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ABSTRACT: 
The paper proposes a segmentation procedure inspired to a robust LIDaR filtering data method recently introduced by the authors. 
The method is based on the application of a Simultaneous AutoRegressive (SAR) model for describing a trend surface and of an 
iterative Forward Search (FS) algorithm to detect clusters of non-stationary data. 
The procedure consists in an automatic process to identify raw clusters of data relating to the geometrical configurations to be
segmented with the robust iterative SAR-FS parametric model. The search of homogenous clusters of points is carried out by 
applying a local polynomial regression algorithm, automatically adapted to the morphological variability of the LIDaR points. 
The combination of the parametric and nonparametric models in a mixed analytical procedure makes it possible to optimize the 
efficiency of the segmentation and dramatically reduce the requirements of computational memory and time consuming. 
Some significant experiments make it possible to evidence the potential of the method proposed. 

1. INTRODUCTION 

Airborne Laser Scanning technique is extremely efficient to 
fulfil increasing demand of high accuracy spatial data for civil 
engineering, environmental protection, planning purposes, etc.. 
The main processing steps are the filtering of the points (to 
detect the ground terrain), their segmentation (to classify the 
point dataset in different classes), and the 3D modeling of 
clusters (to enhance the data structure from an irregularly sparse 
to a vector object-oriented one). With regard to point 
segmentation algorithms, exploiting geometrical and/or 
radiometric properties, this paper proposes a new one inspired 
to the procedure suggested by Crosilla, Visintini and Prearo 
(2004a) for the filtering of non-ground measurements from 
airborne laser data. The method is based on a Simultaneous 
AutoRegressive (SAR) model to describe the geometrical trend 
of a surface (chapter 2), and on an iterative Forward Search 
(FS) algorithm (Atkinson and Riani, 2000), to find out outliers 
and/or clusters of non-stationary data (chapter 3). Starting from 
a subset of stationary LIDaR data, the forward search approach 
allows to perform a robust iterative estimation of the SAR 
unknown parameters. At each iteration, one or more LIDaR 
points are joined, according to their level of agreement with the 
postulated surface model. Outliers and or non-stationary data 
are identified by proper statistical diagnostics and are included 
only at the end of the iterative process. The method has already 
been successfully applied to segment man-made objects 
characterized by plane surfaces, like roofs, or by more 
complicated higher order geometry (Crosilla, Visintini and 
Prearo, 2004b). Nevertheless, it presents some critical aspects 
for the automatic extraction of the raw initial clusters, and for 
the extension of the process to the entire set of points, that 
contains also points not presenting any geometrical relationship 
with the particular cluster to be identified. 
The paper proposes a new analytical method to automatically 
identify the initial raw data cluster relating to a generic 
geometrical feature. For every subset of homogeneous LIDaR 
data, the method identifies a limited number of surrounding 
points to submit to the refinement segmentation process, so to 
dramatically reduce computing time and memory. At the end, 
the algorithm makes it possible to automatically perform the 
segmentation of the entire data collection. The search of the 

initial homogeneous raw cluster of points is carried out by 
applying a local nonparametric regression algorithm (chapter 4), 
while the refinement process is performed by a robust 
parametric model, the before mentioned SAR one following the 
FS procedure. 
For each LIDaR point, the nonparametric algorithm makes it 
possible to compute the predicted surface local trend value and 
its partial derivatives in the East and North directions. The 
LIDaR points belonging to the same homogeneous subset are 
characterized by a significant agreement between the measured 
and the predicted height and, for planar surfaces, by a further 
spatial constant value of the partial derivatives (chapter 5). 

2. A SIMULTANEOUS AUTOREGRESSIVE 
SEGMENTATION MODEL 

The proposed algorithm works under the hypothesis that LIDaR 
measures of the surface point height can be rightfully 
represented by the SAR model (Anselin, 1988): 

AWzz  (1) 

where: 
z is the [n x 1] vector of laser height values (being n the 
total number of points to be segmented); 
 is a value (constant for the whole dataset) that measures 

the mean spatial interaction between neighbouring points; 
W is a [n x n] spatial adjacency (binary) matrix defined as 

1wij  if the points are neighbours, 0wij  otherwise; 

A is a [n x r] matrix with s
i

s
iiii NE...NE1A

as rows where iE  and iN  are East and North-coordinates 
of points interpolated by a s = (r-1)/2 degree orthogonal 
polynomial; 

T
1r10 ...  is a [r x 1] vector of parameters; 

 is the [n x 1] vector of normally distributed errors (noise) 
with mean 0 and variance .

