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ABSTRACT: 
 
The amount and variability of dead wood in a forest stand is an important indicator of forest biodiversity, and relates to both the 
structural heterogeneity and the amount of habitat available for biota.  In this study, we investigate the capacity of light detection and 
ranging (lidar) technology to estimate the percentage of dead trees in coastal forests on Vancouver Island, British Columbia, Canada.  
Twenty-two field plots were established from which the tree structural classes, or wildlife tree (WT) classes, of all stems (DBH > 10 
cm) were estimated.  For each plot, the frequency distributions of the WT classes were highly skewed, so lognormal distributions 
were fitted, and the means (µ) and standard deviations (σ) of the log-transformed data were extracted.  The relationship between µ 
and the percentage of dead trees within the plots was highly significant (r2 = 0.77, p < 0.001).  A variety of metrics were extracted 
from the lidar vegetation returns and compared against µ, and results indicated that the natural logarithm of the coefficient of 
variation was the best predictor (r2 = 0.75, p < 0.001), followed by the heights of the 20th percentile (r2 = 0.69, p < 0.001).  In 
general, results indicated that the lowest lidar height percentiles were more significant predictors of µ, which is likely based on the 
direct linkage between the number of dead trees in a stand and its canopy architecture.   
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1. INTRODUCTION 

The Canadian province of British Columbia contains 
approximately half of the country’s softwood lumber inventory, 
and in 2005 the forestry industry was responsible for 45% of the 
province’s manufacturing shipments (BC Stats 2005).  While 
forestry’s economic benefits are significant, extraction must be 
performed in a sustainable manner.  In response to this need, the 
Province of British Columbia has developed a suite of resource 
values to monitor forest health and sustainability, such as 
biodiversity, timber, and soil, amongst others.   
 
Each resource value is assessed by monitoring a number of 
indicators, such as tree height, diameter at breast height (DBH), 
species richness, and wildlife tree (WT) class (or decay class), 
which are traditionally measured using field-based approaches 
in association with aerial photography.  Field assessments, 
however, can be expensive, labour intensive, provide small 
sample sizes and intensity, and often cover only limited 
geographic areas, while aerial photography suffers from time 
and cost issues, is prone to operator bias and subjectivity, and is 
limited by a shortage of trained interpreters.  As a result, there 
has been increased interest in augmenting ecosystem and timber 
inventory mapping initiatives using digital remote sensing 
technologies, including recent research into light detection and 
ranging (lidar).   
 
Various measures of forest structure and biodiversity have 
previously been estimated within the context of coastal 
northwest forests using lidar (e.g. Lefsky et al., 1999; Hudack et 
al., 2002; Anderson et al., 2005; Lefsky et al., 2005a; Lefsky et 
al., 2005b; Coops et al., 2007).  Seielstad and Queen (2003) 
discussed the ability of lidar to characterise fuel bed roughness 

in forests in the western United States, and noted that the direct 
estimation of coarse woody debris loads may be achievable. 
One important variable that has not been examined, however, is 
the decay class or structural life stage of the tree, which captures 
the growth form of the current individual tree, from young 
vigorous trees, to older large live trees and veterans, to standing 
dead snags, to broken stems in various stages of decay. Within 
British Columbia the form classification is known as the 
wildlife tree class, which when accumulated over a stand 
provides an indication of the amount of dead trees and their 
state of decay.  The amount and variability of dead wood is an 
important indicator of forest biodiversity (Noss, 1999).  Snags 
are a critical component of coastal forests, increasing structural 
heterogeneity and providing habitat for forest biota (Clayoquot 
Sound Scientific Panel, 1995).  The goal of this paper was to 
estimate the percentage of dead trees within plots in unmanaged 
forests by developing statistical relationships between plot-level 
distributions of WT class and lidar-derived vegetation metrics. 
 
 

2. METHODS 

2.1 Area of Investigation 

Our investigation focused on the Kennedy Flats, Clayoquot 
Sound, Vancouver Island, British Columbia, Canada, (49o0’35” 
N, 125o37’21” W).  Clayoquot Sound includes both mature first 
and second growth forest.  The area is classified as Coastal 
Western Hemlock (CWH) zone, based on the Biogeoclimatic 
Ecosystem Classification (BEC) system (Meidinger and Pojar 
1991), and has been mapped using the province’s Terrestrial 
Ecosystem Mapping (TEM) classification system, which is 
derived from 1:20,000 to 1:50,000 aerial photography (Mitchell 
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et al., 1989; Demarchi et al., 1990).  Based on the TEM 
classification system, the area encompasses the full range of 
forest structural stages from shrub and herb (14% of total area), 
pole and sapling (32%), young forest (4%), and old forest 
(46%). 
 
