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ABSTRACT

Position uncertainty is one of the most important quantities of an unorganised three-dimensional point clouds since it
provides the confidence level of any parametric estimation such as surface normal vector estimation and the registration
of point clouds. We present an explicit form of position uncertainty based on the covariance analysis of a point. In
addition, an explicit form of the variance of an estimated surface normal vector and an algorithm to evaluate an optimal
size of the neighbourhood of a point which minimises the variance of the estimated normal vector are presented.

1 INTRODUCTION

Position uncertainty of a point in an unorganised point
cloud measured by a range sensor is one of the most im-
portant quantities since it provides the confidence level of
any parametric estimation such as surface normal vector
estimation and the registration of point clouds (Bae and
Lichti, 2004). However, in practice, to evaluate the posi-
tion uncertainty from data is very difficult and more so is
its derivation in explicit form, mainly because position un-
certainty depends on the design of a measurement system,
i.e. a laser and a detector in a laser scanner. One of the
important factors in position uncertainty is the incidence
angle of laser beam to the surface of scanned objects. The
incidence angles of the laser beam from two different laser
scanner locations are shown in Figure 1. The incidence
angle of the laser beam is defined as the angle between
the estimated surface normal vector and the line of sight of
the laser beam. In addition, Figure 1 shows that there is
about 40◦ of incidence angle difference in the overlapping
regions, i.e. the common regions, of the point clouds. This
large difference of incidence angles implies that position
uncertainties of those regions are quite different. This im-
plies that large error in either the estimation of surface nor-
mal vector or the registration of point clouds is expected
without the consideration of position uncertainty of mea-
surement by laser scanners.

Tasdizen and Whitaker (2003) found an explicit form of the
Crammer-Rao lower bound of measurements by a range
sensor with the assumption that the variance of the esti-
mated geometric surface normal vector is small. Note that
there are some minor errors in their derivation so the final
result is not correct. Since the variance of estimated sur-
face normal vectors is approximately proportional to that
of the incidence angle, it can not be ignored although it is
expected to be relatively small in the cases of close-range
and terrestrial laser scanners. However, we need to quan-
tify how relatively small it is to compare with the case
in which this effect is ignored. In this paper, we correct
Tasdizen and Whitaker (2003)’s results and present a more

precise form of the Cramer-Rao lower bound of measure-
ments by a range sensor by including the variance of the
estimated surface normal vector.

(a) (b)

Figure 1: Color maps of incident angles of the Agia San-
marina church in Greece scanned from two different lo-
cations using a Leica HDS2500. The radial and angu-
lar variances of the scanner are σ2

r = (0.004)2 (m2)
and σ2

a = (6 × 10−5)2 (rad2), respectively. The num-
bers of points for (a) and (b) are 486340 and 453142, re-
spectively. The radial distance between the church and
the scanner is approximately 20m in both cases. The
dimension of the church is approximately (L, W, H) =
(25.0m, 15.0m, 10.0m) where L, W , and H are the length,
width, and height, respectively, of the object.

2 UVZ COORDINATE SYSTEM

Let us introduce four coordinate systems: the scanner
coordinate system (Oscanner), the laser beam coordinate
system (Olaser), the measured point coordinate system
(Opoint) and the uvz coordinate system (Ouvz) as shown
in Figure 2. A laser scanner measures the radial distance
in Olaser in fixed horizontal and vertical angular intervals,
i.e. two angular components of a spherical coordinate sys-
tem. The measured position recorded in the spherical co-
ordinate is transformed to a Cartesian coordinate system,
i.e. Oscanner.
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Figure 2: êi is the eigenvector of the ith largest eigenvalue
of the covariance matrix (Bae and Lichti, 2004). θ, α, and
β are the direction cosine angles of ẑlaser relative to the
local surface of an object in a scene. Note that r̂laser =
ẑ = ẑlaser where r̂laser is a radial distance in Olaser.

