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ABSTRACT

An image-based 3D surface reconstruction technique based on simultaneous evaluation of reflectance and polarisation features is
introduced in this paper. The proposed technique is suitable for single andmulti-image (photopolarimetric stereo) analysis. It is
especially suited for the difficult task of 3D reconstruction of rough metallicsurfaces with non-Lambertian reflectance. The reflectance
and polarisation properties are used to determine the surface gradients individually for each image pixel. The presented multi-image
technique is invariant to variations of the surface albedo. We evaluate ouralgorithm based on synthetic ground truth data as well as on
a raw forged iron surface. The results we obtain for the real world example demonstrate the applicability of our method in the domain
of industrial quality inspection.

1 INTRODUCTION

Three-dimensional reconstruction of surfaces has become an im-
portant technique in the context of industrial quality inspection.
In the field of optical metrology, the currently most widely used
active approaches are primarily based onprojection of structured
light (Batlle et al., 1998). While such methods are accurate,
they require a highly precise mutual calibration of cameras and
structured light sources. Multiple structured light sources may be
needed for 3D reconstruction of non-convex surfaces. Hence, for
inline quality inspection of industrial part surfaces, less intricate
passive image-based techniques are desirable.

A well-known passive image-based surface reconstruction
method isshape from shading. This approach aims at deriving
the orientation of the surface at each pixel by using a model of
the reflectance properties of the surface and knowledge about the
illumination conditions (Horn and Brooks, 1989). The integra-
tion of shadow information into the shape from shading formal-
ism and applications of such methods in the context of fast inline
quality inspection have been demonstrated (Wöhler and Hafezi,
2005).

A further approach to reveal the 3D shape of a surface is to utilise
polarisation data. Most current literature concentrates on dielec-
tric surfaces, as for smooth dielectric surfaces, the direction and
degree of polarisation as a function of surface orientation are gov-
erned by elementary physical laws (Miyazaki et al., 2004). For
smooth dielectric surfaces a 3D surface reconstruction framework
is proposed relying on the analysis of the polarisation state of re-
flected light, the surface texture, and the locations of specular re-
flections (Miyazaki et al., 2003). In previous work, reflectance
and polarisation properties of metallic surfaces are examined,
but no physically motivated polarisation model is derived (Wolff,
1991). Furthermore, it has been demonstrated that polarisation
information can be used to determine surface orientation (Rah-
mann and Canterakis, 2001). Applications of suchshape from po-
larisationapproaches to real-world scenarios, however, are rarely
described in the literature. A variational combined shape from
shading and polarisation algorithm relying on the minimisation
of a global error function is introduced in (d’Angelo and Wöhler,
2005) and applied to 3D reconstruction of metallic surfaces.

In this paper we present an image-based method for 3D surface
reconstruction by simultaneous evaluation of information about
reflectance and polarisation. This method will be applied relying
on a pair of polarisation images of the surface (photopolarimetric
stereo). It is assumed that the scene is illuminated by unpolarised
point light sources situated at known locations. The reflectance
and polarisation properties of the surface material are measured
over a wide range of surface orientations by evaluating a series of
images acquired through a linear polarisation filter under differ-
ent rotation angles, respectively. Parameterised phenomenologi-
cal models will then be fitted to the obtained measurements. Both
reflectance and polarisation features are used to determine the
surface gradient individually for each image pixel, without intro-
ducing global constraints like smoothness (d’Angelo and Wöhler,
2005).

We systematically evaluate our method on a synthetically gen-
erated surface in order to examine its accuracy, convergence be-
haviour, and noise-robustness. We furthermore investigate the
accuracy of our 3D reconstruction technique for the real-world
example of a raw forged iron surface.