2.2 Field Data Collection 

Field data were collected in 2005 and 2006 from 22 forest plots 
ranging from pole/sapling to old forest based on the TEM 
classification (Table 1). Five of the old forest plots were located 
in variable retention harvest blocks. Data were collected from 
625 m2 or greater rectangular plots, with plot centres and 
corners mapped at a horizontal accuracy of approximately 1-5 m 
using a post-processed differentially corrected GPS (Trimble 
GeoXT). For each stem with a DBH > 10 cm, distance and 
bearing from plot centre, tree height, DBH, and species were 
recorded, with crown dimensions measured for every fifth tree. 
For conifers, the WT class was estimated using a field sheet 
showing growth and decay stages ranked 1 through 9: classes 1-
2 were living trees; 3-5 were dead trees with hard wood; 6 
represented dead trees with broken tops and spongy wood; 7 
and 8 were dead trees with broken tops and soft wood; and class 
9 represented dead and fallen trees.    
 
 

Variable 
Pole/Sapling 

n = 5 
(mean/range) 

Young Forest 
n = 3 

(mean/range) 

Old Forest 
n = 12 

(mean/range) 

Stems ha-1 1491 / 1544 1147 / 816 957 / 1391 

Basal Area  
(m2 ha-1) 

144.9 / 127.3 84.1 / 36.8 142.3 / 372.6 

Mean 
Height (m) 

19.3 / 5.3 18.3 / 3.9 12.6 / 12.6 

Standard 
Deviation 
of Height 

(m) 

6.1 / 2.0 5.1 / 1.3 6.33 / 12.1 

Maximum 
Height (m) 

32.5 / 18.0 25.8 / 4.7 27.0 / 30.4 

Mean DBH 
(cm) 

27.8 / 12.8 25.6 / 5.5 31.3 / 37.2 

Maximum 
DBH (cm) 

107.6 / 106.8 125.7 / 98.9 170.5 / 343.2 

Standard 
Deviation 
of DBH 

(cm) 

17.2 / 13.7 15.8 / 5.4 29.4 / 63.4 

Dead Trees 
(WT Class 

3+) (%) 
12.0 / 18.1 13.1 / 9.0 19.6 / 12.1 

 
Table 1.  Summary statistics for sample plots by age class for 
stems with a DBH > 10 cm.  Two outliers were excluded from 

this summary and all subsequent analyses. 
 
Initial examination of the field data indicated that two plots 
were outliers and excluded from analysis. The first was 
composed of extremely dense overstocked conifer and 

contained no lidar ground returns; the second was located in a 
stand which had experienced significant disturbance, possibly 
from insect infestation, resulting in a stand structure not 
replicated in the dataset.   
 
2.3 Fitting Lognormal Probability Density Functions to WT 
Class Data 

For all plots, the majority of the trees were living (WT classes 1 
and 2), with the small remainder being dead and in various 
stages of decay (WT classes 3-9), resulting in skewed 
distributions. Lognormal distributions may be fitted to data that 
are highly skewed, which is a common problem across the 
biological sciences (Limpert et al., 2001). A random variable 
(x) has a lognormal distribution if log(x), usually the natural 
logarithm, is normally distributed.  For each plot, lognormal 
probability density functions (PDFs) were then fit to the 
frequency distributions of WT classes using the following 
equation: 
 
 

2
1 (ln( ) )

( ) * exp 22 2

x
f x

x

µ

σ π σ

−
= −

 
 
 

 (1) 

 
 
where  f(x) = the lognormally distributed variable 
 µ = mean of x or scale parameter 
 σ = standard deviation of x or shape parameter  
 
The µ and σ parameters are related to the frequency distribution 
of WT class of a given plot in similar ways.  Stands containing 
large numbers of healthy living trees (e.g. WT class 1) tend to 
have small values for µ and σ.  Increases in the percentages of 
dead trees, however, particularly in the more advanced stages of 
decay, will cause increases in both parameters (Figure 1).  
 