In this section we introduce a Cartesian coordinate sys-
tem which is constructed by the surface normal vector and
ẑlaser, the line of sight of a scanner, as shown in Fig. 2.
This coordinate system is important since it acts like a
bridge between Olaser and Opoint. Any vector or ma-
trix in Olaser can be approximately expressed in the uvz
coordinate system without the knowledge of the rotation
between them. Especially if the components of a matrix in
the directionof x̂laser and ŷlaser are the same, then so are
they in the uvz coordinate system as shown in Eqs. 2. Note
that A×B and (A,B) are the cross and dot products be-
tween vectors A and B, respectively. In addition, a vector
in this paper is a column matrix. Let ẑlaser and ê0 be ẑ and
n̂, respectively. Then the unit vectors of the uvz coordinate
system are expressed as follows

û = ẑ× v̂
v̂ = n̂× ẑ (1)

and
x̂laser × v̂ = −ẑ(x̂laser, n̂)
ŷlaser × v̂ = −ẑ(ŷlaser, n̂)
x̂laser × û = ẑ(x̂laser, v̂)
ŷlaser × û = ẑ(ŷlaser, v̂)

(2)

using A× (B×C) = B(A,C)−C(A,B) with vectors
A, B, and C. This shows that two planes whose tangential
vectors are {û, v̂} and {x̂laser, ŷlaser}, respectively, are
parallel. The main purpose of introducting the uvz coor-
dinate system is to make it simple to transform quantities
in Opoint to that in Olaser, or the other way around. The
relationships between Olaser, Opoint, and Oscanner are

Olaser
uvz−−→ Opoint

Rscanner
point−−−−→ Oscanner

where Ra
b is the relative rotation matrix from b to a, e.g.

Rscanner
point = (ê0 ê1 ê2).

3 POSITION UNCERTAINTY

A laser scanner is a kind of lidar system and can be clas-
sified as either a monostatic or a bistatic system according

to the locations of the transmitter, i.e. laser, and the re-
ceiver. A monostatic lidar is a system in which its trans-
mitter and detector are in the almost same location. It can
be divided into two different classes of systems: co-axial
and bi-axial. A near-monostatic lidar is defined as a sys-
tem which is close to a monostatic system and the assump-
tion of rlaser � rscanner is valid. Let diag(·) represents
a diagonal matrix. In near-monostatic laser scanners, the
position uncertainty of laser scanner measurement in the
Olaser coordinate system can be expressed as follow

V(r)laser � diag(r2σ2
a, r2σ2

a, σ2
r) (3)

where σ2
a and σ2

r are the angular and radial uncertainties
of the laser, respectively, their units are the square of ra-
dian and the square of the unit of distance, respectively,
and r is the radial distance of a point from a scanner. Let
us briefly look at the assumptions needed to use Eq. 3 as
the variance matrix of the position uncertainty of measure-
ment by a laser scanner. Most lidar systems are monostatic
unless the problem of near-field backscattered signals by
objects, i.e. aerosol, water vapour, or wall of a building
close to the scanner is to be avoided. Except for a few
close-range scanners, many laser scanners are monostatic
or at least near-monostatic, in which we can use Eq. 3 to
describe the position uncertainty of measurement. The size
of transmitting region depends on the divergence angle of
the laser beam and that of receiving region is decided by
the size and optics of a detector. In practice, the receiving
region is generally larger than transmitting region so it is
reasonable to use the divergence angle of receiving region
as σa. In addition, angular uncertainty of a laser scanner
is proportional to the ratio between the divergence angles
of transmitting and receiving parts (Blais et al., 2000). The
radial uncertainty is how well the system can detect return-
ing signal so it may be a function of higher order of r but
we assume it is a constant. The receiving region of a laser
scanner is assumed as a circle whose radii are rσa. From
Eq. 2 and the fact that V(r)laser assumes to be symmetric
in the directions of x̂laser and ŷlaser, i.e. Eq. 3, we can
find the relationship between the position uncertainty ma-
trices in the uvz coordinate system and Olaser as follows

V(r)uvz = V(r)laser.