2 REFLECTANCE AND POLARISATION MODELS

2.1 Measurement of reflectance properties

The pixel intensityI(u, v) observed by a camera is governed by
thereflectance functionof the surface material,

I(u, v) = R (~n(u, v), ~s, ~v) , (1)

which depends on the surface normal~n, the illumination direction
~s, and the direction~v to the camera. We assume that both light
source and camera are situated at infinite distance from the object,
such that~s and~v are assumed to be constant. In the following,
the surface normal~n will be represented ingradient spaceby
the directional derivativesp = zx and q = zy of the surface
functionz(x, y) with ~n = (−p,−q, 1)T . We define accordingly
~s = (−ps,−qs, 1)T and~v = (−pv,−qv, 1)T in gradient space.

A well-known special case is the Lambertian reflectance func-
tion R (~n,~s) = ρ(u, v) cos θi with cos θi = ~n · ~s/ (|~n||~s|) and
ρ(u, v) as thesurface albedo. In this paper, however, we regard
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Figure 1: (a) Plot of the three reflectance components. (b) Definition ofthe world coordinate system and the azimuth angleψ.
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Figure 2: Left: Measured reflectance of a raw forged iron sur-
face forα = 75◦. The parameters of the reflectance function
(cf. Eq. 2) amount toσ1 = 3.85, m1 = 2.61, σ2 = 9.61, and
m2 = 15.8, where the specular lobe is described byσ1 andm1

and the specular spike byσ2 andm2.

metallic surfaces with a strongly non-Lambertian reflectance be-
haviour. We will assume that the reflectance of a typical rough
metallic surface consists of three components: a diffuse (Lam-
bertian) component, thespecular lobe, and thespecular spike
(Nayar et al., 1991). The diffuse component is generated by in-
ternal multiple scattering processes. The specular lobe, which is
caused by single reflection at the surface, is distributed around the
specular direction and may be rather broad. The specular spike is
concentrated in a small region around the specular direction and
represents mirror-like reflection, which is dominant in the case
of smooth surfaces. Fig. 1a illustrates the three components of
the reflectance function. We define an analytical form for the re-
flectance for which we perform a least-mean-squares fit to the
measured reflectance values, depending on the incidence angle
θi, the angleθr between the specular direction~r and the view-
ing direction~v (cf. Fig. 1a), and the phase angleα between the
vectors~s and~v:

R(θi, θr, α) = ρ

[

cos θi +

N
∑

n=1

σn · (cos θr)
mn

]

. (2)

The angleθr can be expressed in terms of incidence angle, emis-
sion angle, and phase angle according to

cos θr = 2 cos θi cos θe − cosα, (3)

such that our phenomenological reflectance model only depends
on the incidence angleθi, the emission angleθe, and the phase
angleα. Note thatα ≤ θi + θe in the general three-dimensional
case. Forθr > 90◦ only the diffuse component is considered.
The albedoρ is assumed to be constant over the surface. The
shapes of the specular components of the reflectance function are
approximated byN = 2 terms proportional to powers ofcos θr.
The coefficients{σn} denote the strength of the specular com-
ponents relative to the diffuse component, while the parameters
{mn} denote their widths. All introduced phenomenological pa-
rameters generally depend on the phase angleα. For our mea-
surements we use a goniometer to adjust the anglesθi andθe.
The phase angleα between the vectors~s and~v is assumed to be
constant over the image.

For each configuration ofθi, θe, andα, we acquire a high dy-
namic range image by combining several images taken with dif-
ferent shutter times. The reflectance of the sample surface under
the given illumination conditions is then obtained by computing
the average greyvalue over an area in the high dynamic range im-
age that contains a flat part of the sample surface. A reflectance
measurement typical for raw forged or cast iron surfaces is shown
in Fig. 2 forα = 75◦.

