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ABSTRACT:

The amount and variability of dead wood in a fotsind is an important indicator of forest biodsity, and relates to both the
structural heterogeneity and the amount of hahitatlable for biota. In this study, we investigtte capacity of light detection and
ranging (lidar) technology to estimate the percgataf dead trees in coastal forests on Vancoulands British Columbia, Canada.
Twenty-two field plots were established from whitle tree structural classes, or wildlife tree (WeBsses, of all stems (DBH > 10
cm) were estimated. For each plot, the frequenstyilbutions of the WT classes were highly skewsalJognormal distributions
were fitted, and the meang) (and standard deviations)(of the log-transformed data were extracted. fhationship between
and the percentage of dead trees within the plass highly significant = 0.77, p < 0.001). A variety of metrics wereragted
from the lidar vegetation returns and compared resyai, and results indicated that the natural logarithitthe coefficient of
variation was the best predictof & 0.75,p < 0.001), followed by the heights of the"2percentile (f = 0.69,p < 0.001). In
general, results indicated that the lowest lidaghtepercentiles were more significant predictofg,owhich is likely based on the

direct linkage between the number of dead tre@ssitand and its canopy architecture.

1. INTRODUCTION

in forests in the western United States, and ntitatithe direct
estimation of coarse woody debris loads may beeaehie.

The Canadian province of British Columbia containsOne important variable that has not been examinedever, is

approximately half of the country’s softwood lumlxeventory,
and in 2005 the forestry industry was responsitetb% of the
province’s manufacturing shipments (BC Stats 200%Yhile
forestry’s economic benefits are significant, estien must be
performed in a sustainable manner. In responde@dmeed, the
Province of British Columbia has developed a safteesource
values to monitor forest health and sustainabilgéych as
biodiversity, timber, and soil, amongst others.

Each resource value is assessed by monitoring eberuof

indicators, such as tree height, diameter at bresight (DBH),

species richness, and wildlife tree (WT) classdecay class),
which are traditionally measured using field-basgroaches
in association with aerial photography. Field asseents,
however, can be expensive, labour intensive, peowschall

sample sizes and intensity, and often cover oniyiteéd

geographic areas, while aerial photography suffemn time

and cost issues, is prone to operator bias anéaibfy, and is
limited by a shortage of trained interpreters. aAsesult, there
has been increased interest in augmenting ecosystdrtimber
inventory mapping initiatives using digital remotensing
technologies, including recent research into ligétection and
ranging (lidar).

Various measures of forest structure and bioditerbave
previously been estimated within the context of stal
northwest forests using lidar (e.g. Lefsky et H199; Hudack et
al., 2002; Anderson et al., 2005; Lefsky et al Q24 Lefsky et
al., 2005b; Coops et al., 2007). Seielstad ande®U&003)
discussed the ability of lidar to characterise foedl roughness
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the decay class or structural life stage of the, tnehich captures
the growth form of the current individual tree, froyoung

vigorous trees, to older large live trees and agigrto standing
dead snags, to broken stems in various stagescaf/d@/ithin

British Columbia the form classification is knowrs dhe

wildlife tree class, which when accumulated overstand

provides an indication of the amount of dead traed their

state of decay. The amount and variability of deadd is an
important indicator of forest biodiversity (Nos€99B). Snags
are a critical component of coastal forests, irgrepstructural
heterogeneity and providing habitat for forest di¢€layoquot
Sound Scientific Panel, 1995). The goal of thipgrawas to
estimate the percentage of dead trees within platemanaged
forests by developing statistical relationshipsaeen plot-level

distributions of WT class and lidar-derived vegetaimetrics.

2. METHODS
2.1 Areaof Investigation

Our investigation focused on the Kennedy Flats,y@jaot
Sound, Vancouver Island, British Columbia, Cangd&0’35”
N, 12537°21” W). Clayoquot Sound includes both maturstfi
and second growth forest. The area is classifiedCaastal
Western Hemlock (CWH) zone, based on the Bioge@dion
Ecosystem Classification (BEC) system (Meidinged &ojar
1991), and has been mapped using the province'seStgal
Ecosystem Mapping (TEM) classification system, whish
derived from 1:20,000 to 1:50,000 aerial photogyafMitchell
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et al.,, 1989; Demarchi et al.,, 1990). Based on T
classification system, the area encompasses thadiuge of
forest structural stages from shrub and herb (18%6tal area),
pole and sapling (32%), young forest (4%), and facest
(46%).

