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ABSTRACT: 
 
There is an increasing interest of the scientific community in the generation of 3D facade models from terrestrial laser scanner (TLS) 
data. The segmentation of building facades is one of the essential tasks to be carried out in a 3D modelling process. Since in reality, 
majority of facade components are planar, the detection and segmentation of geometric elements like planes respond to the previous 
task. The RANSAC paradigm is a robust estimator and probably the most widely used in the field of computer vision to compute 
model parameters from a dataset containing outliers. Indeed, RANSAC algorithm is usually successful for fitting geometric 
primitives to experimental data like for example, 3D point clouds resulting from image matching or from airborne laser scanning. 
The innovative idea of this study is the application of RANSAC algorithm to TLS data, characterized by a meaningful proportion of 
outliers. Therefore, this paper presents an approach allowing automatic segmentation and extraction of planar parts of facades 
scanned by TLS. Firstly, potential planes describing planar surfaces are detected and extracted using RANSAC algorithm. Then, a 
quality assessment based on manually extracted planes is carried out. The obtained results are evaluated and prove that the proposed 
method delivers qualitatively as well as quantitatively satisfactory planar facade segments. 

 
 

1. INTRODUCTION 
 

The reconstruction of geometric 3D models is one of the most 
important goals of 3D modelling in urban areas. In recent years, 
advances in resolution and accuracy have rendered airborne 
laser scanners (ALS) suitable for generating Digital Surface 
Models (DSM) and 3D models. These data alone do not provide 
complete 3D models since they do not cover building facades. 
In this context, generation of 3D city models with both high 
details at ground level, and complete coverage for bird’s-eye 
view became more and more a challenging task. On the one 
hand, facades are acquired at ground level using Terrestrial 
Laser Scanners (TLS). On the other hand, roof shapes and 
terrain information are deduced from a DSM produced by ALS 
data (Tarsha-Kurdi et al., 2006).  
 
However, if numerous approaches have been developed over 
the past 10 years for airborne laser data, the situation is not so 
bright for terrestrial laser data. This is due, among others, to the 
gap between the architectural 3D range scanning and an 
efficient use of the data by professionals (Spinelli et al., 2006).  
 
According to (Barber et al., 2001; Stephan et al., 2002), the way 
in which point cloud modelling is performed depends strongly 
on the aim of the study. Generally, two modelling approaches 
can be distinguished: approaches fitting geometric primitives 
and approaches based on meshing methods. The latter allows 
fitting unspecified objects having irregular shapes and that 
cannot be approximated by simple geometric primitives.  
 
The goal of this paper is to introduce an approach allowing 
automatic segmentation and extraction of planar parts from 
facades acquired by TLS. This approach is in line with fitting 
geometric primitives approaches. The step of segmentation 

which aims to decompose facades into planar surfaces is carried 
out using RANSAC paradigm.   
 
After introducing the RANSAC algorithm, the methodology 
used to segment and extract multiple planes describing planar 
surfaces is presented. Furthermore, each operation is illustrated 
and applied on a point cloud describing a multi-planar facade. 
Finally, the results are presented and evaluated in a qualitative 
as well as in a quantitative way.  
 
 

2. RELATED WORKS 
 

A variety of techniques applied to the classification and 3D 
segmentation of point clouds originally result from traditional 
photogrammetric, computer vision and signal processing fields 
(Belton and Lichti, 2006). Some of these include 
transformations from one space into a parameter space, like for 
example the Hough transform and the Gaussian sphere 
(Vosselman et al., 2004). They try to gather common elements 
based on the surface parameters and surface normal information 
respectively. Techniques such as tensor voting (Tong et al., 
2004; Schuster, 2004) and region growing (Besl and Jain, 1988) 
have been applied to segmented data based on localised 
information. Morphological approaches such as medial axis and 
skeletonisation have also been used by introducing diffusion 
equations, radial basis function and grass-fire techniques (Gorte 
and Pfeifer, 2004; Ma et al., 2003).  
 