2.2 Measurement of polarisation properties

In our scenario, the incident light is unpolarised. For smooth
metallic surfaces the light remains unpolarised after reflection at
the surface. Rough metallic surfaces, however, partially polarise
the reflected light (Wolff, 1991). The measurement of the polari-
sation properties of the surface is similar to the reflectance mea-
surement. For each configuration of goniometer angles, five high
dynamic range images are acquired through a linear polarisation
filter at multiple orientation anglesω between0◦ and180◦. For
each filter orientationω, an average pixel intensity over an image
area containing a flat part of the sample surface is computed as
described in Section 2.1. To the measured pixel intensities we fit
a sinusoidal function (Wolff, 1991) of the form

I(ω) = Ic + Iv cos(ω − Φ). (4)

The filter orientationΦ for which maximum intensityIc + Iv is
observed corresponds to thepolarisation angle(ω = Φ). The
polarisation degreeamounts toD = Iv/Ic. In principle, three
measurements would be sufficient to determine the three parame-
tersIc, Iv, andΦ, but the fit becomes less noise-sensitive and thus
more accurate when more measurements are used. The parameter
Ic represents the reflectance of the surface.
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Figure 3: Measured and modelled polarisation properties of a raw forged iron surface. Left: polarisation angle. Right: polarisation
degree.

According to Fig. 1b, the rotation angles of the goniometer define
the surface normal̃~n = (−p̃,−q̃, 1) of the sample surface in a
coordinate system with positivex and zeroy component of the
illumination vector~s, corresponding tops < 0 andqs = 0. With-
out loss of generality we will in the following assume a viewing
direction~v = (0, 0, 1)T . The surface normal~n in the world co-
ordinate system, in which the azimuth angle of the light source
is denoted by the angleψ, is related to~̃n by a rotationRz(ψ)
around thez axis, leading to

p̃ = p cosψ + q sinψ

q̃ = −p sinψ + q cosψ. (5)

Due to the lack of an accurate physically motivated model for the
polarisation properties of rough metallic surfaces, we perform a
polynomial fit in terms of the surface gradientsp̃ and q̃ to the
measured values of the polarisation angleΦ and degreeD. In this
framework, the modelled polarisation angleRΦ is represented by
an incomplete third-degree polynomial of the form

RΦ(p̃, q̃) = aΦ + bΦp̃q̃ + cΦq̃ + dΦp̃
2q̃ + eΦq̃

3. (6)

The constant offsetaΦ can be made zero by correspondingly
defining the zero position of the orientation angleω of the lin-
ear polarisation filter. Eq. (6) is antisymmetric iñq with respect
to aΦ. At the same time,RΦ(p̃, q̃) = aΦ = const for q̃ = 0,
corresponding to coplanar vectors~n, ~s, and~v. These properties
are required for geometrical symmetry reasons as long as the in-
teraction between the incident light and the surface material can
be assumed to be isotropic.

The observed polarisation degreeRD is represented in an analo-
gous manner by an incomplete second-degree polynomial of the
form

RD(p̃, q̃) = aD + bD p̃+ cD p̃
2 + dD q̃

2. (7)

In this case, symmetry iñq is imposed for geometrical reasons,
once more due to the assumed isotropy of light-surface interac-
tion. Fig. 3 illustrates the polarisation properties of a raw forged
iron surface at a phase angle ofα = 75◦ along with the polyno-
mial fits according to Eqs. (6) and (7).

3 3D SURFACE RECONSTRUCTION USING
REFLECTANCE AND POLARISATION

Well-known approaches to reflectance-based 3D surface recon-
struction areshape from shadingandphotometric stereo, the lat-
ter term referring to the evaluation of multiple images of the

surface acquired under different illumination conditions. These
methods aim at determining the surface gradient field, which is
then integrated in order to obtain the depthz(u, v). In this sec-
tion we will extend this approach by introducing polarisation in-
formation.

The reflectance function as well as polarisation angle and degree
can be expressed in terms of the surface gradientsp(u, v) and
q(u, v):

I(u, v) = R (p(u, v), q(u, v)) (8)

Φ(u, v) = RΦ (p(u, v), q(u, v)) (9)

D(u, v) = RD (p(u, v), q(u, v)) (10)

