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ABSTRACT:

Airborne laser systems are nowadays well-known to provide regular and accurate altimetric data. The aim of this paper is to investigate the
potential of using extracted features from a Lidar 3D point cloud for data fusion purpose through an hybrid image segmentation algorithm.
The general context of this study is the building reconstruction. We first describe an efficient algorithm for extracting 3D planar primitives
from a laser survey over urban areas. It is based on a normal driven random sample consensus (ND-RANSAC) which consists of randomly
selecting sets of three points within laser points sharing the same orientation of normal vectors. A robust plane is then estimated with laser
points that are likely to belong to the real roof facet. The number of random draws is managed automatically with a statistical analysis of
the distribution of normal vectors within an approximation of the Gaussian sphere of the scene. These 3D facets are then introduced into
an image segmentation algorithm based on a bottom-up region merging scheme. Initial regions are computed by a watershed transform
onto the gradient of the aerial image. Regions adjacency are represented with a Region Adjacency Graph (RAG). Series of successive
merging generates a hierarchy of RAGs where edges are mutual inclusion relationships. The process terminated when the entire image is
represented as a single region. A cut in the hierarchy provides a desired image partition. Results of the facet extractions as well as of the
segmentation are shown and discussed.

1 INTRODUCTION scription. Schenk (Schenk and Csatho, 2002) describes a possi-
ble combination of aerial imagery and LIDAR data. Planar surface
Airborne laser technologies, with the generation of 3D point patches are defined with a region-growing segmentation. Possible
clouds, have been the crux of intensive researches for the last past ~ adjacent planes are intersected while image edges are detected with
years. Scientists did work onto various themes as the study of the a Canny operator. Some plane intersection are confirmed by fusion-
final accuracy of the point cloud (Bretar et al., 2003), the strip ad- ~ ning edge information. McIntosh (McIntosh and Krupnik, 2002)
justment problem (Filin, 2003), the automatic classification (Sit-  proposes to detect (with an optimal zero-crossing operator) and to
hole and Vosselman, 2003), the extraction of characteristic features match edges in aerial images to refine the digital surface model pro-
and more recently the fusion of laser data with external sources. A duced from airborne scanner data. Sohn (Sohn and Dowman, 2003)
laser survey is classically composed of 3D points with an irregu- uses edges detected in an IKONOS image to constraint the search
lar spacial distribution (depending on the laser system) represent- of a polyhedral building shape. The aim of this paper is to inves-
ing the topography of a certain landscape. It is a basic geometric ~ tigate the potential of a deep synergy involving 3D extracted facet
representation of the scene where no key is provided to help its ~ from a LIDAR point cloud and aerial images throughout an hybrid
understanding. An intermediate object recognition level consists ~ image segmentation algorithm.
of grouping primitives (3D entities) originating from the same ob-

ject (Rottensteiner and Briese, 2003). When studying a urban land- We would like to focus the present study onto two main points. On
scape, roof facets become extremely important when representing the first hand, in a building reconstruction approach, we consider
a 3D scene. More over, 3D facets are particularly relevant infor- the detection of 3D planar primitives over a set of connected build-
mation for data fusion purposes. Is the laser-based geometry suf- ings. This problem have been tackled by many authors. Maas and
ficient for high level landscape descriptions as full building recon- Vosselman (Maas and Vosselman, 1999) proposed a first solution
struction approach or realistic rendering? The detection of 3D pla- involving invariant moments of point clouds. A second approach,
nar patches within a point cloud generally provides sparse planes also studied by Hofmann (Hofmann et al., 2003), consists of de-
with gaps where the information is lost or at least not directly ex- tecting planar faces in a triangulated point set, investigating the pa-

ploitable. Retrieving adjacency between this set of detected plane rameter space of planes. Plane directions are extracted through a
is not immediate neither. It seems that information provided by a 3D cluster analysis on the Gaussian sphere. An obvious disadvan-
radiometric description (aerial/satellital images) of the landscape tage of this technique is that parallel planar faces cannot be sep-

