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ABSTRACT

We evaluate the potential of deriving a vegetation leaf area index (LAI) from small footprint airborne laser scanning
data. Based on findings from large area histograms of discrete laser returns for two contrasting plots, L AT is estimated
from the fraction of first to last and single returns inside the canopy. The canopy returns are classified using thresholding
of LIDAR raw data heights subtracted by interpolated digital terrain model heights. This should yield LAI estimates
being independent of fractional vegetation cover, an ambiguity many passive optical approaches suffer from. Validation
is carried out using 78 georeferenced hemispherical photographs, with LAT and gap fractions for a range of zenith angles
being computed using the Gap Light Analyzer (GLA, Frazer et al. [1997]). Since the range sensitivity of the hemispherical
photographs is not a priori known, we use variable LIDAR data trap sizes to find a suitable diameter. This is achieved
searching the maximum R? value of the regression for the trap size range from 5 to 50 m diameter. Larger diameters ( 30
m ) provide best results for our canopy types. Regressions of LIDAR estimates shows a moderate agreement with field
data based on hemispherical photographs, with B2 0.6 for LAI. Due to either heterogenity of the canopy or geolocation
errors, a quite large amount of noise seems to be attributed to the regression, explaining the somewhat low values of R2.

1 INTRODUCTION

The availability of robust estimations of vegetation den-
sity measures such as LAl is critical for a number of appli-
cations. Passive optical remote sensing systems are most
popular for the indirect retrieval of LAI, due to their avail-
ability and relatively low costs. Most often regression meth-
ods using some kind of band ratio are applied [Cohen et
al., 2003; Colombo et al., 2003], and in some cases ra-
diative transfer modeling [Koetz et al., 2004; Atzberger,
2004] is used. One of the largest problems that these ap-
proaches face is the unknown or not well known vertical
structure of the canopy. LIDAR (LIght Detection And
Ranging) systems can overcome this short come by pen-
etrating the canopy and revealing the vertical stratification
of the canopy. Thus, LIDAR systems have been widely

used for stand wise derivation of structural parameters [Lovell

et al., 2003; Means et al., 2000; Lefsky et al., 1999], often
by means of regression methods choosing some LIDAR
predictor variables (e.g. height percentiles) for ground based
measures of structural information [Naesset, 2002, 2004;
Cohen et al., 2003; Andersen et al., 2005]. With high point
density, the derivation of single tree metrics becomes pos-
sible, it’s feasibility has been shown by Hyyppae et al.
[2001]; Andersen et al. [2002]; Morsdorf et al. [2004]. Some
researchers have already assessed the potential of deriving
LAI from laser scanning data. Riano et al. [2004] used a
relation from Gower et al. [1999] to compute LAI from
the gap fraction distribution derived by means of airborne
laser scanning, whereas Lovell et al. [2003] used ground
based laser range finder information to model LAI. Radia-
tive transfer modeling of LIDAR waveforms for different
canopy types has also been accomplished [Sun and Ran-
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son, 2000; Ni-Meister et al., 2001], but so far only for large
footprint sensors. Small footprint sensors are in most cases
only capable of recording discrete returns (e.g. first and
last return), but not the entire waveform. Still, these dis-
crete returns contain valuable information about the vege-
tation density and structure at a much higher spatial resolu-
tion (O ~ 1 m) that large footprint sensors can not provide.
It has been shown that first and last returns can be used to
model stand properties such as basal area and LA [Lim et
al., 2003], but first and last pulse information have been put
into a single vegetation class in this study. Our objective
is to evaluate the potential of estimating LAI from small
footprint laser data exploiting the information contained in
multiple return types, using field measured LA values as
validation.

2 DATA

2.1 Site description and Field Data

The study area for the acquisition of the field data is located
in the eastern Ofenpass valley, which is part of the Swiss
National Park (SNP). The Ofenpass represents a dry inner-
alpine valley with rather little precipitation (900-1100 mm/a).
Surrounded by 3000 meter peaks, the Ofenpass valley starts
at about 1500 m a.s.l. in the west and quickly reaches an
average altitude of about 1900 m a.s.l towards the east.
The south-facing Ofenpass forests, the location of the field
measurement, are largely dominated by mountain pine (Pi-
nus montana ssp. arborea) and some stone pine (Pinus
cembra) as a second tree species, being of interest for nat-
ural succession. These forest stands can be classified as
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Figure 1: The Digital Terrain Model (DTM) of the Ofenpass area in the Swiss National Park. The smaller area marked
by the black box was sampled with higher point density due to the lower flying height of 500 m above ground. A canopy
height map of that area is displayed in the lower left. Black dots mark positions of hemispherical photographs. Black
squares mark areas where the histograms in Figures 2 and 3 were computed from.

woodland associations of Erico-Pinetum mugo. The un-
derstory is characterized by low and dense vegetation com-

posed mainly of Vaccinium, Ericaceae, and Seslaria species.

