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ABSTRACT:  
A growing attention has been paid to spatial data mining and knowledge discovery (SDMKD).  This paper presents the principles 
of SDMKD, proposes three new techniques, and gives their applicability and examples.  First, the motivation of SDMKD is 
briefed.  Second, the intension and extension of SDMKD concept are presented.  Third, three new techniques are proposed in this 
section, i.e. SDMKD-based image classification that integrates spatial inductive learning from GIS database and Bayesian 
classification, cloud model that integrates randomness and fuzziness, data field that radiate the energy of observed data to the 
universe discourse.  Fourth, applicability and examples are studied on three cases.  The first is remote sensing classification, the 
second is landslide-monitoring data mining, and the third is uncertain reasoning.  Finally, the whole paper is concluded and 
discussed. 
 
 

1. MOTIVATIONS 
 
The technical progress in computerized data acquisition and 
storage results in the growth of vast databases.  With the 
continuous increase and accumulation, the huge amounts of 
the computerized data have far exceeded human ability to 
completely interpret and use.  These phenomena may be 
more serious in geo-spatial science. In order to understand 
and make full use of these data repositories, a few techniques 
have been tried, e.g.  expert system, database management 
system, spatial data analysis, machine learning, and artificial 
intelligence. In 1989, knowledge discovery in databases was 
further proposed.  In 1995, data mining also appears.  As both 
data mining and knowledge discovery in databases virtually 
point to the same techniques, people would like to call them 
together, i.e. data mining and knowledge discovery (DMKD). 
As 80% data are geo-referenced, the necessity forces people 
to consider spatial characteristics in DMKD and to further 
develop a branch in geo-spatial science, i.e. SDMKD (Li, 
Cheng, 1994; Ester et al., 2000). 
 
Spatial data are more complex, more changeable and bigger 
that common affair datasets. Spatial dimension means each 
item of data has a spatial reference (Haining, 2003) where 
each entity occurs on the continuous surface, or where the 
spatial-referenced relationship exists between two neighbor 
entities.  Spatial data includes not only positional data and 
attribute data, but also spatial relationships among spatial 
entities.  Moreover, spatial data structure is more complex 
than the tables in ordinary relational database.  Besides 
tabular data, there are vector and raster graphic data in spatial 
database.  And the features of graphic data are not explicitly 
stored in the database.  At the same time, contemporary GIS 
have only basic analysis functionalities, the results of which 
are explicit.  And it is under the assumption of dependency 
and on the basis of the sampled data that geostatistics 
estimates at unsampled locations or make a map of the 
attribute.  Because the discovered spatial knowledge can 
support and improve spatial data-referenced decision-making, 
a growing attention has been paid to the study, development 

and application of SDMKD (Han, Kamber, 2001; Miller, Han, 
2001; Li et al, 2001; 2002).  
 
This paper proposes the concepts, techniques and 
applications of SDMKD.  In the following, section 2 
describes the concept of SDMKD, paying more attention to 
the knowledge to be discovered, discovery mechanism, and 
mining granularity.  Section 3 presents the techniques to be 
used in SDMKD. After the existing techniques are 
overviewed, three new techniques are further proposed.  
Section 4 gives the applicability and examples of SDMKD.  
Finally we come to the conclusions in section 5. 
 
 

2. CONCEPTS 
 
Spatial data mining and knowledge discovery (SDMKD) is 
the efficient extraction of hidden, implicit, interesting, 
previously unknown, potentially useful, ultimately 
understandable, spatial or non-spatial knowledge (rules, 
regularities, patterns, constraints) from incomplete, noisy, 
fuzzy, random and practical data in large spatial databases.  It 
is a confluence of databases technology, artificial intelligence, 
machine learning, probabilistic statistics, visualization, 
information science, pattern recognition and other disciplines. 
Understood from different viewpoints (Table 1), SDMKD 
shows many new interdisciplinary characteristics.  

2.1 Mechanism 
SDMKD is a process of discovering a form of rules plus 
exceptions at hierarchal view-angles with various thresholds, 
e.g.  drilling, dicing and pivoting on multidimensional 
databases, spatial data warehousing, generalizing, 
characterizing and classifying entities, summarizing and 
contrasting data characteristics, describing rules, predicting 
future trends and so on (Han, Kamber, 2001). It is also a 
supportable process of spatial decision-making. There are 
two mining granularities, spatial object granularity and pixel 
granularity (Li, Wang, Li, 2005). 
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It may be briefly partitioned three big steps, data preparation 
(positioning mining objective, collecting background 
knowledge, cleaning spatial data), data mining (decreasing 
data dimensions, selecting mining techniques, discovering 
knowledge), and knowledge application (interpretation, 
evaluation and application of the discovered knowledge). 
 
In order to discovery the confidential knowledge, it is 
common to use more than one technique to mine the data sets 
at the same time.  And it is also suitable to select the mining 
techniques on the basis of the given mining task and the 
knowledge to be discovered.  

2.2 Knowledge to be discovered 
 

The knowledge is more generalized, condensed and 
understandable than data.  The common knowledge is 
summarized and generalized from huge amounts of spatial 
data sets.  The amount of spatial data is huge, while the 
volume of spatial rules is very small.  The more generalized 
the knowledge, the bigger the contrast.  There are many kinds 
of knowledge that can be mined from large spatial data sets 
(Miller, Han, 2001; Wang, 2002) (See Table 2).  In table 2, 
these kinds of rules are not isolated, and they often benefit 
from each other. And various forms, such as linguistic 
concept, characteristic table, predication logic, semantic 
network, object orientation, and visualization, can represent 
the discovered knowledge. Very complex nonlinear 
knowledge may be depicted with a group of rules. 

Table.1 Spatial data mining and knowledge discovery in various viewpoints 
Viewpoints Spatial data mining and knowledge discovery 
Discipline  A interdisciplinary subject, and its theories and techniques are linked with database, computer, statistics, 

cognitive science, artificial intelligence, mathematics, machine learning, network, data mining, 
knowledge discovery database, data analysis, pattern recognition, etc. 

Analysis Discover unknown and useful rules from huge amount of data via a sets of interactive, repetitive, 
associative, and data-oriented manipulations  

Logic  An advanced technique of deductive spatial reasoning.  It is discovery, not proof.  The knowledge is 
conditional generic on the mined data. 

Cognitive science An inductive process that is from concrete data to abstract patterns, from special phenomena to general 
rules. 