through a photogrammetric analysis (oriented aerial image, auto- arated directly on the Gaussian sphere. Pottman (Pottman et al.,
matic digital elevation model generation with correlation computa- 2002) proposes to use a special distance to measure the proxim-
tions...) are complementary data sources for a full landscape de- ity of planes and then to enhance the 3D clustering process. An
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other approach (Vosselman and Dijkman, 2001) is based on the
well-known 3D Hough transform to detect planar faces from the ir-
regularly distributed point clouds. Finally, the region-growing seg-
mentation based on planarity criteria (normal vectors, residuals of a
local fitted plane,...) are wide-used (e.g. (Rottensteiner and Briese,
2003)). We propose an alternative solution to detect roof facets of
buildings based on a normal driven RANSAC (RANdom SAmple
Consensus) related approach which is described in section 2.

On the second hand, we propose to insert these primitives into an
hybrid image segmentation algorithm based on a bottom up region
merging scheme (Haris et al., 1998), (Ward, 1963). This approach
is particularly well adapted to our data fusion problem since a cost
function has to be defined including both radiometric and geomet-
ric (related to the 3D facets) information. We will see in section 3
that this segmentation is based on operations performed onto a Re-
gion Adjacency Graph (RAG). A hierarchy is built up as the region
merging process goes along. A cut of the hierarchy at a defined
level provides an appropriate segmentation. At last, some results
show the potential of this approach. We will also discuss problem-
atic points related to the cut’s shape.

2 EXTRACTION OF 3D ROOF FACETS

2.1 Background

The RANSAC algorithm introduced by Fischler and Bolles (Fis-
chler and Bolles, 1981) with applications to the context of roof facet
detection would be formulated as follow: randomly select a set of
N plans (3 points m) within a point cloud § and keep memory
of the number of points (supports) which distance from the asso-
ciated planes are less than a critical distance (d). A least square
estimation of the final plane (Pfina:) is performed with the set of
supports (M finqr) belonging to the plane with the highest score.
The set M finar is then extracted from the initial point cloud S.
The algorithm runs until card(S) < 3.

Algorithm 1 Basic RANSAC for detecting roof facets
repeat
while n < N do
Randomly select a plan P (3 points)
M= {m € §/|lm—P(m)| < d}
Mcurd(M) — M
n=n+1
end while
M finar = arg max, .y Mp
Pinat = arg ming, >, lm — P'(m)|]
S+ S\M inai
until card(S) < 3

This approach may be extremely time consuming since we must
ensure a minimum number of draws (V) so that a correct plan P
should be instantiated. Most often it is not worthy to try all possible
draws (Hartley and Zisserman, 2000). In other words, for a given
probability p of drawing a correct plane P (that is three points with-
out outlier), we would like to maximize the probability w that any
selected point is an inlier (w® for 3 points). p, w and N are related
to each other by the following equation :

log(1 —p)

(1—P)=(1—w3)N©N=m

O
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N can therefore be calculated directly from the knowledge of p
and w. p is generally kept constant to 0.99. The main idea of
this plane detection algorithm is that searching for the roof facets
where they really could be located should highly improve the effi-
ciency of a blind RANSAC approach. In our context, main plane
directions correspond to roof facet orientations. As a result, focus-
ing the consensus onto regions sharing the same normal orientation
will constrain the probability w to follow specific statistical rules
as developed in section 2.2.

2.2 The ND-RANSAC algorithm

Point clustering based on surface normal estimation There are
several methods for obtaining local surface normal from range data
(Mclvor and Valkenburg, 1997). These normals are then processed
for segmenting planar surface regions of range images like the fast
segmentation method of Taylor (Taylor et al., 1989). It is a split-
and-merge method, where the homogeneity criterion is based on
the comparison of two angles describing the normal orientation and
the original range value. Merging is based on simple minimum and
maximum value comparison of neighboring regions.

