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ABSTRACT: 
Terrestrial laser scanners provide a three-dimensional sampled representation (i.e. point cloud) of the surfaces of objects. They have 
great potential to improve the measurement and representation of remote and widespread objects for applications such as engineering 
metrology, cultural heritage recording and forestry, among others. Prior to performing measurement tasks such as these, proper error 
modelling and estimation is essential in order to remove the inherent systematic effects such as range finder offset, collimation axis 
error, etc.. A rigorous, point-based self-calibration method has been demonstrated to be effective, but it is very labour-intensive since 
it requires manual measurement of a large number of signalised targets. In this paper, we propose a planar-feature-based “on-site” 
self-calibration method that can reduce the manual labour needed in the point-based method. After outlining the principles and 
mathematical models of the proposed method, the subject of model identification is addressed. Tests with simulated datasets reveal 
that the residual patterns from the plane-based method are markedly different from those of the point-based method. The ramification 
of this outcome is that systematic error identification, an important process for new instrumentation such as terrestrial laser scanners, 
is not straightforward. In addition, the tests of the proposed method with real terrestrial laser scanner datasets are presented and 
analysed.  
 
 

1. INTRODUCTION 

Terrestrial laser scanners (TLSs) have emerged as new 
measurement instruments for surveying, photogrammetry and 
computer vision for their fast data acquisition time to measure a 
three-dimensional point cloud of objects in a matter of minutes. 
Consequently, the scientific and practical interest in developing 
calibration procedures to remove systematic errors inherent in 
terrestrial laser scanner datasets has expanded.  
 
In photogrammetry, “on-site” or “on-the-job” calibration 
methods are often used as an alternative to laboratory 
calibration (Luhmann et al., 2007). This is particularly relevant 
when the temporal stability of the camera used is in doubt. This 
procedure is performed by imaging portable frames or targets 
positioned beside the object(s) of interest. Exterior orientation, 
object space points and camera calibration parameters are 
estimated simultaneously. In this paper, we propose an on-site 
calibration method for terrestrial laser scanners using planar 
features in the point cloud. 
 
Much work has been done on point-based TLS calibration by 
exploiting their similarities with theodolites or total stations, 
(e.g. Lichti and Franke, 2005; Lichti and Licht, 2006; Lichti, 
2007; Reshetyuk, 2006). Amiri Parian and Grün (2005) 
developed a point-based calibration method by based on a 
panoramic camera model for the Z+F Imager 5003. Gielsdorf et 
al. (2004), however, proposed error models and a calibration 
method using planar targets for their own low-cost laser scanner.  
 
Though the point-based methods are rigorous and have been 
shown to be effective, their principal drawback is the need to 

manually measure a large number of targets. The use of planar 
features is therefore favoured as their extraction from point 
clouds can be highly automated, though it is recognised that 
signalised target extraction and measurement could also be 
automated to a large extent. An on-site calibration method has 
been pursued due to the apparent instability of the calibration 
parameters (as reported in Lichti, 2007) of the instrument under 
investigation, the FARO 880 laser scanner. The idea is that 
calibration can be performed on-site using planar features that 
exist on many industrial and heritage recording sites, for 
example, with minimal manual labour.  
 
After outlining the principles and mathematical models of the 
proposed method, the subject of model identification is 
addressed. Tests with simulated datasets are undertaken to 
explore the difference in the residual patterns from the plane-
based and point-based methods. In addition, the precision of the 
proposed method with terrestrial laser scanner datasets is 
presented and analysed. 
 

2. PLANE-BASED CALIBRATION 

2.1 Observation equation  

The spherical co-ordinate observations of the ith object space 
point in the jth scanner space are range, ρij, horizontal direction, 
θij, and elevation (vertical) angle, αij, which are parameterised 
in terms of scanner space Cartesian co-ordinates (xij, yij, zij) as 
follows: 
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The spherical observation correction terms are given by Lichti 
(2007) as follows: 
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where the sensor-driven additional parameters (APs) for 
terrestrial laser scanners for range, horizontal direction and 
elevation angle components of the observations are expressed 
as A, B and C, respectively. The term U1 in Eq. 4 represents 
half the finest modulating wavelength, which is approximately 
equal to 0.6m. The term U2 in Eq. 4 equals one-half the median 
unit length, which is approximately 4.8m. These terms need to 
be included since the FARO 880 scanner measures range on the 
basis of the phase-difference method. The aim of a plane-based 
calibration procedure is to accurately estimate these proposed 
additional parameters with low correlation among the exterior 
orientation and plane parameters and other APs. 
 