 

 
Figure 1.  Examples of lognormal distributions fit to WT class 
frequencies in one pole/sapling, one young forest, and two old 
forest plots.  Note increases µ and σ as stand age increases.    
 
The lognormal µ and σ parameters were compared to the 
percentages of dead trees (WT classes 3-9) within each plot 
using linear regression techniques.  These parameters were then 
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used as proxies to represent the percentage of dead trees within 
each plot.   
 
2.4 Lidar Data Collection and Variable Extraction 

Small footprint laser data were collected during July 2005 by 
Terra Remote Sensing (Sidney, British Columbia), using a 
TRSI Mark II two-return sensor onboard a fixed-wing platform.  
Flying at a mean height of 800 m above ground level, the 
survey was optimized to achieve a nominal point spacing of one 
laser pulse return every 1.5 m2 (Table 2).  Ground and non-
ground returns were separated using Terrascan v 4.006 
(Terrasolid, Helsinki, Finland).   
 
 

Sensor and Survey 
Parameters 

Value 

Sensor Type 
TRSI Mark II discrete 

return sensor 

Number of Returns Two, first and last 

Beam Divergence 
Angle (mrad) 

0.5 

Wavelength (nm) 1064 

Mean Flying Height 
Above Ground (m) 

800 

Pulse Frequency 
(kHz) 

50 

Mirror Scan Rate 
(Hz) 

30 

Scan Angle (degrees) ±23 

Mean Footprint 
Diameter (m) 

0.4 

 
Table 2.  Lidar sensor and survey parameters. 

 
A 0.5 m spatial resolution digital elevation model (DEM) was 
created by applying a natural neighbour interpolation algorithm 
to the ground returns (Sibson, 1981; Sambridge et al., 1995).  
The heights of the vegetation returns above the ground were 
then computed by subtracting the DEM heights from the 
vegetation return heights.  A large number of variables were 
extracted from the lidar vegetation data based on Gobakken and 
Næsset (2005), and Næsset (2002; 2004), but without removing 
returns below a height threshold. These variables attempt to 
capture vertical structure by classifying hits into percentiles 
based on their height distribution through the forest canopy, and 
included the 5, 10, 15… 95 percentiles, in addition to the 
means, maximums, standard deviations, and coefficients of 
variation of vegetation return heights within each plot.  The 
natural logarithms of the cases of each variable were also 
computed. 
 
2.5 Data Analysis 

The lidar-derived variables were compared to the lognormal 
parameters for the WT class distributions using both correlation 
analyses and simple regression approaches to test the 
significance of these relationships.  
 
 

3. RESULTS 

3.1 Predicting the Percentages of Dead Trees with Lidar-
Derived Variables. 

The best lidar-derived variables for directly predicting the 
percentages of dead trees in the plots (where 0% indicates a 
stand contains no dead trees, and 100% is indicative of a stand 
where all trees are dead and showing some sign of decay) were 
the natural logarithm of the coefficients of variation (r2 = 0.42, r 
= 0.64, RMSE = 4.4%, p = 0.0021) and the heights of the 20th 
percentiles (r2 = 0.39, r = 0.62, RMSE = 4.5%, p = 0.0033).  
 
3.2 Lognormal Distribution Parameters and Percentages of 
Dead Trees 

Using the plot-based field observations, the relationship 
between the percentage of dead trees and the parameters derived 
from the fitted logarithmic distributions (i.e. µ and σ) were 
explored.  Results indicated that µ (mean of the lognormally 
distributed variable, or scale) was the best predictor of the 
percentage of dead trees (Figure 2).  
 
 
 

 
Figure 2.  The best predictor of the percentage of dead trees in 
each plot was the lognormal µ parameter.  Model: r2 = 0.77,  
r = 0.88, RMSE = 2.8%, p = <0.001; y = 4.73+35.96*x  
 
3.3 Predicting the Lognormal µ Parameter with Lidar-
Derived Variables 

The best predictors of the WT class lognormal µ parameter were 
the natural logarithm of the coefficients of variation (Figure 3) 
and heights of the 20th percentiles (Figure 4)  The lowest height 
percentiles, from the 5th to the 35th, were each capable of 
explaining 60%-70% of the variance in µ, and all were 
negatively correlated with the parameter. This capacity 
diminished with increases in the percentiles (Figure 5).     
 
