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ABSTRACT: 
 
Airborne laser scanning (lidar) can be a valuable tool in double-sampling forest survey designs. Lidar-derived forest structure 
metrics are often highly correlated with important forest inventory variables, such as mean stand biomass, and lidar-based synthetic 
regression estimators have the potential to be highly efficient compared to single-stage estimators, which could lead to increased 
precision for inventory estimates.  However, when a limited sample is available to develop the regression model, an estimate based 
solely on the synthetic regression estimator can yield biased results for stands within a forest area where the regression model was 
unrepresentative. A number of modified (approximately) design-unbiased regression estimators have been proposed that serve to 
reduce this model-induced bias while also maintaining the efficient, variance-reducing properties of the synthetic regression 
estimator. In this study, we use a simulation approach to explore the statistical properties of several lidar-based regression estimators 
of mean stand biomass, using lidar and field plot data collected at a study site in a conifer forest in western Washington State, USA.  
 
 

1. INTRODUCTION 

1.1 

1.2 

1.3 

Double-sampling in forest inventory 

The use of covariate information obtained from remote sensing 
in a double-sampling design (e.g. with regression estimators) 
has been a well-established technique in forest survey for 
decades.  A double-sampling design using a combination of 
remote sensing and field data is particularly cost-effective in the 
inventory of large, remote forest areas, where the cost of 
establishing field plots can be considerable, and the number of 
plots established is necessarily limited. In these cases, the use of 
remotely-sensed covariate information collected over a larger 
number of plots can greatly increase the precision and 
reliability of the inventory estimates for a given area. The use 
of aerial photos in forest mensuration, and particularly the use 
of aerial stand volume tables, has been used for many years to 
decrease forest inventory costs (Paine and Kiser, 2003). 
Although accurate forest measurements can be acquired from 
aerial photos through manual interpretation, automated 
extraction of three-dimensional information from stereo 
imagery is complex and error-prone, due to the inherently two-
dimensional format of photographs, as well as shadows, 
layover, and the characteristically irregular shapes and surfaces 
of tree crowns. In addition, tree heights are difficult to measure 
accurately using aerial photographs, unless accurate terrain 
models are already available for the area.  Because of these 
issues, the use of aerial photos for acquisition of detailed forest 
measurements in a double-sampling design has been limited in 
large-scale forest inventory programs in the United States.  
 

Lidar for forest inventory applications 

Airborne laser scanning (lidar) provides data on the full three-
dimensional structure of the forest canopy, at a high resolution, 
and is readily amenable to automated processing and analysis. 
Due to the high demand for lidar-derived terrain information in 
forested areas, high-resolution, discrete-return lidar data is 
becoming increasingly available to forest managers all over the 

world. Therefore, lidar has the potential to be a much more 
cost-effective sampling tool for operational forest inventory 
than aerial photography. In fact, the very strong correlations 
between lidar metrics and plot-level variables suggest that 
parameters such as stand biomass could be estimated with a 
high level of precision over a large area using a relatively small 
number of representative field plots.   
 
The potential of lidar for forest measurement has already been 
well-established in numerous previous studies. In studies 
carried out across a wide variety of different forest types in 
North America, Japan, Europe, and Australia, lidar-derived 
canopy structure metrics have been shown to be highly 
correlated with forest inventory variables. Næsset (1997) 
reported that forest stand volume could be accurately estimated 
in 36 spruce (Picea abies) stands in Norway using a pool of 
various canopy height and canopy cover density metrics. Means 
et al. (2000) reported that a variety of stand inventory 
parameters in a Pacific Northwest forest could be accurately 
estimated using lidar-derived metrics.   
 