The problem underlying terrestrial laser scanner calibration is 
that of model identification. Some systematic error sources, 
such as those common to total stations, are expected to be 
observed in the residuals from a registration-only least-squares 
adjustment. Investigation of these residual patterns has 
permitted us to develop a systematic error model for laser 
scanners. 
 
The models can be categorised to two groups: the physical and 
empirical additional parameters. The physical interpretation of 
latter is not necessarily apparent, although their systematic 
trends may be observed in the residuals of a highly redundant 
and geometrically strong, minimally constrained least-squares 
adjustment. Detailed description of all the additional parameters 
and their residual plots can be found in Lichti and Licht (2006), 
Lichti and Franke (2005) and Lichti (2007).  
 
2.2 Formulation of the proposed plane-based calibration  

The proposed plane-based self-calibration method utilises the 
combined least-squares method that minimises the distance 
between points and their corresponding planes with a constraint 
condition. The exterior orientation, plane and the additional 

parameters presented in Eqs. 4-6 can be simultaneously 
estimated. Since the observations and parameters of the point-
on-plane condition equation are not separable and each 
condition includes more than one observation, the combined (or 
Gauss-Helmert) adjustment model is used. 
 
Let x±Ru be the parameter vector and l±Rn be the observation 
vector, where u and n are the number of parameters and 
observations, respectively. Let ( ),ijkf x l be the distance 

function between the ith point in the jth scanner space (pij) and 
the kth plane target in the object space whose normal vector and 
orthogonal distance from the origin are nk=(ak, bk, ck) and dk, 
respectively.  The distance function is given as 
 
 ( ) ( ), 0

j

T T
ijk k j ij kf d= + − =x l n M p Tr                        (7) 

 
where Mj and Trj are the rotation and translation parameters 
between the object and jth scanner spaces, respectively. In other 
words, this is the condition function for the registration between 
multiple point clouds and one fixed scan, i.e. the object space.  
Then the linearised equation for the Gauss-Helmert model is 
given by 
 

 0 0d + + =A x Bv w                             (8) 

 
where m is the total number of point observations, A±Rm � u and 
B±Rm � n are the Jacobians of ( ),ijkf x l  with respect to x and l, 

respectively, v is the residual vector, w0 is the misclosure vector 
and dx is the vector of corrections to the approximate parameter 
values. In its current form, the adjustment is minimally 
constrained since the inner constraint equations for plane 
parameters are still under development. 
 
Note that u equals the sum of ue, uap and up where ue is the 
number of the transformation parameters, uap is the number of 
the additional parameters and up is the number of plane 
parameters, respectively. The unit length constraint on the 
direction cosines for each plane is given as  
 
 ( ), , , 1 0T

k k k k k k kg a b c d = − =n n                          (9) 

 
and the linearised constraint equation can be given as 
 
 

c c cd + =A p w v         (10) 

 
where Ac±Rc � up is the Jacobian of gk(ak, bk, ck, dk) with respect 
to the kth plane target, dp is the vector of corrections to the 
approximate plane parameter values and c is the number of 
constraints. The cost function to be minimised with respect to 
  

( )
( )

02

2

T T T
c c c

T
c c c c

d

d

ϕ = + + + +

+ + −

v Pv v P v k A x Bv w

k A p w v
      (11) 

 
where P and Pc are the weight matrices for point observations 
and the constraint for the plane parameters, respectively, and k 
and kc are the Lagrange multiplier vectors. Minimisation of the 
cost function leads to the following system of normal equations  
 
 d + =N x w 0           (12) 
 
where  
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2.3 Nonlinear least-squares 

The Newton-Raphson solution method can be successfully 
utilised for point-based calibration (Amiri Parian and Grün, 
2005; Lichti, 2007). In the case of plane-based calibration, the 
inclusion of the point-on-plane condition equations renders the 
cost function highly nonlinear and thus a nonlinear least-
squares method is required in order for the solution to converge 
rapidly to a global minimum (Shewchuk, 1994; Golub and Van 
Loan, 1989; Teunissen, 1990). 
 
The normal equations for the proposed method with the Gauss-
Helmert model from Eq. 12 can be expressed as 
 

           
2

2 0d
ϕ ϕ∂ ∂+ =

∂ ∂
x

x x
.                  (15)                 

 
When the cost function is either linear or can be linearised, 
the solution of Eq. 15 is given by 
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which is a special case of the gradient-decent method 
(Shewchuk, 1994). In the case of the minimisation of nonlinear 
cost functions, the gradient of the cost function given in Eq. 10 
may not be the optimal direction for searching the solution. 
Therefore, the conjugate gradient method proposes to search a 

solution in a direction calculated from
x∂
ϕ∂− using Gram-

Schmidt orthogonalisation (Shewchuk, 1994). Details of the 
conjugate gradient method and its implementation can be found 
in Shewchuk (1994) and Golub and Van Loan (1989). 

