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ABSTRACT:  
 
Site Index (SI), a key inventory parameter, is traditionally estimated by using costly and laborious field assessments of tree height 
and age. The increasing availability of reliable information on stand initiation timing and extent of planted, even-aged stands 
maintained in digital databases suggests that information on the height of dominant trees suffices for assessing SI. Light Detection 
and Ranging (LiDAR) is a technology proven capable of providing reliable estimates of tree height even at the individual-tree level. 
A rigorous evaluation of LiDAR-enabled SI estimation performed on coniferous stands of the coastal U.S. Pacific Northwest 
indicates that where stand structure and topographic conditions support a high-fidelity assessment of ground elevation, accurate 
(R2_=_0.88) estimates of SI should be anticipated. In more challenging conditions the accuracy of the estimates lessens substantially. 
A limited evaluation of spatial SI predictions indicates that the distribution of the index might not always conform to the 
expectations commonly held by forest managers and planners. 
 
 

1. INTRODUCTION 
 
Site index (SI) is the most commonly used indicator of site 
productivity (Hägglund, 1981), forms the basis for many forest 
management activities (Zeide and Zakrzewski, 1993), and it is 
an integral component of forest inventory systems (Hanson et 
al., 2002). It is calculated as a function of the height of 
dominant trees at some reference age, usually in even-aged 
stands (Monserud, 1984; MacFarlane et al., 2000). The 
formulation of the function can differ between species or eco-
regions. Assessment of SI is typically performed at selected 
locations within the forest where estimates of tree height and 
age are obtained via standard forest field mensuration 
techniques. To avoid bias in SI estimates, it is essential that 
trees participating into its calculation, sometimes referred to as 
site trees, meet certain selection criteria (Nigh and Love, 1999), 
including dominant status, absence of injuries or growth 
suppression, and a preferred range of age.  
 
Obtaining reliable estimates of individual tree height and age is 
a laborious and costly process often inhibited by visibility 
constrains, wood density that does not allow tree trunk boring 
to determine age, etc. Because of these limitations, SI estimates 
have traditionally been restricted to locations hosting inventory 
plots, and spatial predictions of SI have been rare. Recent 
efforts to assess the spatial distribution of SI have relied on 
relating multiple environmental variables in a geographic 
information system via regression tree analysis, geostatistics, 
and multiple regression (Iverson et al., 1997; Gustafson et al., 
2003; McKenney and Pedlar, 2003). There has been speculation 
(Louw and Scholes, 2002), however, that the multiple-variable 
approach will be gradually replaced by superior, in terms of 
predictions accuracy, physiologically based simulation models 
such as 3-PG (Landsberg and Waring, 1997) or PROMOD 
(Battaglia et al., 1999). A recent implementation of the 3-PG 
spatial model in Oregon, USA, that used monthly averaged 
climatic data, estimates of soil attributes, and Forest Inventory 
and Analysis (FIA) data from thousands of plots in national 
forests to produce SI maps of Douglas-fir (Pseudotsuga 
menziesii (Mirb.) Franco) showed promising results (R2 = 0.55), 
despite issues related to plot size, density and georeference 
precision (Swenson et al., 2005). The coarse resolution of the 

3-PG model’s prediction (1 km2) in Oregon, or of comparable 
multivariate models implemented elsewhere, limits their utility 
to forest planning and decision making at the strategic level 
only. The often substantial SI variability within a stand or 
tactical management units remains unknown.  
 
The parsimonious parameterization of standard SI models 
indicates that where even-aged is the preferred or common 
forest stand structure and stand age is known, information on 
the height of dominant trees is sufficient for obtaining local 
estimates on forest productivity and SI. Because spatial 
predictions of tree height and other forest inventory parameters 
are restricted by financial and logistical constraints (St-Onge et 
al., 2004), forest managers and inventory specialists have long 
been regarding remote sensing as perhaps the only feasible 
alternative to field measurements for obtaining spatial 
predictions that meet established accuracy standards over entire 
management units (Turner et al., 2004). Remote-sensing-
derived estimates of tree height are typically obtained via the 
classic parallax method. Applied either on stereopairs of analog 
aerial photographs (Worley and Landis, 1954) or more recently 
(and more efficiently) on digital high-resolution imagery 
(Korpela, 2004) the method was found to produce unbiased tree 
height estimates only where a precise the ground-level 
elevation could be assessed correctly at, or near, the base of 
trees, a prerequisite rarely met in closed-forest canopies (St-
Onge et al., 2004). 
 