The representation ofR in Eq. (8) is calledreflectance map
(Horn and Brooks, 1989). Provided that the model parameters
of the reflectance and polarisation functionsR, RΦ, andRD are
known and measurements of intensity and polarisation proper-
ties are available for each image pixel, the surface gradientsp
andq can be obtained by solving the nonlinear system of equa-
tions (8)–(10). For this purpose we make use fo the Levenberg-
Marquardt algorithm in the overdetermined case and the Powell
dogleg method (Powell, 1970) otherwise. In the overdetermined
case, the root of Eqs. (8)-(10) is determined in the least-mean-
squares sense. The contributions from the different terms are
then weighted according to the measurement errors, respectively,
which we have determined toσI = 10−3Ispec with Ispec as the
intensity of the specular reflections,σΦ = 0.2◦ andσD = 0.01.
The surface profilez(u, v) is derived from the resulting gradi-
entsp(u, v) andq(u, v) by means of numerical integration of the
gradient field (Jiang and Bunke, 1997).

It is straightforward to extend this approach to photopolarimet-
ric stereo because each light source provides an additional set of
equations. Eq. (8) can only be solved, however, when the sur-
face albedoρ(u, v) is known for each surface point. A constant
albedo can be assumed in many applications. If this assumption
is not valid, albedo variations will affect the accuracy of surface
reconstruction.

For surfaces with unknown and non-uniform albedo it is possible
to utilise two images acquired under different illumination condi-
tions, such that Eq. (8) can be replaced by

I1
I2

=
R1 (p(u, v), q(u, v))

R2 (p(u, v), q(u, v))
(11)
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Figure 4: 3D reconstruction of a synthetically generated surface basedon a photopolarimetric stereo image pair. (a) Ground truth.
(b) From the left: Reflectance, polarisation angle and degree images, without and with non-uniform albedo, without and with noise,
respectively (cf. Table 1). The second polarisation angle image and both polarisation degree images have been excluded from the
analysis (cf. Section 4.1). Reconstruction result for noisy images of asurface with uniform albedo is shown in (c) using the albedo-
dependent approach according to Eq. (8) and in (d) using the albedo-independent approach according to Eq. (11). Reconstruction
results for a surface with non-uniform albedo in the noise-free case is shown in (e) for the albedo-dependent and in (f) for the albedo-
independent approach.

In Eq. (11), the albedo cancels out. The quotient approach has
been introduced in the context of photoclinometric analysis of
planetary surfaces (McEwen, 1985) and has been integrated into
the shape from shading formalism (Wöhler and Hafezi, 2005).

An advantage of the described local approach is that the 3D re-
construction result is not affected by additional constraints such
as smoothness of the surface but directly yields the surface gradi-
ent field for each image pixel. A drawback, however, is the fact
that due to the inherent nonlinearity of the problem, existence and
uniqueness of a solution forp andq are not guaranteed for both
the albedo-dependent and the albedo-independent case. But in
the experiments presented in Section 4 we show that in practi-
cally relevant scenarios a reasonable solution for the surface gra-
dient field and the resulting depthz(u, v) is obtained even in the
presence of noise.

4 EXPERIMENTAL RESULTS

4.1 Evaluation based on synthetic ground truth data

To examine the accuracy of 3D reconstruction, we apply the al-
gorithm described in Section 3 to the synthetically generated sur-
face shown in Fig. 4a. We still assume a perpendicular view on
the surface along thez axis, corresponding to~v = (0, 0, 1)T . The
scene is illuminated byL = 2 light sources (one after the other)
under an angle of15◦ with respect to the horizontal plane at az-
imuth angles ofψ(1) = 0◦ andψ(2) = 90◦, respectively. This
setting results in identical phase anglesα(1) = α(2) = 75◦ for
the two light sources. The initial values forp(u, v) andq(u, v)
must be provided relying on a-priori knowledge about the surface
orientation. In the synthetic surface example, they are initialised
with the value−0.5. It has been demonstrated that the initial gra-
dients can be estimated using depth from defocus (d’Angelo and
Wöhler, 2005).

The synthetic reflectance and polarisation angle images shown in
Fig. 4b have been generated by means of the polynomial fits to
the measured reflectance and polarisation properties presented in
Figs. 2 and 3. We have used two synthetic surfaces for an eval-
uation of our reconstruction method, one surface with uniform
albedo and one with spatially non-uniform albedo. In our ex-
periments we have found that the behaviour of the polarisation
degree of rough metallic surfaces tends to change significantly
over the surface, due to local variations of the surface roughness
(d’Angelo and Ẅohler, 2005). In contrast, the behaviour of the
polarisation angle does not show local variations over the surface.
We thus decided not to make use of the polarisation degree in our
practical experiments (cf. Section 4.2).