Here, we propose a planar segmentation of the laser point cloud by
analyzing the Gaussian sphere (GS) of the scene. Normal vectors
are calculated over a regular grid by extracting a circular neighbor-
ing of the central 3D point. A plane is then estimated using a ro-
bust regression of M-estimators’ family with the norm Lj 2 (Xu and
Zhang, 1996). The mass density of the normal vectors on the GS
is described by an extended Gaussian image (EGI) (Horn, 1984).
First, the GS can be approximated by a tessellation of the sphere
based on regular polyhedrons. Such tessellation is computed from
a geodesic dome based on the icosahedron divided into f sections
(f is a power of 2). The EGI (figure 1) can be computed locally
by counting the number of surface normals that belong to each cell.
The values in the cells can be thought as an histogram of the orien-
tations.

The angular spread (related to the number of faces) depends on
the error we tolerate for the coherence of the normal vectors in a
cell. As a result, within a specific cell, normals (;r: will be dis-

tributed following a certain density of probability p(nz, ny, n.),
which will be analyzed in the next section. Each cell with a min-
imum number of laser points is linked to the corresponding image
of normal vectors. Regions sharing the same normal orientation are
detected. They are then labeled providing a set of clusters which are
ordered depending on their surface. Only most represented orien-
tations (largest areas) will be treated by selecting laser points be-
longing to these areas. The RANSAC algorithm is a general robust
approach to estimate models. Instead of using the whole data to ob-
tain an initial solution and then attempting to eliminate the invalid
data point, RANSAC uses a data set as small as feasible and en-
larges this set with consistent data when possible. Two parameters
have to be tuned: the critical distance and the number of draws. The
first one depends on the noise ratio of the data while the second one
depends on the statistical distribution of points onto the Gaussian
sphere.

The critical distance We noticed in section 2.1 that supports
were considered in the set M only if their distance to the associ-
ated random plane was less than a critical distance d. This distance
may be seen as the standard deviation of the supports with regard
to the 3D plane. d is therefore defined for each cluster C as propor-
tional to the final residual square root of a least square fitted plane
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Figure 1: Extended Gaussian Sphere of the building represented in
figure 3(b)

estimated from the entire laser points { P} within C. If {P'} is the
orthogonal projection of { P} onto the fitted plane, then

d= [> ||P— P
PecC

The number of draws The number of draws to be performed
depends on the distribution p(ﬁ) of the normal vectors within a

2

Nz . .
cluster (where w = (ny ) are considered as three random vari-

ables), and especially on the probability w that any selected point
is an inlier (equation 1). Following the definition of a probability
and considering that the final plane will be close to the mathemati-
cal expectation E(77) of the distribution, w satisfies:

E(7)+7
w= /
E(7)-7

p()dn 3)

where @ is the standard deviation of the distribution. We may
assume that the three random variables n,, ny, n. are independent
to write:
E(ne)ton, E(ny)ton,
w = / py(ny) dny.
JE(ng)—0on Y

“4)

Pz (ng) dng. /

JE(ny)—0on,
/E(nz)+6nz
E(nz)—on,
pz(ng) (resp. py(ny),p.(n;)) is explicitly calculated as the

derivative of the empirical probability density function F'x, (resp.
FKy ,Fk ) with:

pz(n:)dn;.

0 ifz < infn;
IT;; ifn; < x < nit1
1 ifz > supn;

Fg,(z) = Q)

where n; is the proportion of values less than z and K, (resp.
K, K ) the number of realizations of the random variable n,, (resp.
ny,n;). The performances of this detector is discussed in section
5.
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Figure 2: Tree structure of ‘H represented as a dendrogram. The dot
line corresponds to a given cut C composed of red nodes.