Objective data Data forms: vector, raster, and vector-raster  
Data structures: hierarchy, relation, net, and object-oriented  
Spatial and non-spatial data contents: positions, attributes, texts, images, graphics, databases, file 
system, log files, voices, web and multimedia 

Systematic 
information 

Original data in database, cleaned data in data warehouse, senior commands from users, background 
knowledge from applicable fields. 

Methodology Match the multidisciplinary philosophy of human thinking that suitably deals with the complexity, 
uncertainty, and variety when briefing data and representing rules. 

Application All spatial data-referenced fields and decision-making process, e.g.  GIS, remote sensing, GPS (global 
positioning system), transportation, police, medicine, transportation, navigation, robot, etc. 

 
Table.2 Main spatial knowledge to be discovered 

Knowledge Description Examples 
Association rule A logic association among different sets of spatial entities 

that associate one or more spatial objects with other spatial 
objects.  Study the frequency of items occurring together in 
transactional databases. 

Rain (x, pour) => Landslide (x, happen), 
interestingness is 98%, support is 76%, 
and confidence is 51%. 

Characteristics rule A common character of a kind of spatial entity, or several 
kinds of spatial entities.  A kind of tested knowledge for 
summarizing similar features of objects in a target class. 

Characterize similar ground objects in a 
large set of remote sensing images  

Discriminate rule A special rule that tells one spatial entity from other spatial 
entity.  Different spatial characteristics rules.  Comparison 
of general features of objects between a target class and a 
contrasting class.   

Compare land price in urban boundary 
and land price in urban center 

Clustering rule  A segmentation rule that groups a set of objects together 
by virtue of their similarity or proximity to each other in 
the unknown contexts what groups and how many groups 
will be clustered.  Organize data in unsupervised clusters 
based on attribute values. 

Group crime locations to find distribution 
patterns. 

Classification rule A rule that defines whether a spatial entity belongs to a 
particular class or set in the known contexts what classes 
and how many classes will be classified.  Organize data in 
given/supervised classes based on attribute values. 

Classify remote sensed images based on 
spectrum and GIS data. 

Serial rules A spatiotemporal constrained rule that relates spatial 
entities in time continuously, or the function dependency 
among the parameters.  Analyze the trends, deviations, 
regression, sequential pattern, and similar sequences.  

In summer, landslide disaster often 
happens.  
Land price is the function of influential 
factors and time. 

Predictive rule An inner trend that forecasts future values of some spatial 
variables when the temporal or spatial center is moved to 
another one.  Predict some unknown or missing attribute 
values based on other seasonal or periodical information. 

Forecast the movement trend of landslide 
based on available monitoring data. 
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Exceptions  Outliers that are isolated from common rules or derivate 
from other data observations very much 

A monitoring point with much bigger 
movement.  

Knowledge is rule plus exception.  A spatial rule is a pattern 
showing the intersection of two or more spatial objects or 
space-depending attributes according to a particular spacing 
or set of arrangements (Ester, 2000).  Besides the rules, 
during the discovering process of description or prediction, 
there may be some exceptions (also named outliers) that 
derivate so much from other data observations (Shekhar, Lu, 
Zhang, 2003).  They identify and explain exceptions 
(surprises).  For example, spatial trend predictive modeling 
first discovered the centers that are local maximal of some 
non-spatial attribute, then determined the (theoretical) trend 
of some non-spatial attribute when moving away from the 
centers.  Finally few deviations are found that some data were 
away from the theoretical trend.  These deviations may 
arouse suspicious that they are noise, or generated by a 
different mechanism.  How to explain these outliers?  
Traditionally, outliers’ detection has been studies via 
statistics, and a number of discordancy tests have been 
developed.  Most of them treat outliers as “noise” and they 
try to eliminate the effects of outliers by removing outliers or 
develop some outlier-resistant methods (Hawkins, 1980).  In 
fact, these outliers prove the rules.  In the context of data 
mining, they are meaningful input signals rather than noise.  
In some cases, outliers represent unique characteristics of the 
objects that are important to an organization.  Therefore, a 

piece of generic knowledge is virtually in the form of rule 
plus exception.   
 
 

3. TECHNIQUES FOR SDMKD 
 
Because SDMKD is an interdisciplinary subject, there are 
various techniques associated with the abovementioned 
different knowledge (Li et al., 2002).  They may include, 
probability theory, evidence theory (Dempster-Shafer), 
spatial statistics, fuzzy sets, cloud model, rough sets, neural 
network, genetic algorithms, decision tree, exploratory 
learning, inductive learning, visualization, spatial online 
analytical mining (SOLAM), outlier detection, etc. , main 
techniques are briefed in Table.3.   
 
Some of techniques (Table.3) are further developed and 
applied, for example, the algorithms in spatial inductive 
learning include AQ11 and AQ15 by Michalski, AE1 and 
AE9 by Hong, CLS by Hunt, ID3, C4.5 and C5.0 by Quinlan, 
and CN2 by Clark, etc (Di, 2001).  And the implementation 
of data mining in spatial database is still needed to be further 
studied.  The following is our proposed techniques, SDMKD-
based image classification, cloud model, and data field. 

 
Table.3 Techniques to be used in SDMKD 

Techniques Description 
Probability 
theory 

Mine spatial data with randomness on the basis of stochastic probabilities.  The knowledge is represented 
as a conditional probability in the contexts of given conditions and a certain hypothesis of truth (Arthurs, 
1965).  Also named probability theory and mathematical statistics. 

Spatial statistics Discover sequential geometric rules from disorder data via covariance structure and variation function in 
the contexts of adequate samples and background knowledge (Cressie, 1991).  Clustering analysis is a 
branch. 

Evidence theory Mine spatial data via belief function and possibility function.  It is an extension of probability theory, and 
suitable for stochastic uncertainty based SDMKD (Shafer, 1976). 

Fuzzy sets Mine spatial data with fuzziness on the basis of a fuzzy membership function that depicts an inaccurate 
probability, by using fuzzy comprehensive evaluation, fuzzy clustering analysis, fuzzy control, fuzzy 
pattern recognition etc. (Zadeh, 1965). 

Rough sets Mine spatial data with incomplete uncertainties via a pair of lower approximation and upper 
approximation (Pawlak, 1991).  Rough sets-based SDMKD is also a process of intelligent decision-
making under the umbrella of spatial data. 