Use of lidar in a double-sampling forest inventory 

Although the utility of lidar as a predictive tool has been 
demonstrated in previous studies, the issues that arise in using 
lidar as sampling tool in an operational inventory sampling 
design have received less attention. Parker and Evans (2004) 
presented an approach to using lidar in a double-sampling forest 
inventory design in southern Idaho. In this study, lidar was 
collected along a strip of plots, where every 5th plot was 
measured on the ground. Lidar-derived individual tree-based 
estimates of height and stem density were used to estimate 
DBH, basal area, and volume for all plots. Næsset (2002) 
developed a two-stage lidar-based forest sampling procedure in 
a conifer forest in Norway. This approach used a pool of lidar-
based structural metrics at the plot level, and then used stepwise 
regression techniques to select the best predictive model for the 
inventory variables. This study found that lidar-based stand-
level estimates for all inventory parameters were more precise 
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that those obtained from conventional techniques. Although 
these authors found that stand-level estimates were unbiased in 
most cases (after correcting for the log-transformations), it is 
likely that regression models developed using fewer plots (e.g. 
25-30 plots instead of 35 – 60 plots) will result in biased 
estimates for small stands within the coverage area. The models 
that are developed from lidar tend to draw from a large pool of 
structural metrics, and are often developed using an automated 
variable selection technique (such as stepwise regression), and 
therefore may not be representative of the full range of forest 
conditions within the entire lidar coverage area, potentially 
leading to bias in parameter estimates for the smaller stands in a 
given area.  
 
In most forest surveys, the number of plots available for model 
development is constrained by accessibility and cost. Although 
efforts are sometimes made to obtain a representative sample, 
often the sample can be considered a random sample from the 
population. Although this is certainly a simplification of reality 
– managers often have previous knowledge of stand conditions 
and can use this to increase the sample size in more variable 
stands – for the purposes of this study we will assume that very 
little a priori information is available, beyond stand boundary 
information.  If this sample is used in a double-sampling design 
with regression, the simple synthetic regression estimators for 
small domains, or stands, typically have low variance, but can 
have considerable bias due the use of an unrepresentative 
regression model. Approaches have been developed to reduce 
the bias in estimates for small domains within a double-
sampling design (Särndal and Hidiroglou, 1989).  In particular, 
these authors introduced a modified regression estimator that is 
(approximately) design-unbiased but with increased variance.  
 
In this paper, we will present an investigation of the statistical 
properties of several lidar-based regression estimators for mean 
stand biomass, using simulation to estimate the sampling 
distribution (variance and mean) of these statistics. In 
particular, we will discuss the use of a synthetic regression 
estimator, a modified synthetic regression estimator, a 

dampened regression estimator, and the possible effect of 
transformation bias on mean stand biomass estimates.  
 

2. STUDY AREA 

Capitol Forest study area 2.1 

2.2 

The study area for this project was a conifer forest within 
Capitol State Forest, in western Washington state, USA. This 
forest is composed primarily of Douglas-fir (Pseudotsuga 
mensiezii), western hemlock (Tsuga heterophylla), and western 
redcedar (Thuja plicata). This area is the site for an ongoing 
silvicultural trial resulting in a wide variety of residual stand 
densities and structures, including patch cuts, group selection, 
heavy thinning, light thinning, clearcut, and control (see Figure 
1). The stands used in this study varied in age from 35 to 70 
years. 
  

Field plot data 

The USDA Forest Service and University of Washington have 
established 98 growth plots in each of these stands, as well 
some surrounding younger stands (Figure 1), with plot sizes 
ranging from 0.02 ha to 0.2 ha. 
 
Species and diameter were recorded for each tree with diameter 
greater than 14.2 cm. Total height was measured using a 
handheld laser rangefinder on a representative subset of these 
trees, and regression-based height-diameter models were used 
to estimate height for all unmeasured trees within the plots. In 
addition, very accurate locations for the plots were acquired 
through a closed-traverse survey. More detailed information on 
the plot measurements can be found in Curtis et al (2004).  
Using the measured tree list data, biomass estimates (kg/ha) for 
each plot were generated using the BIOPAK software package 
(Means et al., 1994).  
 
 

 

 
Figure 1. Capitol Forest study area, Washington State, USA. Stand numbers are shown in red, field plots are shown in white. 

 
 

3. LIDAR DATA 

Lidar data were collected over the study area in March, 1999 
with a SAAB TopEye system mounted on a helicopter platform.  
 
The details of the lidar acquisition are provided in Andersen et 
al. (2005). The nominal pulse density was 4 returns/m2, and the  
 

 
footprint diameter was approximately 0.4 m. The contractor 
provided raw lidar point data along with ground returns filtered 
using a proprietary algorithm.  
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4. METHODS 

4.1 

4.2 

4.2.1 Background 

Previous analyses of lidar-based double sampling techniques 
have used cross-validation (Næsset, 2002) and comparison to 
the field plot data used in the second stage of the survey (Parker 
and Evans, 2004) to validate their survey methods. Using a 
leave-one-out cross-validation procedure, Næsset (2002) 
assessed the predictive value of the models developed for three 
different stand types (young, mature(poor site), mature(good 
site)). This was essentially a test of the predictive quality of the 
regression models, as opposed to an assessment of the sampling 
distribution of the regression estimator, since all of the plots 
(except one) were used to develop the regression models. 
Parker and Evans (2004) implemented a traditional double-
sampling design, where only a limited number of the lidar plots 
were measured on the ground. The relatively limited number of 
ground-measured field plots allowed for an assessment of bias, 
but limited their ability to assess the variance of the regression 
estimator.  
 
