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ABSTRACT: 
 
Position information obtained from standard GPS receivers is known to be corrupted with noise. To make effective use of GPS 
information in a navigation system it is essential to model this noise and to eliminate its effect. This paper present Parallel Structure 
Wavelet Based Neural Network (PSWNN) for predicting the Differential GPS (DGPS) corrections. The PSWNN consists of 
multiple numbers of WNNs connected in parallel. Each WNN in the PSWNN predicts the same DGPS corrections future value 
based on input data with different embedding dimension and time delay. The embedding dimension is chosen optimally to have 
superior performance for each time delay value. The PSWNN determines the final predicted value by averaging the outputs of each 
WNN. 
The performance of proposed PSWNN is compared with WNN in application of DGPS corrections prediction. The proposed 
algorithms in DGPS system are implemented by a low cost commercial Coarse/Acquisition (C/A) code GPS module. The 
experimental results demonstrate which the PSWNN has great approximation ability and suitability in DGPS connection prediction 
than WNN; so that, the PSWNN prediction accuracy respect to the WNN is improved from 1.7094 to 0.9889 meters for 10 seconds 
prediction and from 2.2652 to 1.8352 meters for 30 second prediction, respectively. 
 
 

1.   INTRODUCTION 
 

During the past three decades, the Global Positioning System 
(GPS) has grown from a navigation concept through 
development and implementation to an operational system of 28 
spacecraft currently serving millions of users. GPS has become 
an essential part of the navigation positioning, surveillance and 
timing aspects of ground, marine, aviation and space 
applications. The current uses, with new ones, will continue to 
grow resulting in a need for even more demanding capabilities 
(McDonald, 2002).  
GPS measurements can in general be written as: )(tZ
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Where, is the geometrics range, is the measurement 
bias and is white noise. From equation (1) it can be seen 
that if the measurement bias and noise can be separated (or 
filtered) from the range, GPS data processing is relatively 
straightforward, because the receiver location can be easily 
obtained by a simple mapping from the measurement domain to 
the state domain. For reality the term includes several 
different bias sources which are mixed together and formed 
non-stationary and closed-correlated error. If the can be 
separated or eliminated from the remaining terms, then an 
unbiased and linear minimum variance estimation of the 
receiver location can be obtained by Least-Squares or Kalman 
filtering. However accurately modelling the bias in the time 
domain is not an easy task. The GPS biases and noise are time-
variant. For example, multi-path, ionospheric delay and noise 
are satellite elevation dependent (Fu and Rizos, 1997). 
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Ranging errors are grouped into the six following classes: 

● Ephemeris Data: Errors in the transmitted location of the 
satellite. 
● Satellite Clock: Errors in the transmitted clock, including SA. 
● Ionosphere: Errors in the corrections of pseudo-range caused 
by ionospheric effects. 
● Troposphere: Errors in the corrections of pseudo-range 
caused by tropospheric effects. 
● Multipath: Errors caused by reflected signals entering the 
receiver antenna. 
● Receiver: Errors in the receiver’s measurement of range 
caused by thermal noise, software accuracy, and interchannel 
biases. 
 
Representative values for these errors are shown in Table 1 
without SA. Consequently, the residual satellite clock error, at 
2.1 m, is not the dominant error; in fact, the largest error is 
expected to be the mismodeling of the ionosphere, at 4.0 m. 
Thus, the worldwide civilian positioning error for GPS is 
potentially about 10 m (horizontal) and 13 m (vertical) 
(Parkinson, 1996). 
 

Error Source Bias Random Total 
Ephermeris Data 2.1 0.0 2.1 
Satellite Clock 2.0 0.7 2.1 
Ionosphere 4.0 0.5 4.0 
Troposhere 0.5 0.5 0.7 
Multipath 1.0 1.0 1.4 
Receiver Noise 0.5 0.2 0.5 

 
Table 1. Standard error model without SA (One-sigma error in m) 

 
In order to increase standard GPS receiver’s precision, one 
method is to introduce differential GPS (DGPS) technique. 
DGPS can reduce or cancel error sources such as satellite clock 
bias, atmosphere delays, and orbit bias. Differential corrections 



 

could be computed at the reference station and were applied to 
the user’s receiver with an update rate. Suggested DGPS 
rates are usually less than twenty seconds. So, DGP
remove common-mode errors of both the reference and user 
receivers. Errors are more often common when receivers are 
close together (less than 100 Km distances). Differential 
position accuracy of about 10 m is possible with DGPS based 
on C/A code GPS Standard Positioning Service (SPS) signals. It 
is necessary to notice that part of common-mode errors c
be compensated because of their random characteristics. Among 
of these errors random troposheric delays, unmodeled 
ionosphere delays, multipath caused by reflected signals from 
surface near the receiver and receiver errors could be modelled 
(Ponomaryov and Pogrebnyak, 2000).  
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Future data in short-term prediction or long-term prediction are 
expressed according to the data previously predicted as in 
equation (4): 
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3.   PARALLEL STRUCTURE WAVELET BASED 
NEURAL NETWORKS 