Neural network Mine spatial data via a nonlinear, self-learning, self-suitable, parallel, and dynamic system composed of 
many linked neurons in a network.  The set of neurons collectively find out rules by continuously learning 
and training samples in the network (Gallant, 1993).  

Genetic 
algorithms 

Search the optimized rules from spatial data via three algorithms simulating the replication, crossover, and 
aberrance of biological evolution (Buckless, Petry, 1994). 

Decision tree Reasoning the rules via rolling down and drilling up a tree-structured map, of which a root node is the 
mining task, item and branch nodes are mining process, and leaf nodes are exact data sets.  After pruning, 
the hierarchical patterns are uncovered (Quinlan, 1986) 

Exploratory 
learning  

Focusing on data characteristics by analyzing topological relationships, overlaying map-layers, matching 
images, buffering features (points, lines, polygon) and optimizing road (Dasu, 2003). 

Spatial inductive 
learning 

Comes from machine learning.  Summarize and generalize spatial data in the context of given background 
that is from users or a task of SDMKD.The algorithms require that the training data be composed of 
several tuples with various attributes.  And one of the attributes of each tuples is the class label 
(Muggleton, 1990).   

Visualization Visually mine spatial data by computerized visualization techniques that make abstract data and 
complicated algorithms change into concrete graphics, images, animation etc., which user may sense 
directly in eyes (Soukup, Davidson, 2002). 

SOLAM Mine data via online analytical processing and spatial data warehouse. Based on multidimensional view 
and web. It is a tested mining that highlights executive efficiency and timely responsibility to commands 
(Han, 1998) 

Outlier detection Extract the interesting exceptions from spatial data via statistics, clustering, classification, and regression 
besides the common rules (Shekhar, Lu, Zhang, 2003). 
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3.1 SDMKD-based image classification  
Based on the integration of remote sensing and GIS (Li, Guan, 
2002), this subsection presents an approach to combine 
spatial inductive learning with Bayesian image classification 
in a loose manner, which takes learning tuple as mining 
granularities for learning knowledge subdivide classes into 
subclasses, i.e. pixel granularity and polygon granularity, and 
selects class probability values of Bayesian classification, 
shape features, locations and elevations as the learning 

attributes. GIS data are used in training area selection for 
Bayesian classification, generating learning data of two 
granularities, and testing area selection for classification 
accuracy evaluation.  And the ground control points for 
image rectification are also chosen from GIS data.  It 
implements inductive learning in spatial data mining via C5.0 
algorithm on the basis of learning granularities. Figure 1 
shows the principle of the method. 
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Figure 1. Flow diagram of remote sensing image classification with inductive learning 
 
In Figure 1, first, the remote sensing images are classified 
initially by Bayesian method before using the knowledge, and 
the probabilities of each pixel to every class are retained.  
Second, inductive learning is conducted by the learning 
attributes.  Learning with probability simultaneously makes 
use of the spectral information of a pixel and the statistical 
information of a class since the probability values are derived 
from both of them.  Third, the knowledge on the attributes of 
general geometric features, spatial distribution patterns and 
spatial relationships is further discovered from GIS database, 
e.g.  the polygons of different classes.  For example, the 
water areas in the classification image are converted from 
pixels to polygons by raster to vector conversion, and then 
the location and shape features of these polygons are 
calculated.  Finally, the polygons are subdivided into 
subclasses by deductive reasoning based on the knowledge, 
e.g.  class water is subdivided into subclasses such as river, 
lake, reservoir and pond.  In Figure 2, the final classification 
results are obtained by post-processing of the initial 
classification results by deductive reasoning.  Except the 
class label attribute, the attributes for deductive reasoning are 
the same as that in inductive learning.  The knowledge 
discovered by C5.0 algorithm is a group of classification 
rules and a default class, and each rule is together with a 
confidence value between 0 and 1.  According to how the 
rule is activated that the attribute values match the conditions 
of this rule, the deductive reasoning adopts four strategies: (1) 
If only one rule is activated, then let the final class be the 
same as this rule; (2) If several rules are activated, then let the 
final class be the same as the rule with the maximum 

confidence; (3) If several rules are activated and the 
confidence values are the same, then let the final class be the 
same as the rule with the maximum coverage of learning 
samples; and (4) If no rule is activated, then let the final class 
be the default class. 
 

3.2 Cloud model 
The cloud model is a model of the uncertainty transition 
between qualitative and quantitative analysis, i.e. a 
mathematical model of the uncertainty transition between a 
linguistic term of a qualitative concept and its numerical 
representation data.  A piece of cloud is made up of lots of 
cloud drops, visible shape in a whole, but fuzzy in detail, 
which is similar to the natural cloud in the sky.  So the 
terminology cloud is used to name the uncertainty transition 
model proposed here.  Any one of the cloud drops is a 
stochastic mapping in the discourse universe from qualitative 
concept, i.e. a specified realization with uncertain factors.  
With the cloud model, the mapping from the discourse 
universe to the interval [0,1] is a one-point to multi-point 
transition, i.e. a piece of cloud while not a membership curve.  
As well, the degree that any cloud drop represents the 
qualitative concept can be specified.  Cloud model may mine 
spatial data with both fuzzy and stochastic uncertainties, and 
the discovered knowledge is close to human thinking.  Now, 
in geo-spatial science, the cloud model has been further 
explored to spatial intelligent query, image interpretation, 
land price discovery, factors selection, mechanism of spatial 

Knowledge base Deductive reasoning 

Training area Remote sensing images 
GIS database 

Bayesian classification 

Initial classification result 

Polygon granularity data Pixel granularity data 

Inductive learning in 
polygon granularity 

Inductive learning 
in pixel granularity 

Final classification result Test area 

Evaluation of classification accuracy 
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data mining, and landslide-monitoring (Li, Du, 2005；Wang, 
2002) etc. 
 
The cloud model well integrates the fuzziness and 
randomness in a unified way via three numerical 
characteristics, Expected value (Ex), Entropy (En), and 
Hyper-Entropy (He).  In the discourse universe, Ex is the 
position corresponding to the center of the cloud gravity, 
whose elements are fully compatible with the spatial 
linguistic concept; En is a measure of the concept coverage, 
i.e. a measure of the spatial fuzziness, which indicates how 
many elements could be accepted to the spatial linguistic 
concept; and He is a measure of the dispersion on the cloud 
drops, which can also be considered as the entropy of En.  In 
the extreme case, {Ex, 0, 0}, denotes the concept of a 
deterministic datum where both the entropy and hyper 
entropy equal to zero. The greater the number of cloud drops, 
the more deterministic the concept.  Figure 2 shows the three 
numerical characteristics of the linguistic term “displacement 
is 9 millimeters (mm) around”.  Given three numerical 
characteristics Ex, En and He, the cloud generator can 
produce as many drops of the cloud as you would like.  

