12.

Candidate C1 Final bbm
0,8 4 0,8 Ome)
0,6 - 05 05 0,6
’ 0,4
0,4 4 0,2
0,2 4 o o [}
0 Dempster  Dubois et Prade
mi24(C1) mi2,4(C1) mi21(@) mi21 (g)
Combination by i Combination by and criteria

Figure 12. Criteria and candidate’s combination (on the left)
and conflict’s redistribution ( on the right)

In this case, because only one candidate is selected, the third
step is not carried out. After we combined criteria, the
assumption "reference feature has not homologue" seems to be
the solution. Decision is ambiguous because the conflict
between criteria is important. So, conflict’s redistribution is
necessary, see figure 12, on the right. If decision is applied
after using Dempster’s operator, than reference feature is not
matched, otherwise, applying the Dubois and Prade’s operator
any decision can be made.

5.5 Conclusion of tests

The choice of an operator for managing conflict is crucial and it
can lead to very different results. After watching results, we
realize that, conflict may appear and that are cases when a
decision cannot be make. In order to manage conflict many
solutions exist such as: redefine the mass function model, added
information via criteria or redistribute the conflict. The two
operators that we chose are not very appropriate for our
application. The Dempster’s operator redistributes the
conflicting mass on only one assumption, although the sources
are in conflict and the conflicting mass is only used to normalise
bbm, so the conflict is not really treated.

The Dubois and Prade operator treats the conflicting mass, but
it is not associative. Therefore, the result depends on the order
in which candidates are combined.

6. CONCLUSION

The purpose of our work is to take into account the
imperfection presents in spatial data in a matching process. The
results of the matching process are influenced by the data
imperfection and thus it can be more or less efficient.

To undertake it, firstly, we analysed the imperfect data and the
methods that can be used to manage these imperfection, both in
the field of Al and spatial information. We think that an
appropriate taxonomy in our case is the Al taxonomy, which
classifies the imperfection in three levels: imprecision,
uncertainty and incompleteness. We also consider that the
Theory of the Evidence is useful in our case because it allows to
model imprecision, uncertainty and incompleteness in the same
time. The theory is particularly adapted because it allows to
combine the sources of information and to make combined
hypothesis.

Secondly, we presented a first approach to match data using the
Theory of Evidence. Closed world assumption and specialized
sources are supposed. Two criteria are considered, in order to
compute the masses of belief.

In section 4, first results are given and we show that Dempster
and Dubois and Prade’s operators are not appropriate to our
application, at least at this point of research, when only two
criteria are used.

Finally, our forthcoming works consist to compute another
associative operator that is capable to manage conflict, to
improve the mass of belief function model and to carry out
more tests at a large scale.
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