Unlike aerial photography and other forms of optical remote 
sensing, Light Detection and Ranging (LiDAR), sometimes 
referred as airborne laser scanning (ALS), is capable of 
penetrating the forest canopy, and hence is well suited to 
describing the vertical structure of forests. Owing to the 
capacity of small footprint laser pulses emitted from the 
airborne scanning instrument to propagate through small 
canopy openings and echo at ground level, LiDAR is also 
capable of assessing ground elevation (Kraus and Pfeifer, 
1998). Small-footprint scanning data comprise a set of points, 
sometimes known as ‘returns’, accurately and precisely 
georeferenced in three dimensions (Baltsavias, 1999). 
Assuming adequate return density (> 4 points / m2), processing 
of the point cloud data allows individual trees to be detected 
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(Brandtberg et al., 2003), and digital models of the vegetation 
canopy surface (CSM) and (bare-) ground surface (GSM) to be 
generated (Hodgson et al., 2003; Clark et al., 2004). Estimates 
of height for individual trees are obtained by subtracting from 
the CSM value, at selected locations believed to represent tree 
crown apexes, the corresponding, in two-dimensions, GSM 
value. Variants of this approached have yielded height 
estimates for individual trees that rivaled the accuracy of those 
acquired in the field (Hyyppä, 2000; Persson et al., 2002; 
Andersen et al., 2006). 
 
Because the estimates of tree height depend on the fidelity of 
the LiDAR-derived forest canopy and bare-ground models, 
vegetation and topographical conditions that promote 
uncertainty, and perhaps bias, in model values became sources 
of error in tree height estimation. Choices of parameter values 
and assumptions embedded into the algorithms used in 
generating the models can also contribute uncertainty or bias 
(Kobler et al., 2007). Canopy models derived from LiDAR data 
tend to underestimate the true vegetation surface. The negative 
bias has been attributed to the laser pulse not always hitting the 
tree apex (Næsset and Økland, 2002) and having to penetrate 
the canopy surface before reflecting the first significant return 
(Hill et al., 2002). GSMs are generated under the assumption 
that enough pulses penetrate thoroughly through the stand 
profile to enable an accurate assessment of bare-ground 
elevation. Ackermann (1999) reported that 20 to 40 percent of 
pulses may reach the ground under dense forest canopies. 
Reutebuch et al. (2003) found that even in dense coniferous 
stands the density of ground returns enabled construction of a 
GSM with root-mean-square-error (RMSE) of only 0.31 m. 
Other studies have reported though that in increasingly complex 
vegetation, multiple-scattering reflection or absorption of the 
energy carried by a pulse reduces the number of ground returns 
or causes returns from understory vegetation or tree trunks to be 
erroneously labeled as representing the ground (Harding et al., 
2001; Raber et al., 2002, Hodgson et al., 2003). In forest stands 
with complex profiles, GSM overestimation of at least 1.5 m is 
common (Hodgson et al., 2003; Clark et al., 2004) and bias 
should be expected to increase further with even moderate 
slopes (Kobler et al., 2007). 
 
Although many studies have investigated the fidelity of 
LiDAR-derived estimates of tree height (Næsset, 1997; 
Popescu et al., 2002; Maltamo et al., 2004), very few were 
performed in dense forests or in terrain characterized by steep 
slopes (Clark et al., 2004). The paucity of studies were laser 
scanning is used for estimating tree heights in forests that are 
both dense and situated on steep slopes is  likely due to the fact 
that, in such conditions, it is logistically and financially 
exceedingly difficult to obtain reliable field measurements of 
tree height necessary for evaluating the height estimates derived 
from LiDAR data. The challenge is further intensified where 
precise height estimates are needed over an area, a prerequisite 
for assessing inventory parameters with spatial support such as 
SI, instead of only at selected locations. The objectives of this 
study that address these challenges were a. to evaluate the 
fidelity of LiDAR-derived estimates of SI, and b. to investigate 
potential patterns in the spatial distribution of Site Index in the 
structurally complex temperate rainforest growing on the steep 
terrain of the coastal U.S. Pacific Northwest. The evaluation is 
based on rigorously calibrated field data obtained by using 
survey-grade equipment on plots established specifically for 
this study. 