In this study, we used a simulation approach to analyse the 
sampling distributions of several lidar-based regression 
estimators of mean stand biomass in the Capitol Forest study 
area. For the purposes of this study, we assumed that the 
complete set of 98 plots represented the population, and in each 
iteration of the simulation, 30 plots were randomly sampled 
from this population. Using the R statistical package, at each 
iteration a stepwise regression procedure was used to find the 
(presumed) best fit model relating a suite of lidar-derived, plot-
level metrics (mean height (ht), maximum ht, coefficient of 
variation of heights, 10th percentile ht, 25th percentile ht, 50th 
percentile ht, 75th percentile ht, 90th percentile ht, and 2-
dimensional canopy cover) to the square root of the biomass at 
the plot (R-Development-Core-Team, 2006). Previous analyses 
had indicated that the square-root transformation was 
appropriate in the estimation of biomass (Andersen et al., 
2006). The predictive model that was selected using the sample 
of 30 plots was then used to estimate the biomass for all 98 
plots in the area. Various estimators of stand biomass (sample 
mean, synthetic regression estimator (SY), modified regression 
estimator (MRE), and dampened regression estimator (DRE)) 
were then generated from these predicted plot-level biomass 
values.  This procedure was repeated for 50000 iterations to 
develop the sampling distribution of the various estimators.   
Although all of the plots were available in the model 
development stage of this study, only stands with multiple plots 
were used in the stand-wise analysis, giving a total of six stands 
(Stand 1: 35-yr Douglas-fir, Stand 2: 70-yr Douglas-fir (heavily 
thinned) , Stand 3: 70-yr Douglas-fir (group selection), Stand 4: 
70-yr Douglas-fir (patch-cut), Stand 5: 70-yr Douglas-fir 
(lightly thinned), and Stand 6: 70-yr Douglas-fir (uncut)). The 
variables selected in each iteration were also observed to assess 
the stability of the models. Canopy cover was selected as a 
significant predictor variable in every iteration, while the other 
selected variables tended to vary among the different height-
based metrics (52% of models included 25th percentile ht, 48% 
of models included mean ht, 40% of models included 50th 
percentile ht, etc.). Interestingly, the least-used variable was 
maximum height, possibly due to the generally homogeneous 
nature of the stands used in this study, where height was much 
less variable than density, understory density, etc.   

Estimators of mean stand biomass 

Single-stage estimator  
 The single stage estimator of mean stand biomass is the 
arithmetic mean of plot-level biomass measurements from a 
given stand, or the sample mean. This estimator is unbiased, but 
can have a high variance, depending upon the number of plots 
sampled and the variability of a given stand. Following Särndal 
and Hidiroglou (1989), U denotes the population of plots U= 
{1,…,k,…,N} that is divided into D domains (or stands),  U1,… 
Ud ,…UD.  If the biomass for a given plot is denoted as yk, Ud 
are the plots in U that fall in stand d, and Nd is the size of Ud , 
then we want to estimate the mean stand biomass  

∑
∈

=
dUk

dkd Nyt /      (1) 

If s denotes a sample of size n that is drawn randomly from U 
with inclusion probabilities πk, then sd denotes the part of U that 
falls in stand d. The estimated mean biomass for stand d is then 
given by: ∑=

ds
dkd nyt /ˆ .  The sampling distributions for the 

single-stage estimate of mean stand biomass for each stand is 
show in Figure 2.  
 
