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ABSTRACT:

LiDAR technology emits narrow beams of laser lighat are able to exploit gaps in the forest canapg detect sub-canopy
surfaces. In this study, we explore the potentiahioborne LIDAR to quantify understorey vegetatioaver in a dense and
structurally diverse conifer forest on Vancouveans, British Columbia, Canada. The cover of unibeey vegetation, defined
below an arbitrary height threshold of 4 m, wasrded in the field both horizontally and verticadliy 12 plots for comparison with
LiDAR data. Results showed significant relationshijetween field and LiDAR-based estimates of uridesg vegetation cover at
both the plot (30 x 30 m are&, 0.87) and sub-plot scale (15 x 15 m areas,4 per plot, 7= 0.68) p < 0.05). In addition, the
variability (coefficient of variation) of undersey vegetation cover estimated in the field and WitDAR data was found to be
significantly correlated £+0.88,p < 0.001). Overall, this work suggests that small-footplifPAR is sensitive to large changes in
understorey vegetation cover which can benefitfhegstry applications at the landscape scale sa@xamining stand regeneration

success.

1. INTRODUCTION

Information about the forest understorey is crltima both
ecological and forest management issues. Undeystore
vegetation provides food and habitat to a wide eavigfauna
(Fox & Fox 1984), whilst in multi-aged and mixedesges
stands, developing an understanding of regenerationess
is important for ongoing stand management followiag
disturbance (Kozlowski 2002). Likewise the spatial
distribution and structure of understorey vegetatie.g.
quantity, height, and cover) is critical to fire haeiour
models which are difficult to parameterise overefted
landscapes (Keane et al. 2001). For foresters,raiecand
timely information on the understorey can also helghe
assessment of nutrient retention and cycling (Ya8&0),
stand regeneration (Lormier et al. 1994), and ®seci
diversity (Gentry & Dobson 1987).

Conventionally, the approach to collecting inforioaton the
understorey has involved a range of field-basetrigces.
These generally require detailed, spatially dengsld f
measurements (< 1 ha) (McLaughlin 1978; Scheller &
Mladenoff 2002) so that the high spatial variapildften
present in the understorey can be captured anelctlegical
processes which occur at fine scales can be uondersFor
example, the distribution and composition of untigey
vegetation has been shown to vary at fine spataes due
to microtopography ife. pits and mounds), gaps in the
overstorey vegetation, disturbances such as hargeahd
nutrient availability (Beatty 1984; Bengtson et &006;
Miller et al. 2002). As a result, field-based assasnts of the
understorey are likely to be an expensive, diffi@id time
consuming task.

Light Detection And Ranging (LIDAR) however, hasebe
recognised as a tool that might be suitable to tifyasub-
canopy vegetation structure over large geograplacais.
Earlier studies, for example, have shown that LiDA&n
characterise fuel bed roughness (Seielstad & QQ€63),
discriminate understorey discrete LiDAR returns nfro
overstorey returns within a mixed conifer and deoits two-
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tiered forest (Riafio et al. 2003), and estimate Ltbeey’s

mean height of suppressed understorey trees inealforest
using regression models (Maltamo et al. 2005). Heurt
Mutlu et al. (2007) used the number of LiDAR hitithin 0.5

m vertical bins from 0 to 2 m (2.5 x 2.5 m areasjnmalised
by the total number of LIDAR hits, to improve thecaracy
of a surface wildfire fuel classification, whichsalinvolved
multispectral passive optical data.

The focus of this work is to determine whether spbat
estimates of understorey cover are possible wihgonifer
forest. To characterise the different types of usideey
structure contained within a multi-use conifer &irea
number of sites (12 in total) were examined. ThecHj
objectives were to: (1) assess whether understmregr can
be quantified within 30 x 30 m and 15 x 15 m areamg
first return LIDAR data, and (2) determine whethbe
variability in understorey cover measured in theldfiwas
correlated to LiDAR estimates.

