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ABSTRACT: 
 
The complexity of natural scenes and the amount of information acquired by terrestrial laser scanners turns the registration among 
scans into a complex problem. This problem becomes even more complex when considering the relatively low angular resolution of 
terrestrial scanner compared to images, the monotonicity of manmade surfaces that makes the detection of corresponding objects 
difficult, and the lack of structure of vegetated objects that makes the detection of meaningful features difficult. Since most modern 
scanners are accompanied with consumer cameras of relatively high quality, it stands to reason making use of the image content for 
the registration process. Such alternative will benefit from the large body of image based registration work that has been carried out 
for several decades and therefore has the potential of providing an alternative and simple approach for the registration of pairs and 
multiple scans simultaneously. In this paper, we study the registration of terrestrial scans via image-based information. For this 
purpose, we propose an efficient autonomous model that supports the registration of multiple scans. Following the presentation of the 
model, we analyze its application to outdoor, complex scenes, ones that are common to find in actual laser scanning projects. 
 
 

1.  INTRODUCTION 
 
Terrestrial laser scanners are rapidly becoming a standard 
technology for 3D modeling in surveying and engineering 
projects. In most cases, the acquisition of several scans is 
needed to obtain full scene coverage, and therefore requires the 
registration of the individual scans into one global reference 
frame. For the registration, the common practice involves the 
deployment of artificial targets in the scene as tie objects, with 
typical targets having the form of spheres, which are easily 
distinguishable, or reflectors whose high-energy return eases 
their detection. Following the detection of the tie objects, the 
rigid body transformation between the coordinate systems can 
be solved. To avoid manual intervention in the registration 
process, a growing body of work addresses the problem of 
autonomous registration in relation to both range images and 
terrestrial laser scans. The commonly studied model usually 
involves variants of the Iterative Closest Point (ICP) algorithm 
family (Besl and McKay, 1992; Chen and Medioni, 1992) that 
differ in the features toward which distances are minimized (see 
e.g., Rusinkiewicz and Levoy, 2001), and the numerical 
framework that is being used (e.g., Mitra et al., 2004; Pottmann 
et al., 2006). Dalley and Flynn (2002) sort the iterative 
algorithms by their robustness to initial pose parameters, rate of 
convergence, and by their sensitivity to outliers. For reasons 
such as existence of local extrema in the solution space, 
existence of outliers, occlusions, and lack of information 
regarding the point distribution in the object space, no guaranty 
can be given that convergence to the actual solution is reached 
unless the iterations begin close enough. 

As the iterative methods require good initial pose parameters, 
autonomous techniques for their approximation have been 
proposed for range images of relatively simple objects, with 
well-defined shape and structure, and high-level of connectivity 
(see e.g., Gelfand et al., 2005; Huber, 2002; Huang et al., 2006). 
A small number of works address the actual complexity of 
terrestrial laser scans. Bae and Lichti (2004) are using a 
variation in curvature as the matching criterion on local points. 
This requires the computation of the normal vector and the 
curvature itself. Dold and Brenner (2006) propose an 

autonomous matching procedure that is based on planar patches. 
Following their extraction, patches from different scans are 
matched subject to geometric constraints. Gruen and Akca 
(2005) present a least squares matching based registration 
scheme. The reported algorithm is more stable than the classic 
ICP, but still requires an initial transformation. 

The registration of terrestrial laser scans can be aided by the 
images that are usually acquired simultaneously with the range 
data. Images enjoy high spatial resolution, and record color 
content of the scene, which is usually very rich and diverse. The 
role of image content for realistic texture rendering suggests 
that the tight link between the two sensors is only due to 
increase. As such, it provides an alternative candidate to form 
the registration process of laser scans. Image based registration 
also benefits from the vast amount of research that has been 
devoted to the registration problem. Registration of laser scans 
supported by images received indeed some attention in recent 
years. Ulirch et al. (2003) define a framework to integrate image 
information with scanning data. Kang et al. (2007) propose 
using the Moravec operator and cross correlation as a means to 
find point correspondence between images and use those for the 
registration phase. Al-Manasir and Fraser (2006) suggest using 
relative orientation between images for scans registration 
supported by the placement of artificial, signalized, targets. Seo 
et al. (2005) present an approach that uses image-matching 
schemes on relatively small scenes acquired by a table scanner. 
Finally, Liu et al. (2006) consider a more general framework 
with no rigid attachment between the camera and the scanner 
but with the imposition of some specific geometric constraints.  