 
2.4 Outlier detection  

The reliability matrix, standardised residuals and variance 
component estimation (Baarda, 1968; Schaffrin, 1997; Cothren, 
2005) are utilised for outlier detection in the proposed plane-
based calibration method.  For the linearised Gauss-Helmert 
model equations given (Eq. 12), the reliability matrix R is given 
by 
 
       ( )1 1 1 1T

n
− − − −= −R P B P I A N A P          (17) 

 
where P is the weight matrix, 1 T−=P B P B , and In is the 
identity matrix with rank of n. The ith standardised residual ri is 
calculated from its corresponding a priori observation precision, 
σl, the ith component of the residual vector, vi, and ith diagonal 
element of R, Rii, as 
 

   
iil

i
i

R

v
r

i
σ

= .         (18) 

Assuming that a priori variance factor is known is conducted 
under the standard null hypothesis that the standardised residual 
follows a zero-mean, unit variance Gaussian density function 
(Schaffrin, 1997; Cothren 2005). 
 

3. EXPERIMENTS 

The subject of the self-calibration experiments described herein 
is the FARO 880 TLS. Two sets of experiments are described in 
the following sub-sections. The first used simulated data in 
order to learn how the various systematic errors manifest 
themselves in the residuals and to investigate the accuracy of 
AP estimation. The second use real data in which the results are 
compared to those from point-based calibration. 
 
3.1 Model identification using residual patterns 

Eight simulated point clouds of a room (dimensions 4.0m x 
10m x 10m) were generated from two different scanner 
locations (4 orthogonal scans were captured at each position). 
The distance between two scanners was 8m and the height of 
the scanner was set to 2m. Six 1.5m x 1.5m planar targets on 
were simulated to lie in the centre of each wall, the floor and 
the ceiling of the room. The sampling was such that each target 
had 100 points—see Figure 3a. In short, the simulated dataset 
represents the point clouds captured by an ideal laser scanner in 
a test room with perfectly flat walls, floor and ceiling. 

 

 
(a) Without plane-based calibration 

 

 
(b) With plane-based calibration 

 
Figure 1. Residuals of the plane-based calibration method in the 
presence of a collimation axis error (B1= 50'') for the simulated 

dataset. 
 

 
     (a) Without plane-based calibration 

(b) With plane-based calibration 
 

Figure 2. Residuals of the plane-based calibration method in the 
presence of a rangefinder additive constant (A0= 1mm) for the 

simulated dataset 
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The systematic errors of terrestrial laser scanners described in 
Eqs. 4-6 were first added one-by-one to the error-less, 
simulated point clouds. In a point-based method, most 
misclosure patterns appear very similar to functional form of the 
corresponding systematic error model (Lichti, 2007). For 
example, the vertical eccentricity error, C2 in Eq. 6, can be 
observed as a sine function of the elevation angle in the residual 
pattern of the point-based method. 
 
Figures 1 and 2 are plots of residual due to collimation axis 
error (B1) and rangefinder additive constant (A0), respectively. 
These residual patterns are quite different from those observed 
in the point-based calibration method (Lichti and Franke, 2005) 
in which the residuals appear as the expected secant function 
for collimation axis error and the effect of the rangefinder offset 
is manifest as a linear function of range due to correlation with 
the positional elements of exterior orientation. These 
differences make it difficult to identify the systematic errors in 
the residuals from plane-based self-calibration.  
 
3.2 Optimal locations of laser scanners with simulated data 

An empirical investigation into optimal laser scanner location 
for the plane-based self-calibration was also conducted under 
the previously-described conditions. This investigation with 
simulated datasets in Figure 3 was based on the ratio of the 
estimated additional parameter to the true value, i.e. artificially 
added systematic error to the simulated data. With one of the 
two scan locations fixed at location “ 101”  shown in Figure 3b, 
point clouds for the second position were simulated from each 
of the 9 locations “ 102”  to “ 110” . We found that the accuracy 
of the range and elevation angle additional parameters was as 
high as 99% for this test. On the other hand, the accuracy of the 
collimation axis error (B1) varies in different laser scanner 
combinations. 

 
                     (a)                                      (b)  

 
Figure 3. (a) Simulated point clouds for finding the optimal 
scanner locations. Square sign is the centre of the test room. (b) 
The scanner is located in the centre of each cell, e.g. 105. The 
height of the scanner is 2m. 
 