Figure 6 shows the height of the 20th percentile and the 
percentage of dead trees by structural class.  As forest stands 
increase in age, the percentage of dead trees and the number of 
canopy gaps increase, allowing lidar pulse returns to penetrate 
deeper through the forest canopy.  The trend of the mean 
vegetation return height varies closely with that of the 20th  
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Figure 3.  The best predictor of the WT class lognormal µ 
parameter was the natural logarithm of the lidar coefficient of 
variation. Model: r2 = 0.75, r = 0.87, RMSE = 0.070, p < 0.001;  
y = 0.48+0.20*x 
 
 
 
 
 
 
 
 

 
Figure 4.  The WT class lognormal µ parameter estimated using 
the lidar 20th percentile.  Model: r2 = 0.69, r = -0.83,  
RMSE = 0.079, p < 0.001; y = 0.45-0.16*x 
 
 

 
Figure 5.  The lidar height percentiles, plotted against the 
coefficients of determination between the lognormal µ 
parameter and the heights of the percentiles.  It is the lowest 
percentiles that account for most of the variance in µ.  Note that 
all Pearson correlation coefficients were negative, indicating an 
inverse relationship between µ and the heights of the 
percentiles.   
 
 
 
 
 

 
 Figure 6.  Means and ranges of (1) lidar-derived heights of the 
20th percentile, and (2) the percentage of dead trees, grouped by 
TEM structural class. 
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percentile (r = 0.88).  The standard deviation of the vegetation 
return heights, however, were relatively stable across the age 
classes, resulting in an increase in the coefficient of variation 
from approximately 0.15 to 0.3 for pole sapling and young 
forest, to 0.4-1.2 for old forest. 
 

4. DISCUSSION 

The distribution of WT classes, or tree structural classes, within 
a plot is an important variable to consider when developing an 
understanding of the current structure of a forest stand, as well 
as for managing the stand for wildlife and biodiversity values. 
Whilst the range of wildlife tree classes from 1 to 9 within a 
plot is highly variable, fitting distributions to the observed 
frequency of WT classes and correlating these parameters with a 
simplified index of the proportions of live and dead stems is, we 
believe, an important result.  Once we have developed 
confidence in our capacity to understand how the distribution 
parameters vary over the landscape as a function of stand form, 
we then look to lidar technology to extrapolate over large areas.  
 
The results presented here indicate the capacity of lidar to 
estimate lognormal parameters describing the percentage of 
dead trees within plots in unmanaged forests.  The method was 
superior to simply attempting to predict the percentage of dead 
trees directly using lidar-derived variables.  The natural 
logarithm of the coefficient of variation was the best predictor 
of µ, however, generally all of the lower percentiles were also 
strongly and negatively correlated with the parameter.  We 
believe this is a result of the direct linkage noted by Clark et al. 
(2004) between tree mortality and overall stand structure.   
 
Clayoquot Sound’s old forests are characterized by 
heterogeneous canopies and patchy understories, with gaps 
where old trees have died and young ones are regenerating 
(Clayoquot Sound Scientific Panel, 1995).  These gaps, at least 
partly the result of the presence of defoliated, often limbless 
snags with very different structures than living trees, increased 
the mean penetration depth of lidar returns into the forest 
canopy, and decreased the heights of the lower height 
percentiles.  Critically, non-ground returns were not removed 
below a given height threshold, and though many may have 
actually intercepted the understorey, coarse woody debris, large 
stones, or the ground, their inclusion was nonetheless an 
important contribution to the analyses.     
 
Increasing the number of plots across the full range of tree 
structural class distributions is a necessary next step to both 
adequately capture the heterogeneity within and between the 
structural classes (especially old forests) found in the study 
area. Additional field data will also enable the application of 
multivariate statistical techniques, where more than a single 
predictor variable can be employed. Furthermore, additional 
research is required to determine if these techniques can be 
extended to managed forests. We believe that distribution 
parameters can be robust proxies for plot-based indicators of 
forest structure and biodiversity, and can be useful to ecologists 
and forest managers interested in augmenting their current 
mapping initiatives using lidar remote sensing.    
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