Since image-based content is only an integral part of most laser 
scanning systems, it stands to reason investigating the potential 
in the registration of laser scans using intensity information. 
Normally, such registration will be purely image based (e.g., via 
bundle adjustment), where images will be mutually matched 
and simultaneously solved. However, laser-scanning projects 
usually acquire data from a relatively wide base, and therefore, 
especially in open scenes, only a limited number of images 
overlap between scans, particularly for establishing a strong 
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Figure 1. Top: panoramic view of the scanned scene as acquired by a camera mounted on the scanner (for the original images see 
Figure 5), Bottom: Polar representation of terrestrial laser scans; the horizontal and vertical axes of the image represent the values of 
θ, φ respectively and intensity values as distances ρ (bright=far). "No-return" and "no-reflectance" pixels are marked in red. 
 
photogrammetric image block. Additionally, image based 
registration will relate to object space by up to a scale factor. 
Therefore, establishing this link requires a subsequent 
registration, and if autonomous registration is of concern, such 
registration should relate to the laser point cloud.  
 
The approach proposed here is based on using the direct relation 
between the acquired images and the laser data (see Fig. 1), but 
instead of solving a block of images it solves a set of rigid body 
transformations, which are more robust, efficient, and require a 
small subset of points. The model applies to the registration of 
pair of scans as well as multiple scans and assumes no support 
in the form of artificial targets or a priori scanning pose 
parameters. Essentially the assumption is that a digital camera is 
attached to the laser scanner equipment and is calibrated with 
respect to it. Our objective is to utilize both the relatively robust 
geometric models for the registration of 3D scans with the 
powerful techniques of keypoint image matching as a means to 
generate the initial set of correspondences. Our aim is to 
develop an algorithm that can handle the data volume and the 
expected complexity of the scanned scenes. To make the 
registration more reliable and robust we make use of the known 
calibration between the laser scanner and the imaging system to 
treat the problem in a dual manner – extracting features and 
matching them in 2D image space but computing the actual 
transformation between the scanners, in 3D space. With the 
proposed model, we test the applicability of the model to the 
registration of terrestrial laser scans. We analyze the advantages 
and disadvantages of image supported terrestrial laser scans 
registration. The results provide an insight into how these 
sources of information can be used jointly for the registration of 
terrestrial laser scans. 
 

2. METHODOLOGY 
 
Generally, there are two reference frames involved in the model 
– the image reference frame (and there are n images acquired 
per scan), and the scanner reference frame. Essentially, our 
objective is to recover the scanner pose parameters, using the 

image content. Such problem can be approached in two ways: i) 
solving the image (relative) pose parameters and then 
computing the scanner pose parameters using a boresight 
transformation, see e.g., Al-Manasir and Fraser (2006), and ii) 
using the boresight computation between scanner and images to 
find the local 3D point coordinates and computed  directly the 
scanner pose parameters using a rigid body transformation.  

While the first approach offer slight advantages in terms of the 
quality of the matched entities (therefore, leading to better 
registration accuracy) it leads to a more complex framework 
involving the simultaneous orientation of multiple images. In 
contrast, the second approach that estimates a rigid body 
transformation, involves only a single transformation per scan, 
one that is relatively easier to compute. 
 
2.1 Camera to scanner registration 
 
The camera mounted on top of the scanner can be linked to the 
scanner body by finding the transformation between the two 
frames shown in Figure 2. Such relation involves three offset 
parameters and three angular parameters. This relation can also 
be formulated via the projection matrix P. With P a 3x4 matrix 
that represents the relation between world 3D point (X) and 
image 2D point (x) in homogeneous coordinates. Compared to 
the six standard boresighting pose parameters, the added 
parameters (five in all) will account to interior orientation 
parameters. The projection matrix can be formulated as follows:  
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fx and fy are the focal lengths in the x and y directions 
respectively, s is the skew value, x0 and y0 are the perspective 
offset across the two image axes. R is the rotation matrix 
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between the scanner and the camera reference frames (the red 
and the blue coordinate systems in the figure respectively) and t 
the translation vector (Hartley and Zisserman, 2003).  

