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ABSTRACT:

Automated detection and 3D modelling of objectslamer range data is of great importance in manylicgtpns. Existing

approaches to object detection in range data initetl to either 2.5D data (e.g. range images) mpk objects with a parametric
form (e.g. spheres). This paper describes a newoapp to the detection of 3D objects with arbitranapes in a point cloud. We
present an extension of the generalized Houghftrango 3D data, which can be used to detect instsuof an object model in laser
range data, independent of the scale and orientafithe object. We also discuss the computationaiplexity of the method and

provide cost-reduction strategies that can be eyapldo improve the efficiency of the method.

1. INTRODUCTION

Automated extraction of objects from laser rangéada of

great importance in a wide range of applicationsveree

engineering, 3D visualisation, industrial designnitaring and

environmental planning are a few examples of thdiegttions

that require 3D models of objects extracted frorages or laser
range data. A 3D model provides an abstract degmmipf the

object, which can be processed and visualised masdy and

efficiently. The process of object extraction ceisiof two

main tasks. The first task is detection, in whikh presence of
an object in the data is verified, and its appratignocation is
found (usually by labeling the data points thatobel to the

object). The second task is modeling, where theatietl object
is represented with a 3D geometric model that istradequate
in terms of such criteria as accuracy, compactrtbgsdomain

of the object and the application requirements. Thgection

step plays a key role in the successful modelintpefobject. If

the object is properly detected in the data, theleting can be
carried out more reliably and accurately.

Existing approaches to the detection of objectsaimge data
can be divided into two major categories: dataairiv
approaches and model-driven approaches.
approaches are mainly based on segmentation (Kimashe
2006; Rottensteiner and Briese, 2003; Sithole, 20f)&3tering
(Filin, 2002; Vosselman, 1999) and classificatidtor{ani et
al., 2006; Oude Elberink and Maas, 2000). Whiles¢he
methods have been commonly applied to the lasgerdata of
2.5D surfaces, their application to more complexenes is
not always possible. For instance, in laser rangéa oof
industrial installations many objects are partialcluded and
data-driven methods fail to correctly detect thebgcts in the
data. Model-driven approaches, on the contrary, ragge
robust in the presence of partial occlusion, sirtbey
incorporate some form of knowledge about the shafpthe
object. The object model can be represented, anuihgr
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representations, as a set of voxel templates (Gpeenand
Boulanger, 1999) or spin images (Johnson and Hebg2#9),

which are matched against the data or as a setrafmeters that
mathematically define the object. In the latter ecaklough

transform (Duda and Hart, 1972; Hough, 1962) hanheed
to determine the model parameters as well as the mhzints

that belong to the object (Olson, 2001).

The application of Hough transform is restricted dionple
objects that can be represented with few parametech as
planes, spheres and cylinders. Vosselman et @04j2describe
a Hough-based method for the detection of plandsspheres
in a point cloud. Rabbani (2006) developed an eitensf this
method that can be used for the detection of cglisdFigure 1
demonstrates the application of Hough transform the
detection of cylinders in a point cloud. As can deen, the
curved parts joining the cylinders have not beetraeted
because these parts cannot be expressed in pdcafoetns
with few parameters.

This paper concentrates on the detection of 3D ctbjwith
arbitrary shapes in a point cloud. The objectivehi$ paper is
to develop a new extension of Hough transform, tvitan be

Data-drivefised to detect instances of a complex object maodéhser

range data, independent of the scale and orientaifothe
object.

The paper has five sections. Section 2 providesvanview of
the standard and generalized Hough transform adgeddp 2D
images. In section 3, the principles of the 3D galiwed
Hough transform is described. A discussion on
computational complexity of the method is preseritesection
4. Conclusions appear in section 5.

the
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Figure 1. Detection of cylinders in a point clousing Hough transform (from Rabbani (20p6)he curved par
joining the cylinders cannot be extracted using thethod.

2. AN OVERVIEW OF THE STANDARD AND
GENERALIZED HOUGH TRANSFORM

Hough transform is a well known method for the deos of

objects in 2D intensity images. The standard Houghsform

is applicable to objects with an analytical shapehsas straight
lines, circles and ellipses; whereas, with the gdimed Hough
transform any arbitrary curve can be detected RDaimage.

The following sections briefly describe the stamdaand

generalized Hough transform.

2.1 Thestandard Hough transform

The idea of Hough transform for detecting straighes in
images was first introduced by Hough (1962). In thmiginal
Hough transform, a straight line is parameterizegt a mx+b
with two parametersn and b. According to the number of
parameters, a 2D parameter space is formed in wnehy
point in the image space corresponds to ablime-xm+y. A set
of image points that lie on a same line mx+bin image space
correspond to a number of lines in the parametacespwhich
intersect at pointim, b) Finding this intersection point is,
therefore, the basis for line detection in Houginsform. The
parameter space is realized in the form of a diecre
accumulator array consisting of a number of birat tleceive
votes from edge pixels in the image space. Thersettion
point is determined by finding the bin that receigemaximum
number of votes.

