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ABSTRACT: 
 
Automated detection and 3D modelling of objects in laser range data is of great importance in many applications. Existing 
approaches to object detection in range data are limited to either 2.5D data (e.g. range images) or simple objects with a parametric 
form (e.g. spheres). This paper describes a new approach to the detection of 3D objects with arbitrary shapes in a point cloud. We 
present an extension of the generalized Hough transform to 3D data, which can be used to detect instances of an object model in laser 
range data, independent of the scale and orientation of the object. We also discuss the computational complexity of the method and 
provide cost-reduction strategies that can be employed to improve the efficiency of the method. 
 
 
 

1. INTRODUCTION 

Automated extraction of objects from laser range data is of 
great importance in a wide range of applications. Reverse 
engineering, 3D visualisation, industrial design monitoring and 
environmental planning are a few examples of the applications 
that require 3D models of objects extracted from images or laser 
range data. A 3D model provides an abstract description of the 
object, which can be processed and visualised more easily and 
efficiently. The process of object extraction consists of two 
main tasks. The first task is detection, in which the presence of 
an object in the data is verified, and its approximate location is 
found (usually by labeling the data points that belong to the 
object). The second task is modeling, where the detected object 
is represented with a 3D geometric model that is most adequate 
in terms of such criteria as accuracy, compactness, the domain 
of the object and the application requirements. The detection 
step plays a key role in the successful modeling of the object. If 
the object is properly detected in the data, the modeling can be 
carried out more reliably and accurately.  
 
Existing approaches to the detection of objects in range data 
can be divided into two major categories: data-driven 
approaches and model-driven approaches. Data-driven 
approaches are mainly based on segmentation (Khoshelham, 
2006; Rottensteiner and Briese, 2003; Sithole, 2005), clustering 
(Filin, 2002; Vosselman, 1999) and classification (Forlani et 
al., 2006; Oude Elberink and Maas, 2000). While these 
methods have been commonly applied to the laser range data of 
2.5D surfaces, their application to more complex 3D scenes is 
not always possible. For instance, in laser range data of 
industrial installations many objects are partially occluded and 
data-driven methods fail to correctly detect these objects in the 
data. Model-driven approaches, on the contrary, are more 
robust in the presence of partial occlusion, since they 
incorporate some form of knowledge about the shape of the 
object. The object model can be represented, among other 

representations, as a set of voxel templates (Greenspan and 
Boulanger, 1999) or spin images (Johnson and Hebert, 1999), 
which are matched against the data or as a set of parameters that 
mathematically define the object. In the latter case, Hough 
transform (Duda and Hart, 1972; Hough, 1962) has been used 
to determine the model parameters as well as the data points 
that belong to the object (Olson, 2001).  
 
The application of Hough transform is restricted to simple 
objects that can be represented with few parameters, such as 
planes, spheres and cylinders. Vosselman et al., (2004) describe 
a Hough-based method for the detection of planes and spheres 
in a point cloud. Rabbani (2006) developed an extension of this 
method that can be used for the detection of cylinders. Figure 1 
demonstrates the application of Hough transform to the 
detection of cylinders in a point cloud. As can be seen, the 
curved parts joining the cylinders have not been extracted 
because these parts cannot be expressed in parametric forms 
with few parameters. 
 
This paper concentrates on the detection of 3D objects with 
arbitrary shapes in a point cloud. The objective of this paper is 
to develop a new extension of Hough transform, which can be 
used to detect instances of a complex object model in laser 
range data, independent of the scale and orientation of the 
object. 
 
The paper has five sections. Section 2 provides an overview of 
the standard and generalized Hough transform as applied to 2D 
images. In section 3, the principles of the 3D generalized 
Hough transform is described. A discussion on the 
computational complexity of the method is presented in section 
4. Conclusions appear in section 5.   
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2. AN OVERVIEW OF THE STANDARD AND 

GENERALIZED HOUGH TRANSFORM 

Hough transform is a well known method for the detection of 
objects in 2D intensity images. The standard Hough transform 
is applicable to objects with an analytical shape such as straight 
lines, circles and ellipses; whereas, with the generalized Hough 
transform any arbitrary curve can be detected in a 2D image. 
The following sections briefly describe the standard and 
generalized Hough transform.  
 
2.1 The standard Hough transform 

The idea of Hough transform for detecting straight lines in 
images was first introduced by Hough (1962). In the original 
Hough transform, a straight line is parameterized as y = mx+b 
with two parameters m and b. According to the number of 
parameters, a 2D parameter space is formed in which every 
point in the image space corresponds to a line b = -xm+y. A set 
of image points that lie on a same line y = mx+b in image space 
correspond to a number of lines in the parameter space, which 
intersect at point (m, b). Finding this intersection point is, 
therefore, the basis for line detection in Hough transform. The 
parameter space is realized in the form of a discrete 
accumulator array consisting of a number of bins that receive 
votes from edge pixels in the image space. The intersection 
point is determined by finding the bin that receives a maximum 
number of votes. 
 