We would like to express V(r)laser in Opoint. Let êi=0..2

be the orthonormal basis of Opoint. Then V(r)point can
be expressed as follows

V(r)point = Rpoint
uvz Ruvz

laser V(r)laser (Rpoint
uvz Ruvz

laser)
T

= Rpoint
uvz

[
Ruvz

laser V(r)laser (Ruvz
laser)

T
] (

Rpoint
uvz

)T
= Rpoint

uvz V(r)uvz(R
point
uvz )T (4)

with assumption that the variances of êuvz
i=0...2 are small.

Note that Rpoint
uvz � (

êuvz
0 êuvz

1 êuvz
2

)
where êuvz

i

is the transformed vector êi to the uvz coordinate sys-
tem. Now take into account the variance of êuvz

0 and let

V (r)ij
point be the ith and jth column and row of V(r)point.

Bearing in mind that V(r)laser = V(r)uvz , V (r)ij
point can
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be expressed as follows,

V (r)ij
point � (êuvz

i−1,V(r)uvzê
uvz
j−1)

+
max(i,j)∑

k=min(i,j)

(
1
2

)δij

(δik + δjk)(r,V(êk−1)r)

(5)

where δij is the Kronecker-delta symbol. In Eq. 5, the first
term represents the component of V(r)laser in the direc-
tion of êi and the second does the affect of the variance of
êi. If the variance of the estimated vector is zero, so is the
second term of Eq. 5. This term is expected to be smaller
than the first term if the geometric curvature is not large,
i.e. for points in a flat region. In cases of higher curvature,
a much larger variance of the estimated êi is expected. The
approximate diagonal terms of V(r)point using the uvz
coordinate system, with ignorance of the second term of
Eq. 5, can be expressed as follows

V (r)ii
point � (êuvz

0 ,V(r)uvzê
uvz
0 )

= cos2 θiσ
2
r + sin2 θir

2σ2
a

where θi=0..2 = {θ, α, β}. One can find that V (r)11point is
the final result of Tasdizen and Whitaker (2003), which is
the Cramer-Rao lower bound for a measurement using one
laser scanner, after fixing some minor errors in their calcu-
lation since they found cos θσ2

r + sin θ r2σ2
a as V (r)11point.

The mathematical forms of the diagonal components of
V(r)point are the same as we expected since θ, α, and β
are the incidence angles of the laser beam to the surfaces
whose normal vectors are êi=0...2.

3.1 Variance of the estimated surface normal vector

In this section, we drive the variance of the estimated sur-
face normal vector by which we can completely express
the position uncertainty shown in Eq. 5. Let V(êi)point

and V(r)point be V(êi) and V(r), respectively. Con-
sider a point and its neighbourhood which are unorganised
and distributed within a two dimensional elliptical region
whose semi-major axes are ê0 and ê1. The component of
the variance matrix of the point, V(rm), can be expressed
as

V(rm) = rmrm
T

where rm = r − rcentroid and V(rm) ∈ �2×2 in two-
dimensional cases. We would like to evaluate the variance
of ê0 and let σ2

tm
and σ2

nm
be the variances of ê0 in the

directions of ê1 and ê0, respectively. Then they can be
expressed as follows

σ2
tm
� (ê1, rmrT

mê1

)
=
(
ê1, [Pê0rm] [Pê0rm]T ê1

)
σ2

nm
� (ê0, rmrT

mê0

)
where Pêi

= I − êiêT
i is the projection operator of êi,

rm = r− rcentroid, and Pê0 ê1 = PT
ê0

ê1 = ê1. Note that
the variance of ê0, V (ê0), is a scalar since we are deal-
ing with a two-dimensional case. The Cramer-Rao lower

bound for V (ê0) is expressed as

V (ê0) =
1∑k

m=1
1

V (êm
0 )

(6)

where êm
0 is the estimated normal vector using only a

point (Kay (1993, Ch. 3); Kanatani (1996, Ch. 3)). If we
obtain an unbiased scalar estimator of a least-square prob-
lem, then Eq. 6 is the lower bound for the variance of the
estimator. Bearing in mind that the variance of êm

0 is in-
versely proportional to σ2

tm
, it can be estimated as follows

V (êm
0 ) � σ2

nm

σ2
tm

,

therefore

V (ê0) �
⎡
⎣ k∑

m=1

(
ê1, [Pê0rm] [Pê0rm]T ê1

)
(ê0, rmrT

mê0)

⎤
⎦
−1

.