2.2 Field Data Collection

Field data were collected in 2005 and 2006 fronfid2@st plots
ranging from pole/sapling to old forest based or TFEM
classification (Table 1). Five of the old foresbigl were located
in variable retention harvest blocks. Data werdectéd from
625 nf or greater rectangular plots, with plot centresl an
corners mapped at a horizontal accuracy of apprateiy 1-5 m
using a post-processed differentially corrected GiP@&mble
GeoXT). For each stem with a DBH > 10 cm, distanoe
bearing from plot centre, tree height, DBH, andcsgse were
recorded, with crown dimensions measured for efiéthytree.
For conifers, the WT class was estimated usingeld f§heet
showing growth and decay stages ranked 1 througlaSses 1-
2 were living trees; 3-5 were dead trees with hambd; 6
represented dead trees with broken tops and spangd; 7
and 8 were dead trees with broken tops and softinerad class
9 represented dead and fallen trees.

Pole/Sapling | Young Forest| Old Forest
Variable n=5 n=3 n=12
(mean/range)| (mean/range)| (mean/range)
Stems ha 1491/ 1544 1147/ 816 957 /1391
BasalArea| 1,/ 4/1273| 841/368| 142.3/3726
(m*ha”)
Mean
Height (m) 19.3/5.3 18.3/3.9 12.6/12.6
Standard
Deviation 6.1/2.0 5.1/1.3 6.33/12.1
of Height
(m)
Maximum | 5, 5 /15 9 25.8 /4.7 27.0/30.4
Height (m)
Mean DBH | 7 5/ 128 25.6/5.5 31.3/37.2
(cm)
Maximum
DBH (cm) 107.6/106.8 125.7 /1 98.9 170.5/343.2
Standard
Deviation
of DBH 17.2/13.7 15.8/5.4 29.4/63.4
(cm)
Dead Trees
(WT Class 12.0/18.1 13.1/9.0 19.6/12.1
3+) (%)

Table 1. Summary statistics for sample plots by egss for
stems with a DBH > 10 cm. Two outliers were exeldidrom
this summary and all subsequent analyses.

Initial examination of the field data indicated thavo plots
were outliers and excluded from analysis. The fivgas

composed of extremely dense overstocked conifer anflsing linear regression techniques. These parasnetze then
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contained no lidar ground returns; the second weatéd in a
stand which had experienced significant disturbapossibly
from insect infestation, resulting in a stand siwoe not
replicated in the dataset.

2.3 Fitting Lognormal Probability Density Functionsto WT
Class Data

For all plots, the majority of the trees were lyi(WT classes 1
and 2), with the small remainder being dead andarious
stages of decay (WT classes 3-9), resulting in skew
distributions. Lognormal distributions may be fittto data that
are highly skewed, which is a common problem acribss
biological sciences (Limpert et al., 2001). A randeariable
(x) has a lognormal distribution if log(x), usuallige natural
logarithm, is normally distributed. For each plgnormal
probability density functions (PDFs) were then fa the
frequency distributions of WT classes using thelofeing
equation:

2
1 In(x) -
(00 = cerp] - (N0~ 1) W
xXov 2 20
where  fk) = the lognormally distributed variable

4« = mean ok or scale parameter
o = standard deviation ofor shape parameter

Theu ands parameters are related to the frequency distohuti
of WT class of a given plot in similar ways. Starmbntaining
large numbers of healthy living trees (e.g. WT €la} tend to
have small values fqr andes. Increases in the percentages of
dead trees, however, particularly in the more adedrstages of
decay, will cause increases in both parametersi(€ig).
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“\\Pole/Sapling: u =0.11, 0 = 0.41
“\_Young Forest: y=0.18, 0 = 0.47 -
“\Old Forest: u = 0.45, 6 = 0.57
“\.Old Forest: y = 0.46, 0 = 0.77
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Figure 1. Examples of lognormal distributionstitWT class
frequencies in one pole/sapling, one young forst, two old
forest plots. Note increasgsandc as stand age increases.