For the estimation of the relative pose offset between the 
scanner and the camera image, points for which well-defined 
3D laser points exist are selected. Using the laser points as 
control information allows computing the projection matrix 
directly and linearly. In this regard, we point that the calibration 
of the lens distortion parameters (radial and decentring) will 
provide an even better accuracy. At each scanning position, n 
images are acquired in predefined “stops” along the scan (e.g., 
every 360/n degrees). For each image, the projection matrix, P, 
represents the relation between the image and the scan. The 
proposed model assumes that,  i) the camera is rigidly mounted 
to the scanner, ii) the interior camera parameter are fixed and 
known, and iii) the acquisition position is fixed across all 
scanning positions. These standard assumptions enable using 
the same projection matrices for all images in the same “stop” 
in different scans. 
 
2.2 Detection of corresponding points  
 
Finding an image points correspondence has been an active 
research for several decades. Mikolajczyk and Schmid (2004) 
present a comparative review of the modern methods, and note 
that they are composed of two fundamental steps: extraction, 
and matching. The goal of the extraction phase is to detect 
keypoints (sometimes terms interest points) in a repeatable 
manner. The challenge in this stage is to yield high repeatability 
rate even under extreme viewpoint, resolution, and exposure 
changes (e.g., brightness and contrast). The goal of the 
matching phase is to find correspondence among the keypoints 
that were extracted from the different images. For this purpose, 
descriptors that provide distinctive characterization of the 
keypoint are used. Following the generation of a descriptor for 
each detected keypoint, the matching is performed by searching 
for similar descriptors in different images and upon finding 
them, recording them as candidate tie-points. The challenge in 
the matching phase is to design a descriptor that offers unique 
and descriptive features while being insensitive to small 
detection errors and perspective deformation. Following the 
generation of proposed correspondences phase, some correct 
and some not, comes the computation of the transformation 
between the images. This will usually be driven by the Random 
Sampling Consensus (RANSAC) algorithm (Fishler and Bolles, 
1981). An important aspect in the application of the RANSAC 
algorithm is the minimal number of points required to compute 
the hypothesis transformation in each iteration. This number 
affects the number of required iterations and thus, the chances 
to finally converge to the correct solution. In this regard, one 
should prefer a geometric model with a small set of points to 
calculate the hypothesis transformation. 

For the extraction of keypoints and their descriptors, we make 
use of the Scale Invariant Feature Transform (SIFT) that was 
proposed in Lowe (2004), and was applied in photogrammetry 
in Shragai et al. (2005), and Läbe and Förster (2006). 
 
2.3 Scale Invariant Feature Transform 
 
The Scale Invariant Feature Transform - SIFT (Lowe, 2004) is a 
methodology for finding corresponding points in a set of 
images. The method designed to be invariant to scale, rotation, 
and illumination. The methodology consists of the following 
four steps:  

 
Figure 2. Reference frames of the scanning system with a 
mounted camera. 
 
1. Scale-space extrema detection – using the difference of 

Gaussian (DoG), potential interest points are detected.  
2. Localization – detected candidate points are being probed 

further. Keypoints are evaluated by fitting an analytical 
model (mostly in the form of parabola) to determine their 
location and scale, and are then tested by a set of 
conditions. Most of them aim guaranteeing the stability of 
the selected points.  

3. Orientation assignment – orientation is assigned to each 
keypoint based on the image local gradient. To ensure scale 
and orientation invariance, a transformation (in the form of 
rotation and scale) is applied on the image keypoint area. 

4. Keypoint descriptor – for each detected keypoint a 
descriptor, which is invariant to scale, rotation and changes 
in illumination, is generated. The descriptor is based on 
orientation histograms in the appropriate scale. Each 
descriptor consists of 128 values. 