2. METHODS 
 

2.1. Study area 
 
The 9500-ha study area is on the coastal mountains of Lincoln 
County, in the State of Oregon, USA (Figure 1), and centered 
approximately at 44o 32’N, 123o 39’W. More than 90 percent of 
the area is temperate rainforest, with mean annual precipitation 
of 2005 mm. Forty seven percent of the forests are privately  

Figure 1. Study area 
 

owned and under very intensive, timber-oriented management. 
1550 ha are owned by the State of Oregon and 3850 ha are part 
of the Siuslaw National Forest where management has been 
limited to occasional non commercial thinnings, very few of 
which occurred after 1984. Prevalent species in the study area 
include Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), 
bigleaf maple (Acer macrophyllum Purgh), and red alder (Alnus 
rubra Bong.), with the hardwoods dominating buffer zones 
around the drainage network. Elevation ranges from 66 to 
1123_m above sea level and terrain is characterized by steep 
slopes. Over the forest area the mean slope is 61 percent, and 
the 75th slope percentile is 84. 
 
2.2. Field data 
 
Forty five fixed-area plots of 15-m radius were established in 
the study area in summer 2005 stratified across classes of cover 
type (conifers, hardwoods, and mixed), tree size, and stand 
density. A three-member, veteran FIA crew visited each plot 
tallying all trees with diameter at breast height (DBH) 
exceeding 12.7 cm or of dominant or co-dominant status 
regardless of DBH. For each tree, the species and DBH was 
recorded, and the projection of its crown to the ground was 
delineated using distance and azimuth measurements from the 
tree base (Figure 2). Continuous feedback from the remaining 
crew members was used to guide a person operating a 
clinometer to on-ground locations that defined the shape of the 
crown being delineated. Estimates of tree height obtained via an 
electronic clinometer / distance finder were assigned a 
precision-class code reflecting the crew’s confidence on the 
estimate. Two dominant trees in each plot were bored to 
determine age. Sketch maps depicting the presence, type, and 
height of understory vegetation were also produced. 
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Figure 2. Field-delineated crowns of a plot and corresponding 
tree bases. The dashed line represents the plot boundary. 
 
Management archives and stand maps from the Siuslaw 
National Forest and management plans or operation records 
kindly contributed by local tree farms were examined to 
determine the age of stands in nearly 75 percent of the forest 
land. After excluding all plots in uneven-aged or young (< 20 
years) stands or where records suggested past stand 
improvement activities (fertilization, etc.), a set of 21 plots, all 
dominated by Douglas-fir, was selected and used in this study. 
The age of dominant trees ranged among the selected plots 
from 27 to 74 years. Plots comprising older and larger trees 
were in publicly owned stands. 
 
The large percentage of height estimates assigned a low 
precision code in close-canopy stands confirmed skepticism 
that, in such conditions, traditional field mensuration 
techniques could not support the study’s tree height precision 
requirements. To mitigate these limitations, an alternative, far 
more complex, approach was devised. It entailed a detailed 
survey of the bare ground and calibration of the tree crown 
apexes in each plot.  
 