4.2.2 Lidar-based two-stage regression estimators  
The use of auxiliary covariate information obtained over a 
larger number of plots, or in this case, every element within the 
population, has the potential to greatly increase the efficiency 
of an estimator. For example, a vector of lidar-based metrics 
generated at the plot level can be used to increase the precision 
of estimates of mean stand biomass.  In the case of double-
sampling with regression, and again following Särndal and 
Hidiroglou (1989), a linear regression model is used to relate 
the variables of interest, y, to x, a vector of correlated variables. 
If the coefficients of the population linear model of y on x can 

be denoted as B, then the estimated coefficients are B̂. The 
predicted values are , and the  are the 
residuals. The so-called synthetic regression estimator (SY) of 
the mean stand biomass is then given by: .  In 

cases where the regression model is not representative of the 
entire population, the synthetic regression estimator can yield 
estimates for small areas that are significantly biased. In order 
to reduce this bias, Särndal (1981, 1984) developed the 
(approximately) design-unbiased estimator: 

Bxy kk
ˆˆ ′= kkk yye ˆ−=

∑=
dU

dkdSY Nyt /ˆˆ

 

d

k
U s

kk

dRE N

ey
t d d

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=
∑ ∑ π/ˆ

ˆ   (2) 

 
This estimator consists of the synthetic regression estimator (the 
left term in the numerator) and an adjustment term (right term 
in the numerator) that will correct for bias due to use of an 
unrepresentative model. However, the variance of the design-
unbiased estimator is typically higher than the synthetic 
estimator, because the adjustment term is, in effect, inflated by 
the expansion factor πk.   Hidiroglou and Särndal (1985) went 
on to develop a modified design-unbiased estimator: 

d

U d

s
kk

dk

dRE N

N

e
Ny

t
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d

⎟
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⎟

⎠

⎞

⎜
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⎝
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+

=

∑
∑

ˆ

/
ˆ

ˆ

π

   (3) 
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where . As Särndal and Hidiroglou (1989) point out, 

this estimator tends to have smaller variance than the 
unmodified version because the ratio term will give heavier 
weight to the adjustment term in cases where the model fit in a 
particular domain is poor. Unlike the unmodified version, the 
modified estimator has the additional property that, in the case 
of simple random sampling, it is consistent as the size of the 
sample approaches the size of the population, or  when 

. However, these authors also note that in cases where 
the sample size for a domain is particularly small (e.g. n

∑=
ds

kdN π/1ˆ

dd tt =ˆ

dd Us =

d < 5), 
and the model fit is therefore particularly poor in this domain, 
the modified regression estimator can yield unacceptable results 
due to the heavy weight given to the adjustment term (for 
example, negative estimates in cases where the residuals are 
overwhelmingly negative).  Särndal and Hidiroglou (1989) 
therefore suggest using a dampened version of the modified 
regression estimator:  

( )
d

k
s

k
U

H

ddk

dRE N

eNNy
t dd

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=
∑∑

−
π//ˆˆ

ˆ

1

  (4) 

where: 

dd

dd

NNifh

NNifH

<=

≥=
ˆ

ˆ0  

Previous studies have found that using h = 2 provided a 
reasonable level of dampening.  This has the effect of inverting 
the ratio term when a sample is disproportionally undersampled, 
giving less weight to the correction term.  
 
4.3 Transformation bias 

Typically in a double-sampling framework it is desirable to 
obtain estimates in the units of the original data. However, 
simply applying the reverse-transformation of the square-root, 
or logarithmic, transformation, can result in biased estimates 
(Næsset, 2002). In the case of the square-root transformation, it 
has been shown that adding the residual variance (σ2) to the 
predicted values can correct for much of this bias (Miller, 
1984).   
 

5. RESULTS AND DISCUSSION 

The summary statistics (mean, variance) of the simulated 
sampling distributions for each estimator, and for each stand, 
are shown in Table 1. It should be noted that the mean 
coefficient of determination (R2) values for the 50000 
regression models for sqrt(biomass) was 0.88, and the standard 

deviation of the R2 values was 0.04. The simulated sampling 
distributions for the various estimators, and the true mean stand 
biomass values, are shown in Figures  2-5. The possible 
influence of transformation bias in converting back to original 
data units (tons/ha for biomass) is shown in Table 2.  
 