In general, the variance matrix of an estimated vector can
be written as

V(êi) =

(
k∑

m=1

(Pêi
rm)(Pêi

rm)T

(êi,V(rm)êi)

)−

(7)

where A− is the Moore-Penrose generalised inverse of a
matrix A (Kanatani, 1996, Ch. 7). Let n̂ be ê0 and it is the
estimated surface normal vector of a point and its neigh-
bourhood. Then the variance of n̂ can be decomposed into
n+ and n−, which can be expressed as follows

n± = n̂±
2∑

i=1

ni

where ni=1..2 =
√

(êi,V(n̂)êi)êi. The variance angles
of the estimated surface normal vector, Ψi=1...2, can be
evaluated

tan2 Ψi = (êi,V(n̂)êi) (8)

using cos2 Ψi =
[
1 + tan2 Ψi

]−1
where i = 1..2. In the

three dimensional case, we have two variance angles and
if they are the same, then the variance region of the esti-
mated normal vector is a circular cone. Otherwise, it is
an elliptical cone. Now let us try to derive more explicit
form of Eq. 7. With the assumptions that V(rm) is uni-
form over the neighbourhood and the change of the true
normal vector within the neighbourhood of a query point
is small, then

k∑
m=1

(Pn̂rm)(Pn̂rm)T

(n̂,V(rm)n̂)
=

k∑
m=1

(Pn̂rm)(rT
mPT

n̂ )
(n̂,V(rm)n̂)

� k

(n̂,V(rquery
m )n̂)

[
2∑

i=1

λiêiêT
i

]
(9)

since Pn̂n̂ = 0, where rquery
m = rquery − rcentroid. The

rank of Eq. 9 is two in cases of three-dimensional point
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clouds and its Moore-Penrose generalised inverse is the
variance of the estimated normal vector that is given as
follows

V(n̂) =

{
k

(n̂,V(rquery
m )n̂)

[
2∑

i=1

λiêiêT
i

]}−

=
(n̂,V(rquery

m )n̂)
k

[
2∑

i=1

1
λi

êiêT
i

]
. (10)

Note that we have evaluated the variance matrix of the
eigenvectors in Opoint using rm = r − rcentroid. Then
the diagonal component of V(r)point can be expressed as
follows

V (r)(i,j)point = (êuvz
i−1,V(r)uvzê

uvz
j−1)

+
max(i,j)∑

k=min(i,j)

2
(

1
2

)δij

(δik + δjk) (rm,V(êk)rm)

= (êi−1,V(r)êj−1)

+
max(i,j)∑

k=min(i,j)

2
(

1
2

)δij

(δik + δjk) (rm,V(êk)rm)

(11)

since (êi−1,V(r)êj−1) = (êuvz
i−1,V(r)uvzê

uvz
j−1) and

V(r)laser = V(r)uvz . Note that the only reason for the
revision of Eq. 5 into Eq. 11 is that we have calculated the
variance of the normal vector using rquery

m . With the as-
sumption that r

|r| � ẑ � rcentroid

|rcentroid| , V(r) � V(rcentroid),
V(rm) � 1

2V(r), and V(rquery
m ) � 1

2V(rquery), the
component of V(n̂) in the direction of rm

|rm| can be approx-

imately expressed as follows

(rm,V(n̂)rm) � r2(ẑ,V(n̂)ẑ)− r2
centroid(ẑ,V(n̂)ẑ)

= (r2 − r2
centroid)

× (n̂,V(rquery
m )n̂)
k

(
ẑ,

[
2∑

i=1

1
λi

êiêT
i

]
ẑ

)