 
Figure 2.Three Numerical characteristics 

 
The above three visualization methods are all implemented 
with the forward cloud generator in the context of the given 
{Ex, En, He}.  Despite of the uncertainty in the algorithm, 
the positions of cloud drops produced each time are 
deterministic.  Each cloud drop produced by the cloud 
generator is plotted deterministically according to the 
position.  On the other hand, it is an elementary issue in 
spatial data mining that spatial concept is always constructed 
from the given spatial data, and spatial data mining aims to 
discover spatial knowledge represented by a cloud from the 
database.  That is, the backward cloud generator is also 
necessary.  It can be used to perform the transition from data 
to linguistic terms, and may mine the integrity {Ex, En, He} 
of cloud drops specified by many precise data points.  Under 
the umbrella of mathematics, the normal cloud model is 
common, and the functional cloud model is more interesting.  
Because it is common and useful to represent spatial 
linguistic atoms (Li et al., 2001), the normal compatibility 
cloud will be taken as an example to study the forward and 
backward cloud generators in the following. 
 
The input of the forward normal cloud generator is three 
numerical characteristics of a linguistic term, (Ex, En, He), 
and the number of cloud-drops to be generated, N, while the 
output is the quantitative positions of N cloud drops in the 
data space and the certain degree that each cloud-drop can 
represent the linguistic term. The algorithm in details is:   
[1] Produce a normally distributed random number En’ with 
mean En and standard deviation He; 
[2] Produce a normally distributed random number x with 
mean Ex and standard deviation En’;  

[3] Calculate 

2

2
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−−

=
;  

[4] Drop (xi, yi) is a cloud-drop in the discourse universe;  
[5] Repeat step [1]-[4] until N cloud-drops are generated.  
 
Simultaneously, the input of the backward normal cloud 
generator is the quantitative positions of N cloud-drops, xi 
(i=1,…,N), and the certainty degree that each cloud-drop can 
represent a linguistic term, yi(i=1,…,N), while the output is 
the three numerical characteristics, Ex, En, He, of the 
linguistic term represented by the N cloud-drops. The 
algorithm in details is:  

[1] Calculate the mean value of xi(i=1,…,N), 
∑
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=
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[3] Calculate the mean value of Eni (i=1,…, N), 
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1

;  
[4] Calculate the standard deviation of Eni, 

∑
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N
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1
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. 
With the given algorithms of forward and backward cloud 
generators, it is easy to build the mapping relationship 
inseparably and interdependently between qualitative concept 
and quantitative data.  The cloud model improves the 
weakness of rigid specification and too much certainty, which 
comes into conflict with the human recognition process, 
appeared in commonly used transition models. Moreover, it 
performs the interchangeable transition between qualitative 
concept and quantitative data through the use of strict 
mathematic functions, the preservation of the uncertainty in 
transition makes cloud model well meet the need of real life 
situation. Obviously, the cloud model is not a simple 
combination of probability methods and fuzzy methods. 
 

3.3 Data field 
The obtained spatial data are comparatively incompleteness.  
Each datum in the concept space has its own contribution in 
forming the conception and the concept hierarchy.  So it is 
necessary for the observed data to radiate their data energies 
from the sample space to their parent space.  In order to 
describe the data radiation, data field is proposed.   
 
Spatial data radiate energies into data field.  The power of the 
data field may be measured by its potential with a field 
function.  This is similar with the electric charges contribute 
to form the electric field that every electric charge has effect 
on electric potential everywhere in the electric field.  So the 
function of data field can be derived from the physical fields.  
The potential of a point in the number universe is the sum of 
all data potentials. 

∑
⋅= =

−
N

i i

ir

ekp 1

2

ρ

 
where, k is a constant of radiation gene, ri is the distance from 
the point to the position of the ith observed data, ρi is the 
certainty of the ith data, and N is the amount of the data.  
With a higher certainty, the data may have greater 
contribution to the potential in concept space.  Besides them, 
space between the neighbor isopotential, computerized grid 
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density of Descartes coordinate, etc. may also make their 
contributions to the data field.   
 

4. APPLICABILITY AND EXAMPLES 
 
SDMKD may be applied in many spatial data referenced 
fields.  Here are our three studied cases, remote sensing 
classification, Landslide monitoring data mining, and spatial 
uncertain reasoning.  

4.1 Remote sensing image classification 
The land use classification experiment is performed in the 
Beijing area using SPOT multi-spectral image and 1:100000 
land use database.  Discover knowledge from GIS database 
and remote sensing image data can improve land use 
classification.  Two kinds of knowledge on land use and 
elevation will be discovered from GIS database, which are 
applied to subdivide water and green patches respectively.  
Pixel granularity is to subdivide green patches, and polygon 
granularity is to subdivide water. 
 
The original image is 2412 by 2399 pixels and three bands, 
which was obtained in 1996.  The land use database was built 
before 1996, which has land use, contour, road, and 
annotation layers (Figure 3).  The original image is stretched 
and rectified to the GIS data.  The image is 2834 by 2824 
pixels after rectification, which is used as the source image 
for classification.  We use ArcView 3.0a, ENVI 3.0 and 
See5.1.10, which is developed based on C5.0 algorithm by 
Rulequest Cooperation.  And also we developed several 
programs for data processing and format conversion using 
Microsoft Visual C++6.0. 

 
Figure 3. Original SPOT image (resampled) 

 
For the sake of comparison, only the Bayesian method is 
applied to classify the image at first.  The rectified image is 
overlaid with land use data layers, and the training and test 
areas are interactively selected.  Then the image is classified 
into 8 classes, such as water, paddy, irrigated field, dry land, 
vegetable field, garden, forest and residential area.  As shown 
in the confusion matrix (Table 4), the overall accuracy is 
77.6199%.  Water, paddy, irrigated field, residential area and 
vegetable field are classified with high accuracy.  The 
vegetable field is easily distinguished from other green 
patches because it is lighter than the others are.  Dry land, 
garden, and forest are confused seriously and the accuracy is 
65.58%, 48.913% and 59.754% respectively.  And some 
forest shadows are misclassified as waters.  
 