According to Fig. 3, the observed polarisation angles cover only a
narrow interval. Hence, we have observed that the azimuth angle
ψ must be known at an accuracy of about0.1◦ if one desires
to use both polarisation angle images for reconstruction, while
the reflectance is less sensitive in this respect. As such accurate
knowledge ofψ is difficult to obtain for practical reasons, we
decided to use only one polarisation angle image.

The reconstruction results are shown in Fig. 4. The noise level
amounts to5 times the measurement errors given in Section 3.
The corresponding RMS deviations from the ground truth forz,
p, andq are given in Table 1. We have observed that for a signifi-
cant fraction of pixels (about25 percent) no solution of Eqs. (8)–
(9) is obtained with the applied initialisation, presumably due to a
small convergence radius. When Eq. (8) is replaced by Eq. (11),
convergence is achieved for all pixels, leading to much higher
accuracy of reconstruction. We have found experimentally that
it is possible to decrease the reconstruction error obtained from
Eq. (8) by decreasing the weight of the reflectance in the least-
mean-squares optimisation. As seen from the RMS error ofz, the
quotient-based approach according to Eq. (11) yields the same re-



Table 1: Evaluation results on the synthetic ground truth example shown in Fig. 4 using both reflectance images but only one polarisation
angle image.

Method Albedo RMS error (without noise) RMS error (with noise)
z p q z p q

I1,I2,Φ1 uniform 3.2 0.20 0.18 3.2 0.20 0.19
I1,I2,Φ1 non-uniform 4.1 0.25 0.24 4.1 0.26 0.24
I1/I2,Φ1 uniform 0.4 0.10 0.00 0.8 0.24 0.16
I1/I2,Φ1 non-uniform 0.4 0.10 0.00 0.8 0.24 0.17

Table 2: Evalutation results on synthetic ground truth data using various combinations of all available reflectance and polarisation data.

Method Albedo RMS error (without noise) RMS error (with noise)
z p q z p q

I1,Φ1 uniform 0.7 0.15 0.01 1.3 0.19 0.16
I1,Φ1 non-uniform 1.5 0.21 0.04 1.5 0.22 0.16
I1,D1 uniform 0.5 0.01 0.11 9.1 0.85 1.10
I1,D1 non-uniform 2.5 0.11 0.42 7.7 0.82 1.17
Φ1,D1 uniform 0.0 0.00 0.00 4.0 1.10 0.29
Φ1,D1 non-uniform 0.0 0.00 0.00 4.0 1.10 0.29
I1,Φ1,D1 uniform 0.5 0.13 0.01 1.4 0.22 0.16
I1,Φ1,D1 non-uniform 1.4 0.20 0.04 1.3 0.24 0.16
I1,I2 uniform 3.6 0.26 0.26 3.6 0.27 0.27
I1,I2 non-uniform 4.1 0.33 0.33 4.1 0.32 0.31
I1,I2,Φ1,Φ2 uniform 2.7 0.17 0.17 2.8 0.18 0.18
I1,I2,Φ1,Φ2 non-uniform 4.0 0.25 0.25 4.0 0.24 0.24
I1,I2,D1,D2 uniform 3.6 0.21 0.21 3.6 0.21 0.21
I1,I2,D1,D2 non-uniform 4.1 0.26 0.26 4.1 0.26 0.26
I1,I2,Φ1,Φ2,D1,D2 uniform 2.7 0.17 0.17 2.7 0.18 0.17
I1,I2,Φ1,Φ2,D1,D2 non-uniform 4.0 0.25 0.25 4.0 0.24 0.24
I1/I2,Φ1,Φ2 uniform 0.0 0.00 0.00 0.2 0.12 0.12
I1/I2,Φ1,Φ2 non-uniform 0.0 0.00 0.00 0.2 0.12 0.12
I1/I2,Φ1,Φ2,D1,D2 uniform 0.0 0.00 0.00 0.2 0.12 0.11
I1/I2,Φ1,Φ2,D1,D2 non-uniform 0.0 0.00 0.00 0.2 0.12 0.12

sults for the surfaces with uniform and non-uniform albedo, while
the error increases when Eq. (8), assuming a uniform albedo, is
used.