To solve equation (1), a Maximum Likelihood (ML) estimation 
of the unknown parameters has been chosen. Let us start from 

ISPRS WG III/3, III/4, V/3 Workshop "Laser scanning 2005", Enschede, the Netherlands, September 12-14, 2005

132



the following SAR log-likelihood function (Anselin, 1988), 
where I is the [n x n] identity matrix: 

)]()ln[(
2
nlnC),,(L T2 AWzzAWzzWI (2) 

The function (2) must be maximized not only with respect to 
and 2 , but also with respect to . To avoid biased solutions 
this can be performed in stages (Pace, Barry and Sirmans, 
1998), first by selecting a vector of length f of values over [0,1] 
labelled as f21v ...  and then maximizing the 
profile log-likelihood function (for more details, see Crosilla, 
Visintini and Prearo, 2004a). The value ML  giving the 
maximum log-likelihood value L is assumed as the ML 
estimation ˆ  of . Finally, the optimal estimation of the SAR 
unknowns is obtained from: 

zWIAAA )ˆ()(ˆ T1T  (3.1) 

)ˆˆ()ˆˆ(nˆ T12 AWzzAWzz  (3.2) 

Regarding the order of the trend surface polynomial modelling 
A , that is the r dimension of the unknown parameter vector, 
the choice inferentially occurs by a t-Student test applied to the 
estimated ˆ  values: 

1)rn(
i

i
ˆ

ˆ
t

where i
ˆ  is the estimated standard deviation of i

ˆ , and  is 
the significance level of the test. In other words, once a 
redundant k-degree orthogonal polynomial (e.g. cubic, k = 3) 
has been assumed, the assessment of a reduced s < k degree, 
describing with plenty sensitivity the trend model, is then 
performed, so skipping not meaningful (k-s) parameters. 

Within the z height values, the way to assess homogeneous 
spatial behaviour is to compute individual departures from the 
fitted polynomial trend surface. To this end, starting from (1), 
the vector e 1  of standardised residuals is computed as: 

]ˆ)ˆ[(ˆ 1 AzWIe  (4) 

Afterwards, its n components are inferentially evaluated to find 
which measures do not fit the estimated trend surface: in fact, e
is used to define the lack of fit statistic eeT .
However, to robustly detect clusters of homogeneous stationary 
laser data, the estimations (3) and (4) have to be carried out by 
considering different subsets of the whole data set. 

3. THE FORWARD SEARCH ALGORITHM AND THE 
STATISTICAL DIAGNOSTICS 

An interesting algorithm to perform iterative SAR estimations 
on increasing datasets is the so-called “Block Forward Search” 
(BFS) proposed by Atkinson and Riani (2000). It makes 
possible to execute the robust estimations ˆ  and ˆ  at each step 
of the search, starting from a partition of the dataset in blocks of 
contiguous spatial location, and considering them as elementary 

units of the entire set of points. In case of grid data, each block 
is a set of cells, while handling raw data it is difficult to 
univocally create the blocks: thus, the block dimension is 
merely unitary (UFS, Unitary Forward Search). 
The basic idea of the FS approach is to repeatedly fit the 
postulated polynomial model to subsets of increasing size, 
selecting for any new iteration the observations z best fitting the 
previous subset, that is having the minimum standardised 
residual component in e. In equation (6), ˆ  and ˆ  are 
estimated for each stationary cluster of data, while z, A, W and 

 are referred to the whole dataset. Thanks to this growing 
strategy, the non-stationary data are included only at the end of 
the FS process, for each particular cluster. 