 
3.1   Wavelet 

 Wavelets are a family of orthonormal functions which are 
characterized by the translation and dilation of a single 
function

As stated above, the reference station DGPS connections 
measurements are received at the roving user with certain 
latency; some kind of extrapolator must therefore be 
implemented in order to predict the reference station 
measurements at the current epoch. 
 
Recently neural networks have been established as a general 
approximation tool for fitting nonlinear models from input-
output data. On the other hand, the recently introduced wavelet 
decomposition emerges as a new powerful tool for 
approximation. Such an approximation turns out to have a 
structure very similar to the one achieved by a (1+1/2)-layer 
neural network. In particular, recent advances have shown the 
existance of orthonormal wavelet bases, from which follows the 
availability of rates of convergence for approximation by 
wavelet based networks (Zhang and Benveniste, 1992). 
 
This paper presents a short-term prediction of DGPS corrections 
based on the Parallel-Structure Wavelet Based Neural Networks 
(PSWNNs). The PSWNN consists of multiple WNNs connected 
in parallel. Each WNN predicts the same DGPS correction 
future values based on the past data with different time samples. 
The PSWNN decides the final predicted value as an average of 
each WNN outputs values. 
 
This paper is organized as follow. Section II provides a brief 
introduction to wavelet, WNN, and PSWNN. Section III 
describes the proposed PSWNN architecture. Experiments are 
reported in section IV and finally conclusions are presented in 
section V. 
 

2.   DGPS CORRECTIONS PREDICTION 
 

The DGPS corrections future value is represented by its 
previous data. If τm  previous input data are given at thk −  
step, for a time series data , the)(kx step−τ ahead value 

)( τ+kx  is expressed as (Kim and Kong, 1999; Mosavi, 2004): 
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Where denotes a function for time series prediction. 
Positive integer m  refers to the embedding dimension and 

[.]f
τ  is 

called time delay. Time series prediction is classified into one-
step-ahead prediction and short-term prediction whether to use 
predicted value as input values or not. In one-step-ahead 

prediction, the future data is predicted by its previous 
input values of the data sequence as equation (3): 
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This function is a basis for the space of square integrable 
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Wavelets are derived from scaling functions, i.e. functions 
which satisfy the recursion: 
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In which a finite number of the filter coefficients are non-

zero. Any function may be approximated at 
resolution m  by: 
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Where, represents the projection of the function 

onto the space of scaling functions at resolution m : 
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Which is a scaling function basis for scale approximation of 

. The set of approximations constitutes a 

multiresolution representation of the function  
(Maleknejad and Mesgarani, 2002). 
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3.2   Wavelet Neural Network 
 
In these neural networks, the wavelet function replaces the role 
of sigmoid function in the hidden unit. The wavelet parameters 
and wavelet shape are adaptively computed to minimize an 
energy function for finding the optimal representation of the 
signal. Figure 1 presents a kind of three layers WNN structure 
with both “wavlon nonlinearity” and “sigmoid neuron 
nonlinearity” (Mosavi, 2004). 
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Figure 1. A three layers WNN 
 

This network consists of three layers: an input layer, a hidden 
layer, and an output layer. The input layer has M  nodes. The 
output layer also has only one neuron whose output is the signal 
represented by the weighted sum of several wavelets. The 
hidden layer is composed of a finite number of wavelets 
representing the signal. 
 
3.2.1   Forward Calculations for WNN 
Consider a network consisting of a total of N  neurons in 
hidden layer with M  external input connections (Figure 1). Let 

 denotes the  external input vector applied to 

the network,  denotes the output of the network,  

presents the weight between the hidden unit 
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i j ,  and  present dilation and 

translation coefficients of wavlon in hidden layer at discrete 
time , respectively. 
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Where,  is the sum of inputs to the  hidden neuron, 

 is the  input at time . The output of the 
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neuron is computed by passing  through the 

wavelets , obtaining: 
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The sum of inputs to the output neuron is obtained by: 
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The output of the network is computed by passing  
through the nonlinear function

)(nv
(.)σ , obtaining: 

 

 
3.2.2   Learning Algorithm for WNN 
 
The instantaneous sum of squared error at time  as: n

2)]()([
2

1
)(2

2

1
)( ndnynenE −==                                    (14)  