Related to facade segmentation collected by TLS, extended 
region growing algorithms are often used to extract planar 
surfaces (Pu and Vosselman, 2006; Stamos et al., 2006; Dold 
and Brenner, 2004; Lerma and Biosca, 2005). It starts by 
determining a seed surface (a group of nearby points that fit to a 
plane), and then the seed surface grows according to specific 
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criteria. On the one hand, the proximity criterion means that 
only points within a certain distance to a seed surface can be 
added to this seed surface. On the other hand, the globally 
planar criterion means that a plane equation is determined after 
fitting a plane passing through all points located in this seed 
surface. Points can only be added if the perpendicular distance 
to the plane is below some threshold. Although it provides 
interesting results, the limitations of this algorithm come from 
the big number of thresholds needed. Also computing time is 
considerable when the algorithm is applied on 3D point clouds.   
 
Another method is increasingly used to extract planar surfaces 
especially by fitting geometric primitives. It is the RANSAC 
(RANdom SAmple Consensus) paradigm, which is applied to a 
wide range of problems dealing with model parameters 
estimation. Indeed, (Bauer et al., 2005) use RANSAC method 
to detect and extract the main facade planes. Promising results 
are obtained for creating plane based models for buildings, even 
using dense 3D point clouds. However, the 3D point cloud was 
not acquired by TLS, but through image matching. According to 
(Durupt and Taillandier, 2006), RANSAC estimation algorithm 
can also be used to extract planar primitives directly from 
cadastral limits and from a DEM (Digital Elevation Model). 
Through their study, it is shown that an evaluation carried out 
on 620 buildings in a dense urban centre provides encouraging 
results. Nevertheless, the algorithm has only been tested on 
ALS data. 
 
Often, when one wants to compute model parameters from a 
dataset containing a significant proportion of outliers, many 
computer vision algorithms - especially algorithms including 
robust estimation steps - are adopted. The RANSAC algorithm 
is probably the most widely used robust estimator in this field 
(Matas et al., 2002). Nevertheless it has rarely been applied on 
TLS data for fitting models, although affected by noise and 
artefact errors. Hence, it is interesting to study the performance 
of this algorithm in estimating model parameters in a purpose of 
segmenting TLS data.  
 
 

3. RANSAC PARADIGM 
 

The RANSAC paradigm is an algorithm for robust fitting which 
has been introduced by (Fischler and Bolles, 1981). It is one of 
the probabilistic voting methods known to reduce the 
computing time. Indeed, it was developed in order to reduce the 
number of necessary trials of traditional voting techniques, like 
Hough Transform for example. In spite of the simple structure 
of RANSAC algorithm, it is known to be efficient.  
 
Firstly, subsets are randomly selected from the input data and 
model parameters are computed so that they fit the sample. The 
size of the sample depends on the mathematical model (line, 
plane, cylinder, sphere…) one wants to find. Typically, the size 
of the sample is the “smallest” number of points sufficient to 
determine the model parameters. For example, to find a plane in 
the dataset, one has to select a set of three points, since three 
points are required to determine the parameters of a plane 
(normal vector and distance of plane to origin).  
 
In a next step, the quality of the model will be evaluated. 
Typically, an error tolerance determines a volume around the 
geometric primitive within which all compatible points must 
fall in. Then, a cost function computes the quality of the model, 
the standard one being the number of inliers, i.e. points which 
agree with the model within an error tolerance. But other quality 
criteria could be used such as a standard deviation of distances 

from points to model for example. Therefore, the plane 
containing more points is considered to be the best plane. The 
process terminates when the likelihood of finding a better model 
becomes low.  
The minimum number (m) of trials needed to reach a 
probability (p) to find at least one good set of observations -
assuming a certain percentage (w) of observations to be 
erroneous - is given by relation (1). 
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where (S) is the minimum number of points necessary to 
calculate the parameters of the model (in the case of a planar 
model, S=3). Demonstration of the equation mentioned above 
can be found in (Fischler and Bolles, 1981). 
 
The next part explains the methodology used and refined in 
order to segment a 3D point cloud of a facade into multiple 
planes. 
 