In order to fix a rule to decide at which iteration the non-
stationary data enter into the subset, a F-Fisher test is 
continuously carried out: 

1)rn,r(2
s

TT

)n(ˆr

)(ˆ)(ˆ)(ˆ)(ˆ
F

nmnm ss AA

For the generic m-dimensional subset of points, the null 
hypothesis states that the )(ˆ m  values, estimated by (5.1), are 

not significantly different from the )(ˆ
sn  values estimated with 

the sn -dimensional initial subset. If such hypothesis is not 
satisfied, the just included point does not belong to the 
particular cluster since its presence provides a biased estimation 
of ˆ .
Moreover, any new point included from now on can be 
classified as outlier or non-stationary data: from a strictly 
statistical point of view, there is no reason to continue with the 
iterations. It is then mandatory to define a mathematical rule or 
an operative routine to limit computations (3) and (4) only to 
the part of the entire dataset, where it is meaningful. Therefore, 
as it will be better explained in chapter 6, the algorithm has 
been designed so to repeat the segmentation process for all the 
geometrical features to be detected. 

4. THE NONPARAMETRIC MODEL APPLIED FOR 
RAW SEGMENTATION 

In order to suitably select raw homogeneous clusters from the 
whole dataset, we have exploited nonparametric regression 
techniques whose main quality is to allow the dependence 
analysis of a response variable on one or several predictors 
without specifying in advance the function relating the response 
to the predictors. In other words, this approach is a “data-
driven” technique that determines the value of the regression 
function directly; therefore, a nonparametric analysis seems 
suitable for an exploratory use in the selection stage of a 
parametric model. 
Three common methods of nonparametric regression are usually 
applied (Fox, 2004): (nearest-neighbour) kernel estimation,
local polynomial regression and smoothing splines.
This paper proposes the use of a local polynomial regression 
that allows the weighted least squares estimation of a 
nonparametric smoother of the function and its two first order 
partial derivatives with respect to the East and North directions. 
Given a response surface z over a domain 2D , consider 

the (k+1) differentiable mappings D:  and D: . 
In addition let  be a random variable with 0)(E  and 
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1)var( . The following model for an observation taken at the 
general location Dx , is assumed: 

)()()(z xxx  (5) 

where the partial derivatives of )(x  exist and are continuous 
up to the order (k+1). Hence, to the extent of Taylor theorem, 

)(x  can be approximated by a polynomial of order k in a 
neighbourhood of x. Clearly, the functions )(x  and )(x
model a spatial deterministic component, while  models a 
component of random noise. In this way, for each predicted 
point, the parameters of a local plane function can be 
determined. The analytical taylorized nonparametric model is 
(e.g. Sclocco and Di Marzio, 2004): 

jij
iN

ij
iE

i0j )NN(
N
z)EE(

E
zzz  (6) 

where the weighted least squares estimates of i0z , i.e. the 
response surface value of iz , and of the partial derivatives, i.e. 
the surface slope along East and North directions, are given by: 

QzAQAA T1T )(ˆ  (7) 

where (for j = 1, …, p): 
T

iNiE
i0 N

z
E
zz ; )NN()EE(1 ijijjA

and Q is a diagonal weight matrix defined by a symmetric 
unimodal kernel function centred on the i-th observation, whose 
diagonal terms are (Fox, 2004): 

33
ij

ij b
d

1w  for 1
b

d ij  and 0wij  for 1
b

d ij

where ijd  is the planimetric distance between j-th and i-th
point, and b is the half-width of the window encompassing the p 
nearest neighbours of the i-th point. 
According to Hardle (1990), the choice of the bandwidth, and 
not the choice of the kernel function, is critical for the 
performance of the nonparametric fit. The larger the value of b, 
the smoother the estimation of the regression function results, 
while the smaller the value of b, the larger the predicted point 
variance results. The need to balance bias and variance leads to 
the minimization of specific objective functions like, for 
instance, the Prediction Sum of Squares (Allen, 1974): 

min)ẑz(PreSS
n

1j

2
i,i0i

where i,i0ẑ  is the fit of z at ii N,E  when ignoring the 

observation iz  in obtaining the fit. This objective function 
tends to overfit the data by selecting a bandwidth too small, 
suggesting the possible need for penalizing functions of PreSS 
to protect against such small bandwidths (Hardle, 1990). 

