
GLOBAL UNCERTAINTY IN EPIPOLAR GEOMETRY VIA FULLY AND PARTI ALLY DATA-DRIVEN
SAMPLING

C. Engels, D. Nistér

Center for Visualization and Virtual Environments, Dept. of Computer Science,
University of Kentucky, Lexington, KY 40507, USA

(engels@vis, dnister@cs).uky.edu

KEY WORDS: Relative orientation, Stucture from Motion, Epipolar Geometry

ABSTRACT:

In this paper we explore the relative efficiency of various data-driven sampling techniques for estimating the epipolarge-
ometry and its global uncertainty. We explore standard fully data-driven methods, specifically the five-point, seven-point,
and eight-point methods. We also explore what we refer to as partially data-driven methods, where in the sampling we
choose some of the parameters deterministically. The goal of these sampling methods is to approximate full search within
a computionally feasible time frame. As a compromise between fully representing posterior likelihood over the space of
fundamental matrices and producing a single estimate, we represent the uncertainty over the space of translation direc-
tions. In contrast to finding a single estimate, representing the posterior likelihood is always a well-posed problem, albeit
an often computionally challenging one. Furthermore, thisrepresentation yields an estimate of the global uncertainty,
which may be used for comparison between differing methods.

1 . INTRODUCTION

Estimation of the relative orientation between two images
is an extensively researched subject in computer vision.
Many methods have been proposed and the state of the art
is now quite elaborate and mature. In our view, the main
requirements on an estimation method are that it
• Is accurate (both locally and globally)

• Is robust

• Is computationally efficient

• Can exploit all constraints, exact and approximate

• Gives a truthful uncertainty estimate (local and
global)

It is widely accepted that accuracy is best achieved with it-
erative refinement, called bundle adjustment [24], accord-
ing to a cost function that is derived from a realistic model
of the problem. However, bundle adjustment is dependent
on an initial starting point and only achieves what we refer
to as local accuracy, which is the ability to precisely pin-
point a local minimum of the cost function. Perhaps even
more important and challenging in computer vision is to,
insofar as possible, achieve global accuracy, which is the
ability to reliably locate the global minimum of the cost
function.

Robustness is achieved by using an appropriate data
model that includes data distortions and outliers. Com-
putational efficiency is always desirable, although the re-
quirements are more stringent in some applications than
others. It is likewise desirable to use all available con-
straints, such as camera calibration information.

Figure 1: We derive an uncertainty representation for
epipolar geometry parameterized by the epipole in the first
image. The figure shows an example of the uncertainty
representation when the number of point correspondences
is too low, leading to intricate patterns of probability mass.
The global maximum is circled, but notice the multiple
peaks captured by the representation.

Gauging the uncertainty is important, since without a
notion of how likely it is that the estimate at hand is in
error, it is very hard to take any useful action based upon
it. It is best-practice to gauge local uncertainty around an
estimate by analyzing the local shape of the cost function
around the minimum. However, such an uncertainty mea-
sure only makes sense if the global minimum was truly
found. Moreover, it assumes that the cost function is uni-
modal and nicely behaved. This is seldom the case. Due to



outliers, noise, the nonlinear nature of the problem, planar
scenes and small translation, the cost function may lack a
clear global minimum or have several throughs of compli-
cated shape.

Therefore, to assess global uncertainty, an estimation
method should ideally provide a representation of the pos-
terior probability distribution over all the regions of pa-
rameter space where the probability is significant.

For strong data, producing a single estimate is possible.
However, there will always be situations with ambiguous
data, in which obtaining a single estimate is essentially an
ill-posed problem. On the other hand, provided we have
selected an appropriate data model, representing the pos-
terior distribution is always a well-posed problem. Repre-
senting the posterior may be computationally difficult, but
it is well-posed for any input data.

Our approach draws upon background material in prob-
abilistic Bayesian frameworks and multiple view geome-
try. Due to space limitations, we by necessity have to as-
sume that the reader has some familiarity with these con-
cepts. The interested reader is referred to [4, 5, 20] for the
former and [6, 9, 15] for the latter.

2 . APPROACH

Ideally, we would like to evaluate the likelihoodp(d|w)
for all possible world statesw to derive our representation
for the posterior distribution. However, it is impractical
to perform full search over a high-dimensional space (in
this case five or more dimensions). Such a complete rep-
resentation would also be unmanageable for a module that
needs to use the results for further computation or decision
making.

To reach an efficient representation of the likelihood,
we will rely on the following observation: If the epipole
in the first image is known, the remaining parameters of
the fundamental matrix (simply rotation in an uncalibrated
setting) are uniquely determined unless all the points from
the point correspondences and the epipole lie on a com-
mon conic in the second image.