In addition to straight lines, Hough transform has been used to 
detect also other analytical shapes, such as circles and ellipses, 
in 2D images.  The underlying principle for the detection of 
other analytical shapes is the same as for the straight line 
detection, and is based on constructing a duality between edge 
pixels in the image and object parameters in the parameter 
space. The dimensions of the parameter space, however, vary 
with respect to the parameterization of the object. 
 
2.2 The generalized Hough transform 

Ballard (1981) proposed a generalization of Hough transform to 
detect non-parametric objects with arbitrary shapes in 2D 
intensity images. In the generalized Hough transform, the object 
model is stored in a so-called R-table format. An arbitrary 
reference point is selected for the object, and for every pixel on 
the object boundary the gradient direction as well as the length 
and direction of a vector connecting the boundary pixel to the 
reference point are computed (Figure 2). The gradient 
directions, φ, serve as indices in the R-table to look up the 

length, r, and direction, β, of the connecting vectors. Table 1 
illustrates a general form of an R-table. 
  

Table 1: R-table 
Point φ r 

0 0 (r, β)01 - (r, β)02 - (r, β)03 - … 

1 ∆φ (r, β)11 - (r, β)12 - (r, β)13 - … 

2 2∆φ (r, β)21 - (r, β)22 - (r, β)23 - … 
… …  

 
The reconstruction of the object model from the R-table is 
straightforward: 
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where (xc, yc) and (xp, yp) are respectively the coordinates of the 
reference point and a point on the boundary of the object. For 
the detection of the object model in the image, however, the 
coordinates of the reference point are not known. A 2D 
accumulator array is, therefore, constructed with the two 
parameters of the reference point as the axes. At every image 
edge pixel the gradient direction is obtained and then looked up 
in the R-table. The corresponding sets of r and β values are 
used to evaluate Equation 1, and the resulting xc and yc values 
indicate the accumulator array bins that should receive a vote. 
Once this process is complete for all edge pixels, the bin with 
the maximum vote indicates the reference point, and the edge 
pixels that cast vote for this bin belong to an instance of the 
object in the image. 
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Figure 2: Parameters involved in the generalized Hough 
transform. 

Figure 1. Detection of cylinders in a point cloud using Hough transform (from Rabbani (2006)). The curved parts 
joining the cylinders cannot be extracted using this method. 
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The generalized Hough transform can also be used to detect a 
rotated and scaled version of a model in an image. This is 
achieved by supplementing Equation 1 with a scale factor and a 
rotation angle, and the parameter space is expanded to a 4D 
accumulator array. The peak of the accumulator array 
determines the scale and rotation parameters in addition to the 
coordinates of the reference point, although at the price of a 
higher computational expense. 
 
2.3 Modifications to Hough transform 

Several modified variations of the Hough transform have been 
proposed to improve the performance of the method. 
Illingworth and Kittler (1988) provide a survey of these 
methods. Duda and Hart (1972) suggested a modification of the 
standard Hough transform by substituting the original slope-
intercept parameterization of straight lines with a polar, angle-
radius, parameterization. The polar parameterization leads to a 
bounded parameter space, unlike the original parameterization, 
and is, consequently, more computationally efficient. They also 
showed that standard Hough transform can be used to detect 
more general curves in an image. Gradient weighted Hough 
transform, as appears in Ballard’s generalization, was first 
introduced by O’Gorman and Clowes (1976). The derivation of 
edge orientation information imposes very little computational 
cost, but greatly increases the efficiency of the method. Other 
methods that have been shown to improve the performance of 
Hough transform include Adaptive Hough transform 
(Illingworth and Kittler, 1987), Hierarchical Hough transform 
(Princen et al., 1990), and Randomized Hough transform (Xu et 
al., 1990).  
 
3. EXTENSION OF GENERALIZED HOUGH 

TRANSFORM TO 3D DATA 

In this section we present an extension of the generalized 
Hough transform to 3D data. The method will be referred to as 
3D GHT in the subsequent parts of the paper. The 3D GHT 
follows the same principle as generalized Hough transform as 
outlined in Section 2.2. The main difference is that the gradient 
vector is replaced with a surface normal vector. The normal 
vectors can be obtained by triangulating the surface of the 
object or by fitting planar surfaces to small sets of points in a 
local neighbourhood. Vectors connecting each triangle to an 
arbitrary reference point are stored in the R-table as a function 
of the normal vector coordinates. A normal vector is 
constrained to be of unit length and is, therefore, defined by two 
orientation angles, φ and ψ, as depicted in Figure 3. A 
connecting vector is defined by two orientation angles, α and β, 
as well as its length r. These parameters can be derived from the 
coordinates of the reference point and the object boundary 
point: 
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This formulation results in a 2D R-table where all the 
connecting vectors, r, are stored in cells whose coordinates are 
the orientation angles of the normal vectors. Figure 4 
demonstrates how such a 2D R-table is constructed. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4: Storing r vectors in a 2D R-table. 