4.1 Local patterns of LIDaR data 

From an exploratory point of view, local patterns of LIDaR data 
are quite different from the global spatial morphology exhibited 
by the whole region. In this regard, the statistical literature 

suggests the use of an adaptive bandwidth selection in such a 
way that the amount of smoothing changes according to the 
local complexity of the deterministic component. The smoother 
should also explicitly incorporate the structure of spatial 
dependence by including in its formulation the value of a 
contiguity criterion. This solution gives the smoothing a 
direction consistent with the a priori information on the spatial 
dependence, so avoiding an otherwise undifferentiated 
smoothing. In order to describe the local behaviour of a global 
spatial structure, Anselin (1995) suggested a class of indicators, 
the so-called “Local Indicators of Spatial Association” (LISA). 
Among these, we consider the Geary’s local indicator: 

n

1i

2
i

1

iJj

2
jiiji hn)hh(c

where 
n

1i
i

1
ii znzh , while iJ  denotes the set of the site 

labels for which the condition 0ij , with ji , holds. 

Considering the [n x n] matrix  defining a contiguity criterion, 
ij  is an entry of it, i.e. it indicates the spatially associated 

neighbour of the i-th location. 
A typical criterion for constructing the contiguity matrix  is 
the inverse distance or a common boundary. The above index is 
sensitive, first to a local cluster in a neighbourhood set of the i-
th site (i.e. the set of the sites labelled by an element of iJ ),
second to spatial non-stationary data and outliers. 
The Geary’s indicator evaluates the spatial heterogeneity 
between the i-th height value and those belonging to a 
neighbourhood set. It can be used to compute an adaptive 
weight for the local bandwidth selection. Sclocco and Di 
Marzio (2004) propose the following weight term: 

iJj
jij

iJj
ijii cc

that has to be multiplied by b, the original bandwidth value, to 
obtain an adaptive one. The combined effect is to reduce the 
amount of smoothing if the local morphology is complex. 

5. THE IMPLEMENTED ALGORITHM 

The C language program developed at the University of Udine 
for laser data processing (Beinat and Sepic, 2005) implements 
the previous local polynomial regression approach. The 
software directly handles the original ASCII raw data of 
irregular points, so that neither grid resampling nor a priori 
classification are required. 
In particular, the following distinguished and independent steps 
characterize the algorithm: 
1. Application of the nonparametric regression to the whole 

dataset of points; 
2. Identification of homogeneous clusters of points as initial 

raw subsets to submit to SAR-FS parametric regressions; 
3. Definition, for each cluster, of a further surrounding limited 

set of points: these sets constitute the searching areas for the 
SAR-FS parametric regressions. 

Let us now analyse in detail each single step. 

5.1 Nonparametric regression for the whole dataset 

By applying the nonparametric regression, the 3-elements 
vector ˆ  is computed for each point. The vector contains the 
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parameters of a local interpolating plane, estimated by means of 
the least squares regression process (7). To this purpose, a 
suitable bandwidth value is adopted. Its definition permits to 
limit the set of points involved in the computation of the above 
mentioned parameter vector. It is evident that a proper value of 
the bandwidth is fundamental for reaching reliable results, and 
that it is strictly joined to the LIDaR point density to which the 
segmentation process is applied. Anyway, once a starting value 
is fixed, the algorithm dynamically modifies its dimension so to 
automatically adapt it to the particular analysed surface. 

5.2 Subset segmentation by a region growing method 

To successfully apply the parametric regression, it is mandatory 
to identify zones for which the characteristic geometrical 
parameters have a homogeneous behaviour and where the most 
part of the data follows a specific trend. A suitable segmentation 
process of the whole dataset is then required. For such end, at 
this step, the algorithm creates various clusters starting from a 
randomly selected point not yet belonging to any other cluster. 
The surrounding points of the original chosen one are then 
analysed and the bandwidth value is exploited to limit the 
searching only to the points having a Euclidean distance less 
than the bandwidth. The clustering procedure is simultaneously 
carried out analysing the value of the predicted height i0ẑ  and 

of the partial derivatives along East 
iEEz  and North 

iNNz  directions, i.e. the slope of the interpolating planes. 