3 IMAGE SEGMENTATION

3.1 Hierarchical region merging scheme

Segmenting an image Z consists of determining a partition Ay (Z)
of IV regions R;cp1,n (a region is a connected set of pixels that
satisfies certain predefined homogeneity criteria) satisfying:

An(Z) = U Ri, R; ﬂ R; = 0, Vi, R;is connected

i€[1,N] i#]

It is clear that a unique and relevant a priori partition of a given im-
age does not exist. The interpretation of an image can be performed
at a given scale of details for a specific purpose. Here, we would
like to obtain a partition whereon roof facets are clearly delineated
and understandable, that is interpreting the image at the roof facet
scale. We therefore retained a region-based approach organized as
a hierarchical description of the scene. A hierarchy over a set is a
set of mutually included subsets. In our description, a given scale
is reached after the fusion of two regions. The inclusion function
(or the inter-scale relation) is the appearance level of a region pair.
From an initial image partition represented by elementary regions,
similar ones are successively merged according to certain decision
rules. Such a segmentation paradigm can be represented by a tree
structure (a hierarchy) where regions (the tree’s nodes, cf. figure
2) at lower levels are joined to form regions at higher levels. Tree
branches indicates region set inclusions. The root of the tree corre-
sponds to image Z and the leaves to the image initial segmentation.
A hierarchy H can be considered as a union of partition sets. A cut
of H provides a partition of Z. More formally, a cut of H is a set of
nodes that intersects once and only once all branches of . A cut
is therefore not necessarily horizontal.

A data structure for representing image partitions is the RAG. The
RAG of a N-partition (a N-RAG) is defined as an undirected graph
G = (V, E) where V (card(V) = N) is the set of nodes and E the
set of edges. Each region is represented by a graph node. An edge
represents the adjacency of two regions. A score is affected to each
edge. This score measures the “similarity” between two adjacent
regions. The general idea of a hierarchical ascendant segmentation
is to merge the most “similar” pair of regions at each iteration un-
til a single region remains. Algorithm 2 gives the outlines of the
hierarchical region merging scheme onto a RAG.

Different similarity functions can be employed, each one corre-
sponding to different definitions of the picture segmentation task.
Here, we want to detect roof facets within an aerial image what
consists of partitioning the image with relevant planar patches. This
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Algorithm 2 Hierarchical region merging onto a RAG

create the initial N-RAG

n=20

while n < N do
Find the minimum cost edge in the (N-n)-RAG
Merge the corresponding pair of regions
update the (N-n-1)-RAG edge attributes
n=n+1

end while

segmentation process involves both geometric (planes are not di-
rectly visible onto a single image) and radiometric features (color-
like neighboring regions tend to belong to the same plane).

3.2 Region similarity function

We used the Ward criterion to manage with color-like neighboring
regions. This model supposes a piecewise constant representation
of the image. It consists of approximating each region Ry by its
mean pu(Ry) with

1 [| Rl
pB) = g 2 Toe)

where || R|| is the cardinal of the region and py, ; the position of the
pixel ¢ within the region Rj. We show (Haris et al., 1998) that if
A% is an optimal K -partition with respect to the total squared error
Err(A%) with

K ||Rgll
Err(A%) = Z Z (Z(pr,s) — #(Rk))2

then the optimal (K — 1)-partition is generated by merging the pair
of regions of A% which minimizes the function:

[ || B ]|

(Ri,Rj) = -
Be- Bi) = (R + TR

(n(R:) — p(R)))*

where R; and R; are neighboring regions.

