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ABSTRACT

This paper aims at evaluating multi-camera configurations as a function ofthe descriptive parameters of complex biological objects.
Multi-baseline Stereo has potential to handle projective distortion at large baselines. Being close to the observed object and the
orientation of object surfaces pointing toward the camera increase theprojection distortion. An example is 3D reconstruction of plants
where the leaves can be pointing steeply toward the cameras, while, sub-leaf reconstruction needs high depth resolution, because the
leaves overlap closely to each other. The paper presents a new dissimilarity measure, called Sums of Individual Sums of Squared
Differences (SISSD). It takes projection distortion and changing specular highlights into account by learning the gradual changing of
the feature window. The method was included in the comparative study thatused realistic ray traced plant models, where the descriptive
parameters of the objects could be controlled. Other configurations in the experiment were the commonly used Multi-baseline Sum of
the Sums of Squared Differences (SSSD), the popular binocular graph cuts, and two trinocular correlation techniques. Comparison is
in regard to leaf type, texture and orientation, proportion of occlusion andproportion of changing highlights by computing the overall-,
occluded-, and highlighted- percentage of bad matching pixels (pbmp, pbmpocc, andpbmphigh). The results showed a complicated
relationship of trade-offs that points toward further development combining the strengths of the individual configurations.

1 INTRODUCTION

Computer vision based 3D reconstruction of close-up complex
biological structures is a difficult discipline. There are various
multi-camera configurations to choose from. It would be useful to
learn about the performance related to descriptive parameters of
the objects at hand, in order to choose the best configuration. The
Descriptive parameters of the objects aresurface shape, surface
orientation, presence of texture, proportion of changing specular
highlight and proportion of occlusion. The specular highlights
in concern are those that changes gradually from one image to
the next across the baseline. Multi-baseline Stereo has been de-
scribed and tested in literature as a method for improving the han-
dling of occlusion and ambiguity across the scan lines (Okutomi
and Kanade, 1993)(Jeon et al., 2001) by using the sum of the
energy measures across the camera array; e.g. Sum of Sums of
Squared Difference (SSSD). Attempts have also been made at
dealing with specular highlights by actively detecting specular
highlights within the algorithm (Li et al., 2002) and treating them
as occlusions. However, the problems related to nearby objects
are overlooked as the algorithms assume that the area looks the
same in all cameras. This paper presents an alternative measure
that utilizes the fact that a multi baseline array consists of subsets
of smaller baselines. A large baseline improves depth resolution
but it also makes the correspondence more difficult (Okutomi and
Kanade, 1993). Three factors increase this effect: Being close to
the observed object, window correlation size, and orientation of
object surfaces.

Precision agriculture is a field with rising interest in 3D computer
vision, which is becoming tangible as new high dynamic range
cameras and precalibrated multi-view cameras are being devel-
oped. These cameras satisfy the epipolar geometry constraints
and the intrinsic- and extrinsic calibration can be skipped. Close-
up 3D reconstruction of plants is an excellent example where the

leaves can be pointing steeply toward the cameras and it needs
high depth resolution because the leaves overlap closely to each
other. Excellent depth maps has potential to aid the segmenta-
tion of individual leaves (Lee et al., 1996), if the disparity maps
have trustworthy discontinuity edges. This is useful in preci-
sion agriculture for segmenting individual leaves for autonomous
weed identification, fruit picking, branch thinning, and for find-
ing sampling points on specific locations of a plant (Christensen
and Jørgensen, 2003, )(Nielsen et al., 2004). The image acquisi-
tion is expected to be done from a moving platform in an outdoor
environment, so reconstruction must be done from a single time
slice.

In general terms plants belong to the class of objects that are:
semitransparent, biological, non-rigid structures. Disparities are
often non-planar and can get verysteep toward the cameras. Tex-
tures are non-existent or highly detailed, and having more or less
specular highlights. Fortunately, they are segments of smooth
surfaces, but intertwining and overlapping. It is very difficult to
get dense ground truth. The Vision based depth map reconstruc-
tion is usually confined to fronto-planar depth scenes, where the
depth maps can be described as regions of near-equal disparities.
These scenes are viewed from a distance and have small finite dis-
parity spaces, where it is reasonable to manually acquire ground
truth. As an alternative, structured light can be used. It uses mul-
tiple images so that the objects must be rigid in time (Scharstein
and Szeliski, 2003).