For comparison, we report in Table 2 the reconstruction accuracy
obtained using various combinations of all available reflectance
and polarisation data, including the polarisation degree. The val-
ues are computed both for a single set and for a pair of reflectance
and polarisation images, respectively. We have found that a pair
of intensity images alone is not sufficient for reasonably accu-
rate 3D surface reconstruction. With both reflectance and polar-
isation angle images, the reconstruction results become virtually
exact when Eq. (11) is used. Even with a single light source we
obtain good reconstruction results when all available reflectance
and polarisation data are used.

4.2 Application to a rough metallic surface

We will now describe the application of our photopolarimetric 3D
reconstruction method to the raw forged iron surface of an auto-
motive part. Image resolution was 0.30 mm per pixel. For each
pixel, the polarisation properties are determined as described in
Section 2. The 3D reconstruction resultz(u, v) along with the re-
flectance and polarisation images is shown in Fig. 5 for a flawless
and a deformed part, respectively. As discussed in Section 4.1,
the reconstruction is based on the quotientI1/I2 of the two re-
flectance images and one polarisation angle image. The surface
gradientsp(u, v) andq(u, v) are initialised with zero values. The
difference between the two surfaces shows that some material is
missing in the deformed part. This is due to a fault caused dur-

ing the forging process. The offset between the two surfaces at
the margin of the part amounts to2.05 ± 0.05 mm along the
surface normal, obtained by tactile measurement with a sliding
calliper at the points indicated by the arrows in Fig. 5b. The 3D
reconstruction yields a value of2.1 mm (Fig. 5c), which is in
good agreement. A cross-section of the same surface was mea-
sured with a laser focus profilometer and compared to the corre-
sponding cross-section extracted from the reconstructed 3D pro-
file (Fig. 5d). The RMS deviation amounts to 0.22 mm, corre-
sponding to about two-thirds of a pixel.

5 SUMMARY AND CONCLUSION

In this paper we have presented an image-based method for
3D surface reconstruction relying on the simultaneous evalua-
tion of reflectance and polarisation information for multiple im-
ages (photopolarimetric stereo). The reflectance and polarisation
properties of the surface material have been obtained by means
of a series of images acquired through a linear polarisation filter
under different orientations. Analytic phenomenological mod-
els have been fitted to the obtained measurements, allowing for
an integration of both reflectance and polarisation features into a
unified local (pixel-wise) optimisation framework. The presented
method has been evaluated based on a synthetically generated
surface. The dependence of the accuracy of 3D reconstruction on
the utilised reflectance and polarisation data is systematically ex-
amined. Furthermore we have applied our method to the difficult
real-world scenario of 3D reconstruction of a surface section of a
raw forged iron part. We have shown that our approach is suitable
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Figure 5: Application of the described 3D surface reconstruction methodto a raw forged iron surface. (a) Reflectance and polarisation
angle images. The red boxes indicate the reconstructed area. (b) Reconstructed 3D profiles of both parts, viewed from the upper right.
(c) Difference∆z between flawless and deformed surface. (d) Comparison of the cross-section indicated by the dashed line in (a) to
ground truth.

for detecting anomalies of the surface shape, thus rendering it a
promising technique for optical quality inspection systems.
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D’Angelo, P., Ẅohler, C., 2005. 3D Reconstruction of Metallic
Surfaces by Photopolarimetric Analysis. In: H. Kalviainen et al.
(Eds.),Proc. 14th Scand. Conf. on Image Analysis, LNCS 3540,
Springer-Verlag Berlin Heidelberg, pp. 689-698.
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