2.2.1. Plot registration and ground survey. For each plot a 
minimum of two locations was precisely referenced using a 
Real Time Kinematic (RTK) global positioning system 
instrument at leaf-off conditions. The instrument was set to 
record only when the expected, internally calculated, three-
dimensional precision was better than 5 cm. Because the 
operation of the RTK instrument is limited to areas free from 
overstory vegetation, in 12 of the plots the closest two locations 
successfully recorded with the RTK were in canopy openings 
well outside the plot boundary.  For those plots, transects 
connecting reference locations to corresponding plot centers 
were established and surveyed with a total station. For the 
remaining 9 plots, unobstructed, under canopy, lines of sight 
between the RTK reference locations and the plot centers 
supported direct plot georeferencing via the total station. 
Additional RTK reference locations and transects installed for 4 
of the 12 plots revealed that the location error of the plot center 
ranged from 5.3 to 11.6 cm (mean 8.4 cm). Considering the 
difficult terrain and poor visibility conditions, the error level 
was deemed acceptable. With the total station positioned and 
oriented on the plot center, terrain inflection points were 
flagged over the plot area and a 5-m buffer around it. The flag 
density was higher in portions of the plots exhibiting variations 
in micro-topography. Across plots the density of flagged points 
had an average of 0.31 per square meter. Using Delaunay 
triangulation, the coordinates of flagged locations recorded with 
the total station were processed to generate a Triangulated 

Irregular Network (TIN) for each plot, and the TINs were then 
converted to 1-m rasters via cubic convolution. Five 10-m wide 
corridors transcending the boundaries of stands with contrasting 
stem densities and structure were also surveyed in late summer 
2006, but with smaller point density. Canopy and ground 
models for the corridors were generated following the 
methodology used for the regular plots. 
 
2.2.2. Calibration of tree apexes. Tree-apex calibration was 
performed by using 14 additional plots of custom size and 
shape installed either in short (< 3 m) vegetation or along the 
edge of Douglas-fir stands exposed by recent clearcuts. The 
leader stems of the trees were surveyed during windless days 
with the total station from three reference positions in the 
clearcut area previously surveyed with the RTK instrument. 
The methodology used is similar to the one detailed by 
Andersen et al. (2006). Trees with apex measurement RMSE 
exceeding 7.5 cm were eliminated from further consideration. 
A comparison of the coordinates of the surveyed apexes to the 
coordinates of co-located (within 1 m in two dimensions) 
highest LiDAR returns for 120 trees of various sizes and ages 
revealed an elevation bias of -0.58 m (Figure 3). The calibration 
procedure was repeated at leaf-off conditions with nearly 
identical results. 
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Figure 3. Histogram of discrepancies between surveyed and 
LiDAR-derived tree apex location at leaf-on conditions 
 
2.2.3. Estimation of tree-height. To determine the heights of 
dominant and co-dominant trees in each plot, the field-
delineated crowns were first overlaid with the return cloud. The 
elevation of the highest return within a crown was recorded and 
subsequently adjusted to account for the bias mentioned above. 
The calibrated tree height was then computed as the difference 
between the calibrated elevation of the highest return and the 
value of the GSM at the base of the tree. Calibrated heights for 
a total of 313 trees were computed.  
 
2.3. LiDAR data 
 
Laser scanning data were acquired at leaf-on conditions in July 
2005 and leaf-off conditions in February 2006 using an aircraft-
mounted Optech 3100 system from an average height of 
1000_m above ground level. The LiDAR instrument operated 
on a 71 kHz laser repetition rate, captured a 20o scan width (10o 
from nadir) with adjacent flight line overlap of 50 percent, and 
yielded an average density of 9.81 returns per square meter for 
the leaf-on mission and 8.70 returns per square meter for the 
leaf-off mission. For both missions the spot spacing was 32 cm 
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with laser footprint diameter of 33 cm. Compared to horizontal, 
impermeable surfaces surveyed with the RTK, the laser returns 
sustained an RMSE of 2.6 cm during the leaf-on mission and 
3.1 cm during the leaf-off mission. The scanning data delivered 
by the vendor had been processed with proprietary software to 
eliminate path reflectance points and to identify ground returns. 
The latter was enabled by an implementation of the adaptive 
TIN model (Axelsson, 2000). The raw (pre-filtered) data set for 
both missions was also obtained. 
 
2.3.1. Canopy and ground models: For each plot, a 1-m 
canopy model was constructed by querying the returns cloud to 
determine the highest returns within the two-dimensional area 
occupied by each cell. Owing to the high return density and 
short pulse spacing, discontinuities in the canopy models were 
rare for both acquisitions and were observed only along the 
edge between adjacent crowns in plots with small canopy 
openings. GSMs were developed using the filtered returns 
classified as representing the ground via ordinary Kriging 
(Goovaerts, 1997) with a minimum of six nearest neighbors. 
Both canopy and ground surface models were co-registered to 
the GSMs generated from the survey data. 
  