2 METHODS AND MATERIAL

The stereo correspondence algorithms were all based on a basic
Sum of Squared Difference (SSD) dissimilarity (energy) function
(eq. 1). The presented methods assumes precalibrated images
satisfying epipolar geometry constraints, equal baseline, and zero
rotation.



Ei,j(x, y, d) =
∑

(u,v)∈W (x,y)

(Ii(u, v) − Ij(u + d, v))2 (1)

d is the tested disparity,W is the window around (x, y), Ii is the
ith image. The windows can be placed in various ways around
the pixel and question, but we limited this experiment to centered
windows. Adding multiple windows can improve the correspon-
dence near disparity borders (Fusiello et al., 2000), but we wanted
to keep this factor out of the experiment this time. It was shown
in another experiment that five symmetric windows were optimal,
ie. the center and the four diagonals (Nielsen et al., 2005).

In the classical multi baseline SSSD the Sum of Squared Differ-
ence between the reference camera and theith camera is com-
puted forN cameras. See equation 2.

S(x, y, d) = arg min
d

N∑

c=2

(E1,c(x, y,
d(c − 1)

N − 1
)) (2)

We see that the binocular case (N = 2) is a special case of this
equation.

2.1 Introducing SISSD

A new measure Sum of Individual Sums of Squared Differences
is defined as SISSD (see equation 3). This measure was supposed
to learn the graduate change in the feature window across the
baseline. This could be a problem with occlusions as it would
learn the feature of the occluding object, which was countered
by including the weighted dissimilarity in regard to the reference
camera. In the new measure we computed the Sum of Squared
Difference between thei − 1th and theith camera, and between
the 1st and theith camera to ensure that it does not adapt to a
completely different object.

S(x, y, d) = arg min
d

N∑

c=2

[α(Ec−1,c(x, y,
d(c − 1)

N − 1
))

+(1 − α)(E1,c(x, y,
d(c − 1)

N − 1
))] (3)

We see that SSSD is a special case of SISSD, whereα = 0.0.
Figure 1 shows an example of the case with steep object where
the projection distorts the orientation of the leaf. The top shows
parts of images of a five camera array. The middle plot the devel-
opment of the dissimilarity (energy) across increasing baseline.
It is obvious that SSSD increases exponentially, while SISSD
is even less than SSD. The bottom plot shows the dissimilarity
for the three measures across the scan line and prints the best
match for SSD, SSSD, SISSD and Ground Truth (GT). This trait
should also be an advantage in the presence of specular highlights
that travel across the baseline. An example is shown in figure 2.
Based on these preliminary results, a benchmark experiment was
performed. The goal was to validate that SISSD performed better
than SSSD on steep-leaved objects and in areas where the spec-
ular highlight state changes, and whether the reference similarity
constraint could counter the occlusion problem.

2.2 Comparative Methods

The other common multi-camera alternative to the multi baseline
camera array is called the right-angled trinocular L-setup (Mulli-
gan and Daniilidis, 2002). Two different trinocular algorithms are
used for comparison, trinocular minimum (Tm eq. 4) and trinocu-
lar sum (Ts eq. 5). In principle, they use two image pairs, where
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Figure 1: The case of steep leaves where projection changes ori-
entation across the baseline. (a) five views of the location on
the steep leaf. (b) The development of the dissimilarity across
the baseline. (c) The dissimilarity/energy function across the
scan line in the image. The best match for SSD, SSSD, SISSD
(α = 1), and ground truth (GT) is given over the graph.

the second switches the disparity to the y-axis. Their baselines
are equal to the largest multi baseline (ImageN ).

Tm(x, y, d) = arg min
d

min(E1,Nx
(x, y, d), E1,Ny

(y, x, d))

(4)
Ts(x, y, d) = arg min

d
(E1,Nx

(x, y, d) + E1,Ny
(y, x, d)) (5)

In theory theTm should comparably be more robust to occlusions
by choosing the best match in a single image pair.Ts should
comparably be more certain of a match if the point is visible in
all cameras by choosing the best match where both image pairs
are good matches.