The geometry of lidar data is integrated into adjacency relation-
ships through the detected 3D facets (section 2). The set of 3D
facets is denoted F in the following. Introducing different crite-
ria into the edge cost function will guide the fusion process through
the apparition level (scale) of region pair fusion. In this hierarchical
segmentation scheme, we will favor at first the merging of neigh-
boring regions which belong to the same 3D facet. From an initial
segmentation, successive fusions will be operated under geometric
constraints considering that 3D planar primitives detected into the
laser point cloud are first order information. Once the geometric
contribution is entirely exploited, regions will merge on the basis
of radiometric considerations. We have mentioned that facet fron-
tiers were not accurate enough since they are calculated from sparse
3D points without any knowledge onto facades nor ground plane.
The geometric constraints will therefore be applied only to regions
strictly included into F (equation 6). Regions belonging to two dif-
ferent facets are strongly penalized so that roof facets should merge
at the top of the hierarchy (equation 7).
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The final similarity function § can be expressed as follow:

URALIRSL o
TR+ [T () = ()

+a(Ri)C(R;)B(Ri, R;))

S(RH RJ) =

where
C(Ry) = { (1] gr?cj:te F /Ry € f strictly ©
and
B(RhRj):{ 1—1 ﬁ({te F/RiNR; € f o

a is a weighting factor. A high o will favor geometric merging at
the beginning of the process and will postpone the fusion of image-
based building roofs at its top-end. When a region Rj becomes
large enough, ((Ry) is null and regions are exclusively merged
onto radiometric similarities.

The initial segmentation An initial segmentation contains ele-
mentary regions to be merged. Parts of their boundaries define re-
gion boundaries of a particular partition. Objects are generally iso-
lated by strong intensity jumps (image edges). We will constrain
this initial segmentation to follow the image edges performing a
watershed transform onto the gradient image (Canny-Deriche op-
erator). The output of the watershed algorithm is a tessellation of
the input image into its different basins, each one characterized by
a unique label.

4 THE DATA SET

Laser data have been acquired over the city of Amiens, France, by
the company TopoSys(©in 2002. This firm owns a self-made li-
dar acquisition system, which is composed of two rigid blocks of
optical fibers (emission and reception of laser pulses). The ground
pattern of laser impacts is strongly irregularly distributed. The spa-
tial density of the point cloud is roughly one point every 10cm
along the flight track and one point every 1.2 m in the cross-track
direction. The ground density is 7.5 points/m?. We worked onto
a single strip which have been filtered into ground and non-ground
points (Bretar et al., 2004). A simple morphological analysis allows
to isolate sets of connected buildings.

For the present study, we did use aerial color images fully corrected
of altimetric distortions (they are ortho-rectified) taken in 2001 over
the same city of Amiens.

5 RESULTS AND DISCUSSION

We will present on going results onto a complex building and dis-
cuss at first the results of the 3D facet detector. Figure 3(b) shows
the 3D planar primitives calculated with the ND-RANSAC algo-
rithm over a building. They have been computed with the follow-
ing parameters: normals are calculated over a 0.3 m resolution grid
onto a circular neighborhood of 2 m radius, the minimum number
of laser points within a cluster is set to 30. Finally, each cluster must
be composed of at least 25 pixels to be considered. This method-
ology depends mainly on the quality of the normal vector map and
as a result of the spacial distribution of laser points. The irregular-
ity of the ground pattern necessitates to integrate laser points onto
a large neighborhood so that enough points should be considered
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Figure 3: (a) is the cluster images coded in gray level whereon laser
points have been projected (green points) as well as retrieved facets
(red polygons). (b) is the 3D representation of roof facets (green
polygons). Red points are the residuals of laser points which have
to be considered as support of any plane.

into the plane estimation process. Nevertheless, a large neighbor-
hood tends to smooth the normal information, especially for instant
at the building roof tops. The point density, which is a limitation
factor, should be enhanced by crossing different strips or joining a
raster representation of the topography (either from the laser itself
or from a photogrammetric DSM). If our methodology is slightly
less general than a classical RANSAC which provides, whatever
happens, relevant planes within the point cloud after theoretically
an infinite amount of iterations, it is much more time efficient. It is
also particularly interesting to take benefit of the specific building
geometry.