 
Figure 4. The ratio between the estimated and true B1 for 

different laser scanner locations when the first location of the 
scanner is 101 in Figure 3(b). 

 

For all combinations of scanner locations in Figure 3(b), the 
accuracy of the estimated APs was high except for the 
collimation axis error, B1. The ratio of its estimated to true 
value was found to be strongly dependent on the scanner 
location, as can be seen in Figure 4. This additional parameter 
is accurately estimated at all locations except for the 
combination of 101 and 106. For the collimation axis error, the 
best laser scanner combinations were 105 and 110 with the 
location 101 in the case of this test room.  
 
3.3 Accuracy tests with simulated datasets 

The plane-based self-calibration method was applied to the 
simulated data described in the previous section. Two 
systematic errors, A0 and B1, were added to the error-less point 
clouds. The standard deviations of residuals for the range, 
horizontal direction and elevation angle without correction, 
with correction of A0 only and with correction of A0 and B1 are 
given in Table 1. In addition, the residual patterns of these cases 
are presented in Figure 5. Clear improvements in all spherical 
observations were observed and, in particular, that of elevation 
angle is the largest. The difference between the standard 
deviations of range in the cases with A0 correction only and 
with A0 and B1 correction is on the order of 10. This suggests 
that a priori knowledge of the existing systematic error, i.e. A0 
and B1, is required in order to achieve the maximum 
observational precision from calibration since, as already 
mentioned and can be seen in Figure 5a, model identification is 
difficult. 
 

 
                                              (a) 

 
(b) 

 
(c) 

Figure 5. Residual plots in the presence of rangefinder additive 
constant (A0) and the collimation axis error (B1). (a) Without 
calibration (i.e. registration only) (b) with A0 only (c) with A0 
and B1 

 

 
Table 1. Residual statistics of the plane-based self-calibration 
method in three different cases: without correction (registration 
only), with A0 correction only, and with A0 and B1 correction. 
STD is the standard deviation. 

 
A further series of accuracy tests was conducted in which a 
range of possible AP values was added to the simulated dataset. 
The range for rangefinder additive constant (A0) was 0.25mm to 

 No correction A0 A0 and B1 

STD vρ (mm) 0.70 0.24 0.02 
STD vθ ( ) 1.00 0.42 0.03 
STD vα ( ) 1.50 0.03 0.04 
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10mm, 10’’ to 200’’ for the collimation axis error (B1) and for 
the vertical circle index error (C0) was 10’’ to 100’’. These values 
were chosen for consistency with other studies (e.g. Lichti and 
Licht, 2006). A maximum bias of 0.006% was observed for all 
three additional parameters, with larger values generally being 
estimated more accurately. Some difficulty in the estimation of 
collimation axis error is expected when the magnitude of the 
applied B1 is increased as shown in Figure 5(b). For example, 
from Table 1, we observed a slight increase in vα in   
 

 
(a) Range finder additive constant (A0) 

 

 
(b) Collimation axis error (B1) 

 

 
(c) Elevation angle correction term (C0) 

 
Figure 6. Accuracy of some additional parameters with 
simulated datasets, which defined as the ratio of the true and 
estimated parameters. 
 
3.4 Estimation of the APs of the FARO 880 from real data 

The FARO 880 terrestrial laser scanner offers a near spherical 
field of view made possible by a 320� vertical angle scanning 
range and a 180� horizontal field of view. The scanner features 
two orthogonal inclinometers that correct the captured data for 
instrument tilt. The manufacturer specifies 0.01� (36’’) for the 
inclinometer accuracy and 3mm linearity error at 10m with 84% 
target reflectivity for the rangefinder. See Lichti (2007) for a 
description of its salient properties. 
 
Two datasets, named here Data1 (28 October/2005) and Data2 
(7 December/2005), captured with the FARO 880, were utilised 
for the test. A total of eight point clouds of a room were 
captured from two locations. The scanner was manually rotated 
on the tripod by 90� after each of the set of four scans was 
captured.  
 
The dimension of the room in Data1 is (H, W, L) = (3m, 5m, 
9m) with 18 planar targets. The nominal distance between the 
two scanner locations was 4m. The radial distance from the 
laser scanner to the object was approximately from 1.5m to 
7.5m. The plane-based calibration adjustment (minimally 
constrained) had 5641observations with 5538 degree of 
freedom. The dimension of the room Data2 is (H, W, L) = (3m, 
9m, 12m) with 25 planar targets. The nominal distance between 

the two scanner locations was 6.7m. The radial distance from 
the laser scanner to the object was approximately from 2m to 
10m. The plane-based calibration adjustment (minimally 
constrained) had 8231 observations with 8107 degree of 
freedom. 
 