One of the best 3D reconstruction algorithms available uses a
graph cut energy minimization, which yields similar results to
the slower simulated annealing. The difference is that graph cuts
preserves depth discontinuity (Kolmogorov and Zabih, 2002). It
does not rely on window sizes which tend to dilate the depth re-
gions and are sensitive to perspective distortion. The main ad-
justable parameter is the impact of the smoothness constraint,λ.
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Figure 2: The case of flat leaves where the highlight changing
across the baseline. The potential weakness of SISSD is that the
dissimilarity difference between the correct match and its sur-
roundings is not very pronounced. This makes the global mini-
mum sensitive to jitter.

Since it assumes regions of equal depth, it excels at fronto-planar
scenes, but may have trouble when it comes to steep leaves on
plant structures. It was interesting to see how it performed in
this new context. We used Kolmogorov’s implementation of the
graph cut algorithm (Kolmogorov and Zabih, 2002) that is re-
ferred to askz1. This is only a binocular algorithm which used
the1st and theN th camera.λ was given a small value (half of
the automatic setting).

There are three common quality metrics root-mean-square, repro-
jection/prediction of a novel view(Szeliski and Zabih, 1999), and
percentage of bad matching pixels. The latter is chosen because
the focus is to generate correct disparity maps. Root-mean-square
error does not ensure that the structure and discontinuities are pre-
served. Reprojection error does not measure the actual disparity
error, butwhether the reprojection of one green pixel happen to
hit a matching green pixel in the novel view. However, in a scene
full of green plants that is very likely even if the disparity is very
wrong.

The estimated disparity mapsdE were compared to ground truth
(dGT ) using the Percentage of Bad Matching Pixels metrics as in

(Scharstein and Szeliski, 2002):

PBMP =
1

N

∑

(x,y)

|dE(x, y) − dGT (x, y)| > δ (6)

2.3 Experimental Setup

The experimental tests were conducted in order to learn more
about the algorithms in the complex context of close-up recon-
struction of complex structures. Hence, near-photo realistic ray
traced scenes of plants were used in order to control the scene
parameters and get valid ground truth disparity maps, occlusion
masks, and highlight masks. The scenes had natural outdoor
lighting and focal blur, which is a natural problem with plants
with steep leaves. Blur is unavoidable, because the aperture can-
not be very small and the shutter must be fast when capturing
images from a moving platform and the plants are waving in the
wind.

Two main classes of plants, long leaf (grass-like, e.g. cereal) and
broad leaf (e.g. beet and tomato) were generated. This relates
to surface shape. For each of these there were plants with steep
leaves and flat leaves, respectively. This relates tosurface orien-
tation. Steep leaves compared to flat leaves have less highlight,
more occlusion, and vice versa. A natural case with two grassy
plants with flat and steep leaves and a lot of occlusion were used,
too. Each scene was generated with textured (spotted) and no tex-
ture (glossy), both having bump maps. This relates topresence
of texture. Finally, all images very generated with and without
specularity. This served two purposes; 1. it was required to find
the highlight masks (where highlights exist in one frame and not
the other), and 2. in order to test overall performance of the algo-
rithms and the same geometrical structure with and without the
presence of highlights. There were 18 image sets in total. See
figure 3 for an example with ground truth.

Figure 3: A natural case, where two grass-like plants are close
together and leaves are occluded. The proportion of occluded
pixels is 5% and the proportion of changing highlights are 5%.

3 RESULTS AND DISCUSSION

The overall results are shown in table 1. It is the mean and
spread of performance over all plant types. Note that the ground
truth maps were calculated in floating points as to represent the
(scaled) inverse of the real height. The disparity maps were inte-
ger pixels. If the ground truth had been rounded, the values would
have been 10-20% lower.Multi3cam used the same cameras as
Multi5cam, but skipped camera 2 and 4.

The table shows that having those two extra cameras in between
the three cameras did improve the result by 11% in average for
all pixels, 8% for highlighted pixels, and 8% for occluded pix-
els. Meanwhile, their spread was approximately equal or slightly
narrower (for occluded pixels). The significance of 8.9% versus
8.2% is up to the application to decide. The development within



Table 1: Comparison of Stereo setups. Mean PBMP (%) and
their standard deviations calculated from all pixels (all), pixels
with different specularity state (high), and occluded pixels (occ).