If the round points present difference values in slope and/or in 
height within a fixed threshold, than they are labelled as 
belonging to the same class and putted into a list. This 
algorithm goes on applying the same procedure to each list 
element, till this is fully completed. 
Afterwards, the procedure runs again from the beginning, 
creating a new entity from a new point randomly chosen. The 
algorithm ends when every point has been analysed. 
Summarising, by means of this method based on height 
difference values and slope evaluations, a first raw segmentation 
of the whole dataset is carried out: hence, each cluster of points 
will be a specific initial outlier-free subset for a SAR-FS 
parametric filtering process. 

5.3 Definition of the searching areas 

As mentioned before, each SAR-FS filtering process, starting 
from the just detected subsets, has to be confined to its 
surrounding points and not to the whole dataset. In other words, 
for each subset a searching area has to be identified. To this 
purpose, a Delaunay triangulation is accomplished for the 
whole dataset; afterwards, the points surrounding the subsets 
are analysed. If a point does not belong to any other subset and 
is closer than a fixed threshold, it is joined to the searching area. 
Once these operations are carried out for each subset, a 
corresponding number of searching areas are identified. 

When the three fully automatic steps are ended, the whole 
dataset is subdivided into the same number of subsets and 
searching areas. In conclusion, being m the dimension of a 
generic feature within a dataset of mn  points, by means of 
this nonparametric algorithm, the achieved dimension of the 
raw subset sn  and of the searching area san  (with 

sas nmn ) is close enough to m. In this way, the iterations 
of the SAR-FS parametric algorithm are dramatically reduced 
(details about this software implemented by Matlab  in 
Crosilla, Visintini and Prearo, 2004a).

6. SOME APPLICATIONS 

The mixed nonparametric and parametric segmentation 
algorithm has been tested on LIDaR data acquired with an 
Optech® ALTM 3033 airborne system over the City of Gorizia 
(North-East Italy) in November 2003 and April 2004. The 
helicopter scans of more than 30 million points are 
characterized by a mean density of 2 p.ts and 15 p.ts/m2,
respectively. Interested readers can find results and evaluations 
of the terrain parametric filtering method in Crosilla, Visintini 
and Prearo (2004a) and for building roofs detection in Crosilla, 
Visintini and Prearo (2004b). The latter problem of building 
modelling is widely described in the literature (e.g. see Brenner, 
1999 for parametric algorithms, and e.g. Rottensteiner and 
Briese, 2003 for nonparametric ones). In the previous 
experiments, corresponding results have been obtained by 
processing the data with the SAR-FS program and the well-
known TerraScan software (Soininen, 2003); this last software 
applies a nonparametric approach for the building modelling. 

Throughout this chapter, some fully automatic applications of a 
mixed nonparametric and parametric segmentation method are 
presented: firstly, the case of a simple building is described in 
detail, while afterwards only uppermost results are shown for a 
very complicated edifice. 
The first dataset consists of n = 29.662 high density acquired 
points over a building with a four roof planes near to a two roof 
planes house, a tree, a garden and a road ground surface, low 
vegetation and cars (see in Figure 1, the orthophoto (on left) 
and the axonometric view from South-West (on right)). 

Figure 1. Left: orthophoto of one experimental area; right: view 
of laser points (colour by RGB from orthophoto). 

Figure 2. Left: view of laser points (colour by iz  elevation); 
right: view of interpolated points (colour by i0ẑ  elevation). 

1) Nonparametric regression
In the first processing step, vector ˆ  has been evaluated for 
each point. By comparing the estimated i0ẑ  values (Figure 2 on 

left), with the acquired iz  values (Figure 2 on right), the 
smoothing effect of the interpolation process can be clearly 
noticed. In particular in the upper part of Figure 2, let note how 
the aerial powerline, detected thanks to the high density 
scanning, yields a raising effect in the nonparametric 
interpolated surface. Figure 3 on left represents the values along 
the East direction of the planes slope: their range can vary from 

 to + , especially around quasi-vertical elements, as the 
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building walls, the chimney pots and the tree boundary. 
Therefore, these extreme values are skipped in the plotting, 
leaving in black the corresponding areas. 