Where, denote the desired response of output at time n . 
To minimize of above cost function, the method of steepest 
descent is used. The weight between the hidden unit 
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Where, η  is a learning rate. The connection weight between 
the output unit  and hidden unit i j  is updated as follow: 
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The translation coefficient of the  wavlon in hidden layer 
can be adjusted according to: 
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The dilation coefficient of the  wavlon in hidden layer is 
updated as follow: 
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The wavelet function which we have considered here is the so 
called “Gauusian-derivative” function as: 
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The usual sigmoid function of used in this research is as follow: 
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Time series prediction with the PSWNN is characterized by the 
parameters 
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3.2.3   WNN Predictor 
 
Work in WNNs has concentrated on forecasting future 
developments of DGPS corrections from values of x  up to the 
current time. The proposed WNN in this research is shown in 
Figure 2. The choice of the WNN parameters is also important. 
In this paper, the order was based on the experimental results.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. A proposed WNN for DGPS correction prediction 
 
3.3   Wavelet Neural Network of Parallel-Structure 
 
The PSWNN consists of multiple number of the WNN 
connected in parallel for predicting time series. Figure 3 shows 
the structure of the Parallel-Structure WNN. The PSWNN 
contains  WNNs as  connected 

in parallel. Each WNN produces predicted value for the the 
same time index . With a decision scheme, the PSWNN 

outputs the final predicted value .  
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Figure 3. The PSWNN structure 
 

τ  and . The embedding dimension m  defines 
the number of inputs to the WNN, and the value 

m
τ  defines the 

time interval of input data. The  WNN in the 

PSWNN takes time delay as 

(
p

WNN )thp −

p=τ and different . m

Consider the PSWNN for predicting , the future data 
at 

^
)( rkx +

thrk −+ )(  time step. The  WNN predicts value 

 based on its previous data , 

, , and . The PSWNN 

determines the final predicted value   from the outputs 

of each WNN. The 

PSWNN determines the final predicted value as the 
average of each WNN as follow: 
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For example, consider the PSWNN with three WNN )3( =N . 
If the values m  of each WNN are chosen as  , then 

the 

3,4,3 and

),( mτ  pairs become  for ,  for , 

and  for , respectively. Figure 4 shows the input 

data used to predict the future data using the PSWNN. 
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4.   EXPERIMENT 

Performance of the proposed WNN and PSWNN were 
evaluated by data sets that were collected in the Iran University 
of Science and Technology. Figure 5, Figure 6, and Figure 7 
show predictions for 100 test data by using 
proposed WNNs . 
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Figure 5. predictions by using proposed WNN  Dx

 
Figure 6. predictions by using proposed WNN  Dy

 
Figure 7. Dz predictions by using proposed WNN  

Also, Figure 8, Figure 9, and Figure 10 show 
predictions for 100 test data by using proposed 

PSWNNs with three WNNs as  for ,  for 

, and  for , respectively. 
1

WNN)3,1( )4,2(

3
WNN

2
WNN )3,3(

 

Figure 8. predictions by using proposed PSWNN  Dx

 
Figure 9. predictions by using proposed PSWNN  Dy

 
DzFigure 10. predictions by using proposed PSWNN  

 
4.1   Test Setup Description 
Figure 11 shows DGPS test setup. Both the reference station 
GPS and the mobile unit GPS receive signals from the same 
satellite. The GPS receivers, the computers for data 
visualization and recording and also the radio modem for the 

DzandDyDx,



 

reception of the DGPS correction data were integrated inside the 
reference station and the mobile unit. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 11. DGPS test setup  

 
Two low cost GPS engine manufactured by Rockwell Company 
were used. The Rockwell “MicroTraker Low Power (MLP)” 
receiver is a single board, five parallel-channels, and L1-only 
Coarse Acquisition (C/A) code capability. One receiver was 
operated with a passive patch antenna; the other was operated 
with an active patch antenna which means that there is a low 
noise preamplifier integrated in the antenna which is powered 
by the receiver via the RF cable. 
 