2.3.2. Tree identification and assessment. Individual trees 
were identified via the local maxima method (Wulder et al., 
2000) using the LiDAR-derived canopy over the plot areas. 
After the elevation of GSM-identified tree apexes was bias-
adjusted, the height of corresponding trees was computed as the 
difference between the tree apex elevation and the value of the 
co-located cell in the LiDAR-derived ground model. The local 
maxima method identified 294 trees. It was determined by 
visual examination of stem maps, delineated crowns, and the 
identified tree apexes that the tree list contained 26 errors of 
omission and 7 errors of commission.  
 
2.4. Plot Site Index 
 
The SI estimation for each plot followed the standard FIA 
protocol for Douglas-fir-dominated forest conditions. The 
protocol uses Equation 1, known as the King’s (1966) formula, 
to compute estimates of SI for the five largest (in terms of 
DBH) or five tallest SI-eligible trees present within a 0.2 ac 
(809 m2) area. The plot SI is then computed as the mean of the 
five estimates.  
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where SI = King’s SI in meters at reference age of 50 years 
 A = breast-height age 
 H = tree height in meters 
 
Using classes of mean annual increment as reference, Equation 
1 can be translated into a family of SI curves (Figure 4), 
commonly used to classify site productivity, instead of the 
actual SI values. 
 
To investigate whether or to what extent tree selection affects 
the plot estimate, three SI versions were computed. The first 
(SID) was based on the trees with the largest, field-measured 
DBH. The second (SIH) was based on the tallest trees identified 

in the field survey. The last version (SIL) employed the tallest 
trees whose height was derived from the laser data. All versions 
used the stand age retrieved from the management records, 
adjusted for 6 years, the average time required for a tree to 
reach breast height from seed.  
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Figure 4. Douglas-fir Site Index classes for the coastal U.S. 
Pacific Northwest 

 
2.4.1. Spatial predictions of SI. Investigations on the spatial 
continuity of SI focused on six areas, approximately 1 Km2 
each, where the stands present met the age and structure criteria 
for assessing SI. Given that reliable ground information, and 
therefore tree height, was available only for a single transect 
surveyed in each of these areas, the spatial investigations of SI 
were only exploratory in nature and employed omni- and 
directional variograms, along with an evaluation of potential 
trends (first-order spatial autocorrelation) in the predictions. 
The fidelity of SI maps produced was evaluated by visual, on-
ground assessments performed while cruising the stands in the 
six focus areas. 
 
3. Results 
 
Tree age assessed by boring selected trunks was across plots, 
on average, 1.9 years (standard deviation 0.9) lower than the 
age expected from the stand history records. In the absence of 
cases showing the age determined by boring to exceed the age 
dictated by the records, and given that age underestimation for 
bigger trees where missed growth rings or failure to penetrate 
the trunk to its center is more common that in younger trees, 
there was no reason to doubt the accuracy of the stand age 
retrieved from management records.  
 
Interesting insights into the interaction of dense coniferous 
vegetation and the laser pulses are obtained by subtracting the 
surveyed from the LiDAR-derived GSMs. For 10 of the 21 
plots no macro-scale differences were observed between the 
surveyed ground surfaces and those computed from the leaf-on 
laser data. The paired discrepancies in cell values formed 
leptokurtic Gaussian distributions with means that ranged from 
-0.28 to -1.04 m. Nine of these 10 plots had little or no 
understory vegetation and the overstory had either been thinned 
in the past or contained regular canopy openings due to age 
progression. The 10th plot (Figure 5b) had a very dense 
overstory but was located on mild (51 percent) slope. For 
another five plots, the discrepancies between surveyed and 
derived surface elevation were larger, up to -2.19 m, and the 
distribution of paired cell value differences was wider than in 
the previous group. In three of the five plots the distribution 