Spatial inductive learning is mainly used in two aspects to 
improve the Bayesian method in land use classification, one 

is to discover rules to subdivide waters in polygon granularity, 
the other in to discover rules to reclassify dry land, garden 
and forest in pixel granularity.  The land use layer (polygon) 
and contour layer (line) are selected for these purposes.  
Because there are few contours and elevation points, it is 
difficult to interpolate a DEM accurately, instead, the 
contours are converted to height zones, such as <50m, 50-
100m, 100-200m and >200m, which are represented by 
polygons. 
 
In the learning for subdividing waters, several attributes of 
the polygons in land use layer are s calculated as condition 
attributes, such as area, location of the center, compactness 
(perimeter^2/(4π•area)), height zone, etc.  The classes are 
river (code 71), lake (72), reservoir (73), pond (74) and forest 
shadow (99).  604 water polygons are learned, 10 rules are 
discovered (Table 5).  
 

 
Table 5. Rules discovered by inductive learning 

 
In Table 5, there are only 1.2% samples misclassified in the 
learning, thus the learning accuracy is 98.8%.  These rules 
reveal the spatial distribution patterns and general shape 
features, etc.  For example, rule 1 states “If compactness of a 
water polygon is greater than 7.190882, and locates in the 
height zone <50m, then it is a river”.  Here the compactness 
measure plays a key role to identify river from other waters.  
Rule 2 identifies lakes by location and compactness, rule 9 
and rule 10 distinguish forest shadows from waters by height, 
and so on.   
 
In the learning for reclassifying dry land, garden and forest, 
the condition attributes are image coordinates, heights and the 
probability values to the three classes that produced by 
Bayesian classification.  One percent (2909) samples are 
selected randomly from the vast amount of pixels.  63 rules 
are discovered and the learning accuracy is 97.9%.  The test 
accuracy is 94.4%, which was evaluated by another 1% 
randomly selected samples.  These rules are omitted here 
because of paper size limitation. 
 

 6



ISSTM 2005, August, 27-29, 2005, Beijing, China 

After inductive learning, the Bayesian classified image is 
reclassified by deductive reasoning based on the discovered 
rules.  Because Bayesian method cannot subdivide waters, 
only the rules to identify forest shadows from waters are used 
in order to compare the result with Bayesian classification.  
The final class is determined by the maximum confidence 
principle (See Figure 4).   

 
Figure 4.  Final image classification (resampled) 

 
Accuracy evaluation is accomplished using the same test 
areas as that in Bayesian classification.  The confusion matrix 

is shown in Table 6.  The overall accuracy of the final result 
is 88.8751%. The accuracy of dry land, garden and forest is 
69.811%, 78.561% and 91.81% respectively.  Comparing the 
final result with the result produced only by Bayesian 
classification, the overall accuracy increased 11.2552 percent 
and the accuracy of dry land, garden and forest increased 
6.231%, 29.648% and 32.056% respectively.  
 
The result of land use classification shows that the overall 
accuracy is increased more than 11%, and the accuracy of 
some classes, such as garden and forest, are further increased 
about 30%.  First this indicates that the proposed SDMKD-
based image classification approach of integrating Bayesian 
classification with inductive learning not only improves 
classification accuracy greatly, but also extends the 
classification by subdividing some classes with the 
discovered knowledge. The approach is implemented feasibly 
and effectively.  Second, spatial inductive learning in GIS 
databases can resolve the problems of spectral confusion to a 
great extent.  SDMKD is very helpful to improve Bayesian 
classification, and using probability values generates more 
accurate learning results than using the pixel values directly.  
Third, when utilizing the knowledge discovered from GIS 
databases, it is likely to be more beneficial to improve remote 
sensing image classification than the conventional way that 
GIS data are utilized directly in pre- or post- processing of 
image classification. 

 
Table 4. Confusion matrix of Bayesian classification 

Real class 
Classified 

Water Paddy Irrigated 
field Dry land Vegetable 

field Garden Forest Residentia
l area Sum 

Water 3.900 0.003 0.020 0.013 0.002 0.021 2.303 0.535 6.797 
Paddy 0.004 8.496 0.087 0.151 0.141 0.140 0.103 0.712 9.835 
Irrigated field 0.003 0.016 10.423 0.026 0.012 0.076 0.013 0.623 11.192 
Dry land 0.063 0.48 0.172 1.709 0.361 2.226 2.292 1.080 8.384 
Vegetable field 0.001 0.087 0.002 0.114 3.974 0.634 0.435 0.219 5.465 
Garden 0.010 0.009 0.002 0.325 0.263 4.422 4.571 0.065 9.666 
Forest 0.214 0.006 0.000 0.271 0.045 1.354 15.671 0.642 18.202 
Residential area 0.132 0.039 0.127 0.080 0.049 0.168 0.839 29.024 30.459 
Sum 4.328 9.135 10.834 2.689 4.846 9.041 26.227 32.901 100 
Accuracy (%) 90.113 93.010 96.204 63.580 81.994 48.913 59.754 88.217  
Overall accuracy = 77.6199%    Kappa coefficient = 0.7474 

 
Table 6. Confusion matrix of Bayesian classification combined with inductive learning 