 

4. SEGMENTATION METHODOLOGY 
 

The segmentation proposed in this work starts with the 
decomposition of a 3D point cloud into many planes. After data 
description, a facade segmentation algorithm based on 
RANSAC procedure is presented. Then the step of plane 
extraction is explained. It must be noted that in this context, a 
“segment” means a set of 3D points belonging to the same 
surface.  
   
4.1 Data description 
 
The point cloud used for testing the segmentation approach 
covers the facade of the Graduate School of Science and 
Technology (INSA) of Strasbourg. It is composed of many 
planar surfaces containing different elements (windows, planar 
wall, balconies) and characterized by different materials 
(concrete, pane, stone). A photograph of the facade is presented 
in Fig. 1. 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Photograph of the building under study  
 
The dataset used in this study is a point cloud acquired by a 
Trimble GX laser scanner. The technical specifications of this 
kind of TLS are depicted in Table 1. Generally, a cloud is 
composed of 3 dimensional points defined by their Cartesian 
coordinates. The point cloud used as sample contains 47710 
points acquired with a horizontal and vertical resolution of 150 
mm at 50 m. Other properties assigned to the points provided by 
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the laser scanner such as colour properties are voluntarily not 
used in this study.  
 
 

Technical specifications 
Distance accuracy 7 mm at 100 m 
Position accuracy 12 mm at 100 m 
Angular accuracy 

 
60 µrad (Horizontal) 

70 µrad (Vertical) 
Grid Resolution 

over 360° 
3 mm at 100 m with no restriction 

on number of points in a scan 
Spot size 3 mm at 50 m 

Speed up to 5000 points per second 
 
Table 1. Technical specifications of Trimble GX laser scanner. 

 
The points captured through glass and returned by parts located 
behind the facade have easily been manually removed using the 
RealWorks Survey software (Trimble). Fig. 2 shows the point 
cloud of the facade presented in Fig. 1, acquired by Trimble 
GX.  
 

 
Figure 2. Point cloud describing the facade sample under study. 

 
4.2 Facade segmentation using RANSAC algorithm 

 
The RANSAC algorithm is used here in order to detect and 
extract planes describing planar parts of the facade. Practically, 
a plane is a row of four values [a b c d]. The first three define 
the unit normal vector (a² + b² + c² = 1); the fourth is the 
distance of the plane to the origin. Thus, all points (x, y, z) 
fulfilling the Equation 2 belong to the same plane. 
 
                            a.x + b.y + c.z = d                                        (2) 
 
The basic RANSAC approach is limited by the assumption that 
a unique model accounts for all of the data inliers. The term 
inliers means points which agree with the model according to an 
error tolerance.  
However, one would like to extract all potential planes from the 
data. To do this, it is suggested to apply sequentially RANSAC 
algorithm and to remove the inliers from the original dataset 
every time one plane is detected. This constitutes the first 
adaptation of RANSAC algorithm in our context. The 
sequential process guaranties that each point belongs to one 
unique segment (plane) and that there is no intersection between 
two segments. Thus, a point contributes only to the fitting of the 
plane it belongs to.  
 
To determine the points belonging within some tolerance to the 
given plane, the Euclidian distance between a point P (x,y,z) 
and a plane PL(a,b,c,d) is calculated (see Equation 3).  
 

                       d  c.z b.y  a.x ),( =++=PLPd                        (3) 
 

In reality, data acquired by terrestrial laser scanning are not 
immediately compatible with mathematical models. In other 
words, no planar walls, no straight edges, no right angles are 
directly provided in the digital model. Therefore, to obtain 
planes representing walls, one tolerance value describing the 
authorized thickness of a plane is imposed. Thus, the researched 
plane is considered to be a parallelepiped, but this is necessary 
at first to get meaningful segments. 
 
In this process, different planes are detected one after the other. 
It is obvious that the number of planes detected depends 
strongly on the tolerance value chosen as input. The more this 
value is low, the more the number of detected planes is large. 
This is because each segment is a parallelepiped firstly, and 
tends to become a planar surface when tolerance value tends to 
zero. Therefore, the threshold value must be carefully chosen.  
 
