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ABSTRACT: 
 
The approach described here facilitates the exploration of time-series of remote sensing data by offering a set of interactive visual 
functions that allows studying the behaviour of dynamic phenomena, events and evolution of phenomena over time. Essentially we 
simulate the human visual system by decomposing each spatial region into a number of 2D Gaussian functions. The algorithm compares 
the attributes of each function in successive frames and finds the continuous paths of the spatial object through time. These paths describe 
the characteristics of the object in each time step and for each object certain interesting ‘events’ can be described. Examples of events are: 
continuation, appearance/disappearance, and split/merge of the phenomena. Based on the object paths, a visualization environment with 
‘temporal functionality’ is created with a wide range of tools to support interactive exploration of events and the object’s evolution. In 
particular, the event graph is proposed which in combination with other visualizations will make the process of detection and exploration 
of the dynamic phenomena independent of the perception and experience of the observer. 
 
 

1. INTRODUCTION 

One of the challenging research areas within GIS is the study and 
representation of the dynamic phenomena. A commonly used 
technique for monitoring dynamics in many environmental 
applications is remote sensing. A recent trend in remote sensing 
devices is towards higher spectral, spatial and temporal resolution. 
Further, remote sensing data are often pre-processed by the 
supplier and coupled with methods and techniques to extract 
various bio-physical indicators (e.g., water quality parameters, 
vegetation characteristics, soil properties, climatic parameters). 
Exploration and analysis of these fast growing spatio-temporal 
datasets is not a trivial task considering the amount of data being 
generated today, with remote sensing data alone projected to yield 
50 gigabytes of data per hour (Wachowicz, 2000). 
 
The purpose of exploration is to find patterns, trends and 
relationships in remote sensing data for generating hypotheses 
and understanding the dynamics of spatial objects. One way of 
supporting this exploratory process is by developing visualization 
methods. Visualization enables the researcher to gain insights into 
large spatio-temporal datasets; leading to better understanding of 
the phenomena and its modeling. 
 
Generally, visualization includes two important aspects: graphical 
representation of spatial information and support for the user’s 
visual interaction with this information. Especially, a visual 
exploratory process is characterized by highly interactive and 
private use of representations (MacEachren and Kraak, 2001). 
Currently, there are mainly three types of representations used to 
depict the temporal aspects of spatial data in GIS: a single static 
map, a series of static maps and animations. Single maps/images 
represent snapshots in time and together the maps make up an 
event. The main problem associated with static maps is that the 
visualization is restricted to only a few time slices - the dynamism 
of the phenomena is not maintained and interaction with spatial 
data is limited.  
 

Animation is often used for large time series to integrate many 
maps and to add dynamics and interaction to the representation of 
time. It can be very useful to clarify trends and processes, as well 
as to provide insight into spatial relations (Kraak, 2000). While 
animations can be effective in perceiving changes in a single 
spatial object, they tend to become overwhelming when 
representing the relationships and evolution of several objects. 
This is due to the fact that the human visual system has limited 
bandwidth, and because images fade quickly, it requires an effort 
to maintain them (Gahegan, 1999). Therefore, even a playback 
animation, with the user controlling the flow, has two major 
drawbacks known as change blindness and inattentional blindness 
(Rensink, 2002). Since dynamics are rarely explored only with 
respect to the evolution of a single object, many changes go 
unnoticed by the users of animation (for some amazing example 
see URL: Visual Cognition Lab). 
 
One way to improve existing visualizations is by providing 
computational support to human exploratory tasks. Exploratory 
tasks can be broadly divided into two stages identifying each 
spatial object in each time step and comparing characteristics of 
each object for further understanding of the dynamics. Object 
tracking methods, essentially simulating a human visual tracking 
process, have a relatively long history in the field of scientific 
visualization and signal processing. While object tracking is still a 
field of continuing research, the purpose of this paper is to present 
an approach for coupling object tracking and visualization in a 
single exploratory environment and to describe the 
representations and functionality resulting from such a 
combination. Therefore, in the following sections we first discuss 
the object tracking method, followed by a visualization example 
where we illustrate the principles and interactive support of 
different graphs designed for visual exploration of events and 
evolutionary stages of dynamic spatial phenomena.  
 