Real class 

Classified 
Water Paddy Irrigated 

field Dry land Vegetable 
field Garden Forest Residential 

area Sum 

Water 3.900 0.003 0.020 0.012 0.002 0.019 0.139 0.535 4.631 
Paddy 0.004 8.496 0.087 0.151 0.141 0.14 0.103 0.712 9.835 
Irrigated field 0.003 0.016 10.423 0.026 0.012 0.076 0.013 0.623 11.192 
Dry land 0.063 0.480 0.172 1.877 0.361 0.205 0.149 1.080 4.386 
Vegetable field 0.001 0.087 0.002 0.114 3.974 0.634 0.435 0.219 5.465 
Garden 0.009 0.009 0.002 0.210 0.263 7.102 0.470 0.065 8.131 
Forest 0.215 0.006 0.000 0.218 0.045 0.696 24.079 0.642 25.899 
Residential area 0.132 0.039 0.127 0.080 0.049 0.168 0.839 29.024 30.46 
Sum 4.328 9.135 10.834 2.689 4.846 9.041 26.227 32.901 100 
Accuracy (%) 90.113 93.01 96.204 69.811 81.994 78.561 91.81 88.217  
Overall accuracy = 88.8751%       Kappa coefficient = 0.8719 
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4.2 Landslide monitoring 
Baota landslide locates in Yunyang, Chongqing, China.  And 
the landslide monitoring started from June 1997.  Up to now, 
this database on the displacements has amounted to 
1Gigabytes, and all the attributes are numerical 
displacements, i.e. dx, dy, and dh.  Respectively, the 
properties of dx, dy, and dh, are the measurements of 
displacements in X direction, Y direction and H direction of 
the landslide-monitoring points, and |dx|, |dy| an |dh| are their 
absolute values. In the following, it is noted that all spatial 
knowledge is discovered from the databases with the 
properties of dx, dy, and dh, while  |dx|, |dy| an |dh| are only 
used to visualize the results of spatial data mining.  And the 
properties of dx are the major examples.  The linguistic terms 
of different displacements on dx, dy and dh may be depicted 
by the pan-concept hierarchy tree (Figure 6) in the conceptual 
space, which are formed by cloud models (Figure 11).  It can 
be seen from Figure 6 and Figure 10 that the nodes “very 
small” and “small” both have the son node “9 millimeters 
around”, which indicates that the pan-concept hierarchy tree 
is a pan-tree structure. 
 
From the observed landslide-monitoring values, the backward 
cloud generator can mine Ex, En and He of the linguistic 
term indicating the level of that landslide displacement, i.e. 
gain the concept with the forward cloud generator.  Then, 
with the three gained characteristics, the forward cloud 
generator can reproduce as many deterministic cloud-drops as 
you would like, i.e. produce synthetic values with the 
backward cloud generator.  
 
According to the landslide-monitoring characteristics, let the 
linguistic concepts of “smaller (0~9mm), small (9~18mm), 
big(18~27mm), bigger(27~36mm), very big(36~50mm), 
extremely big(＞50mm)” with Ex, “lower (0~9), low(9~18), 
high(18~27), higher(27~36), very high(36~50), extremely 
big( ＞ 50)”with En, “more stable (0~9), stable (9~18), 
instable(18~27), more instable (27~36), very instable (36~50), 
extremely instable (＞50)” with He respectively depict the 
movements, scattering levels and stabilities of the 
displacements.  Further, let the |dx|-axis, |dy|-axis 
respectively depict the absolute displacement values of the 
landslide- -monitoring points.  The certainty of the cloud 
drop (dxi, CT(dxi)), CT(dxi) is also defined as, 

)min()max(
)min(
dxdx

dxdx
)(dxC i

iT −
−

=
 

where, max(dx) and min(dx) are the maximum and minimum 
of dx ={dx1 , dx2 , …, dxi, …, dxn }.  Then the rules on 
Baota landslide-monitoring in X direction can be discovered 
from the databases in the conceptual space. 
BT11: the displacements are big south, high scattered and 
instable; 
BT12: the displacements are big south, high scattered and 
very instable; 
BT13: the displacements are small south, lower scattered and 
more stable; 
BT14: the displacements are smaller south, lower scattered 
and more stable; 
BT21: the displacements are extremely big south, extremely 
high scattered and extremely instable; 
BT22: the displacements are bigger south, high scattered and 
instable; 
BT23: the displacements are big south, high scattered and 
extremely instable; 
BT24: the displacements are big south, high scattered and 
more instable; 

BT31: the displacements are very big south, higher scattered 
and very instable; 
BT32: the displacements are big south, low scattered and 
more instable; 
BT33: the displacements are big south, high scattered and 
very instable; and 
BT34: the displacements are big south, high scattered and 
more instable. 
 
Figure 5 visualizes the above rules, where different rules 
represented by ellipses with different colors, and the number 
in ellipses denotes the number of rules.  The generalized 
result at a higher hierarchy than that of Figure 4 in the feature 
space is the displacement rule of the whole landslide, i.e. “the 
whole displacement of Baota landslide are bigger south (to 
Yangtze River), higher scattered and extremely instable”.  
Because large amounts of consecutive data are replaced by 
discrete linguistic terms, the efficiency of spatial data mining 
can be improved.  Meanwhile, the final result mined will be 
stable due to the randomness and fuzziness of concept 
indicated by the cloud model.   
 
All the above landslide-monitoring points form the potential 
field and the isopotential lines spontaneously in the feature 
space. Intuitively, these points can be grouped naturally into 
clusters. These clusters represent different kinds of spatial 
objects recorded in the database, and naturally form the 
cluster graph. Figure 5(a) further shows all points’ potential.  

 
Figure 5. Spatial rules on Baota landslide-monitoring points 

 
In Figure 6(a), all points’ potentials form the potential field 
and the isopotential lines spontaneously. Seen from this 
figure, when the hierarchy jumps up from Level 1 to Level 5, 
i.e. from the fine granularity world to the coarse granularity 
world, these landslide-monitoring points can be intuitively 
grouped naturally into different clusters at different 
hierarchies of variant levels. That is,  
[1] No clusters at the hierarchy of Level 1;  
[2] Four clusters at the hierarchy of Level 2 that are cluster 
BT14, cluster A (BT13, BT23, BT24, BT32, BT34), cluster B 
(BT11, BT12, BT22, BT31, BT33) and cluster BT21; 
[3] Three clusters at the hierarchy of Level 3 that are cluster 
BT14, cluster (A, B) and cluster BT21;  
[4] Two clusters at the hierarchy of Level 4 that are cluster 
(BT14, (A, B)) and cluster BT21; and 
[5] One cluster at the hierarchy of Level 5 that is cluster 
((BT14, (A, B)), BT21).  

 8



ISSTM 2005, August, 27-29, 2005, Beijing, China 

 
Respectively, they denote, [1] the displacements of landslide-
monitoring points are separate at the lowest hierarchy; [2] at 
the lower hierarchy, the displacements of landslide-
monitoring points (BT13, BT23, BT24, BT32, BT34) have 
the same trend of “the displacements are small”, and the same 
with (BT11, BT12, BT22, BT31, BT33) of “the 
displacements are big”, while BT14, BT21 show the different 
trend with both of them, and each other i.e. the exceptions, 
“the displacement of BT14 is smaller”, “the displacement of 
BT21 is extremely big”; [3] when the hierarchy becomes high, 
the displacements of landslide-monitoring points (BT13, 
BT23, BT24, BT32, BT34) and (BT11, BT12, BT22, BT31, 
BT33) have the same trend of  “the displacements are small”, 
however, BT14, BT21 are still unable to be grouped into this 
trend; [4] When the hierarchy gets higher, the displacements 
of landslide-monitoring point BT14 can be grouped into the 
same trend of (BT13, BT23, BT24, BT32, BT34) and (BT11, 
BT12, BT22, BT31, BT33) that is “the displacements are 
small”, however, BT21 is still an outlier; [5] the 
displacements of landslide-monitoring points are unified at 
the highest hierarchy, that is, the landslide is moving. 
 