Note that the planar targets for this on-site calibration were 
manually extracted from wall, ceiling and floors of the original 
point clouds and some obvious outliers were removed by 
investing the results of the first order plane fit. For the proposed 
plane calibration method, spherical coordinate observations 
were derived from the Cartesian coordinates exported using the 
commercial software, iQscene. Variance component estimation 
and the outlier detection method explained in Section 2.5 were 
used to optimise the contribution of each of the three groups of 
spherical observables.  
 
For the point-based calibration with the room Data1, 134 planar, 
A4-size targets were mounted on all four walls, the floor and 
the ceiling. Target center measurement was conducted using the 
commercial software, iQscene. The point-based calibration 
method (with free-network) adjustment had 2469 observations 
with 2019 degrees of freedom. For the point-based calibration 
with the room Data2, 131 planar, A4-size targets were mounted 
on all four walls, the floor and the ceiling. The point-based 
calibration method (with free-network) adjustment had 2193 
observations with 1738 degrees of freedom.  
 

 Without self-
calibration With calibration Improvement 

(%) 

 STD vρ (mm) 1.2 1.2 5.4 

STD vθ ( ) 67.9 18.6 72.6 

STD vα ( ) 24.3 19.9 18.4 

 
Table 2. Residual statistics from plane-based calibration after 

outlier removal for Data1 (28 October/2005). 
 

 Without self-
calibration With calibration Improvement 

(%) 

 STD vρ (mm) 2.4 1.9 21.0 
STD vθ ( ) 86.3 35.2 59.2 
STD vα ( ) 51.8 46.5 10.3 

Table 3. Residual statistics from point-based calibration after 
outlier removal for Data1 (28 October/2005). 

 

 Without self-
calibration With calibration Improvement 

(%) 

 STD vρ (mm) 1.0 0.8 21.4 

STD vθ ( ) 49.2 47.3 3.8 

STD vα ( ) 55.3 49.5 10.6 

Table 4. Residual statistics from plane-based calibration after 
outlier removal for Data2 (7 December/2005). 

 

 Without self-
calibration With calibration Improvement 

(%) 

 STD vρ (mm) 2.3 1.7 26.1 
STD vθ ( ) 109.8 36.7 66.6 
STD vα ( ) 65.88 20.9 68.3 

Table 5. Residual statistics from point-based calibration after 
outlier removal for Data2 (7 December/2005). 

 
Only a reduced set of the additional parameters (A0, B1, B2, B3, 
B4, C0 and C2) was used for all calibrations. The standard 
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deviations of the residuals for the range, horizontal and 
elevation angle for both the plane- and point-based methods are 
given in Tables 2 and 4. Both datasets showed significant 
improvement in the precision of all spherical observations.  
 
The plane-based calibration provided greater precision in the 
spherical observables than did the point-based method. In 
contrast, Lichti and Licht (2006) reported a similar level of 
point observational precision with all physical and empirical 
additional parameters of terrestrial laser scanners.  
 
 

 
Figure 7. Horizontal direction residual vs horizontal direction 
without plane-based self-calibration (Data1). 
 

Figure 8. Horizontal direction residual vs horizontal direction 
with plane-based calibration (Data1). 

Figure 9. Horizontal angle residuals vs elevation angle without 
plane-based self-calibration (Data1). 

Figure 10. Horizontal angle residual vs elevation angle with 
plane-based self-calibration (Data1). 

 
Plots of the residuals of horizontal direction angle both with 
and without, additional parameter correction from the plane-
based case are presented in Figures 7-10. Although they clearly 
show an improvement in the precision of the observations, they 
also show residual systematic effects that are likely due to un-
modelled errors since only a reduced-AP model has been 
implemented thus far. 
 

4. CONCLUSIONS 

A plane-based self-calibration method based on terrestrial laser 
scanner systematic error modelling has been presented and has 
been demonstrated to improve observational precision of the 
self-calibration residual standard deviation up to 72.6% with 
the help of outlier detection and variance component estimation.  
 
The contributions of this paper can be summarised as follows: 
First, the residual patterns of the plane-based calibration 
method are shown to be different from the functional models of 
systematic errors. This could cause great difficulty in systematic 

error model identification, not only for formulating error 
models but also for confirmation of the removal of the targeted 
systematic errors. Second, the results of the plane-based 
calibration are improved over those of the point-based method, 
although there are some difficulties in the accurate estimation of 
some known additional parameters. 
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