2. BASIC DEFINITIONS  

Each domain has its own set of interesting objects or features. 
These are usually defined as regions of interest in the remote 
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sensing datasets that satisfy certain constraints: for example an 
area of low NDVI values may define a stressed vegetation 
(Samtaney et al., 1994). In the following we consider a scalar 
function (corresponding to single band image) defined on a 2D 
set of image pixels. The choice of the function depends on the 
application domain. Our basic assumption is that this function can 
be decomposed into a superposition of elementary building block 
functions (b.b.f.) having simple and well defined form. Each b.b.f. 
corresponds to a single spatial object and may have different 
properties (spatial extent and magnitude) defined by the function 
parameters. Choice of a shape of the b.b.f. depends on the process 
at hand. The most natural function form has a maximum value in 
the centre of the object and is decreasing as a distance from the 
centre increases. Important decision should be made whether to 
choose a b.b.f. with finite or infinite support (corresponding to 
overlapping or non-overlapping spatial objects to be modelled) 
for a given application. Overlapping functions should be used 
when spatially continuous physical problems are studied. In what 
follows we model spatial objects with a 2D Gaussian function, 
which is a commonly used model in geosciences (Figure 1).  
Although Gaussian function has an infinite support, it decays 
quickly outside of a region defined by the spread of the function. 
The advantage of using b.b.f. to model a spatial phenomenon is 
manifold: firstly, it reduces complex datasets to a description of 
the overlapping functions (in terms of function parameters), 
secondly, the overlapping functions can describe region with 
complex shapes and thirdly, most importantly, it leads to a robust 
comparison and consequently, to tracking of the functions over 
time. 

 
Figure 1. 3D view of hypothetical dataset with the fitted 2D 

Gaussian functions on the left. Properties of the 
Gaussian function are shown on the right. 

 
Thus, a set of spatially overlapping 2D Gaussian functions 
represents the physical phenomenon in the spatial region. The 
evolution of the spatial object can be described by following its 
Gaussian building blocks. 
 
 

3. EXTRACTING AND MODELLING OBJECTS FROM 
RS DATA 

We translated the problem of spatial objects extraction into a 
problem of decomposition of complex function into a 
superposition of b.b.f.s having simple form. If the shape of b.b.f. 
is non-linear (as in the case of Gaussian function chosen in this 
paper) then such decomposition is a non-trivial problem. The 
approach described here is based on Gaussian shape of b.b.f. but 
it might be easily adapted for other functions having continuous 
derivatives. 
 
We perform the function decomposition in an iterative way. First, 
the approximate location of the highest magnitude building block 
is found (by searching for a pixel with highest magnitude). Then a 

region of points is sampled around this seed point in such a way 
that the pixel magnitude in the sampled region is decreasing with 
increasing distance form the seed point. This ensures that there is 
no contribution from different building blocks in the sampled 
region.  
 
Sampled region is used for fitting of the profile with a Gaussian 
function. The fitting is done in two steps. First, one-dimensional 
fitting with one-dimensional Gaussian function is performed in 
vertical and horizontal cut of the sampling region separately: 
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Equation 1 
Here A=A(x,y) is the image magnitude at the pixel with 
coordinates (x,y), A(x) and A(y) are correspondingly the 
horizontal and the vertical cross-sections of the sampled region, 
x0 and y0 are the coordinates of the seed point, σx and σy are the 
parameters describing the extent of the Gaussian profile in 
horizontal and vertical direction. 
 
The results of this fitting are used to find the approximate 
parameters of the two dimensional Gaussian function parameters. 
The second step does the fitting of the whole sampled region with 
a 2D Gaussian profile: 
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Equation 2 
where x´ and y´ are the transformed coordinates given by 

( ) ( )
( ) ( ) θθ

θθ
cossin
sincos

00

00

yyxxy
yyxxx

−+−=′
−−−=′

 

a and b denote the extent of the function in the principle axes and 
θ corresponds to the tilt of the principal axes to the original 
coordinates (x,y). 
 
The function fitting is performed using steepest gradient descent 
method (Press et al., 1992). 
 
A check is performed in order to detect artefact objects such as 
too small or too large objects or bad quality fit (controlled by the 
fit error). The thresholds are determined in an empirical way for 
each application domain. If the artefact object is detected, it is 
destroyed by setting all pixel values in the sampled region to zero. 
Otherwise, the parameters of the fit are stored and contribution of 
the object is subtracted from the image. This ensures proper 
treatment of overlapping objects. 
 
After that the process of object detection and extraction is 
repeated for next object. Since the algorithm removes the highest 
magnitude object on each step of the iterative procedure, the 
result is a sequence of objects sorted by the magnitude in a 
descending order. We can set a threshold for the process 
termination being the lowest object magnitude. 
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As the result of the object extraction each image corresponding to 
a single time point is replaced by a set of records containing the 
parameters of 2D Gaussian objects. This significantly simplifies 
information contained in the image and can be used as an input in 
the object tracking process. 
 