These show different “rules plus exceptions” at different 
changes from the fine granularity world to the coarse 
granularity world. That is to say, the clustering or 
associations between attributes at different cognitive levels 
make many combinations, “rules plus exceptions”, showing 
the discovered knowledge with different information 

granularities. When the exceptions BT14, BT21 are granted 
to eliminate, the rules and the clustering process will be more 
obvious (Figure 6(b)). Simultaneously, these clusters 
represent different kinds of landslide-monitoring points 
recorded in the database. And they can naturally form the 
cluster spectrum figures as Figure 6(c) and Figure 6(d). Seen 
from these two figures, the displacements of landslide-
monitoring points (BT13, BT23, BT24, BT32, BT34) and  
(BT13, BT23, BT24, BT32, BT34) firstly compose two new 
classes, cluster A and cluster B, then the two new classes 
compose a larger class with cluster BT14, and they finally 
compose the largest class with cluster BT21, during the 
process of which the mechanism of spatial data mining is still 
“rules plus exceptions”. In other words, the so-called spatial 
data mining is particular views for a viewer to look at the 
spatial database on the displacements of Baota landslide-
monitoring   by different distances only, and a longer distance 
leads a piece of more meta-knowledge to be discovered. 
 
When the Committee of Yangtze Riverinvestigated in the 
region of Yunyang Baota landslide, they found out that the 
landslide had moved to Yangtze River. By the landslide-
monitoring point BT21, a small size landslide had taken place. 
Now there are still two pieces of big rift. Especially, the wall 
rift of the farmer G. Q. Zhang’s house is nearly 15 
millimeters. These results from the facts match the 
discovered spatial knowledge very much, which indicates 
that the techniques of cloud model-based spatial data mining 
are practical and creditable. 

 

 
(a) All points’ potential    (b) Potential without exceptions   (c) All points’ cluster graph   (d) Cluster graph without exceptions 

Figure 6. Landslide-monitoring points’ potential form the clusters and cluster graph 
 

4.3 Uncertainty reasoning 
Uncertainty reasoning may include one-rule reasoning and 
multi-rule reasoning. 
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4.3.1 One-rule Reasoning 
If there is only one factor in rule antecedent, we call the rule 
one-factor rule. Figure 6 is a one-factor one-rule generator for 
the rule “If A, then B”. CGA is the X-conditional cloud 
generator for linguistic term A, and CGB is the Y conditional 
cloud generator for linguistic term B. Given a certain input x, 
CG

B

A generates random values μi . These values are 
considered as the activation degree of the rule and input to 
CGBB. The final outputs are cloud drops, which forms a new 
cloud. 
 
Combining the algorithm of X and Y conditional cloud 
generators (Li, 2005), we present the following algorithm for 
one-factor one-rule reasoning.     
[1] En′A = G(EnA, HeA)  //Produce random values that satisfy 
with the normal distribution probability of mean EnA and 
standard deviation HeA. 

[2] Calculate 

( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

′
−

−=μ 2
A

2
A

nE2
Exxexp

 
[3] En′B = G(EnB BB, HeB)  //Produce random values that satisfy 
with the normal distribution probability of mean En

B

BB and 
standard deviation HeB. B

[4] Calculate BB nE)ln(2Exy ′μ−±= , let (y, μ) be cloud drops. 
If x<ExA, “-”is adopted, while id x>ExA, “+” is adopted. 
[5] Repeat step [1] to [4], generate cloud drops as many as 
you want.  
 
Figure 7 is the output cloud of a one-factor one-rule generator 
with one input. We can see that the cloud model based 
reasoning generate uncertain result. The uncertainty of the 
linguistic terms in the rule is propagated during the reasoning 
process. Since the rule output is a cloud, we can give the final 
result in several forms. 1) One random value; 2) Several 
random values as sample results; 2) Expected value, which is 
the mean of many sample results; 4) Linguistic term, which is 
represented by a cloud model, and the parameters of the 
model are obtained by inverse cloud generator method. 



ISPRS, XXXVI-2/W25 

 
Figure 7. Output cloud of one-rule reasoning 

 
If we input a number of values to the one-factor rule and 
draw the inputs and outputs in a scatter plot, we can get the 
input-output response graph of the one-factor one-rule 
reasoning (Figure 8). The graph looks like a cloud band, not a 
line. Closer to the expected values, the band is more focusing, 
while farther to the expected value, the band is more 
dispersed. This is consistent with human being’s intuition. 
The above two figures and the discussion show that the cloud 
model based uncertain reasoning is more flexible and 
powerful than the conventional fuzzy reasoning method. 

 
Figure 8. Input-output response of one-rule reasoning 

 
If the rule antecedent has two or more factors, such as “If A1, 
A2,…, An, then B”, we call the rule multi-factor rule. In this 
case, a multi-dimensional cloud model represents the rule 
antecedent. Figure 9 is a two-factor one-rule generator, which 
combines a 2-dimensional X-conditional cloud generator and 
a 1-dimensional Y-conditional cloud generator.  It is easy to 
give the reasoning algorithm on the basis of the cloud 
generator algorithms stated in section 3.2. And consequently, 
multi-factor one-rule reasoning is conducted in a similar way. 