Figure 3. Left: plot of slope values along East (colour by value); 
right: raw subsets detected by region growing (colour by cluster). 

2) Raw subset segmentation
In this step, 20 different clusters of points have been detected 
(Figure 3 on right). The only warning regards the mentioned 
points with extremely scattered slope: they have not been 
assigned to any cluster. In the same figure, let see how a lot of 
points are not yet assigned (black zones): apart from the quasi-
vertical areas, these points belong to the irregular surface over 
the vegetation or to the roof ridges, namely everywhere the 
slope of the interpolated surface is very much variable. 
3) Definition of the searching areas
In this step, for each one of the 20 previously selected subsets, 
the corresponding searching areas have been detected. In this 
way, the not yet segmented points fully contained in the raw 
subsets, as the chimneys, are assigned to the related searching 
areas, while the border area points (roof ridges) have a multiple 
allocation into each nearby area. 
By means of some morphological considerations, the subsets 
associated to the roof planes can be identified with respect to 
those one relative to the ground. The four raw subsets and the 
corresponding searching areas of the case study building have 
been submitted to the parametric segmentation later described 
in detail. Figure 4 shows an axonometric view of the searching 
area points for the North roof plane, together with the vectors 
obtained by the specific tool “Construct Buildings” of 
TerraScan, for a better interpretation. 

Figure 4. Points of searching area for North roof plane; left: raw 
subset (in green); right: SAR-FS final segmentation (in green). 

4) Parametric segmentation
The 4 roof planes raw subsets (Figure 5 on left) have been 
submitted to the robust automatic SAR-FS segmentation 
(Figure 5 on right, and Figure 4 on right for the North roof 
plane only). The obtained results are very promising: the 
geometry of these plain surfaces is well determined, rightly 
rejecting each time the points belonging to chimneys, to 
contiguous planes or to the surrounding terrain. 

Figure 5. Left: raw subsets relating to roof planes; right: roof 
planes after parametric segmentation (both colour by cluster) 

Figure 5 on right shows the final obtained segmentation of the 
roof points. It is in full agreement with the interactive assisted 
TerraScan modelling, so qualitatively proving the accuracy and 
reliability of the proposed mixed analytical procedure. 
Furthermore to better understand the computational role of both 
nonparametric and parametric procedures, Table 6 reports the 
number of points involved in the segmentation process, starting 
from a dataset composed of 29.662 points. 

Roof plane 
points of raw 
subsets ( sn )

points of 
searching 

areas ( san )

points found 
by SAR-FS 

(m)
North 644 1.993 1.220 
East 749 1.777 1.511 

South 664 2.022 1.069 
West 517 2.398 1.601 

Table 6: Number of points in the roof segmentation processes. 

The nonparametric clustering averagely detects sn  = 643 points 
for each roof plane. The mean value san  of searching areas 
points is 2.047, while 707 is the mean number )( sn-m  of 
points iteratively added to each plane by the SAR-FS procedure. 

The second dataset consists of n = 75.288 points relating to an 
area with a large building, with 30 roof planes, a great tree in 
the court, and grass, road and pavement ground surface in the 
surroundings (see the orthophoto in Figure 7). 

Figure 7: Orthophoto of a complex roof tested for segmentation. 

The subsequent figures show the main aspects of the whole 
segmentation processing. The slope values along East direction 
present better regularity of the interpolated surface in 
correspondence of the roof and also for artificial ground areas 
(see Figure 8). Thus, by the region growing step, 41 different 
point clusters have been detected, as depicted in Figure 9 
together with the TerraScan vector building modelling. Figure 
10 and axonometric Figure 11 show the final nonparametric and 
parametric segmentation, performed for the 30 roof planes only. 
A good agreement of such a segmentation with the TerraScan 
modelling arises again, also for this rather complex building. 
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 Figure 8. Plotting of slope values along East (colour by value). 

Figure 9. Subsets detected by region growing (colour by cluster). 