=
1
2
(
r2 − r2

centroid

) (n̂,V(rquery)n̂)
k

×
[

1
λ1

cos2 α +
1
λ2

cos2 β

]
. (12)

From Eqs. 11 and 12, we have a complete and explicit form
of V(r)point. For example, V (r)11 is expressed as follow

V (r)11point � (ê0,V(rquery)ê0) + (r,V(ê0)r)

= cos2 θσ2
r + sin2 θ r2σ2

a

+
(
r2 − r2

centroid

) (ê0,V(rquery)ê0)
k

×
[

1
λ1

cos2 α +
1
λ2

cos2 β

]
.

The second term of Eq. 11 is expected to be small
since they are propositional to the differences between the
squared radial distances of the query point and the cen-
troid of its neighbourhood, i.e.

(
r2 − r2

centroid

)
. The color

(a) (b)

Figure 3: (a) and (b) are
√

(n̂,V(r))n̂), i.e. the squared
root of the first term of Eq. 11, of the Agia Sanmarina
church in Greece scanned from different locations using
a Leica HDS2500.

(a) (b)

Figure 4: (a) and (b) are
√

(r̂,V(n))r̂), i.e. the squared
root of the second term of Eq. 11, of the Agia Sanmarina
church in Greece scanned from different locations using a
Leica HDS2500.

maps of (n̂,V(r))n̂) and (r,V(n̂)r) of two point clouds
scanned from two different locations are presented in Fig-
ures 3 and 4. For the Leica HDS2500, the effect of the ra-
dial variance in the direction of the surface normal vector
is about a hundred times larger than that of (r,V(n̂)r). In
Figure 3, we can also observe that there is about 2mm of
the difference in

√
(n̂,V(r))n̂) between the overlapping

regions of the point clouds.

4 EXPERIMENTS

From the previous section, we can see that primarily two
factors contribute to position uncertainty, the scanning
hardware and the estimation of the surface normal direc-
tion. While there is little that can be done to reduce the
errors cause by the hardware, the errors caused by vari-
ance in surface normal direction can be reduced. Expand
Eq. 10 to get the form

Ψi=1...2 = tan−1

{[
cos2θσ2

r + sin2θr2σ2
a

kλi

] 1
2
}

(13)

We can see that the variance angle is effected by two vari-
ables, the number of points in the neighbourhood and the
eigenvalues of the covariance matrix of the neighbourhood.
The eigenvalues are affected by the number of points and
their distribution within the neighbourhood in an unorgan-
ised point cloud. When the eigenvalues are plotted against
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Figure 5: variance angle of the estimated surface normal
with a neighbourhood size of 30.

the number of neighbourhood points, we can clearly see a
linear relationship, as shown in Figure 6.

Figure 6: Eigenvalues plotted against the number of points
in the neighbourhood where λ0 ≤ λ1 ≤ λ2. Note that if
k = 0, then there is only one datum, i.e. the query point.

If we let λi = κk + τ for some constants κ and τ which
can be numerically estimated for a point cloud, then Eq. 13
becomes

Ψi=1...2 = tan−1

{[
cos2θσ2

r + sin2θr2σ2
a

κk2 + τk

] 1
2
}

(14)

meaning the variance angle becomes a function of order
Θ
(

1
k2

)
. This can been seen if we plot the average variance

angle of a point cloud against the neighbourhood size, as
in Figure 7.

Figure 7: Average variance angle in the normal vector

We can also use this information to find the local neigh-
bourhood size. Mitra et al. (2004) have proposed a method
of finding a radius for each neighbourhood given a thresh-
old value, with an improvement to the method discussed by
Lalonde et al. (2005). While they focused on the radius of
the neighbourhood, we will focus on finding the number of
points in a neighbourhood based on a given threshold for
the variance angle. The obvious method to find the neigh-
bourhood number is to iteratively increase the number by
one until the variance angle of the normal is less than the
specified tolerance (a time consuming and computationally
expensive process). While the local neighbourhood size
will differ, it will still follow the trend shown for the global
attribute as presented in Figure 7. Therefore, an easy way
to speed up the iterative procedure is to only look a neigh-
bourhood size of 2k since as k increases, larger step sizes
will need to be taken to produce any significant changes. A
better way to find the local neighbourhood size is if Eq. 10
is reformatted to produce an approximate value in one step.
Assuming that an approximate normal direction n̂init was
found with an initial neighbourhood size of kinit and we
are given a tolerance of Ψtol for the angular variance of
the normal, we can determine an approximate value for k
as follows