After many experiments, it turns out that the tolerance value 
used to get significant planes has to be set between t = 20 mm 
and t = 40 mm. For instance, with threshold t = 5 mm, the 
segments obtained are too numerous and not significant (Fig. 3). 
The main characteristic of these planes is to contain an 
insufficient number of points. It becomes clear that this kind of 
result is unusable for a later modelling process. 
 

 
 

Figure 3. Detection of meaningless planes when data are 
segmented using t = 5mm. Each colour represents one plane. 

 
On the other hand, the threshold should not overcome some 
tolerance (in our case t <=40 mm). Over this value, two or more 
different planes are considered as one unique plane (Fig. 4).  
 

 
 

Figure 4. Detection of only two planes when data are segmented 
using t = 350 mm. 

 
Logically, the threshold value must be close to the thickness of 
the cloud. The thickness is usually generated by noise coming 
from the surface roughness, the object colours and the TLS 
resolution capacities. In the point cloud under study, it reaches 
about 2 to 4 cm.  Thus, with t = 40 mm, the expected planes are 
correctly detected and extracted (Fig. 5). However, it is 
necessary to underline that an optimal tolerance value can only 
be obtained in an empirical way depending heavily on the 
objects under investigation, on the data characteristics and the 
objective of the study.  
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Figure 5. Successful segmentation with t = 40 mm. 
 
The minimum number of trials needed to get the best plane is 
given by Equation (1). Considering a value of 0.2 for w, a 
probability of 99% should theoretically be reached after 1000 
trials.  
 
4.3 Planes extraction 
 
Once the main planes are determined by automatic 
segmentation, each plane is extracted and displayed separately. 
Fig. 6 shows four different planes containing points belonging 
to the same planar facade. The first segment is composed of 
points belonging to windows (Fig.-6a); the second one describes 
horizontal and vertical beams (Fig.-6b); the third is composed 
by balconies (Fig.-6c). The last one is a principal planar wall 
(Fig.-6d). 
 
 

 
 a) 
 

 
 b) 

 
 c) 
 

 
 d) 

Figure 6. Four planes displayed separately; a) windows; b) 
beams; c) balconies; d) principal wall. 

 
In the plane composed of windows, some windows are filled by 
points and others are empty. This is because either no return is 

measured (due to specular reflectance), or the available points 
refer to curtains. In principle, such holes in a point cloud can 
also result from shadows generated by objects located between 
the laser and the facade. However, this phenomenon is avoided 
by using several point clouds acquired from different points of 
view. 
 
It can be remarked, that the extracted planes are coherent and 
correspond to a specific planar part of the facade. Now the 
results must be evaluated in detail, regarding the geometric 
accuracy, as well as the semantic coherency.  
 

 
5. RESULTS EVALUATION 

 
In order to evaluate the accuracy of the plane detection obtained 
by the presented approach, a reference model is necessary. For 
this purpose, a manual segmentation has been performed on the 
same point cloud and provided the planar surfaces composing 
the facade under study. These planes are then compared to their 
homologous, extracted automatically in the previous part. Only 
the results of the evaluation performed on a successful 
extraction (plane of Fig.-6b) and a less successful extraction 
(Fig.-6d) are presented in this section.  
 
Fig. 7 presents with two colours, the same plane extracted 
automatically (in blue) and manually (in red). This 
superimposition enables to compare the results of the proposed 
approach to the reference data.  
 

 
Figure 7. Superimposition of two layers: plane extracted 

manually (red points) and his homologous detected 
automatically (blue points). 

 
A qualitative analysis of the superimpositions lead to the 
conclusion that both layers (automatically extracted plane 
against manually extracted plane) are similar. The planes 
extracted automatically are satisfactory, since their form and 
aspect are almost identical to those of the planes extracted 
manually. 
 