139

IAPRS Volume XXXVI, Part 3 / W52, 2007



was bimodal. All five plots had dense multi-layer understory 
vegetation with overstory exhibiting occasional openings. For 
the remaining six plots large scale discrepancies were observed 
between the surveyed and LiDAR-derived surfaces. The 
distribution of cell value differences had Gaussian form with 
means ranging from -4.97 to -11.02 m (Figure 5a). The plots in 
this group were either located on very steep slopes or had 
dense, completely closed canopies. Substituting the leaf-on 
laser data with the leaf-off version caused a slight reduction in 
the discrepancies between the surveyed and derived ground 
surfaces for the first two groups of plots with the mean 
differences in the first group now ranging from -0.18 to -0.84 m 
and in the second from -0.46 to -1.58 m. No improvement in 
ground-surface discrepancies was observed for the third group. 
The third was also the only group of plots where returns located 
above the surveyed ground were eliminated during data 
preprocessing, an observation pertaining to both acquisitions.  
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Figure 5. Plot profiles of 1 m depth depicting laser returns 
either maintained (dots) or filtered out (hollow circles) during 
data preprocessing, and surveyed (solid lines) and LiDAR-
derived (dashed lines) ground surfaces. 
 
In the process of overlaying the field-delineated tree crowns 
with the return cloud to evaluate the fidelity of individual tree 
identification procedure a pattern emerged that involved the 
relative location of tree apexes and bases. It was determined 
that for the majority of trees, the projection of the tree apex to 
the ground was downhill from the tree base, an indication that 
the trees were leaning systematically away from the slope. By 
considering that a tree was leaning if the horizontal distance 
between its apex and base exceeded 0.5 m, it was determined 
that 165 trees (53 percent) were leaning away from the slope, 
50 trees (16 percent) were leaning in parallel to the contour 
lines, and 41 trees (13 percent) towards the slope. For the 
remaining 18 percent of the trees no appreciable leaning was 
observed. The intensity of the leaning was found to be 
positively correlated to slope and tree height, and negatively 
correlated to canopy closure, but the correlation was weak, with 
coefficients of 0.19, 0.16, and -0.17, respectively. 
 

The option of selecting the trees with the largest DBH instead 
of the tallest ones was found to have little effect on the plot SI 
estimate. A t-test of the paired differences between SI values 
computed using the two alternatives methods for tree selection 
failed to reject the hypothesis that the SI estimates were equal 
(p > 0.5). Substituting, however, either one of the alternative 
field-data-assessed SI estimates in the test with their LiDAR-
derived equivalent, rendered the test significant (p<0.001).  
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Figure 6. Plot Site Index values computed using the tallest trees 
surveyed in the field and their LiDAR-derived equivalent. 
Symbols indicate plot membership in classes of fidelity for the 
ground surface extracted from the laser data. 
 
The causality behind the t-test findings becomes evident when 
examining the information in Figure 6, which compares the 
field calibrated and LiDAR-derived plot SI. Index values 
shown by circles in Figure 6 represent plots where the LiDAR-
derived ground surfaces approximate the surveyed surfaces 
fairly well. In all but one of these plots, the predicted values 
exceeded the calibrated values, an indication that the tree height 
underestimation caused by the slight overestimation in ground 
elevation is somewhat overcompensated for by the trees leaning 
away from the slope. The values shown by crosses correspond 
to plots where the overestimation of ground elevation via 
LiDAR far exceeds the height overestimation due to leaning 
and results in index underestimation. With two exceptions, 
index values represented by triangles correspond to plots where 
elevation overestimation is somewhat balanced by tree height 
overestimation due to leaning. Note that 6 of the 11 plots in the 
last two groups (shown within a square in Figure 6) would be 
assigned an SI class of II when assessed via LiDAR and an SI 
class of I by using the calibrated field data. For the other 15 
plots, the SI class assignment would not be affected by the 
method used to predict the index. 
 
Regressions of the field-calibrated SI on the predicted values 
produced a low overall R2 value of 0.42. The R2 values 
pertaining to separate regressions computed using only the plot 
in each of the groups depicted in Figure 6 were substantially 
higher though, and for the group of plots established in medium 
density stands on moderate slopes, conditions that support 
assessment of ground elevation free from gross errors, it 
reached 0.88. Areas with conditions similar to those prevalent 
in the latter group of plot became the focus of investigations 
that evaluated the fidelity of spatial predictions of SI. 