 

4. TRACKING OBJECTS AND DETECTING EVENTS 

The purpose of tracking is to solve a correspondence (identity) 
problem and to establish a path of each spatial object over time. 
The underlying assumption of our tracking process is that the 
Gaussian functions composing the spatial regions evolve 
consistently between the successive time steps.  
 
The tracking process consists of two main steps: initialization and 
tracking. The initialization phase is performed on the first three 
successive images to form the initial paths of Gaussian functions 
in time and to extract behavioural information of each identity. In 
essence, this behavioural information shows the characteristics of 
each b.b.f. extrapolated into the next time step (mainly position 
and shape parameters).  
 
In order to describe a pair of Gaussian functions in successive 
images for their future identity the following characteristics are 
used: the central position of each Gaussian and attributes 
representing the overall shape of each Gaussian feature (peak 
magnitude, spread in the direction of principal axis). Given the 
object parameters in image (i), the search for the corresponding 
objects starts in image (i+1) from the closest objects till it reaches 
the limit of the search distance, which is proportional to the 
spread of each Gaussian. Each object found within the search 
distance limit in image (i+1) is compared to the given object in 
image (i) and a similarity measure is calculated. Similarity is 
expressed in terms of a probability and the identity is assigned to 
the function with the highest probability. 
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Equation 3 
Where, P indicates the similarity probability (the value range 
between 0 and 1) of two building block functions k and l based on 
their magnitude A1 (see Equation 2), and spread in the direction a 
and b as given below:  
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Equation 4 
Once the initialization phase is complete, the extrapolated 
information of each path can be used for fine tuning of the 
tracking phase to the next time step. In essence it is the same 
procedure as the initialization step, but the similarity measure is 
further constrained by the extrapolated information. The output of 
the tracking process is the path of each Gaussian building block 

in time. These paths are used for detecting events on the level of 
spatial regions – spatial objects. 
Events are stages in the evolution of the phenomena. There exist 
many different types of events depending on the application, the 
type of spatial objects, and on the user’s interest (Reinders, 2001). 
Our reasoning on events is based on the identity of each building 
block function and the total mass of the spatial region. We detect 
a continuation event if the spatial region on image (i) consists of 
identical Gaussian functions as the region on image (i+1) and if 
the total mass of Gaussian identities composing the region on 
image (i+1) is more than 50 % of the total mass of the region in 
the previous image. Then it is presumed that the region in the 
current image is a continuation of the region from the previous 
image and both regions form a path of the same spatial object. 
Similarly, a split is defined if the Gaussian identity loses 
connectivity with the spatial region (see Figure 2). A merge is 
defined as opposite to the split. Appearance (disappearance) is 
defined if the region in the current (previous) image fits none of 
the above criteria or appearance (disappearance) of isolated 
Gaussian function is occurred. 

   
Figure 2. 1D example of a split event in history of region A 
The output of the tracking phase is the paths of spatial objects 
which are essentially tree-like structures, carrying spatial, 
temporal and relationship information necessary for creating the 
exploratory visualization environment. 
 
 
5. VISUALIZING THE EVOLUTION OF THE SPATIAL 

OBJECT  

Though the approach is designed to be generic, we show an 
example of cloud movement in five time steps of 1 hour. The data 
used for the study were obtained from the METEOSAT Second 
Generation satellite with a temporal resolution of 15 minutes. The 
spatial resolution of the satellite is 3 km and the image has the 
following dimensions: 550*500 pixels and 20 time steps (subset 
of the image is shown on Figure 3). Extraction of clouds was 
done by slicing the band IR 10.8 with threshold value -40 °C (240 
°K), as the top cloud temperature is lower than that of the earth 
surface. Cloud data are often used for rainfall estimation, based 
on their duration and temperature gradient over time (the clouds 
with large temperature gradients are more likely to be convective, 
indicating a high probability of rain).  
 
 

 
 

Figure 3: Subset of the example dataset, showing cloud 
movement at every hour starting at10-00h GMT 
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The patterns of these cloud regions were extracted and tracked 
over time to form the object paths. The object paths are input into 
the visual exploratory system.  
 
The design of visual exploratory system largely depends on the 
task being supported and it is still a largely intuitive and ad hoc 
process (Ferreira de Olivera and Levkowitz, 2003). In practice 
however, the exploration tasks often vary depending on the 
perspective of the expert or the aspect of a phenomenon being 
studied (Yuan, 1997). Therefore, the best approach towards the 
design of exploratory environment is the combination of multiple 
linked views to show different aspect of object evolution. 
 