In Figure 1 an overview of the test site is given. More than
20 % of the stand are upright standing dead trees, with the
minimum tree age being 90 years, the mean and maximum
being 150 and 200 years respectively. The whole stand has
regenerated after a period of clear cutting in the 18th and
19th century, and has been without any management since
the foundation of the Swiss National Park in 1914. The
main cause for dying of the trees is the root rot fungi, as
described in Dobbertin et al. [2001]. The small plot in Fig-
ure 1 shows a canopy height model (CHM) of the area over
flown with the lower altitude. Black dots indicate positions
where hemispherical photographs were taken. 73 of these
plots were geolocated by means of handheld GPS and five
using a differential GPS.

2.2 Deriving field estimates of LAl

L AT was first defined as the total one-sided area of photo
synthetic tissue per unit ground surface area Watson [1947].
This definition is only valid for broad leaf forests though,
and consequently Myneni et al. [1997] defined the LAl
as the maximum projected leaf area per unit ground sur-
face area. There are various ways of determining LAT in
the field, a contemplative summary is given by Jonckheere
et al. [2004]. Methods can be categorized in two classes,
direct and indirect. Direct methods generally use destruc-
tive sampling to estimate the total number of leaves on a
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tree and their included angles and distribution to estimate
LAI. Indirect methods mostly measure some aspect of the
radiative regime and infer the LAI from the distribution
of light inside the canopy. These approaches rely on some
homogeneity inside the canopy (e.g. uniform leaf angle
distribution) and tend to produce errors if these constraints
are not fulfilled. Consequently, a lot of samples are needed
in the case of heterogene canopy to get stable and reliable
estimates of these parameters [Weiss et al., 2004]. Using a
Nikon 4500 digital camera together with fish-eye lens and
a tripod, we took 73 hemispherical photographs at plots
located by means of a handheld GPS, thus introducing a
positional uncertainty of a about 5 m. Five were were ge-
olocated using differential GPS equipment, thus reducing
the positional uncertainty to some centimeters. The hemi-
spherical photographs were analyzed using the Gap Light
Analyzer (GLA, [Frazer et al., 1997]), by means of manual
thresholding.

2.3 Laser Scanning Data

In October 2002 a helicopter based LIDAR flight was car-
ried out over the test area, covering a total area of about
14 km?2. The LIDAR system used was the Falcon II Sen-
sor developed and maintained by the German company
TopoSys. The system is a push-broom laser altimeter record-
ing both first and last reflection from the laser signal (first/last
pulse). The flight was conducted with a nominal height
over ground of 850 m, leading to an average point den-
sity of more than 10 points per square meter (p/m?). A
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smaller subset of the area (0.6 km?) was over flown with a
height of 500 m above ground, resulting in a point density
of more than 20 p/m?, thus combining the two datasets
would yield to a point density of more than 30 p/m? for
both first and last pulse. We only used data from the lower
flight in this study. The footprint sizes were about 0.9 m
in diameter for 850 m flight altitude and about 0.5 m in
diameter for 500 m altitude. The raw data delivered by
the sensor (x,y,z - triples) was processed into gridded ele-
vation models by TopoSys using the company’s own pro-
cessing software. The Digital Surface Model (DSM) was
processed using the first pulse reflections, the Digital Ter-
rain Model (DTM) was constructed using the last returns
and filtering algorithms. The grid spacing was 1 m for the
large area and 0.5 m for the smaller one, with a height res-
olution of 0.1 m in both cases. A quality analysis of the
raw data was done using six artificial reference targets and
is described in detail in Morsdorf et al. [2004]. Standard
deviation of height estimates based on raw echos on these
targets were as low as 6 cm, with the internal accuracy of
the LIDAR data being well below pixel size of the raster
models.

3 METHODS

The triggering of a laser echo from an return signal de-
pends on both the size and the reflectivity of the illumi-
nated target, with the latter having a larger influence on a
target’s visibility than the first [Baltsavias, 1999]. In case
of vegetation, it will depend as well on the distribution of
reflecting elements such as leaf or needle shoots. In most
vegetation cases, a first return is triggered close to the top
of the canopy, with an systematic underestimation due to
vegetation density issues and potential undersampling (see
Gaveau and Hill [2003] for details). If the vegetation is
not too dense, a part of the beam can further penetrate the
canopy, until the threshold for the intensity is surpassed a
second time and the so called last return is triggered. De-
pending on the vegetation openness and density this can
be on the ground or inside the vegetation. A minimum dis-
tance needs to be in between first and last return for their
separation, which depends primarily on the pulse duration
of the laser emitter. For the Falcon II systems this mini-
mum distance is a about a meter, which can be seen in Fig-
ures 2 (a) and 3 (a). In the two figures a height distribution
of the difference of first and last return is shown, and one
can clearly notice the gap from zero to about 1.2 m. The
heights in the lower panels, namely Figures 2 (b) and 3 (b),
have been subtracted by terrain heights interpolated to raw
data coordinates from the DTM Toposys provided. With a
system recording first and last pulse, we can classify three
different types of returns scenarios :