140

ISPRS Workshop on Laser Scanning 2007 and SilviLaser 2007, Espoo, September 12-14, 2007, Finland



 
SI values predicted at 27-m intervals, the spacing equivalent to 
the size of field plots, were used to calculate omni- and 
directional variograms for each of the six, approximately 1km2 
areas where stand characteristics allowed computation of high-
fidelity GSMs. A variogram quantifies how the values of a 
spatially distributed phenomenon change with distance. 
Typically, the value dissimilarity (semivariance) increases with 
distance until an asymptote (sill) is reached. The distance at 
which the sill is reached is known as the range of the 
variogram. Although there were notable differences in their 
form, all SI variograms computed for the six areas failed to 
reach a sill, thereby indicating the presence of low-order spatial 
autocorrelation(s), sometimes referred to as trend, affecting the 
predictions of SI. Of the many topographical covariates that 
were examined as a potential trend source (aspect, elevation, 
slope, wetness index, local ground curvature), only two were 
found to be significant at α_=_0.05; the distance to streams, 
which explained an average 9 percent of the SI variance across 
the six areas, and a composite variate computed as the natural 
logarithm of the slope cost distance away from streams, which 
explained 19 percent of the SI variance. Surprisingly enough, 
the percentage of SI variance explained increased to an average 
31, almost a third of the total, when the variate was modified to 
be the natural logarithm of the absolute slope cost distance 
computed at 50 m from streams across contour lines. 
Variograms of the residuals of SI predictions (i.e. with the 
influence of the trend on the predicted SI values removed) 
regressed on the modified variate values did reach a sill, an 
indication that the remaining 69 percent of the SI variability is 
likely caused by genetic differences among the trees, soil 
characteristics, and variability in microclimate. 
 

 

 
 
Management 

Unit 
SI  (st.dev) 

(m) 
 Mean Height 

(m) of SI Trees 
Age (at breast 

height) 
SI Cell 
Count 

A 43.6  (2.66) 40.0 43 325 
B 44.6  (3.48) 24.7 23 366 
C 43.8  (3.43) 27.9 27 231 
D 44.0  (2.51) 40.8 44 411 

 
Figure 7. Top: Perspective view of the return cloud for a 1-km2 
area used in the evaluation of SI. Middle: Perspective view of 
SI predictions. Lighter tones indicate higher index values. The 
thick lines delineate management units; the thin lines represent 

the drainage network. Bottom: Descriptive statistics of SI 
predictions for each management unit.  
Although only a third of the variability in the SI has been 
accounted by spatial variates, the absence of discontinuities 
across management unit boundaries (Figure 7) suggests that at a 
coarser scale, LiDAR-enabled assessment of SI yields robust 
results. In the area depicted in Figure 7, the mean predicted 
value for SI is practically the same for all four management 
units despite the stand age differences. The higher variability in 
the predicted values for units B and C is likely due to the slope 
of the SI curves being much steeper at smaller reference tree 
ages (Figure 4) than at older ages. A set amount of height 
variability for a group of adjacent younger trees would produce 
a higher SI variance than for a group of older trees. 
  

4. Discussion 
 
Evidence from the surveys of ground surface in this study and 
the analyses of laser data profiles in dense, coniferous canopies 
appear to contradict the commonly held belief that, given a high 
pulse density per unit area, enough pulses would penetrate the 
vegetation profile to allow detection of the forest floor. There 
appears to be a limit in canopy density, albeit difficult to 
quantify and likely different among forest cover types, beyond 
which the percentage of pulses that manage to penetrate the 
upper canopy layers exhibit substantially higher levels of path 
reflectance compared to the pulses penetrating less dense 
canopies. The implication of this phenomenon is that the 
already small amount of returns that are indeed reflected by the 
ground surface, are perceived as originating from much below. 
In such conditions, the density of legitimate ground returns is 
too small over extended areas to support the detection of 
ground surface. 
 