5.1 

5.2 

Multiple linking representations  

In visual environment linking visual representation and 
interaction forms allows changes in one representation to be 
reflected in all of them. Linking is usually accompanied with 
brushing and focusing tools (to be discussed later). The purpose 
of linking multiple views is to facilitate comparison. Currently, 
our exploratory environment consists of three main linked 
representations: an event graph, an animation and an attribute 
graph. 
 
The purpose of the event graph is to show the evolution of 
tracked spatial objects. Essentially, our event graph is organized 
as a space-time cube: the bottom of the cube represents 
geographic space and the events and regions are drawn along the 
vertical time axis. Time, always present in the space-time cube, 
automatically introduces dynamics (Kraak, 2003). The event 
graph includes iconic representations based on spatial attributes 
(position and size) of the path-information and time information 
(Figure 4). The event graph is realized in object graphics, 
meaning that the three-dimensional cube can be manipulated in 
space to find the best possible view (known as a focusing 
technique). 
 

 
Figure 4: The proposed event graph, combined with iconic 

representation. On the left the radius of icons is 
logarithmically plotted, while on the right the radius is 
directly proportional to the size of the region. In the 
middle a zoomed section of the event graph. 

 
Each object path (consisting of several regions) has its unique 
colour. The radius of the icons is proportional to the one of the 
attribute of the region (in Figure 4 it is proportional to the size). 
Events are represented by connected tubes of different colour (e.g. 
red is a continuation event, green – merge and blue – split).   
The event graph represents the generalized and abstract view on 
the evolution of spatial objects. In order to be effective in visual 
exploration, the event graph has to be linked to other spatial 
representations, in particular to image animation. While images 
are animated, the event graph has its sliding geographical space 

along the vertical axis synchronized to the individual images in 
the animation.   
 

Functionality of linked representations 

Besides the functionality already mentioned (linking views and 
focusing), we implemented an object brushing tool. The object 
brushing presumes that the users can set queries by the direct 
manipulation of icons on the event graph. This brushing tool 
works according to the filtering principle: all objects that were not 
selected during the user action are removed for the graphical 
displays. Combined with the linking technique it allows to 
observe the effect of querying in the other linked views - in 
animations and attribute graphs. In animation the trajectories and 
spatial extent of the selected objects can be examined, while 
attribute graphs can display various characteristics of the objects 
– rate of change of area (position, etc.) in time. In future, we 
intend to extend the brushing tool to spatio-temporal domains -
allowing the user to highlight specific individual time moments or 
areas through time or space controls, and view states of the 
objects at these moments or changes taken place between two 
time moments. 
 
 

6. CONCLUSION 

The described approach uses advances in the field of scientific 
visualization and computer vision and can be seen as part of an 
ongoing trend to integrate scientific visualization methods and 
methods for exploration of spatial data. This trend has given 
name to the new discipline - geovisualization and its current 
research agenda includes both representation aspects of geospatial 
information and integration of visual with computational methods 
of knowledge construction (URL: ICA Visualization).  
 
Conceptually, the combination of methods is advantageous: the 
identification of spatial regions can gain from the research in 
signal processing and computer vision. Extracting and tracking 
Gaussian functions reduces the spatial-temporal datasets: each 
region can be described in terms of its relations (events and b.b.f. 
identities) and attributes (position, size, total mass etc.). This 
improves rendering capacity and adds interactivity to the resulting 
visualizations. Regarding the attributes, the combination can be 
easily extended to add in other measurements of location and 
spatial distribution depending on the purpose of the application 
and the events the user wants to represent (if the event criteria are 
provided and the detection process is formalized). Also, 
functionality towards data mining and knowledge construction 
can be easily added (for example to find objects with large 
temperature gradients on Figure 3 indicating convective types of 
clouds). 
 
Object tracking algorithm essentially simulates a low level human 
visual task of identification of spatial patterns. Contrary to the 
human visual tracking process, the proposed method detects 
changes in spatial objects regardless of the numbers of changes 
present in the scene and does not depend on perception and 
experience of the observer.  
 
Thus, with proper visualizations, the user can pay more attention 
to higher order visual tasks – comparison and its related activities: 
exploration of spatial data and hypothesis generation. In 
particular, the event graph can show the essence of the object’s 
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evolution and history. Built in three-dimensional space it utilizes 
the graphical variables (position, form, colour, orientation, size 
etc.) to portray both events and stages of the object’s evolution.  
Synchronised with other spatial representations, the behaviour of 
dynamic phenomena, events and evolution of the phenomena can 
be explored interactively. 
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