Thus it is natural to represent the likelihood with an
explicit representation indexed by the translation direction
(epipole in the first image).

The usefulness of treating the translation and rotation
differently has been understood by many authors and ex-
ploited in different ways, see for example [10, 3, 18, 1].
It is also closely related to the highly popular plane-plus-
parallax approach [11, 14, 21, 23, 13], where one relies
on the existence of a dominant homography and solves for
that in order to guide the search for the translation direc-
tion.

3 . DATA DRIVEN SAMPLING

As argued above, we can not search the likelihood over
the whole parameter space. Several authors have noted
that it can be much more efficient to search the parame-
ter space with data-driven hypothesis generators [2, 25].
We will use hypothesis generation in a similar manner as
in RANSAC [7], where minimal samples of correspon-
dences are randomly chosen from the whole set of corre-
spondences. A minimal sample contains the smallest num-
ber of data points that will determine the geometric rela-
tion up to a finite number of solutions. The samples are
made minimal to minimize the risk of including devastat-
ing outliers. In this case, a minimal sample contains seven
correspondences for the fundamental matrix and five for
the essential matrix. We refer to this as fully data-driven
sampling, since the correspondences ideally should deter-
mine the fundamental matrix. We will also use partially
data-driven sampling, where for a given translation direc-
tion, we take samples containing the smallest number of
correspondences that will determine the remaining param-
eters of the fundamental matrix up to a finite number of
solutions. The samples contain five correspondences to
determine the fundamental matrix in the uncalibrated case
and three correspondences to determine the essential ma-
trix given translation direction in the calibrated case.

4 . REPRESENTATION

If we can derive an accurate representation of the data
likelihoodp(d|w) it can be converted into a representation
of the posterior by multiplying with the prior. The repre-
sentation of the posterior can then support any inferences
we wish to make based on the data.

We consider the world statew to be represented by the
fundamental matrixF and the datad to be represented by
all the point correspondences, denoted byX . Bayes’ rule
then becomes

p(F |X) ∝ p(X |F )p(F ). (1)

We store the hypotheses for the fundamental matrix in a
two-dimensional array indexed by epipole in the first im-
age. Our goal is to find the best fundamental matrix hy-
pothesis for each cell of the array and the integral likeli-
hood in each cell. LetΩ(e) denote the set of all funda-
mental matrices with the epipolee in the first image. The
desired output from our approach is

Fopt(e) =
arg max
F ∈ Ω(e)

p(X |F ) (2)

and

f(e) =

∫
F∈Ω(e)

p(X |F )dF. (3)

for all values of the epipolee. The latter can be computed
by a Laplace approximation around the former.



Along the lines of our above motivation, it is assumed
that the likelihoodp(X |F ) has a unique narrow peak in
Ω(e). By assuming that the priorp(F ) is smooth in com-
parison to the extent of the peak, the user of the output can
make the approximation

p(e|X)∝

∫
F∈Ω(e)

p(X |F )p(F )dF ≈ p(Fopt(e))f(e). (4)

In a similar manner, most inferences that one may wish
to make based on the data has to do with an integral of
some functiong(F ) times the posterior likelihood. Such
integrals ∫

e

∫
F∈Ω(e)

g(F )p(F |X)dFde (5)

can be approximated as
∫

e
g(Fopt(e))p(Fopt(e))f(e)de∫

e
p(Fopt(e))f(e)de

. (6)

The advantage is that the inferences can be made outside
the relative orientation module with any choice of prior
p(F ) using onlyFopt(e), f(e) and easy two-dimensional
integrals.

If this can be done efficiently and reliably, inferences
can be made in an application-dependent manner based on
the resulting representation, without major alterations to
the core of the computer vision algorithm.

4.1 Prior Likelihood

In the simplest case, the prior likelihoodp(F ) is set to
uniform. In some cases we may have more prior informa-
tion. For example, if we are calibrating a stereo-head, we
typically have approximate knowledge of the location of
the epipole and also of the relative rotation. We may also
work in the uncalibrated setting, but use the prior to put
approximate constraints on the calibration.

4.2 Posterior Likelihood

We use a Sampson approximation (see [9]):

s(x, x′, F )=
(x′⊤Fx)2

(Fx)21 + (Fx)22 + (x′⊤F )21 + (x′⊤F )22
(7)

where the homogeneous coordinates for the points are as-
sumed to be normalized such that their last coordinates
are one. It approximates the squared sum of magnitudes
of the smallest perturbation required to bring the image
point correspondencex ↔ x′ into agreement with the
epipolar geometry described by the fundamental matrix
(x′⊤Fx = 0). This approximation has been found su-
perior to symmetric epipolar distance and other approxi-
mations of similar computational complexity [27].