Steep terrain introduces additional difficulties in ground 
detection. The algorithms used for the assessment of bare-
ground utilize, sometimes directly, sometimes implicitly via 
simulation, slope thresholds to eliminate above ground returns. 
In 100 percent slopes or higher, the search radii associated with 
the slope thresholds that are used by the algorithms to quantify 
the spatial relationships between adjacent returns become so 
large that, inevitably, cause legitimate, above ground returns to 
be eliminated. Employing a more advanced algorithm for scan 
data filtering and ground assessment might have improved 
slightly the fidelity of tree height estimates and ultimately of 
the SI estimates but only for the plots located on milder slopes 
and with non-continuous canopies. 
 
To minimize acquisition costs while maintaining high return 
density coverage, LiDAR instruments capable of increasingly 
higher pulse rates have been developed. Personal 
communication with LiDAR data vendors in the western U.S. 
has revealed that the 15-fold increase in pulse rates over the last 
few years has not been accompanied by an even near increase 
in the power the instrument outputs. Simply put, modern 
instruments emit more but weaker pulses. Studies that have 
successfully retrieved the ground surface in tropical (Clark et 
al., 2004) or in dense, coniferous forests (Reutebuch et al., 
2003) have used pulse rates much lower than the one used in 
this study. Unless the per-pulse energy could be increased, in 
laser data acquisitions where unbiased retrieval of the ground 
surface is of essence, lower pulse rates might warrant 
consideration.  
 
The decent correspondence (R2 of 0.88) between field-
calibrated and LiDAR-assessed SI in nearly half of the plots 
used in this study suggests, that in ecosystems and biomes with 
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topography and vegetation complexity less challenging than 
those in the coastal U.S. Pacific Northwest, high-fidelity index 
estimates should be expected. If the assumptions about absence 
of gross ground surface errors in the areas where spatial 
evaluations were attempted were valid, then useful information 
can be gleaned from such data at the spatial domain as well. 
The finding, for example, that a lag of 50 m from streams added 
to a spatial variate improves the percentage of variance in 
spatial SI predictions explained by that variate, challenges 
common beliefs held by local forest managers. Regulations 
limiting harvesting or other management operations to only 
outside 15 to 45 m buffers around streams and creeks are 
thought anecdotally to exclude from timber production the 
portion of the land with the highest growth capacity. This study 
hints that this in not the case. Perhaps excessive soil moisture 
near the drainage network early in the growing season may 
actually shift the most productive land at some distance uphill. 
The limited influence topography is found to exert on the 
values of the index could relate to the limited range of index 
classes present within the study area and the relatively small 
extent of the six areas evaluated. Upcoming LiDAR 
acquisitions over Douglas-fir stands growing on shallow soils 
and higher elevation might enable a more precise quantification 
of topography’s influence on SI. 
 
The applicability of the methodology used in the study to 
predict SI is limited to stands with even-aged, usually planted 
overstory and where detailed stand initiation and management 
records are available. It is also limited to species that maintain 
substantial, and hence LiDAR-discernible, height growth until 
older age classes. The study also indicates that because of 
substantial local variability in the height of dominant trees even 
within short distances, it is important that SI estimates be based 
on an adequate sample of trees. 
 

5. Conclusion 
 
The ability of LiDAR to penetrate stand profiles renders it a 
useful technology for quantifying the vertical dimension of 
forests and for assessing key inventory parameters such as SI. 
As this study has demonstrated, however, in dense forests with 
continuous, closed canopies growing on steep terrain, laser 
pulses often fail to penetrate the stands and to adequately 
sample the ground. Substantial errors in the assessment of 
ground elevation propagate through the computation of tree 
height and introduce bias in the predicted SI values. Additional, 
albeit smaller, bias is introduced by the underestimation of tree 
apex elevation and tree leaning. A better understanding of the 
mechanisms governing the interaction of laser pulses and dense 
vegetation could help predict the conditions where tree height 
and SI estimates might exhibit bias or increased levels of 
uncertainty. Extending the study area to include forest lands 
with lower SI index classes may allow detection and 
quantification of topographical gradients influencing the values 
of the index. 
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