o first echo
e last echo
e single echo, first return = last return

The term single echo describes the case where only one
return is triggered from a return signal, resulting in both

values having the same height. Most single returns will
come from plain surfaces such as roads or generally from
the ground, but there are some in the vegetation, as can be
seen in the lower panels of Figures 2 and 3. In these fig-
ures are a illustration of these three return types. Colored
in medium and darker gray, the last and single returns are
(if not on ground) mostly concentrated in the upper canopy,
with their maximum just before the maximum of total re-
turns. Note that limits of the y-axis have been lowered for
better visibility of the vegetation part of the histogram, and
thus, the percentage of last/single returns to first return and
the absolute number of ground returns can not be drawn
from this graph. Histograms have been derived from areas
with different vegetation densities called LWF (Fig. 2) and
STA (Fig. 3). These areas are marked by black squares in
Fig. 1.
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Figure 2: Histogram of difference of first and last pulse (a),
histogram of first, last and single echos (b) for site LWF.
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Figure 3: Histogram of difference of first and last pulse (a),
histogram of first, last and single echos (b) for site STA.

Our hypothesis is that the probability of either of these
three return types will depend on vegetation density, if veg-
etation reflectance can be assumed to be constant. Whether
this assumption is valid for our study, will be discussed be-
low. When comparing the two sites LWF and STA, one can
note that the fraction of last and single returns in the upper
canopy and lower canopy is higher for STA then for LWF,
with the mean LAI from field measurements being about
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1 at LWF and about 2 at STA. We concluded that the veg-
etation density could be derived by using this fraction as
a proxy. Thus, we propose to compute a LAl proxy from
LIDAR data by:

Z Efirst
Z Esingle + Z Elast

LAIproa: = (])

Eftirsts Esingle and Ejq,; denote the three types of returns
described in detail above, but only for crown returns. The
observation of different return fractions for different vege-
tation densities from Figures 2 and 3 leads to the verbali-
sation of Equation 1, which is a quantitive transcription of
our hypothesized relationship. The vegetation returns are
classified by thresholding the height over terrain of the raw
laser hits with a value of 1 m. This distinguishability is an
advantage of small footprint laser scanners raw data com-
bined with a DTM over large footprint systems and other
passive optical approaches.

One of the largest problems in validating the L AT by indi-
rect methods arises from the fact that needles are clumped
into shoots and the dispersion of crowns in the canopy,
which manifests a discontinous plant canopy. These two
effects or better, generally the inhomogenous distribution
of canopy elements (crowns,branches,twigs,shoots and leafs)
on all possible scales need to be adressed. For many canopy
types, clumping at shoot scale and inhomogenous crown
dispersion are the dominant effects Ni-Meister et al. [2001].
Clumping at shoot scale can be adressed by correcting the
indirect LA estimates (often called effective LAI, LAI ¢
with a factor depending on the projection function of canopy
elements [Weiss et al., 2004]. We decided to derive only
LAIy, since a simple coefficients does not alter the qual-
ity of our regressions. If one needs values for true LAI,
one would have to multiply our values by 1.75 [Koetz et
al., 2004]. Dispersion of crowns inside the canopy is not
an issue for our approach, since we compute the fraction
of returns only from returns being off ground more than a
meter, hence trees, since no shrubs are present on our study
site. Thus, L AT proxy is only derived from crowns, due to
the advantage of high point density, small footprint scan-
ner being able to discrimate vegetation from ground returns
based on the Digital Terrain Model. In order to assess
the feasibility of our approach regarding the assumption
on uniform reflectance of the canopy, we conducted some
tests using PROSPECT [Jacquemoud and Baret, 1990], mod-
eling the reflectance of the green canopy elements in our
study site using average leaf parameters from field mea-
surements [Koetz et al., 2004]. We varied the moisture
content, as at 1560 nm absorbtion due to moisture is the
dominant effect, in a range observed in the field and calcu-
lated the leaf reflectance. This yielded 20.8 % reflectance
for the lowest of moisture observed and 19.2 % for the
highest value observed, making up for an absolute differ-
ence of only 1.6 %. This is small enough to be neglected,
considering results from practical test using artifical targets
on target visibility using different reflectances [Wotruba et
al., 2005]. All other parameters of PROSPECT were left
constant, since our test site is predominantly covered by
only one tree type, mountain pine.
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4 RESULTS
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Figure 4: Coefficient of determination (R?) for LAI re-
gression for a range of LIDAR raw data patches. Field
measured LAI was computed from hemispherical pho-
tographs.