We model our data likelihood as

p(X |F ) ∝ (

N∏
i=1

σ2(σ2 + s(xi, x
′
i, F ))−1)

N−k

, (8)

whereσ is a scale parameter, which we typically set to
one pixel of a CIF image (352 × 288), N is the number
of point correspondences, and0 ≤ k ≤ 1. We determine
the value ofk experimentally in section 6.4. We have also
tried the standard way of assuming that the reprojection
errors are conditionally independent given the world con-
figuration (k = 0), dogmatically leading to a product of
many independent factors, where each factor is related to a
single point correspondence. However, we have found that
although this produces sensible peak locations of the like-
lihood, it leads to an unrealistically rapid fall-off around
the likelihood peak, resembling a delta-function and not a
realistic model of any practical situation.

5 . HYPOTHESIS GENERATORS

The hypothesis generators we use in our experiments
are:

• 5-Point (Calibrated)

• 7-Point (Uncalibrated)

• 8-Point (Uncalibrated)

• 3-Point+Epipole (Calibrated)

• 5-Point+Epipole (Uncalibrated)

For fully data-driven sampling in the calibrated case,
we use the 5-point method (5pt)[16]. In the uncalibrated
case, we use the 7-point (7pt) method and the 8-point (8pt)
method [9].

The 3-point+epipole (3pt+e) and 5-point+epipole
(5pt+e) methods are partially data-driven generators. The
former was presented in [17]. It uses the point constraints
and the known epipole to restrict the essential matrix to
a 3-dimensional linear space. The calibration constraints
are then added, leading to two conics that are intersected,
which yields four solutions. This method can be carried
out extremely fast in closed form. The latter is related
to a classical result, which is that given five point corre-
spondences, the epipoles correspond by a fifth-degree Cre-
mona mapping, also discussed in [26]. This method gives
a unique solution. It can for example be implemented by
stacking linear constraints from the point correspondences
and the known epipole into an 8×9 matrix, subsequently
extracting the unique nullvector.

6 . EXPERIMENTS

6.1 Construction of the Likelihood Image

To determine the uncertainty of an estimated epipole, we
first computed a quantized posterior likelihood over a
hemisphere of epipoles. The sign of the epipole can only
be determined using cheirality [9], which we do not en-
force. We mapped the hemisphere onto a 300×300 im-
age. In each cell, we computed the optimal fundamen-
tal matrix with translation direction in the cell. In the



cases of the partially data-driven methods, we determinis-
tically sampled the translation direction over all quantized
translations. In the fully data-driven methods, the transla-
tion direction was determined by the generated hypothe-
sis. We sampled the entire epipolar space, or about 70000
cells, in multiple sweeps, using random sets of point cor-
respondences for each sample. In the partially data-driven
methods, a small perturbation in the translation was added
within each cell to more fully represent possible funda-
mental matrices.

We explored the likelihood images for both synthetic
and real data. In the synthetic case, images with known
relative orientation were created with a scene volume of
random points. The image points were then perturbed with
Gaussian noise equivalent to one pixel of a CIF image.
Finally, outliers were simulated by uniformly scattering
a percentage of the image points in one image. For real
data, we tracked Harris corners, using normalized correla-
tion for matching. The camera was calibrated in order to
compare calibrated and uncalibrated methods.

6.2 Convergence of the Likelihood

We investigated how quickly each method converges to the
likelihood over the entire hemisphere. A straightforward
measure of the error in the estimated likelihood is given
by

error =

∫
e

(p(e) − p̂(e))de, (9)

wherep is the true likelihood and̂p is the estimated likeli-
hood. Ideally, a full search over the space of fundamental
matrices would be used to createp. Since this is infeasi-
ble, we approximated the true likelihood as the maximum
found using all five tested methods in an extremely long
computation. The final image, shown on the top left of
Figure 2, was created with 1000 sweeps, or about7 × 107

samples per method.

Figure 2: Posterior likelihood images of a scene with side-
ways translation over 1000 sweeps of the epipolar space.
From left to right, top to bottom: true likelihood; 3pt+e
method; 5pt+e method; 5pt method; 7pt method; 8pt
method.
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Figure 3: Comparison of convergence rates for the vari-
ous hypothesis generation methods. Hypothesis genera-
tion times are not taken into account.

6.2.1 Comparison of Partially and Fully Data-Driven
Methods

We compared the methods by examining the rate of con-
vergence to the likelihood. Since the uncalibrated meth-
ods create hypotheses from the space of fundamental ma-
trices, while the calibrated methods generate hypotheses
from the more restricted space of essential matrices, the
uncalibrated methods uncover a greater probability mass.
Because we calibrated the image points, the true solution
is an essential matrix, so the mass uncovered by the uncal-
ibrated methods may be overestimated.