kiλi =
(n̂init,V(rquery)n̂init)

tan2 (Ψtol)
(15)

where i = 1..2. We also need to determine what value λi

will take on for k. We know that it has a linear relationship
with respect to k as shown in Figure 6. If we assume that
τ is zero, then we can approximate Eq. 15 with,

λi(k) =
λi(kinit)

kinit
ki

where λi(k) is the eigenvalue for the neighbourhood size
of k in ith iteration. Substitute this into Eq. 15, we obtain,

ki =
[
kinit (n̂init,V(rquery)n̂init)

tan2 Ψtolλi(kinit)

] 1
2

(16)

and we use the maximum of ki as k.

Procedure 1 Estimate Local Neighbourhood Size

Require: κ for Eq. 14 is estimated and τ is assume to be
zero.

1: knew ← kinit

2: Evaluate n̂(knew), λ1(knew), and λ2(knew)
3: while Ψnew < tolerance do
4: if knew ≤ k {If it doesn’t converge.} then
5: knew ← kinit + 2iteration

6: Evaluate n̂(knew), λ1(knew), and λ2(knew)
7: end if
8: k ← knew

9: knew ← Eq. ??
10: Update n̂(knew), λ1(knew), and λ2(knew)
11: Ψnew ←max(Eq. 14)
12: end while
13: return(knew)
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(a) (b)

(c)

Figure 8: (a) shows the exact local neighbourhood number
while (b) shows the approximated value using the proposed
algorithm which minimise the variance angles of points in
terms of the global and local. (c) shows the difference in
the variance angles and the white represents that its differ-
ence in the variance angle is greater than 10.

Since the shape of the variance angle curve is a function
of k and λi, unless the estimation of the surface normal
vectors is good and the linear relationship between k and
λi is strong, then the approximate value for k (for a given
threshold value of the angular variance) will be under or
over estimated. This problem can be reduced by recalcu-
lating the surface normal and eigenvalues as well as the
relationship between λi and k. This problem may persist if
the threshold value is relatively smaller than the true vari-
ance since the slight difference in the true and estimated
variance curves (from incorrect λi approximation) will re-
sult in large difference in k. The algorithm is briefly de-
scribed in Procedure. 4.

Applying the algorithm to the church dataset, we see the
results presented in Figure 8. Using a tolerance of 2◦ on
the variance angle of the surface normal, an average of
1.26 iterations were performed after finding an approxi-
mate value of the normal and eigenvalues using an initial
neighbourhood size of 10. As shown in Figure 8, most of
the approximate values of k are close to the true values
found through iteration, although some values are overes-
timated. The mean and standard deviation of the difference
in the sizes of neighbourhood are 2.93 and 0.007, respec-
tively. The mean of the difference in the sizes of neigh-
bourhood is about 1% of the mean neighbourhood size
using the exact method. At this tolerance, there were no
problems with convergence. In the regions where the den-
sity of points is low, we can find larger difference between
the exact and approximate methods.

5 CONCLUSION

An explicit form of position uncertainty in unorganised
point clouds from laser scanners was presented by means
of the covariance analysis of a point. We also derived an
explicit form of the variance of the estimated surface nor-
mal vector of a point. Both are important and must be taken
into account in any estimation within a point cloud from
laser scanners.

The properties of the global optimal size of the neighbour-
hood were investigated. In addition, an algorithm to iter-
atively evaluate a local optimal size of the neighbourhood
of a point which minimises the variance of the estimated
normal vector of the point was developed.
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