The quantitative analysis consists in comparing two 
homologous planes. For this purpose, operators like intersection 
(∩) and difference (/) are applied on the two layers to be 
compared. Considering that each plane is composed of a set of 
points defined by their Cartesian coordinates, let’s denote (A) as 
the set of points belonging to the automatically extracted plane 
and (M) the set of points belonging to the manually segmented 
plane.  
 
Table 2 shows the results of the comparison of the automatically 
and manually segmented planes corresponding to Fig.7. 
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Plane Number 
of points 

Description 

A 4658 Points extracted automatically 
M 4888 Points extracted manually  

A∩M 4406 Points common to both A and M 
planes. 

A/M 482 Points of (A), not present in (M). 
M/A 252 Points of (M), not present in (A). 

 
Table 2. Comparison between automatically (A) and manually 

(M) extracted planes. 
 
In proportion, 4406 among 4658 points of the automatically 
extracted plane (A) are correctly detected. In terms of 
percentage, they represent 94.6 % of points. Indeed, only 252 
points are lost by the proposed algorithm.  
On the other hand, 482 points are in excess of the expected 
points. This can be explained by the fact that a plane determined 
by RANSAC algorithm is defined by its mathematical equation 
(Equation 2). Thus, all points fulfilling this equation are 
considered belonging to the plane, regardless of the 
architectural constraints describing a plane. Fig.8 shows the 
geometrical constraints characterizing the plane extracted in 
Fig.7. 
 

 
 
Figure 8.  Part of the facade corresponding to the detected plane 

in Fig.7 (contours digitized in red) 
 
Actually, manually extracted planes correspond to well-defined 
walls. Moreover, the architectural or semantic constraints are 
quite present in the manual segmentation. On the other hand, an 
automatically detected plane is based only on the mathematical 
criterion of flatness. This explains the presence of points 
randomly dispersed outside the expected wall (Fig.9-b), which 
are absent in Fig.9-a. In consequence, the percentage of points 
common to both planes ((A) and (M)) does not overcome 87.8% 
(A∩M). 
 
This problem can be attenuated by adding constraints of 
topological and geometrical nature to the proposed algorithm. 
Indeed, from a topological point of view, a criterion of vicinity 
(characterized for example by a tolerated number of neighbours 
around each point within a given radius), enables to eliminate 
points lying outside the expected planar surface.  From a 
geometrical point of view, a criterion of surface enables to keep 
only the significant objects. This can be done for example by 
converting the set of points into an image and applying image 
processing tools, like region growing algorithms in order to 
remove the meaningless points (points of (A) that are absent in 
(M)).  

 
 
 

 
 

Figure 9. Representation of a planar wall, extracted in two 
ways; a) manual extraction; b) automatic extraction. 

 
 
Moreover, the plane parameters estimated by RANSAC 
algorithm are not very accurate, since they are established based 
on three initial points only. They will be recomputed and 
adjusted, for example by a least-square fitting, to all points 
assigned to the detected plane.  
 
Nevertheless, considering purely the segmentation and 
extraction approach proposed in this study, it can be concluded 
that the method is reliable. Indeed, 90% of the points composing 
the complete sample of the facade are correctly extracted. 
 
 

6. CONCLUSION AND FUTURE WORK 
 
The approach described in this paper aims to segment 
automatically and extract planar surfaces from a building facade 
captured by TLS. Firstly, the point cloud is segmented into 
several planes using sequential RANSAC algorithm. The results 
obtained are satisfactory, because they are produced based on 
the unique assertion that the best plane is the plane containing a 
maximum of points. Thus, considering that no additional 
constraint is needed, the global accuracy is better than expected. 
Therefore, the proposed methodology enables reliable facade 
segmentation with weak processing time, using TLS data. It 
constitutes a first and primordial step in the generation of 
complete 3D building models. 
 
Future work will focus on the enhancement of segmentation 
operation. In order to avoid problems discussed above and 
increase the global and relative accuracy of the results, 
additional geometrical and topological constraints will be 
considered. Moreover, further investigations regarding the 
empirical parameters of RANSAC algorithm will be carried on.  
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