Figure 10. Final segmentation vs TerraScan modelling. 

Figure 11. View of final segmentation vs TerraScan modelling. 

7. CONCLUSIONS 

The paper proposes an original technique for the robust 
segmentation of laser data. The method benefits of the 
combination of a mixed nonparametric and parametric 
regression model to automatically identify the homogeneous 
geometrical features present in the whole dataset. A local 
polynomial regression is used to define the original raw clusters 
of laser points. A forward search algorithm applied to a robust 
simultaneous autoregressive model is successively used to 
rigorously define the size and shape of the homogeneous 
geometrical features characterizing the laser data. The numerical 

results put in evidence the capability of the method proposed in 
terms of reduced computational memory, short time consuming 
and high definition and reliable segmented objects. 

REFERENCES 

Allen, D.M., 1974.  The relationship between variable selection 
and data augmentation and a method for prediction. 
Technometrics, 16, 125-127. 

Anselin, L., 1988.  Spatial Econometrics: Methods and Models,
Kluwer Academic Publishers, Dordrecht. 

Anselin, L., 1995.  Local indicators of spatial association - 
LISA, Geographical Analysis, 27, 93-115. 

Atkinson, A.C., Riani, M., 2000.  Robust Diagnostic 
Regression Analysis, Springer, New York. 

Beinat, A., Sepic, F., 2005.  Un programma per l’elaborazione 
di dati LIDaR in ambiente Linux (in Italian), Bollettino della 
Società Italiana di Fotogrammetria e Topografia, in press. 

Brenner, C., 1999.  Interactive modelling tools for 3D building 
reconstruction. Photogrammetric Week 99, Herbert Wichmann 
Verlag, Heidelberg, pp. 23-34. 

Crosilla, F., Visintini, D., Prearo, G., 2004a.  A robust method 
for filtering non-ground measurements from airborne LIDAR 
data, in: Int. Arch.s of Photogrammetry, Remote Sensing and 
Spatial Information Sciences, XXXV, B3, Istanbul, 196-201. 

Crosilla, F., Visintini, D., Prearo, G., 2004b.  Sperimentazione 
in ambito urbano dell’algoritmo autoregressivo SFS (Spatial 
Forward Search) per il filtraggio dei dati laser (in Italian), Atti
dell’VIII Conferenza Nazionale ASITA, 1, 937-942. 

Fox, J., 2004.  Nonparametric Simple Regression: Smoothing 
Scatterplots. Sage, Thousand Oaks. 

Hardle, W., 1990.  Applied Nonparametric Regression,
Cambridge University Press. 

Pace, R.K., Barry, R., Sirmans, C.F., 1998.  Quick computation 
of spatial autoregressive estimators, Journal of Real Estate 
Finance and Economics, 1-12. 

Rottensteiner, F., Briese, C., 2003.  Automatic generation of 
building models from LIDAR data and the integration of aerial 
images. in: Int. Arch. of Photogrammetry, Remote Sensing and 
Spatial Information Sciences, Dresden, Germany, Vol. XXXIV, 
Part 3/W13, pp. 174-180. 

Sclocco, T., Di Marzio, M., 2004.  A weighted polynomial 
regression method for local fitting of spatial data, Statistical 
Methods & Applications, 13, 315-325. 

Sithole, G., Vosselman, G., 2003.  Comparison of filtering 
algorithms, in: Int. Arch. of Photogrammetry, Remote Sensing and 
Spatial Information Sciences, XXXIV, B/W13, Dresden, 71-78. 

Soininen, A., 2003.  TerraScan. User Guide. Terrasolid. 

ACKNOWLEDGEMENTS 

This work was carried out within the research activities 
supported by the INTERREG IIIA Italy-Slovenia 2003-2006 
project “Cadastral map updating and regional technical map 
integration for the GIS of the regional agencies by testing 
advanced and innovative survey techniques”. 

10 m 

10
 m

 

10 m 

10
 m

 

10 m 

10 m 

10
 m

 

10 m 

10
 m

 

ISPRS WG III/3, III/4, V/3 Workshop "Laser scanning 2005", Enschede, the Netherlands, September 12-14, 2005

137