Since we did not know how large the LIDAR data trap size
needs to be in order to capture the same area as the hemi-
spherical photographs, we computed our LAI proxy for a
range of LIDAR data trap sizes. Then we did a regression
analys and computed the R? as a measure of regression
quality. The outcome is depicted in Fig. 4. The values
of R? are as low as 0.1 for patches being 5 m in diame-
ter and reaches a local maximum of about 0.6 at 30 m in
diameter. For values larger than that, there is no signifi-
cant rise of R2. Thus, we chose a diameter of 30 m for the
LAI regressions in Fig. 5. The lack of a clearly visible
inflection point for the values of R? in Fig. 4 is probably
due to the fact that for higher data trap sizes the values of
L AT become more similar to each other. This yields a flat-
ter regression curve with lower noise, and thus still a high
R?, even though the meaningfulness of the regression is
reduced. The quite large size of the LIDAR raw data trap
could lower the effect of inprecise georeferencing to some
extent, even though the inner few meters of a hemispher-
ical photo should contribute more to field measured LAT
values.

In Fig. 5 the regression of LIDAR derived LAl s and
field measured (hemispherical photographs) is depicted.
R? is 0.6, with the RM S being 0.03. The regression mod-
els coefficients were used to compute LAl , the original
values of our LAI. sy proxy (fraction of first to single/last
pulse in vegetation) were in the range of 0.1 to 0.3. The
black line denotes the one on one relationship for com-
puted LAl.f; values. It is also visible that the range of
values (hence noise ) around the one on one relation is
larger for higher LAl values.
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Figure 5: Regression of LIDAR derived LAl.;; with
LAI.;; from hemispherical measurements. Processing of
hemispherical photgraphs was done using GLA. A LIDAR
data trap size of 28 m was used.

5 DISCUSSION AND CONCLUSIONS

In the past years, airborne laser scanning has been estab-
lished as a valuable tool for forest structural analyses. We
have tried to establish a new predictor variable for vegeta-
tion density, namely L A, by using the fraction of different
returns types inside the canopy. Regression of the LIDAR
estimates with field data from hemispherical photographs
showed moderate agreement, with the R? being 0.6 and the
RM S being 0.035. Quite an amount of noise was visible
in our regression, leading to somewhat lower R? values.
Possible cures could be the use of more samples and even
more precise georeferencing, e.g. differential GPS mea-
surements for all sampling locations. For portability of this
approach to other study sites, a vegetation specific correc-
tion parameter could be derived. This parameter will prob-
ably be influenced by two factors: reflectance differences
and clumping of canopy elements at smaller scales than
footprint size. Clumping is a well studied phenomenon,
since it needs to be corrected for most field based methods
as well (e.g. LAI2000, hemispherical photographs, cep-
tometer, [Jonckheere et al., 2004]). Correction factors have
been derived for various canopy types, that are used in day
to day field work. Hence, it would not be too big of a prob-
lem to extent their use to airborne LIDAR data. Canopy
reflectance, though, is an issue that needs to a more com-
plicated procedure. For LIDAR - LAI. s estimates to be
inter-comparable, the reflectance of canopy elements in the
wavelength of the laser (our sensor is at 1560 nm) should
be roughly the same. If not, a correction factor needs to be
applied. Modern LIDAR systems allow as well the record-
ing of the intensity of the returned signal, so this infor-
mation could be used for assessing effects of canopy re-
flectance differences. Unfortunately, this option was not
yet available in 2002 when our flight campaign was car-
ried out. A more sophisticated treatment of the three return
classes to retrieve L A1, instead than just taking the fraction
of first to single and last returns could also improve the re-
sults. It might be that the single returns a more sensitive to
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LAT changes and vice versa. This will be looked at in fu-
ture studies. It would be a benefit to have instruments that
deliver inter-comparable results for LA from very differ-
ent areas. This can only be achieved by taking the radiative
regime and it’s involved physical processes into account.
We have tried to take a step into that direction by choos-
ing direct, physically meaningful metrics of LIDAR raw
data for L AT opposed to regression or multiple regression
with a set of statistical predictor variables as in Naesset
[2004] or Lim et al. [2003]. Combined with the method
for single tree extraction [Morsdorf et al., 2004], the work
we presented would allow the direct retrieval of an close to
“actual” foliage profile from airborne laser scanning data
[Ni-Meister et al., 2001; Lovell et al., 2003]. This is due
to the fact that only the small scale clumping (smaller than
branch level) needs to be corrected, whereas crown disper-
sion is actually known due to high point density and small
footprint size of the laser scanner used in this study.
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