In addition to straight lines, Hough transform lhaen used to
detect also other analytical shapes, such as siesid ellipses,
in 2D images. The underlying principle for the etgton of

other analytical shapes is the same as for thegktrdine

detection, and is based on constructing a duaéitwéen edge
pixels in the image and object parameters in thempeter
space. The dimensions of the parameter space, leoweary
with respect to the parameterization of the object.

2.2 Thegeneralized Hough transform

Ballard (1981) proposed a generalization of Houghgform to
detect non-parametric objects with arbitrary shapes2D
intensity images. In the generalized Hough tramsfdhe object
model is stored in a so-called R-table format. Abiteary
reference point is selected for the object, ancef@ry pixel on
the object boundary the gradient direction as aglthe length
and direction of a vector connecting the boundaxglpo the
reference point are computed (Figure 2). The gradie
directions, ¢, serve as indices in the R-table to look up the
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length,r, and directiong, of the connecting vectors. Table 1
illustrates a general form of an R-table.

Table 1: R-table

Point @ r
0 0 (r, Mor- (1, Aoz - (s Bos- -
1 Ap (r, A1~ (6, Paz- (1, Baz- -
2 24¢ (r, B)21- (r, Bz - (1, Bas- -

The reconstruction of the object model from theaBl is
straightforward:

{

where (x, y;) and (x, Y,) are respectively the coordinates of the
reference point and a point on the boundary ofdihject. For
the detection of the object model in the image, éwmr, the
coordinates of the reference point are not known.2B
accumulator array is, therefore, constructed witle ttwo
parameters of the reference point as the axesvétyémage
edge pixel the gradient direction is obtained drahtlooked up
in the R-table. The corresponding setsradnd g values are
used to evaluate Equation 1, and the resubtiinandy, values
indicate the accumulator array bins that shoul@iveca vote.
Once this process is complete for all edge pixéls,bin with
the maximum vote indicates the reference point, ttwededge
pixels that cast vote for this bin belong to antanse of the
object in the image.

X, =X, —r [£os(B)

Y, =y, 1 3in(5) @

Y,

L,

X
Figure 2 Parameters involved in
transform.

the generalized Hc
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The generalized Hough transform can also be usetbtect a CX. Y, Z)
rotated and scaled version of a model in an imdgps is

achieved by supplementing Equation 1 with a scdeof and a 2
rotation angle, and the parameter space is expatwed4D
accumulator array. The peak of the accumulator yarra Y
determines the scale and rotation parameters iiti@udo the .7
coordinates of the reference point, although atptiee of a

higher computational expense.

2.3 Madificationsto Hough transform

Several modified variations of the Hough transfdrave been
proposed to improve the performance of the method.
lllingworth and Kittler (1988) provide a survey dhese
methods. Duda and Hart (1972) suggested a modificaf the 2
standard Hough transform by substituting the osdbislope-
intercept parameterization of straight lines witbdar, angle-
radius, parameterization. The polar parameterigdgads to a
bounded parameter space, unlike the original pasaination,
and is, consequently, more computationally effitifimey also x
showed that standard Hough transform can be usetbtect
more general curves in an image. Gradient weigfitedgh
transform, as appears in Ballard’s generalizatioms \irst
introduced by O’Gorman and Clowes (1976). The dé&owaof
edge orientation information imposes very littlengutational X.v.7) ! PIX.Y.Z)
cost, but greatly increases the efficiency of thethnd. Other ‘
methods that have been shown to improve the peafoce of
Hough transform include Adaptive Hough transform x
(lingworth and Kittler, 1987), Hierarchical Hougansform
(Princen et al., 1990), and Randomized Hough trams{Xu et Figure 3: Parameters involved in the 3D GHT method.
al., 1990).

C(X,Y.Z)

¢’ c'c

3. EXTENSION OF GENERALIZED HOUGH
TRANSFORM TO 3D DATA 34 ffﬁ‘

r21

In this section we present an extension of the mdized rzﬂ\rzzf P
Hough transform to 3D data. The method will be mefe to as kY
3D GHT in the subsequent parts of the paper. TheGHI Yo
follows the same principle as generalized Houghsfiarm as 4
outlined in Section 2.2. The main difference ist tth@ gradient
vector is replaced with a surface normal vectore Hlormal
vectors can be obtained by triangulating the serfat the
object or by fitting planar surfaces to small seftgoints in a
local neighbourhood. Vectors connecting each tiang an

=
~

Figure 4: Storing vectors in a 2D R-table.

