AUTOMATIC CLASS MEAN CALCULATION OF ROAD SURFACE FROM IKONOS IMAGES USING FUZZY LOGIC AND PARTICLE SWARM OPTIMIZATION

A. Mohammadzadeh a,*, M. J. Valadan Zoej a, A. Tavakoli b

a Geodesy and Geomatics Engineering Faculty, K.N.Toosi University of Technology, No. 1346, Vali_Asr St., Tehran, Iran, Postal Code: 1996715433 - ali_mohammadzadeh@alborz.kntu.ac.ir - valadan_zoej@kntu.ac.ir
b Dept. of Electrical Engineering, Amirkabir University of Technology - tavakoli@aut.ac.ir

KEY WORDS: Fuzzy logic, Particle swarm optimization, IKONOS, Road detection, Class Mean

ABSTRACT:

Automatic road detection from high resolution satellite images has been an active research topic in the past decades. Different solutions are proposed to detect road object such as: fusion-based, fuzzy-based, mathematical morphology, model-based approach, dynamic programming and multi-scale grouping. In this paper, a new fuzzy segmentation method is proposed which is optimized by particle swarm optimization (PSO). The proposed method detects the road network using few samples from its surface. In the IKONOS images, the standard deviation of 10 grey level has been measured for the road classes. In the proposed fuzzy logic system, just one arbitrary pixel up to maximum of three from the road surface is an adequate initial value. The road is identified requiring neither the numbers of the classes nor the corresponding mean values. Particle swarm optimization is used to optimize the proposed fuzzy cost function. The proposed algorithm is applied on real IKONOS satellite image. The results indicate acceptable accuracy for the extracted road surface.

1. INTRODUCTION

Automatic detection and extraction of linear features especially road object has been the interest of many researchers for many years. Diverse solution has been proposed by researchers. Mena (2003) has presented a review of nearly 250 references on automatic road extraction. Furthermore, Zhang (2003), Mena and Malpica (2005), and Quackenbush (2004) have evaluated a wide variety of existing approaches. The applied road extraction methodologies could be summarized as follows (Mohammadzadeh et al., 2006):

(a) Road tracking methods start from a set of seed points and utilize radiometric values of pixels in the tracking process such as profile matching and Kalman filtering (Vosselman and DeKnecht, 1995; Bonnefon et al., 2002; Hu et al., 2004; Kim et al., 2004).

(b) Morphological methods rely on set theory developed by Matheron (1975) and Serra (1982). The method is sensitive to geometry of features and uses set operations such as union, intersection, complementation, dilation, erosion and thinning to identify geometrical characteristics of objects (Zhang et al., 1999; Amini et al., 2002a).

(c) Snakes along with dynamic programming is used for extraction of cultural structures such as roads and buildings (Agouris et al., 2001a, b; Peteri et al., 2004). Dynamic programming provides an optimized solution to road model Gruen and Li (1995). Simultaneous use of snakes and dynamic programming is reported by Gruen and Li (1997).

(d) Artificial intelligent approaches do reasoning based on the rules and models like a human being to provide correct, flexible and effective results. Fuzzy logic, neural networks and genetic algorithms are the most popular mathematical tools used in artificial intelligent systems. Fuzzy Logic (Zadeh, 1965) is a multivalued logic that allows intermediate values to be defined between zero and one (Agouris et al., 1998, Amini et al., 2002b). Artificial neural networks simulate the learning process of the human brain (Doucette et al., 2001; Egmont-Petersena et al., 2002) and genetic algorithms are generally used as an optimisation technique to search the global optimum of a function (Settea and Boulart, 2001; Brumby et al., 1999).

(e) Fusion-based methods fuse multi-source and multi-type information (Jin and Davis, 2005; Chena et al., 2003; Pajares and de la Cruz, 2004). The information covers satellite images (visible and radar), domain-based models, expert’s modeled knowledge, strategies and rules (Pigeon et al., 2001).

(f) Multi-scale along with multi-resolution analysis provide an efficient tool for road width detection and analysis of the road across profiles (Mayer et al., 1997; Mayer and Steger, 1998). Multi-resolution analysis is based on the topological relations between roads and other cartographic objects (Hinz et al., 2001; Chen et al., 2004; Hinz and Baumgartner, 2003).