With the completion of the keypoint detection (in which 
descriptors are created), the matching process between images 
begins. Matching is carried out between the descriptors, so the 
original image content is not considered here. Generally, for a 
given keypoint, matching can be carried with respect to all the 
extracted keypoints from all images. A minimum Euclidian 
distance between descriptors will then lead to finding the 
correspondence. However, matching in this exhaustive manner 
can be computationally expensive (i.e., O(N2) with N the 
number of keypoints). Common indexing schemes cannot be 
applied to improve the search here because of the descriptors 
dimensionality. However, an indexing paradigm, called Best 
Bin First (BBF) can be applied (Lowe, 2004). The BBF 
algorithm reduces the search to a limited number of the most 
significant descriptors values and then tries locating the closest 
neighbor with high probability. Compared to the exhaustive 
matching, this approach improves the performance by up to two 
orders of magnitude, while difference between the amounts of 
matched points is small. Our proposed solution follows Brown 
and Lowe (2003) where all key points from all images are 
organized in one K-d tree. Once a set of matching points has 
been generated, another filtering process is applied.  

Figure 3 shows the keypoints extracted in a scene that mixes 
structured and unstructured objects, the squares around each 
keypoint illustrates the scale in which it was detected and the 
small vector, its orientation. 
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Figure 3. SIFT keypoints with orientation and scale. 
 
2.4. Linking the laser scans and the image information 
 
Since the registration scheme is based on a rigid body 
transformation, the extraction of keypoints in image space 
should now be transferred into the local 3D object space. 
Generally, this transfer requires tracing the ray into object 
space. However, we apply here a back projection of the 3D 
point cloud onto the image using the boresight parameters that 
were derived in the calibration phase (see Section 2.1). We then 
assign the 3D coordinates of the relevant laser point to the 
keypoints. The result of the back-projection of the laser point 
cloud into the imaging system reference-frame is demonstrated 
in Figure 4. Notice that vegetation expression in the range 
image compared to intensity one.  
 
The 3D coordinate assignment is not immediate, however. 
Keypoints are defined by their position and scale (window size), 
therefore, for each keypoint, candidate 3D coordinates are 
collected from the scale dependent corresponding window (see 
Figure 3). Generally, the coordinate assignment problem can be 
partitioned into two cases the first is when the point falls on a 
solid object; the second is when the point falls between 
surfaces. In the first case, we assign the nearest 3D coordinate 
in terms of angular distance between the keypoint direction and 
laser point direction, while in the second we assign the 3D 
coordinates of the point closest to the imaging system. The 
motivation for this is as follows, for solid objects the keypoint 
location is well defined and, therefore, the nearest 3D point will 
have the smallest bias among all candidates (we note that some 
refinement to the ray direction can be applied, but this is 
negligible). For the other case, with lack of any other 
information we opt toward assigning the closest distance within 
the candidate 3D points under the realization that it is the 
foreground object, which is likeliest to do with the detection of 
the point as keypoint. Differentiation between the two cases is 
achieved by computing the std. of the 3D points' depth. 
 
2.5 Registration between scans  
 
With the candidate matches, the registration of the laser scan 
becomes an estimation problem of the rigid body 
transformation, 

( ) ( xSISIXX −++= −1
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where I is a 3x3 identity matrix, and S is an skew-symmetric 
matrix, defined as: 
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The transformation can estimated linearly using such methods 
as the one proposed in Horn et al. (1988). Since some of the 
proposed matches are outliers, a RANSAC solution guides the 
parameter estimation. One of the appealing properties of the 
registration based on the rigid body transformation is that only 
three points are needed to generate a hypothesis. Therefore, 
even if a small fraction of inliers is assumed, the number of 
trials will be controllable and very efficient. Choosing the 
relative orientation option and using, for example, the well-
known eight-point algorithm to estimate the fundamental matrix 
(Hartley and Zisserman, 2003) will obviously have a much 
higher cost under a small fraction of inliers assumption. 
 

    
Figure 4. Depth image calculated to fit the original image, left: 
the depth image, right: the original image. Because the spatial 
resolution of the laser point cloud is much sparser than the 
image resolution (0.12o compared to 0.03o here) filling of depth 
image was applied for demonstration purposes only. 
 