2. MATERIALSAND METHODS

2.1. Fieldsite

The study area is Clayoquot Sound on Vancouvendsla
British Columbia (480’ 35" N, 12537’ 21" W). The area is
classified as a Coastal Western Hemlock (CWH) zbased

on the biogeoclimatic ecosystem classification (BE@tem
(Meidinger & Pojar 1996). Although the Vancouvelatsl
Range is adjacent to the study area, the topography
subdued and dominated by Pleistocene glacial despagth

an annual precipitation of 3306 mm and mean daily
minimum, average and maximum temperatures of 54, 9
and 12.8C, respectively (Environment Canada 2006).

Clayoquot Sound is a multi-use forested area anotlides
both recently harvested Crown land, as well as redfiust

and second growth forest in Pacific Rim NationakkPa
Western hemlocKTsuga heterophylla) is the dominant or
codominant tree species throughout. Western Redceda
(Thuja plicata), Amabilis fir (Abies amabilis), Yellow-Cedar
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(Chamaecyparis nootkatensis), Sitka Spruce FRicea
sitchensis), Douglas-fir Pseudotsuga menziesii  var.
mensiesii), and Red Alder Alnus rubra) also occur within
this forest region. Common understorey speciesudel
Salal Gaultheria shallon), Salmonberry Rubus spectabilis),
Thimbleberry Rubus parviflorus), Red Huckleberry
(Vaccinium parvifolium), Evergreen Huckleberryéccinum
ovatum), Blueberries Yaccinium spp.), and Devil's club
(Oplopanax horridus). Several of these understorey species
are important economically (for the floral indugtrprovide
food for local communities, and include culturalfyportant
medicinal plants (Clayoquot Sound Scientific Pdrg95).

2.2 LiDAR characteristics

Airborne LiDAR data were acquired in July 2005 bgria
Remote Sensing (Sidney, British Columbia, Canada)gua
TRSI Mark Il discrete return sensor attached toxedf wing
platform. The sensor was configured to record st last
returns with a pulse repetition frequency of 50 kplatform
altitude of 800 m, maximum off-nadir view angle 28
degrees, wavelength of 1064 nm, and a fixed beam
divergence angle of 0.5 mrad. The average pulseirgpa
equalled one laser pulse return per 1% Ground and non-
ground returns were classified using TerraScanréEetid,
Finland).

2.2.  Field estimates of understorey cover

Understorey cover was measured at 12 sites witBirias of
2.5 x 2.5 m quadrats (n = 144) which collectivetyered an
area of 30 x 30 m. At each of the quadrat locations
understorey cover was visually estimated in 4 Heigh
intervals: 0.5to 1, 1 to 2, 2 to 3, and 3 to 4 lmowe ground
surface. A height pole was used as an aid and estgnates
were taken horizontally within 20% intervals.

A single integrated estimate of vertically projette
understorey coverUC) for each 2.5 x 2.5 m quadrat was
then calculated using Equation 1. Given that:

UC =1— g CFoas @

where: G refers to the G-function, the projection of leaf
area into a given view direction (Ross 1981),

S is the mean distance light will travel through

understorey material (corresponding to the vertical
height intervals used to estimate understorey
cover), and

Fita is the foliage area index for each understorey
sample location.

The calculation of vertically projected cover asssm
homogenous volume of vegetation material and vapehd

on the leaf angles. Given the understorey is coegbasf
mixed species and variable leaf angle distributiensalue
between the two more extreme leaf angle distrimstio
(planophile and erectophile) (Ross 1981; Ross & stak
1989) of 0.5 was used, which corresponds to a rando
foliage angle distribution. Since the field measure
understorey cover is related to the understorey gap
probability (Pgs) by the equation:

170

P

gap,i

=1-UG @

where: i = to the sub-quadrat cover measurement obtained at
individual sample locations using the modified
height pole €g. i = 1 for understorey cover
estimated between 0.5 and 1 m above the ground).