The commanding of the receivers and the data visualization and 
recording was done with the developed software by paper 
author on a notebook computer with a serial interface. All the 
computer programs were coded in C-language and visual basic 
6. 
The antenna reference position was determined with “Average 
Mode” of the developed software which means that the average 
of the position solutions was determined over one hour. With 
this averaged position the receiver was set in “Fix Position 
Mode” and the output of correction data was started. 
For the transmission of the DGPS corrections data from the 
reference station to the mobile unit, a radio modem was used on 

both sides with one transmission channel on a UHF frequency, 
MSK modulation and 5 W transmitter powers. The received 
DGPS corrections data via the radio data link were fed to the 
serial interface in the mobile unit. The last valid positions are 
used for extrapolating the position. Figure 12 shows the 
developed hardware of this research. 
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Figure 12. The developed hardware of this research  

 
4.2 Experimental Results 
In order to analyze the DGPS position accuracy, we used Root 
Mean Square (RMS) as below (Sang, 1997): 
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MWhere,  is test numbers, denotes the desired response of 
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m τ  are determined when the prediction error RMS is 
the smallest value of one-step-ahead prediction. In experiments, 
the optimal value of m for prediction using a single WNN 
becomes 3 . Also as shown in Figure 13, the optimal value of 

),( mτ pairs in prediction using PSWNN with three WNNs 
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Figure 13. PSWNN with three WNNs as  for ,  

for , and  for , respectively 
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 Dz predictions by using PSWNN of Figure 13 Figure 16.

Figure 14, Figure 15, and Figure 16 show 
predictions for 2000 test data by using proposed 

PSWNNs of Figure 13. 

 
DzandDyDx,

Table 2 to Table 3 show statistical significance characteristics 
of one-step-ahead prediction errors (the difference between the 
predicted and real values) for 1000 test data using WNNs and 
PSWNNs, respectively. 

 

 
 

Parameters X 
Component

Y 
Component 

Z 
Component

Max 1.4934130 1.5420700 1.4976000 
Min -1.9666767 -1.6185998 -1.4473175

RMS 0.3594700 0.4059940 0.3564420 
Average -0.0032720 0.0099290 0.0083180 
Variance 0.0001290 0.0001650 0.0001270 
Standard 
Deviation 

0.0113730 0.0128410 0.0112740 

 
 Table 2. Prediction Errors Statistical Significance 

Characteristics Using WNNs (SA off) Figure 14. predictions by using PSWNN of Figure 13 Dx
 
 

Parameters X 
Component

Y 
Component 

Z 
Component

Max 1.4934130 1.5420700 1.4976000 
Min -1.9666767 -1.6185998 -1.4473175

RMS 0.3554200 0.4055010 0.3546820 
Average -0.0000440 0.0104800 0.0046190 
Variance 0.0001260 0.0001640 0.0001260 
Standard 
Deviation 

0.0112450 0.0128250 0.0112210 

 
Table 3. Prediction Errors Statistical Significance 

Characteristics Using PSWNN (SA off) 
 
As shown in Table 2 and Table3, the PSWNNs respect to 
WNNs has greater accuracy for DGPS corrections prediction. 
Also, the WNNs and PSWNNs were trained to predict the 
DGPS corrections 10 and 30 seconds ahead of the current 
epoch. The obtained results are shown in Table 4 and Table 5, 
respectively. 

 
Figure 15. predictions by using PSWNN of Figure 13 Dy

 

 
 

  
 

Algorithm Total RMS Error 
1.7094 WNN 
0.9889 PSWNN

 
Table 4. Total RMS error of position components  

for 10 seconds ahead prediction 
 
 

Algorithm Total RMS Error 
2.2652 WNN 
1.8352 PSWNN

 
Table 5. Total RMS error of position components  

for 30 seconds ahead prediction 
  



 

As shown in Table 3 and Table 4, the PSWNNs respect to 
WNNs has greater accuracy for DGPS corrections prediction. 

 
5.   CONCLUSIONS 

This paper has presented WNN and PSWNN architecture and 
also these training algorithms for DGPS corrections prediction. 
The PSWNN consists of multiple numbers of WNNs connected 
in parallel. Each WNN in the PSWNN predicts the same DGPS 
corrections future value at the same time index with different 
embedding dimension and time delay. The embedding 
dimension was chosen optimally to have superior performance 
for each time delay value. The PSWNN determines the final 
predicted value by averaging the outputs of each WNN.  The 
performance of proposed PSWNN was compared with WNN in 
application of DGPS corrections prediction. The proposed 
algorithms in DGPS system were implemented by a low cost 
commercial Coarse/Acquisition (C/A) code GPS module. The 
experimental test results with real data emphasize which the 
PSWNN has great approximation ability and suitability in 
DGPS connection prediction than WNN; so that, the PSWNN 
prediction accuracy respect to the WNN was improved from 
1.7094 to 0.9889 meters for 10 seconds prediction and from 
2.2652 to 1.8352 meters for 30 second prediction, respectively. 
An additional advantage of the investigated DGPS using 
proposed NNs prediction is their low cost because of using only 
commercial C/A code GPS modules for the reference and users. 
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