 
The reconstruction of the object model from the R-table is 
carried out by extending Equation 1 to 3D: 
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where α and β denote the orientation angles of the vector that 
connects a point p to the reference point c. For the detection of 
the 3D object model in a point cloud the three coordinates of 
the reference point are unknown parameters. Thus, the 
equations given in (3) are rearranged so as to express the 
unknown parameters as functions of the known variables: 
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Having obtained the object model in the form of the R-table, an 
algorithm for the detection of instances of this model in a point 
cloud can be outlined as follows: 
 

1. Construct a 3D accumulator array with the three 
parameters of the reference point as the axes; 
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Figure 3: Parameters involved in the 3D GHT method. 
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2. Compute the normal vector for every point in the point 
cloud and look up r vectors at coordinates (φ, ψ) of the 
2D R-table; 

3. Evaluate Equation (4) with the corresponding sets of r, α 
and β values to obtain xc, yc and zc; 

4. Cast a vote (an increment) to the accumulator array bin 
corresponding to each set of xc, yc and zc values; 

5. Repeat the voting process for all the points in the point 
cloud; 

6. The bin with the maximum vote indicates the reference 
point, and the 3D points that cast vote for this bin belong 
to an instance of the object in the point cloud. 

 
In practice, the object appears in range data with an arbitrary 
rotation and scale. To account for the additional rotation and 
scale parameters, Equation (4) is modified as: 
 

rMMMpc ... xyzs+=  (5) 

 
where                  ,                   ,                                                    
s is a scale factor and Mx, My and Mz are rotation matrices 
around x, y and z axis respectively. The incorporation of a scale 
factor and three rotation parameters results in an expansion of 
the Hough space to seven dimensions. To evaluate Equation 5 
and cast votes for the accumulator bins, a 4D space 
circumventing the entire range of scale factors and rotation 
angles must be exhausted. This implies that the crude 
application of the 3D GHT method to object detection can be 
very expensive. Therefore, cost-reduction strategies such as 
adaptive, hierarchical and randomized voting schemes are of 
great importance in the 3D GHT algorithm. 
 
 

4. IMPLEMENTATION ASPECTS 

The 3D GHT method as described in Section 3 is 
computationally expensive when the object appears in data with 
an arbitrary scale and rotation with respect to the model. The 
development of a cost-reduction strategy is thus the main 
challenge in the application of 3D GHT. In general, the 
execution time of Hough transform is more dominated by the 
voting process rather than by the search for a peak in the 
accumulator. In the absence of arbitrary scale and rotation, the 
number of required operations in the voting process is O(M), 
where M is the number of points in the dataset. Thus, a 
desirable cost-reduction strategy must aim to reduce the number 
of points that are involved in the voting process. Randomized 
(Xu et al., 1990)  and probabilistic (Kiryati et al., 1991) 
variations of the Hough transform work based on a random 
selection of a small number of data points, and are, therefore, 
suitable options for controlling the computational cost of the 
voting process.. 

 
In the presence of arbitrary scale and rotation, a 4D subset of 
the parameter space circumventing the entire range of scale 
factors and rotation angles is exhausted during the voting 
process. Consequently, the number of operations required in the 
voting process is O(M*N4), where N is the number of intervals 
along each axis of the accumulator array. Clearly, a desirable 
cost-reduction strategy in this case must concentrate on the N4 
factor. The adaptive Hough transform (Illingworth and Kittler, 
1987) reduces the number of intervals along axes since it begins 
with a coarse-resolution parameter space and increases the 
resolution only in the vicinity of the peak. The randomized 
Hough transform (Xu et al., 1990) also provides an efficient 

strategy to reduce the number of bins that receive votes in the 
parameter space. In the randomized voting, instead of working 
with one point at a time, a number of points sufficient for the 
computation of all parameters are selected from the data. Once 
all the parameters are computed, only one bin in the 
accumulator array receives a vote. In the case of a 3D object 
with seven parameters, a set of three points must be selected 
from the data at each time. These points along with their 
respective r vectors form nine equations of the form given in 
Equation 5, which can be solved for the seven parameters. 
Thus, for each randomly selected set only one vote is cast for a 
bin in the 7D accumulator array. 
 
 

5. CONCLUSIONS 

In this paper we presented an extension of the generalized 
Hough transform to detect arbitrary 3D objects in laser range 
data. The procedure of storing a 3D model in a 2D R-table was 
demonstrated, and a method for the detection of instances of the 
model in a point cloud, based on a voting process, was 
described. It was discussed that the voting process can be 
computationally expensive in the case that the object appears in 
data with an arbitrary scale and rotation with respect to the 
model. The employment of a voting process based on the 
randomized Hough transform was, therefore, suggested to 
reduce the computational cost of the method. 
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