The lognormaly and o parameters were compared to the
percentages of dead trees (WT classes 3-9) withah @lot
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used as proxies to represent the percentage oftcessiwithin 3. RESULTS
each plot.

3.1 Predicting the Percentages of Dead Trees with Lidar-
2.4 Lidar Data Collection and Variable Extraction Derived Variables.

Small footprint laser data were collected duringy 2005 by  The best lidar-derived variables for directly peiig the
Terra Remote Sensing (Sidney, British Columbia)ingisa  percentages of dead trees in the plots (where @fitates a
TRSI Mark Il two-return sensor onboard a fixed-wislgtform. ~ Stand contains no dead trees, and 100% is indécafia stand
Flying at a mean height of 800 m above ground |etre  Wwhere all trees are dead and showing some sigeazy) were
survey was optimized to achieve a nominal pointispof one the natural logarithm of the coefficients of Va'D'ﬂt(f2 =0.42,r
laser pulse return every 1.52rfTable 2). Ground and non- = 0.64, RMSE = 4.4%, p = 0.0021) and the heightthef2d’
ground returns were separated using Terrascan 064.0 percentiles fr=0.39, r = 0.62, RMSE = 4.5%, p = 0.0033).
(Terrasolid, Helsinki, Finland).

3.2 Lognormal Distribution Parameters and Percentages of

Dead Trees
Sensor and Survey . . . .
Parameters Value Using the plot-based field observations, the refethip
- between the percentage of dead trees and the perarderived
Sensor Type TRSI ll/lark Il discrete from the fitted logarithmic distributions (i.e. and o) were
return sensor explored. Results indicated that(mean of the lognormally
Number of Returns Two, first and last distributed variable, or scale) was the best ptediof the
) percentage of dead trees (Figure 2).
Beam Divergence 05
Angle (mrad) '
Wavelength (nm) 1064
Mean Flying Height 800 % ' ' ' ' '
Above Ground (m)
Pulse Frequency
(kHz2) >0 s
Mirror Scan Rate )
(H2) 30 g
(&}
Scan Angle (degrees) +23 g
Mean Footprint 0.4 §
Diameter (m) §
Table 2. Lidar sensor and survey parameters.
A 0.5 m spatial resolution digital elevation modeEM) was 0 ) ) . ) )

created by applying a natural neighbour interpotatilgorithm
to the ground returns (Sibson, 1981; Sambridgd.etl895).
The heights of the vegetation returns above theirgtowere

then C(_)mputed by _subtracting the DEM heights_ frame ¢ Figure 2. The best predictor of the percentagdeafd trees in
vegetation return heights. A large number of \désa were each plot was the lognormaparameter. Model2r 0.77
extracted from the lidar vegetation data based obakken and [ _ 4 gg RMSE = 2 8% = <0.001. y e T

Neesset (2005), and Neesset (2002; 2004), but witeoutving
returns below a height threshold. These variabtemmat to
capture vertical structure by classifying hits irmercentiles
based on their height distribution through the $obmnopy, and

included the 5, 10, 15... 95 percentiles, in additionthe  The pest predictors of the WT class lognormphrameter were
means, maximums, standard deviations, and coefti®f  he natural logarithm of the coefficients of vagat (Figure 3)
variation of vegetation return heights within egubt. The  gng heights of the Jopercentiles (Figure 4) The lowest height
natural logarithms of the cases of each variableewaso percentiles, from the "5to the 3%, were each capable of
computed. explaining 60%-70% of the variance im, and all were
negatively correlated with the parameter. This cidpa
diminished with increases in the percentiles (Fégix.