In this research, new image segmentation based on fuzzy logic theory is proposed. Particle swarm optimization (PSO) has been employed to optimize the proposed approach. All of the classification and segmentation methods fell in two important groups: supervised and unsupervised methods. In supervised methods, necessary and enough samples should be selected from most of the possible classes in the image. In this way, classification parameters, like classes’ mean and standard deviations are calculated from those selected sample data. The final result of the classification is highly affected by the selected samples and number of the user defined classes. In unsupervised methods, the user must define number of the classes or other equivalent parameters like minimum distance between the classes. But in the proposed method, just one up to three samples from the road surface is sufficient to calculate the mean value of class “road” in the image. Number of the classes and parameters of all the existing classes are not needed. This is an interesting advantage comparing to the previous classification and segmentation methods. By taking different samples from different images, the standard deviation of the road is found to be \(\sigma = 10 \). It is due to this fact that road...
2. FUZZY SEGMENTATION OPTIMIZED BY PSO

Mohammadzadeh et al. (2006) proposed a new fuzzy segmentation method, which computes road radiometric mean values in each ban using just few samples from its surface. In the proposed system, a blind search with one gray level accuracy in the search domain is performed to find the best mean value. The search domain is considered to be discrete and therefore few point are tested and there is fear of incorrect answers. Due to the mentioned reasons, a global minimum search approach should be applied to the proposed method. In addition, this will lead to a higher accuracy with sub gray level accuracy. In other words, PSO will find the global minimum of the fuzzy cost function with higher accuracy. Figure 1 illustrates the flowchart of the proposed algorithm.

The implemented PSO generates \(m = 25 \) random particles in a continuous cubic search domain. Each of the particles has three values in the three dimensional search space, which are possible mean values of road in bands 1, 2, and 3. After taking few samples from the road surface, maximum and minimum values of particle \(m \) in the band \(n \) \((p_{mn}^{old}) \) will be defined as:

\[
M = [M_1, M_2, ..., M_s, ..., M_M] \quad \forall M_s \in X, \quad p_{mn}^{old} = [(M_s - 15), (M_s + 15)] \quad ; n = 1,2,3
\]

Then the fuzzy cost function is evaluated for each of the produced particles. The particle that has the minimum cost value will be chosen as the best particle in each iteration. Then position of the particles will be updated based by the velocity vector which are influenced by both the best global solution associated with the lowest cost ever found by a particle and the best local solution associated with the lowest cost in the present population (see formulas 1 and 2). The best local solution replaces the best global solution if it has lower cost. The above procedure is carried out until the termination condition is met. For example, if differences of the two consequently calculated best mean values were below a user-defined threshold then the process will be finished and the last global best position would be considered as the final calculated best mean values of the road.

where:

\[
\begin{align*}
\Gamma_1 \cdot r_1 \cdot (p_{mn}^{local best} - p_{mn}^{old}) + \\
\Gamma_2 \cdot r_2 \cdot (p_{mn}^{local best} - p_{mn}^{old})
\end{align*}
\]

\[
\begin{align*}
p_{mn}^{new} &= p_{mn}^{old} + v_{mn}^{new} \quad (1) \\
\Gamma = \Gamma = 2 \quad learning \ factor \\
\end{align*}
\]

\[
\begin{align*}
\begin{align*}
\text{Best particle with lowest cost will be the answer} \\
\text{Termination condition is met?} \\
\text{NO} \\
\text{YES} \\
\text{Update particle values}
\end{align*}
\]

Figure 1. Flowchart of the method
Figure 2 shows the flowchart of the implemented fuzzy system. The particle position as $P^{old}_{m,n}$ from the PSO method represents $mean_p^{b}$, where $b = 1, 2, 3$ which are the inputs of the fuzzy system. The pixels should satisfy the following criteria to participate in the fuzzy process:

$$X = \{x_1, x_2, \ldots, x_6\}; \text{A pixel from the image } \forall x_i \in X, \ (mean_p^{b} - 5.25 \cdot \sigma) \leq x_i \leq (mean_p^{b} + 5.25 \cdot \sigma) ; b = 1, 2, 3 \quad (3)$$

There are $5 \times 5 \times 5 = 125$ possible fuzzy classes for three bands. Figure depicts the generated $5 \times 5 = 25$ classes in two bands.

Matrix F is calculated for each pixel of the image (see equation 4). The maximum among the minimum value of each column is found and its column number is attributed “cn”. If $cn \neq 63$, then the image pixel is considered as non-road.

$$f_{b,c}(x) = \exp\left(-\frac{(x - \mu_{b,c})^2}{2 \cdot \sigma_{b,c}^2}\right) \Rightarrow f = [f_{b,c}] \quad (4)$$

$$\forall x_b \in [0, 255] \sum_{i=1}^{c=125} f_{b,c}(x_b) = 1$$

If “t” is the total number of initially identified road pixels, then for a pixel X_j where $1 \leq j \leq t$:

$$r_{j,1} = \begin{bmatrix} r_{j,1}^{1} \\ r_{j,1}^{2} \\ r_{j,1}^{3} \\ r_{j,1}^{4} \\ \left(M_{j}\right) \end{bmatrix} = \begin{bmatrix} (x_1 - \mu_{1,0}) \cdot \frac{1 - f_{1,0}}{\text{sum}(f_{1,125})} \\ (x_2 - \mu_{2,0}) \cdot \frac{1 - f_{2,0}}{\text{sum}(f_{2,125})} \\ (x_3 - \mu_{3,0}) \cdot \frac{1 - f_{3,0}}{\text{sum}(f_{3,125})} \end{bmatrix} \quad (5)$$