Stereo Setup All High Occ
Multi3SSSD 8.9(5.9) 22.1(14.6) 50.3(30.9)
Multi3α0.25 8.9(5.6) 20.9(13.7) 55.4(28.7)
Multi3α0.50 9.9(5.6) 20.6(12.1) 64.6(23.8)
Multi3α0.75 13.5(6.6) 23.0(12.2) 69.1(24.0)
Multi5SSSD 8.3(5.5) 20.3(13.9) 46.1(28.3)
Multi5α0.25 8.2(5.3) 19.4(13.3) 49.9(24.5)
Multi5α0.50 8.8(5.4) 19.1(12.7) 55.3(22.5)
Multi5α0.75 11.6(6.0) 21.0(12.5) 69.1(20.4)
GraphCut 14.6(8.7) 19.6(16.3) 73.9(24.3)
TrinoMin 10.2(6.5) 23.1(12.5) 30.6(22.3)
TrinoSum 9.8(6.9) 23.6(15.8) 40.3(25.0)

50 100 150 200 250

20

40

60

80

100

120

140

160

180 125

130

135

140

145

150

155

160

165

170

50 100 150 200 250

20

40

60

80

100

120

140

160

180

200 0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Figure 4: [Left] Ground truth and [Right] Graph Cuts
Log(disparity error) for steep spotted broad leaf without high-
lights. The banding characteristics were caused by the attempt to
impose fronto-planar regions on the steep leaves.

multi5 by increasingalpha was devastating for occluded pixels
by 50%, while overall and highlight pixels reach a local minima
betweenα = 0.25 andα = 0.5. The benefit was rather small,
though; 1% for all pixels and 5% for highlight pixels. The SISSD
measure may be a improvement when using larger window sizes,
which tend to be the case when using real images. The trinocular
measures did well and they excel at occluded pixels, especially
Tm. Graph cuts did the worst, except at correcting highlight pix-
els by smoothing those areas. Figure 4 shows why graph cuts did
not do very well. The disparity map was banded, ie. staircase
shaped, instead of smooth.

Figure 5 shows the errors from the multi-baseline reconstruction
of the same plant. The errors were more recognizable as noisy
jitter, which could be removed by an energy minimizing sloped
smooth surface technique.

Figure 6 shows the errors from trinocular results for the same
plant. The very steep leaf in the middle and the one to the right
of it are difficult for all the algorithms except trinocular minimum
(Tm). It is so steep that it is almost a self-occlusion. In the second
camera the leaf would be extended along orientation of the base-
line, thus occluding the other leaf.Tm simply reconstructed it
from the Y direction. The lesson is that it is not only the orienta-
tion toward the camera that affects the result, but if the orientation
of a leaf aligns with the baseline it can be difficult to reconstruct
it. This is especially a problem with textureless grass-like leaves
that aligns with the baseline (Nielsen et al., 2004). In compari-
son, SISSD was able to reconstruct the steep leaf nearly as good,
but the leaf to the right of it was as bad as Trinocular sum (Ts).

Figure 7 plots the all-pixel results grouped by descriptive ob-
ject parameters, i.e. leaf shape, leaf orientation (flat or steep
leaves), texture, and highlights and occlusion. Horizontal axis
is the setup: M 0.0 (SSSD), M 0.25 (SISSDα = 0.25), M 0.5, M
0.75, Binocular Graph Cut, Trinocular MinimumTm, and Trinoc-
ular sumTs. The vertical axis is the mean pbmp for window sizes
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Figure 5: [Left] Log(disparity error) Multi-baseline SSSD and
[Right] SISSDα = 0.5. These results did not have any banding,
but the difference between the SSSD and SISSD was very small.
The result would be excellent if it were combined with a slope-
and discontinuity preserving graph cut minimization.
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Figure 6: [Left] Log(disparity error) trinocular minimum (Tm)
and [Right] trinocular sum (Ts).

ranging from 4-12. The same goes for figures 8 and 9 that show
the pbmp of highlight pixels and occlusion pixels, respectively.