We sampled with all methods simultaneously and
recorded the errors. Because several methods produce
multiple solutions, it was important to ensure that the
methods had equivalent numbers of samples. For the
3pt+e and 7pt methods, we disambiguated the solutions by
scoring one additional point correspondence and choosing
the hypothesis with the highest single point likelihood. For
the 5pt method, which may produce up to 10 real solutions
representing extra potentially valid solutions such as pla-
nar ambiguities, we stored the hypotheses and computed
the likelihood of one hypothesis per sampling round.

As seen in Figure 3, the fully data-driven uncalibrated
methods explore the greatest probability mass early in the
computation, while the 5pt+e method slowly converges
to the same value. The calibrated methods converge to
a different posterior likelihood, although the fully data-
driven method again converges faster than the partially
data-driven method.

6.3 Estimation of Confidence Intervals

Once we have the posterior likelihood, we create confi-
dence intervals by finding the global maximum in the pos-
terior likelihood and measuring the fraction of the proba-
bility mass that lies within a certain distance of the max-



Figure 4: Examples of confidence intervals in an image
sequence with a leftward translation. From left to right
and top to bottom, the respective probability masses within
each circled confidence interval are: 0.865, 0.567, 0.204,
0.065.

imum. That is, we start from a maximal acceptable dis-
tance, which then in turn determines the confidence level.
Typically, we used a distance of 5 degrees on the sphere.
Figure 4 shows examples of confidence intervals in like-
lihood images. The top two images represent cases with
many inlier point correspondences. The bottom left image
represents a case with relatively few correspondences and
low stability. The bottom right image represents a case that
has a critically small number of correspondences. How-
ever, these deficiencies are apparent in the representation,
due to the small probability mass within the confidence
intervals.

6.4 Verification of Confidence Interval

If we construct confidence intervals and collect statistics
on the confidence level needed to capture the true epipole,
this confidence level should ideally be a uniformily dis-
tributed random variable. To explore the sensitivity of our
confidence intervals to discrepencies between the assumed
data model and the actual data model, we use synthetic
data along with our cost function, and measure the devi-
ation from uniform distribution. A synthetic scene with
30% outliers and a known epipole was created.

A 100×100 likelihood image was created using 10
sweeps of the 5pt+e method, and the probability mass re-
quired to capture the true epipole was recorded. This was
repeated 500 times, and the cumulative distribution func-
tion of the mass fractions was plotted. A sublinear cdf
indicates overconfidence, while a superlinear cdf indicates
underconfidence.

We found the best value fork from Equation (8) to be
approximately1/2. As seen in Figure 5, this achieves a
balance in the confidence estimates, whilek = 1 leads
to underconfidence andk = 0 to overconfidence, with a
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Figure 5: Cumulative distribution functions of confidence
levels for varying values ofk. Note thatk = 0.5 most
closely matches a uniform random variable.

highly peaked likelihood.

6.5 Finding Optimal Baseline in an Image
Sequence

As a practical test of inference with our uncertainty repre-
sentation, we aim to find a pair of frames in an image se-
quence that results in the best possible 3-D reconstruction
of a scene. To accomplish this, we search for an optimal
baseline between camera positions, such that we have a
large translation required for accurate reconstruction while
still maintaining a reasonable number of inlier point corre-
spondences. Obtaining a confidence interval between dif-
ferent pairs of images allows us to choose the pair that has
the greatest mass fraction in a fixed-size confidence inter-
val, i.e. leads to the greatest confidence in capturing the
true epipole to within a fixed angle. In our experiment, we
used a video sequence with a camera undergoing sideways
translation relative to the scene. We considered all the im-
age pairs that include the first image (frame 0), leaving the
second image frame for selection. Figure 6 shows the re-
sulting fractions of the probability mass for each frame.
The peak is located at a reasonable baseline spanning four
frames. The sharp decline in mass after frame 7 is caused
by falling below an acceptable number of inlier point cor-
respondences.

7 . CONCLUSION

We have presented a framework for epipolar geometry es-
timation that draws upon both multiple view geometry and
statistics. The central theme is to derive a representation
that faithfully represents the posterior likelihood globally.
This is accomplished with a representation parameterized
by epipole location in the first image. We have explored
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Figure 6: Probability mass lying within confidence inter-
val over a series of video frames.

the efficiency of various fully and partially data-driven
hypothesis generators in deriving the representation. We
have presented experiments with confidence regions de-
rived from our representation and we have experimentally
validated the confidence regions through experiments with
synthetic data. This was done by investigating the distri-
bution of the confidence level needed to capture the true
epipole in the confidence region, which should ideally
be a uniformly distributed random variable. Finally, we
have shown on real data how the uncertainty representa-
tion helps us accomplish inference tasks that are otherwise
difficult, such as selecting which baseline to use when ini-
tializing automatic reconstruction from a video-sequence.
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