The approximation of the Gaussian sphere by a regular polyhedron,
that is its discretization with a fixed step, has advantages with re-
gard to other methods like for instant the K-means one. The main
one is no doubt to manage with the extension of each cell which
is the actual tolerance (the distribution extension) granted around
one direction. A rough discretization provides large areas of simi-
lar normal vector. It is exactly what we are looking for. Indeed, this
clustering stage is only considered as a focusing stage. Therefore,
there is no need to have accurate boundaries, for the final facet es-
timation is performed directly onto the point cloud. As a result, the
best parameters include a not-so-fine GS approximation to provide
large focusing areas. Analyzing the distribution of the 3D points
within these focused areas will provide the best robust plane. This
approach will not provide all possible facets, but the detected ones
are relevant.

The described approach for the data fusion of lidar and aerial im-
ages proposes to combine a real 2D description of images unlike
other approaches based on the detection of lineic features, and full
3D laser data. It provides an interpretation of the image for build-
ing reconstruction purposes. More precisely, a region-based image
description gives 2D adjacency relationships of facets which can
directly be related to the 3D facet orientations.

Figure 4 shows the initial segmentation (red contours) superim-
posed onto the ortho-image to be segmented. The actual imple-
mentation is based on a watershed of the gradient image. It could
be interesting as future work to combine other image sources, espe-
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cially images of the same building taken from different view angles.
Combining the gradient of such images may lead to an ortho image
of gradients. It is calculated by accumulating the gradient image
magnitudes in an orthogonal projection. Edges invisible in certain
images may appear in others and finally make the watershed more
relevant.

Figure 4: Segmented ortho-image where contours of watershed re-
gions (red) of the corresponding gradient image are superimposed.
A cut in the hierarchy (performed on visual criteria) represents the
depicted image partition where region contours are drawn (green
lines are the contoured regions of figure 5).

Figure 5 shows the label image corresponding to an horizontal cut
of the hierarchy, also represented in figure 4 as green contours.
Most of building facets are interpreted as large labeled areas and
make the building structure clearly visible. We can remark that roof
tops and gutters are not defined as a single line in the watershed, but
as two parallel lines (figure 6) since they are spread over several
pixels. Watershed regions belonging to these areas are merged to-
gether, searating both theoretically adjacent roof facets. This could
be avoided by assigning higher gradient valuesinthe middle of the
roof tops.

Figure 7 (bi-plane building roofs) shows a consequence of an hor-
izontal cut of the hierarchy without any geometrical criteria. If
boundaries of watershed regions follow the roof top, the final delin-
cation follows a curved line. An horizontal cut considers all regions
at the same level without local properties. It is therefore planned to
perform an automatic cut of the hierarchy following planarity crite-
ria, that is performing an ascent from the leaf nodes (initial regions)
to a node satisfying a planarity criterion (e.g. estimating a least
square plane and defining a threshold on the sum of the residuals).

6 CONCLUSION

We have presented in this paper an approach for combining LIDAR
3D data and aerial images. At first, LIDAR data are processed to
extract 3D planar primitives over buildings. This detector is based
on a modified RANSAC paradigm guided with information con-
cerning normal vectors of the scene. These primitives are then in-
troduced in an image segmentation process based on a ascendant
region merging scheme. From an initial segmentation (watershed
on the image gradient), regions are merged under specific geomet-
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Figure 5: Final image partition of an ortho-image represented as
a label image. The cut in the hierarchy was performed on visual
criteria.

Figure 6: Details of the segmentation presented in figure 4. Gut-
ters and roof tops are segmented independently of roof facets. We
may notice that roof hyper-structures are sharply distinct from the
building roof itself.

ric and radiometric constraints. The merging steps are performed
on a region adjacency graph. A hierarchy is built whereon a cut
provides a desired image partition. The future work consists of im-
proving the general cost function as well as to perform automatic
and non-horizontal cuts of the hierarchy with geometric considera-
tions.
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