3.  RESULTS 
 

)    (2)  

To demonstrate our approach we test the proposed algorithm on 
three scans acquired in a row by Riegl 360. The image 
sequences of the three scans are presented in Figure 5. The 
distance between the scanners is 8.15, and 22.28 [m] 
respectively, and the maximal scanning range ~100 [m]. Six 
mega-pixel size images acquired by the Nikon-D100 were 
processed in full resolution. For each image SIFT keypoint were 
extracted with 4,000-11,000 keypoints per image evaluated for 
the matching. Figure 3 shows a typical set of keypoints (with 
some pruning for visual clarity). Matches are then evaluated 
between each image in a scan to all seven images in the 
counterpart scan (for multiple scans a similar procedure will 
apply). Tables 1, 2 list the number of matches (descriptor wise) 
between each image in one scan and the images in the other. 
Even though Table 1 has a dominant diagonal, the structure of 
the match matrix is arbitrary and depends on similarity between 
the images in the scans. Figure 5 clearly shows why the first set 
is diagonal dominant. Figures 6 (top and center) shows the 
matched keypoints between the pair of sixth images in set 1-2. 
Generally most matches are correct, but some outliers can be 
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seen, e.g., point 134 (encircled) that has no counterpart. Figures 
6(bottom) shows the matched keypoints between image 7 of 
scan 2 and 3 of scan 3. One can see that the number and quality 
of the matches is relatively poor compared to the first pair.  
Overall, 1256 matched points (sum of all values in the table) 
were found all scans in set 1-2, and 123 points between 2 and 3. 
For each matched keypoint, 3D coordinates are assigned (see 
Section 2.3). Image pairs with less than four matched points are 
overlooked due to the realization that such a small number is 
most likely the result of lack of overlap between the images 
with only accidental matches found (this was also validated by 
manual inspection). This further pruning reduces the number of 
matched keypoints to 1219 and 68 matches respectively. 
Following the assignment of the 3D coordinates to the matched 
keypoint comes the RANSAC guided 3D rigid body 
transformation.  
 
Table 1: number of matches, scans 1 & 2 –baseline 8.15 [m] 

scan 2 
img # 1 2 3 4 5 6 7 

1 4 6 4 0 1 3 0 
2 4 1 11 3 4 3 3 
3 0 5 16 5 0 3 0 
4 0 1 2 35 36 2 4 
5 4 1 1 0 347 115 6 
6 2 3 4 0 55 414 38 

scan 1 

7 5 2 1 0 2 4 96 

Table 2: number of matches, scans 2 & 3 –baseline 22.28 [m] 
scan 3 

img # 1 2 3 4 5 6 7 
1 3 2 1 1 2 0 2 
2 0 2 1 1 2 2 2 
3 0 3 0 6 2 4 1 
4 3 5 0 0 3 5 0 
5 0 12 4 8 1 2 2 
6 1 6 7 4 0 2 0 

scan 2 

7 0 2 13 3 2 1 0 

Out of 1219 proposed matches, 979 were found correct (amount 
to 80.3% of the proposed matches) for set 1-2.  In contrast, out 
of the initial 68 candidates in the 2-3 scan, 18 proposed 
correspondences were found (amounts to 26.5%). The 
differences in correct correspondences reflects the change in the 
baseline between the scan pair (8 compared to 22 [m]). The 
comparison of the estimated parameters to manual calculation, 
considered as ground truth, shows that the translation error on 
the scanning position is on order of 0.65 [m] for the first pair 
and 1.15 [m] for the second one; the angular error was (0.12, 
0.3, 0.01) [o] for ω,φ,κ angles respectively and (0.18,0.07,1.09) 
for the second. Those offsets can related to errors that are 
accumulated in the course of the process (calibration errors, 
image to range data conversion errors and matching accuracy 
errors). However, these values are good enough to launch an 
ICP procedure between the point clouds, which is advisable to 
perform for tuning the registration. 

4. CONCLUSIONS 

The registration results of the two scans show the great potential 
of registration via images. As the paper has demonstrated when 
considering the image-based registration problem between scans 
as a platform for an eventual rigid body transformation, the rich 
image-based information (extracted keypoints) allows using 

homologous registration candidates which wouldn't have been 
naturally detected using any of the range data registration 
methods one finds. The rigid body transformation also allows 
using small subsets of points for the RANSAC hypothesis 
generation, thereby allowing greater flexibility in the feature 
extraction phase.  

 

          

  
Figure 6. Matched keypoints between images pairs, up) from 
scans 1-2, center) blowup showing the quality of the matches, 
bottom) matches from scan 2-3 the different viewing geometry 
dropped the number of matches. 
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