Figure 7 plot (a)(plants without specular highlights) clearly pins
down the sources of error for reconstruction in general. The flat-
leafed plants (since they had no specular highlights on this plot)
all score very well. The errors were large when the leaves were
steep or occluding (the model calledtwo grassy is 5% occluded
in comparison to the steep broad leaf which is only 1%).

The interesting aspect on plot (a) on figure 7 is that it was the
steep leaves that best improved slightly from SISSD, while the
flat leaves are reconstructed best through SSSD. However, taking
a look at plot (b) reveals that when there were highlight on those
flat leaves, SISSD was an improvement, too, especially for broad
leaf plants.

Note also the fact that the steep leaves were troublesome for
graph cuts on plot (a) and (c), especially the glossy steep broad
leaf, which was easier for the others compared to grassy plants.
Plot (a) to (d) shows consistently thatTs reconstructed grass-like
plants better thanTm, butTm reconstructed broad leaf plant best.
This trend is revisited in figure 8.

Figure 7 Plot (d) shows that in the more natural case, SSSD and
Ts were best, even thoughTm was best in most occluded parts
(figure 9 plot (a) and (b)). Maybe the algorithm could dynam-
ically chooseTm by detecting occlusion with left-right consis-
tency (Fusiello et al., 2000).

Figure 8 plot (a) and (b) shows the subtle strength of SISSD in
the highlighted areas. The flat glossy broad leaf was the most
difficult to reconstruct. Note that this is the plant type that was
50% highlighted, and there were no texture other than shading
and bumps to correlate. The graph cut algorithm were particularly
bad in this case, because it created non existant surfaces in over
the plant from the errors of the highlights.



4 CONCLUSIONS

The relationship between the performances of the algorithms and
the descriptive parameters of the plant objects were investigated.
A new multi-baseline Sum of Squared Difference based correla-
tion was defined (SISSD) in order to minimize the effect of per-
spective distortion within the windows. The results showed that
there was a relationship between the performance and the descrip-
tive parameters of the objects. However, SISSD was only a mar-
ginal improvement on images with steep leaves (slopes), but more
so in the presence of highlights. It was mainly an improvement at
the actual highlight areas, especially on shiny broad leaf plants.
On the other hand SSSD was better at matching the occluded ar-
eas. The best algorithm for occluded areas was the trinocularTm

algorithm. Binocular Graph cuts were not able to reconstruct the
slopes in steep leaves, but the smoothness optimization seemed
to smoothen over the errors from highlights, when the highlight
areas were not too large. The results showed a complicated re-
lationship of trade-offs that points toward further development
combining the strengths of the individual configurations.

4.1 Perspectives on future work

An improvement to the SISSD measure could be to haveα de-
pend on the distance from reference image. Another interesting
aspect would be to place the 5 cameras in a trinocular setup. The
five cameras would then complete two systems of three-camera
multi-baseline systems in each direction.

Furthermore, a multi-baseline or trinocular algorithm in combi-
nation with graph cuts would be interesting to pursue, and to
improve its ability to reconstruct steep slopes. There are other
works on these aspects to pay special attention to (Buehler et
al., 2002)(Lin and Tomasi, 2004). Buehler’s trinocular algorithm
does not handle the situation where occlusion only exist in one
camera pair. This was the strength of the trinocular minimum
algorithm in this paper. Lin and Tomasi’s algorithm for sloped
surfaces relies too strongly on large smooth surfaces. This may
be a problem for natural leaves that can be curled and there might
only be small segments showing of each leaf, while the surface
boundaries are only vaguely defined by intensity edges (some-
times not at all).

The final step is to create a mesh that is able to treat intertwining
and overlapping leaves as individual surfaces.
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Figure 7: PBMP from all pixels results by object type and leaf
orientation. The worst case occlusion is theTwo Grassy Plants
model being 5% occluded. The worst case of highlights were the
flat grass-like and flat broad-leaf. 20% of their area suffered from
changing specular highlights.
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Figure 8: PBMP from specular changing highlight pixels results
by object type and leaf orientation. SISSD (M0.25-M0.75) im-
proves performance.
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Figure 9: PBMP from occluded pixels results by object type.
Trinocular minimumTm is the best algorithm for occluded ar-
eas.