0.0 0.1 02 0.3 04 0.5 0.6
WT Class Lognormal p Parameter

3.3 Predicting the Lognormal u Parameter with Lidar-
Derived Variables

25 DataAnalysis

The lidar-derived variables were compared to thgndomal
parameters for the WT class distributions usind lwatrrelation
analyses and simple regression approaches to test
significance of these relationships.

Figure 6 shows the height of the "2@ercentile and the
percentage of dead trees by structural class. ofestf stands
increase in age, the percentage of dead treeshamluimber of
canopy gaps increase, allowing lidar pulse rettonpenetrate
deeper through the forest canopy. The trend of rtean

vegetation return height varies closely with thisthe 20"
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Figure 3. The best predictor of the WT class logra u
parameter was the natural logarithm of the lidaffocient of
variation. Model: = 0.75, r = 0.87, RMSE = 0.07p < 0.001;
y = 0.48+0.20*x
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Figure 5. The lidar height percentiles, plottechingt the

coefficients of determination between the lognormal

parameter and the heights of the percentiles.s thé lowest

percentiles that account for most of the variamge i Note that

all Pearson correlation coefficients were negatindicating an

inverse relationship betweem and the heights of the
percentiles.
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Figure 4. The WT class lognormaparameter estimated using Figure 6. Means and ranges of (1) lidar-derivediite of the

the lidar 28" percentile. Model:?= 0.69, r = -0.83,
RMSE = 0.079p < 0.001; y = 0.45-0.16*x
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20" percentile, and (2) the percentage of dead togesped by
TEM structural class.
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percentile (r = 0.88). The standard deviationhaf vegetation
return heights, however, were relatively stableosgrthe age
classes, resulting in an increase in the coefficenvariation
from approximately 0.15 to 0.3 for pole sapling aymling
forest, to 0.4-1.2 for old forest.

4. DISCUSSION

The distribution of WT classes, or tree structwtakses, within
a plot is an important variable to consider whewettgping an
understanding of the current structure of a fos¢mtd, as well
as for managing the stand for wildlife and biodsigr values.
Whilst the range of wildlife tree classes from 1Qowithin a
plot is highly variable, fitting distributions tché observed
frequency of WT classes and correlating these peterniwith a
simplified index of the proportions of live and destems is, we
believe, an important result. Once we have deweslop
confidence in our capacity to understand how thetribution
parameters vary over the landscape as a functistanfl form,
we then look to lidar technology to extrapolaterdaege areas.

The results presented here indicate the capacitfidaf to
estimate lognormal parameters describing the p&agenof
dead trees within plots in unmanaged forests. fb#hod was
superior to simply attempting to predict the petagae of dead
trees directly using lidar-derived variables. Thatural
logarithm of the coefficient of variation was thesb predictor
of u, however, generally all of the lower percentilesrevalso
strongly and negatively correlated with the paramet We
believe this is a result of the direct linkage oy Clark et al.
(2004) between tree mortality and overall standcstire.

Clayoquot Sound’s old forests are characterized

heterogeneous canopies and patchy understorieb, geips
where old trees have died and young ones are negenge
(Clayoquot Sound Scientific Panel, 1995). Thegesgat least
partly the result of the presence of defoliatedermflimbless
snags with very different structures than livingess, increased
the mean penetration depth of lidar returns inte fbrest

canopy, and decreased the heights of the lowerhheigT A. and Harding, D, 1999.

percentiles. Critically, non-ground returns we@ removed
below a given height threshold, and though many maye
actually intercepted the understorey, coarse watstyis, large
stones, or the ground, their inclusion was nonetizelan
important contribution to the analyses.

Increasing the number of plots across the full eang tree
structural class distributions is a necessary sésp to both
adequately capture the heterogeneity within andvdst the
structural classes (especially old forests) foundthe study
area. Additional field data will also enable theplgation of
multivariate statistical techniques, where morentlza single
predictor variable can be employed. Furthermoraitasal
research is required to determine if these teclasiqcan be
extended to managed forests. We believe that lligioin
parameters can be robust proxies for plot-basettatats of
forest structure and biodiversity, and can be ugefacologists
and forest managers interested in augmenting tbairent
mapping initiatives using lidar remote sensing.
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