$$\sigma_{\text{cn}} = \begin{bmatrix} \sigma_{1,0}^2 & 0 & 0 \\ 0 & \sigma_{2,0}^2 & 0 \\ 0 & 0 & \sigma_{3,0}^2 \end{bmatrix}$$

$$c_j = r_j \cdot \text{inv}(\sigma_{\text{cn}}) \cdot r_j^T \Rightarrow \text{sum}_c = \sum_{j=1}^{t} c_j \quad (6)$$

$$d_j = \sum_{h=1}^{3} (1 - \frac{f_{h,0}}{\text{sum}(f_{h,125})})^2 \Rightarrow \text{sum}_d = \sum_{j=1}^{t} d_j \quad (7)$$

This procedure is applied to all image pixels (or a selected window) and the cost function is calculated as:

$$\text{Cost}_{\text{mean}} = \frac{\text{sum}_c}{\text{sum}_d} \cdot t \quad (8)$$

The value of ‘cost_mean’ will be sent back to the PSO algorithm as the cost value for a particle like $P^{old}_{m,n}$.

3. IMPLEMENTATION AND RESULTS

Four simulated patterns are generated with hypothetic mean and standard deviation values as defined in Table 1 and is shown Figure 4. Table 2 shows the computed mean values for the simulated patterns using the proposed fuzzy-PSO method. The sub gray level difference between the computed mean values and the corresponding hypothetic ones indicate the efficiency and accuracy of the proposed method.

<table>
<thead>
<tr>
<th>Pattern</th>
<th>Band1 (grey level)</th>
<th>Band2 (grey level)</th>
<th>Band3 (grey level)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>140.3</td>
<td>93.2</td>
<td>104.8</td>
</tr>
<tr>
<td>(b)</td>
<td>7</td>
<td>113.7</td>
<td>8</td>
</tr>
<tr>
<td>(c)</td>
<td>123.3</td>
<td>137.5</td>
<td>125.9</td>
</tr>
<tr>
<td>(d)</td>
<td>98.7</td>
<td>158.3</td>
<td>63.1</td>
</tr>
</tbody>
</table>

Table 2. Computed mean values.

<table>
<thead>
<tr>
<th>Pattern</th>
<th>Band1 (grey level)</th>
<th>Band2 (grey level)</th>
<th>Band3 (grey level)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>139.90</td>
<td>93.23</td>
<td>104.82</td>
</tr>
<tr>
<td>(b)</td>
<td>82.98</td>
<td>113.29</td>
<td>125.88</td>
</tr>
<tr>
<td>(c)</td>
<td>123.79</td>
<td>137.87</td>
<td>86.18</td>
</tr>
<tr>
<td>(d)</td>
<td>98.98</td>
<td>157.95</td>
<td>62.94</td>
</tr>
</tbody>
</table>

Figure 5 shows a window of 595×425 pixels from a pansharpened IKONOS image of Kish Island in Iran. In large scenes the road surface would be itself consist of two or three
subclasses. Two subclasses were identified using the proposed methodology. The first arbitrary input sample was (63, 81, 77) and the calculated road mean for the first subclass was (68.30, 90.45, 85.06). The second arbitrary input sample was (100, 120, 100) and the calculated road mean for the first subclass was (93.66, 109.72, 95.79). The result of applying the proposed method is shown in Fig. 6.

Mohammadzadeh et al. (2004) extract road centreline based on mathematical morphology. Figure 7 shows the block diagram used in mathematical morphology. Mathematical morphology is non-linear image processing tool, which is sensitive to the objects shape. As roads appear as elongated narrow object in the image, therefore it is suitable to use mathematical morphology to extract road centreline. After applying the mentioned morphological algorithm, the final extracted road is shown in figure 8.
4. CONCLUSIONS

The proposed fuzzy-PSO approach calculates the road’s mean values automatically in different bands by using one up to three samples from the road surface with sub grey level accuracy. It is tested on both simulated and high resolution satellite images. Mathematical morphology is used to extract the road centerline. We should consider that the standard deviation of the road class is considered $\sigma = 10$ according to different sample we had from different IKONOS images. It is due to this fact that road appear as homogenous surface in the satellite images and so we do not expect high variance in the road surface reflectance data. The proposed algorithm shows a promising result. But one of our future efforts is to find a solution to obtain the exact standard deviation of the road surface from the satellite image in an automatic manner to achieve a more reliable detection algorithm. This would also lead us to detect other planimetric objects.

5. REFERENCE