We can also express Eq. 1 in terms of foliage deeaity for
each understorey measurement as follows:

F =-In(P,,;)/Gs ©)

ap i

and subsequently, derive the total foliage areaxrat each
quadrat area by:

Fou = éz F 4
i=1

Subsequently, understorey cover values were catvénto
mean estimates at the plot scale (30 x 30 m areh¥ab plot
scale (15 x 15 m areas) for comparison with LiDAdRad

2.3.  Understorey vegetation cover comparison

Using coordinates recorded from a differential Gepgic
Position SystemdGPS) (horizontal positional errors were
approximately 1 to 5 m), LIDAR first return data nee
extracted for each plot. Returns > 0.5 a8d4.0 m above
ground surface were considered to be from undengtor
vegetation. Understorey cover was calculated dt tha plot
scale (30 x 30 m area) and sub plot scale (15 m ¥seas),
as the number of understorey returns divided by tdtal
number of returns recorded 4.0 m. These values were then
compared to field-based estimates. Additionally,e th
variability of understorey cover recorded at eaitk w/as
computed in both datasets by computing the coefficof
variation (CoV) of the 4 sub-plot cover values ded at each
site (15 x 15 m area, n = 4).

3. RESULTS

Strong positive relationships are shown betweel fand
LiDAR-based estimates of understorey covpr<( 0.001)
(Figure 1). The estimates of understorey cover lvewevere
shown to be better correlated at the plot scalepaved to
the sub plot scale, which showed a weaker relatipne <
0.05). Note one plot recorded no hits below 0.5 m ard w
excluded from analysis.
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Figure 1. Relationship between field and LIDAR estimates
of understorey cover: (a) plot scale (30 x 30 nasyend (b)
sub-plot scale (15 x 15 m areadyote: outliers with an
insufficient number of first returns were removed<(3).

Analysis of the variability in field and LIDAR estiates of
understorey cover, within individual plots, wascashown to
be positively correlatedo(< 0.001) (Figure 2). This suggests
that LIDAR is sensitive to changes in understor@yec
within 15 x 15 m areas.
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Figure 2. Field and LiDAR estimates of understorey cover
variability within plots. Note: the CoV for each plot was
calculated using four 15 x 15 m estimates of undezy
cover per plot. Outliers with an insufficient numbs first
returns were removed (n < 3).

4.  DISCUSSION

The results presented in this paper provide aglmsinto the
capacity of airborne LiDAR to estimate both plotvde
understorey cover as well as cover at smaller @pstales.
Importantly, this work has shown a strong correlati
between field and LIDAR estimates of understoreyeccat
the plot scale, with plots covering a wide rangecofier
values from 0 to 100% cover. When each plot was the
subdivided into 4, the relationship weakened butaieed
significant. This suggests the relationships at $hé plot
level might have been influenced by the number i@IAR
returns and the spatial registration of field afidAR data.

A limitation of this approach is that occlusiondbgh the
overstorey and understorey vegetation layers widuce the
number of first returns detected from ground andeustorey
surfaces. As a consequence, in areas with a demspy a
larger mapping unit will be needed to capture dicaht

number of returns to derive understorey cover. g of the
12 plots, for example, understorey cover could bet
computed within a 30 x 30 m area as no LiDAR fieturns
were detected below 0.5 m (above ground surface).

Another important result is the relationship betwééDAR
and field predicted understorey cover variation.isTh
relationship is surprisingly strong, providing some
confidence that regardless of the overall standlition, the
amount of variation in the LiDAR non-ground hitdde 4 m

is related to understorey cover variation. Addidbwork is
needed however, to fully explore this relationstigg.
sensitivity to scale).

Further, it should be mentioned that the spatialtjpm of the
ground plots becomes increasing important when ctimgp
sub plot cover statistics at smaller spatial scaBsce the
dGPS positional data for this study was recordeceuddnse
forest canopies, which is known to affect the spatcuracy



ISPRS Workshop on Laser Scanning 2007 and SilviLaser 2007, Espoo, September 12-14, 2007, Finland

(Neesset & Jonmeister 2002), our analysis was cestrito
scales that exceeded the horizontal positionalrerrdhe
measurement of understorey vegetation charactarigfithin
5 x 5 m however, may well be the smallest feasibig to
compare with LIDAR observations (assuming similddAR
pulse densities of around 1 pulse péf.m

5. CONCLUSION

We encourage more research into LiDAR’s abilityrtap the
understorey and believe that LIDAR can provide #iable
tool for mapping large differences in understoreyes €.g.
~20% intervals), and its spatial pattern, at thedszape
scale. Stronger relationships were found at theseoapatial
scale (30 x 30 m), possibly in response to a langenber of
understorey hits being available to characterise th
understorey.
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