The reconstruction of the object model from theaRl is
carried out by extending Equation 1 to 3D:

arbitrary reference point are stored in the R-tatsiea function X, = X, ~r [8in(a) cos(B)
of the normal vector coordinates. A normal vect® i Y, =Y. —r Bin(a)sin(B) 3
constrained to be of unit length and is, therefdedined by two z, =z, -1 [tos(a)

orientation anglesy and y, as depicted in Figure 3. A

Connﬁft'ngtvﬁ(:tortf _Iqﬁf'ned by twcl orlentatlljontljasgz ?jnfdﬁ' th wherea andf denote the orientation angles of the vector that
as wet as IIs leng €Se parameters can be derived Tom &, \pacts 5 point to the reference poirtt For the detection of
coordinates of the reference point and the objemindary

o the 3D object model in a point cloud the three dowates of
point: the reference point are unknown parameters. Thbs, t
equations given in (3) are rearranged so as toesspthe
unknown parameters as functions of the known viegab
F=0x, = X)7 + (Y, ~ Vo) + (2, —2,)21%

a= arcco{ Z "% J @) X =X, +1 Eih(a) C(?s(ﬂ)
' Ye =Y, tI Sin(a) sin(B) 4)
{XC_XPJ z, =z, +r [Eos(a)
B = arcco -
r sin(a)

Having obtained the object model in the form of Rwable, an
This formulation results in a 2D R-table where #fe algorithm for the detection of instances of thisdeloin a point
connecting vectors,, are stored in cells whose coordinates arecloud can be outlined as follows:
the orientation angles of the normal vectors. Fegut

demonstrates how such a 2D R-table is constructed. 1. Construct a 3D accumulator array with the three
parameters of the reference point as the axes;
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2. Compute the normal vector for every point in thenpoi
cloud and look up r vectors at coordinatesy) of the
2D R-table;

3. Evaluate Equation (4) with the corresponding séts @
andp values to obtain xc, yc and zc;

4. Cast a vote (an increment) to the accumulator drmay
corresponding to each set of xc, yc and zc values;

5. Repeat the voting process for all the points in bt
cloud;

6. The bin with the maximum vote indicates the refeeen
point, and the 3D points that cast vote for this ibelong
to an instance of the object in the point cloud.

In practice, the object appears in range data waitharbitrary
rotation and scale. To account for the additiomaation and
scale parameters, Equation (4) is modified as:

c=p+sM, M M, r (5)

wherec=(x,,y..z)" R=(><pyyp,2p)r r 5(r sin@) cos(B),r sin(a)sin(B),r cos@))’
s is a scale factor and MM, and M are rotation matrices

strategy to reduce the number of bins that recedtes in the
parameter space. In the randomized voting, instéadbrking
with one point at a time, a number of points sidfi¢ for the
computation of all parameters are selected frondtta. Once
all the parameters are computed, only one bin ie th
accumulator array receives a vote. In the case 3D abject
with seven parameters, a set of three points mesidbected
from the data at each time. These points along whr
respectiver vectors form nine equations of the form given in
Equation 5, which can be solved for the seven peframs
Thus, for each randomly selected set only one igotast for a
bin in the 7D accumulator array.

5. CONCLUSIONS

In this paper we presented an extension of the rgbrned
Hough transform to detect arbitrary 3D objectsdrer range
data. The procedure of storing a 3D model in a 2@l was
demonstrated, and a method for the detection tdrices of the
model in a point cloud, based on a voting procesas
described. It was discussed that the voting procass be

aroundx, y andz axis respectively. The incorporation of a scale C0mMputationally expensive in the case that thealzppears in

factor and three rotation parameters results imxgransion of
the Hough space to seven dimensions. To evaluatatieg 5

data with an arbitrary scale and rotation with ez$pto the
model. The employment of a voting process basedthen

and cast votes for the accumulator bins, a 4D spacEandomized Hough transform was, therefore, sugdeste

circumventing the entire range of scale factors aot@tion

angles must be exhausted. This implies that thedecru

application of the 3D GHT method to object detattcan be
very expensive. Therefore, cost-reduction stragegiech as
adaptive, hierarchical and randomized voting sclseare of
great importance in the 3D GHT algorithm.

4. IMPLEMENTATION ASPECTS

The 3D GHT method as described
computationally expensive when the object appeadata with
an arbitrary scale and rotation with respect to riiazlel. The
development of a cost-reduction strategy is thus thain
challenge in the application of 3D GHT. In genertig
execution time of Hough transform is more dominabgdthe
voting process rather than by the search for a peathe
accumulator. In the absence of arbitrary scaleratation, the
number of required operations in the voting prodesd(M),

reduce the computational cost of the method.
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