In general, the variance of the single stage estimator is quite 
high, especially in highly heterogeneous stands (e.g. 3, 4, and 6) 
(Figure 2). In contrast, in homogeneous stands (e.g. 1 and 2) the 
sampling error is quite low and even small samples can 
precisely characterize the population parameter. However, it 
should be noted that the single-stage mean stand biomass 
estimates shown here are based only on cases where at least one 
plot was available in the sample from a given stand, and 
therefore underestimates the variance of the single-stage 
estimator, especially in stands with few plots, such as Stand 1 
(which was likely unsampled in many of the iterations). As 
expected, in general the application of the synthetic regression 
estimator dramatically reduces the variance of the estimator, 
especially in the more heterogeneous stands (Figure 3). For 
example, in stand 4, the variance decreased from 3494.8 to 
192.7, and in stand 6, the variance decreased from 4569.6 to 
892.2. However, as expected, the synthetic estimator’s 
complete reliance on the sometimes ill-fitting regression model 
led to significant bias for most of the stands (Table 1). This is 
particularly striking in the case of stand 3, where use of the 
synthetic estimator led to an 82% reduction in the variance but 
also introduced a significant 5% bias. Application of the 
modified design unbiased regression estimator served to 
dramatically reduce this bias in almost all stands (Figure 4). 
However, the price of this reduction in bias was a consistent 
increase in the variance. In general, the variance was still well 
below that of the single stage estimator. For example, in stand 
3, the bias was reduced to 0.5 %, while the variance was 
reduced to 65% of the variance of the single stage estimator. 
The form of the dampened estimator appears to moderate both 
the bias-inducing influence of the synthetic regression term and 
the variance-inflating effect of the adjustment term (Figure 5).  
The application of these modified regression estimators may be 
particularly useful in situations where unbiased estimates are 
desired for smaller stands within a lidar coverage area.  
 
The results indicate that applying the reverse square-root 
transformation to recover the original data units does generally 
lead to a slight negative bias, as we would expect from the 
explanation in Miller (1984) (Table 2). In all but one stand, 
application of the bias correction as proposed by Miller (1984) 
does remove a portion, but not all, of this bias. 

 
 Stand 
 1 2 3 4 5 6 
Population mean stand biomass 583.9 311.3 625.7 562.6 620.9 668.2 
Single-stage estimator  583.9 

(149.8) 
311.2 
(648.6) 

625.7 
(894.8) 

562.8 
(3494.8) 

620.7 
(418.5) 

667.6 
(4569.6) 

Synthetic regression estimator 
(SY) 

575.0 
(965.7) 

334.5 
(592.3) 

594.4 
(162.8) 

561.9 
(192.7) 

628.5 
(222.2) 

692.3 
(892.2) 

Modified design unbiased 
regression estimator (MRE) 

580.3 
(755.5) 

315.6 
(680.9) 

622.3 
(315.9) 

561.4 
(759.5) 

622.3 
(340.8) 

671.4 
(2240.1) 

Dampened design unbiased 
regression estimator (DRE) 

578.6 
(760.2) 

321.1 
(650.0) 

616.4 
(298.8) 

561.3 
(458.3) 

623.8 
(249.8) 

677.1 
(1636.9) 

 
Table 1. Statistical properties of (square-root transformed) mean stand biomass estimators (mean (above) and variance (below) of 
simulated sampling distribution). The stand biomass for the population is shown in the top row.  
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Figure 2. Simulated sampling distributions for the single-stage estimator for mean stand biomass. Vertical red line indicates the true 
mean stand biomass within the population.  
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Figure 3. Simulated sampling distributions for the synthetic regression estimator for mean stand biomass. Vertical red line indicates 
the true mean stand biomass within the population.  
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Figure 4. Simulated sampling distributions for the modified design-unbiased regression estimator for mean stand biomass. Vertical 
red line indicates the true mean stand biomass within the population.  
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Figure 5. Simulated sampling distributions for the dampened design-unbiased regression estimator for mean stand biomass. Vertical 
red line indicates the true mean stand biomass within the population
 
 Stand 
 1 2  3 4 5 6 
Population 
mean 

341 100 399 335 388 465 

Estimate w/o  
bias correction 

336 104 380 316 389 460 

Estimate with  
bias correction 

340 107 384 320 392 463 

 
Table 2. Effect of applying reverse square-root 
transformation  to recover original data biomass units 
(tons/ha).     
 

6. CONCLUSIONS 

This investigation confirm the results of previous studies that 
use of lidar-based regression estimators can significantly 
increase the precision of estimates for important forest 
inventory variables, such as mean stand biomass. These 
results also indicate that use of simple synthetic regression 
estimators can lead to biased stand-level estimates. The 
application of a modified regression estimator can reduce the 
bias at the stand level and will incorporate both the variance-
reducing properties of the synthetic regression term and the 
bias-reducing properties of the correction term.  
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