 
 

ExA1

EnA1

HeA1

 
 

ExA2 EnA2 HeA2

(x,y)

ExB

EnB

HeB

 

μi 
CGA

 
CGB

drop(x , y , μi ) 

drop(zi , μi)  
 
 
 
 
 
 
 
 
 
 

Figure 9. A two-factor one-rule generator 
 

4.3.2 Multi-rule Reasoning 
Usually, there are many rules in a real knowledge base.  
Multi-rule reasoning is frequently used in an intelligent GIS 
or a spatial decision support system.  Figure 10 is a one-
factor multi-rule generator, and the algorithm is as follows. 
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Figure 10. One-factor 5-rule generator 

 
The algorithms of the one-factor multi-rule generator (Figure 
10) are as follows. 
[1] Given input x, determine how many rules are activated. If 
ExAi −3EnAi < x < ExAi +3EnAi , then rule i is activated by x. 
[2] If only one rule activated, output a random y by the one-
factor one-rule reasoning algorithm. Go to step [4] CGA1

CGA3

CGA2

CGA5

CGA4

 
 
 
 
CG-1

CGB1

CGB3

CGB2

CGB5

CGB4

x 

yi
 
CG 

[3] If two or more rules are activated, firstly each rule outputs 
a random value by the one-factor one-rule reasoning 
algorithm, and a virtual cloud is constructed by the geometric 
cloud generation method in section 3.2. A cloud generator 
algorithm is conducted to output a final result y with the three 
parameters of the geometric cloud. Because the expected 
value of the geometric cloud is also a random value, we can 
take the expected value as the final result for simplicity. Go 
to step [4] 
[4] Repeat step [1] to [3], generate outputs as many as you 
want. 
 
The main idea of the multi-rule reasoning algorithm is that 
when several rules are activated simultaneously, a virtual 
cloud is constructed by the geometric cloud method. Because 
the property of least square fitting, the final output is more 
likely to close to the rule of high activated degree. This is 
consistent with the human being’s intuition. Figure 11 is a 
situation of two rules activated, and Figure 12 is the situation 
of three rules activated.  Only the mathematical expected 
curves are drawn for clearness, and the dash curves are the 
virtual cloud.  The one-factor multi-rule reasoning method 
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can be easily extended to multi-factor multi-rule reasoning on 
the basis of multi-dimensional cloud models. We omitted the 
algorithm here. 
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Figure 11.A situation of two activated rules 

 
Figure 12. A situation of three activated rules 

 

4.3.3 An illustrative example 
The following is an illustrative example of multi-factor multi-
rule reasoning.  Suppose we have the following five rules to 
describe the terrain features qualitatively in a GIS.  
Rule 1: If location is southeast, then elevation is low. 
Rule 2: If location is northeast, then elevation is low to 
medium. 
Rule 3: If location is central, then elevation is medium. 
Rule 4: If location is southwest, then elevation is medium to 
high. 
Rule 5: If location is northwest, then elevation is high. 
 
Rule input is the location. Because the location is determined 
by x and y coordinates, the linguistic terms for location are 
represented by 2-dimensional clouds (Figure 13).  Rule 
output is the elevation, which is represented by 1-dimensional 
clouds (Figure 14).  

 
Figure 13. 2-dimensional clouds to represent linguistic term 

of location 
 

 
Figure 14. 1-dimensional clouds to represent linguistic term 

of elevation 
 
Figure 15 is the input-output response surface of the rules.  
The surface is an uncertain surface and the roughness is 
uneven.  Closer to the center of the rules (the expected values 
of the clouds), the surface is more smooth showing the small 
uncertainty; while at the overlapped areas of the rules, the 
surface is more rough showing large uncertainty.  This proves 
that the multi-factor multi-rule reasoning also represents and 
propagates the uncertainty of the rules as the one-factor one-
rule reasoning does. 

 
Figure 15. The input-output response surface of the rules 
 

5 CONCLUSIONS AND DISCUSSIONS 
 
After the concept and principle of spatial data mining and 
knowledge discovery (SDMKD) were briefed, this paper 
proposed three mining techniques, SDMKD-based image 
classification, cloud model and data field, together with 
applicable examples, i.e. remote sensing image classification, 
Baota landslide-monitoring data mining and spatial uncertain 
reasoning. 
 
The technical progress in computerized spatial data 
acquisition and storage resulted in the growth of vast 
databases, which made a branch of data mining, SDMKD, 
developed in geo-spatial science.  This paper took the 
mechanism of SDMKD as a process of discovering a form of 
rules plus exceptions at hierarchal view-angles with various 
thresholds. 
 
SDMKD-based image classification integrated spatial 
inductive learning from GIS database and Bayesian 
classification.  In the experimental results of remote sensing 
image classification, the overall accuracy was increased more 
than 11%, and the accuracy of some classes, such as garden 
and forest, was further increased about 30%.  For the 
intelligent integration of GIS and remote sensing, it is 
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encouraged discover knowledge from spatial databases and 
apply the knowledge in image interpretation for spatial data 
updating.  The applications of inductive learning in other 
image data sources, e.g.  TM, SAR, and the applications of 
other SDMKD techniques in remote sensing image 
classification, may be the valuable future directions of further 
study. 
 
Cloud model integrated the fuzziness and randomness in a 
unified way via the algorithms of forward and backward 
cloud generators in the contexts of three numerical 
characteristics, {Ex, En, He}.  It took advantage of human 
natural language, and might search for the qualitative concept 
described by natural language to generalize a given set of 
quantitative datum with the same feature category.  Moreover, 
the cloud model could act as an uncertainty transition 
between a qualitative concept and its quantitative data.  With 
this method, it was easy to build the mapping relationship 
inseparably and interdependently between qualitative concept 
and quantitative data, and the final discovered knowledge 
with hierarchy could match different demands from different 
level users.  Data field radiated the energy of observed data to 
the universe discourse, considering the function of each data 
in SDMKD.  In the context of data field, the conceptual space 
represented different concepts in the same characteristic 
category, while the feature space depicts were complicated 
spatial objects with multi-properties.  The isopotential of all 
data automatically took shape a concept hierarchy.  At the 
same time, the isopotential of all objects automatically took 
shape clusters and clustering hierarchy.  The clustering or 
associations between attributes at different cognitive levels 
might make many combinations. 
 
The experimental results on Baota landslide monitoring show 
the cloud model-based spatial data mining can reduce the task 
complexity, improve the implementation efficiency, and 
enhance the comprehension of the discovered spatial 
knowledge.  On the basis of the cloud model and data field, 
the experimental results on Baota landslide-monitoring 
indicated cloud model- and data field- based SDMKD could 
reduce the task complexity, improve the implementation 
efficiency, and enhance the comprehension of the discovered 
spatial knowledge.  Cloud model was a model for concept 
representation and uncertainty handling.  A series of 
uncertainty reasoning algorithms were presented based on the 
algorithms of cloud generators and conditional cloud 
generators.  The example case of spatial uncertainty 
reasoning showed that knowledge representation and 
uncertainty reasoning based on cloud model were more 
flexible, effective and powerful than the conventional fuzzy 
theory based methods. 
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