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ABSTRACT:  

 

A classification tree based approach for building detection was tested. A digital surface model (DSM) derived from last pulse laser 

scanner data was first segmented and the segments were classified into classes ‘ground’ and ‘building or tree’ on the basis of 

preclassified laser points. ‘Building and tree’ segments were further classified into buildings and trees by using the classification tree 

method. Four classification tests were carried out using different combinations of 44 input attributes. The attributes were derived 

from the last pulse DSM, first pulse DSM and an aerial colour ortho image. In addition, shape attributes calculated for the segments 

were used. The attributes of training segments were presented as input data for the classification tree method, which constructed 

automatically a classification tree for each test. The trees were then applied to classification of a separate test area. Compared with a 

building map, a mean accuracy of almost 90% was achieved for buildings in each test. The classification tree method appeared to be 

a feasible and highly automatic approach for distinguishing buildings from trees. If new data sources become available in the future, 

they can be easily included in the classification process. The results also suggest that satisfactory building detection results can be 

obtained with different combinations of input data sources. By using a statistical method, it is possible to find useful attributes and 

classification rules in different cases. The use of an aerial image or both first pulse and last pulse laser scanner data does not 

necessarily improve the results significantly, compared with a classification that uses only last pulse laser scanner data.  
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1. INTRODUCTION 

Most methods presented for automatic building detection from 

laser scanner data use step-wise classification approaches to 

distinguish buildings from other objects (see, for example, Hug, 

1997; Morgan and Tempfli, 2000; Vögtle and Steinle, 2000; 

Rottensteiner et al., 2005a; Forlani et al., 2006; Zhang et al., 

2006). The methods normally begin by extracting the ground 

surface using a filtering algorithm. After this, the most 

important task is to distinguish buildings from trees. Features or 

attributes commonly used for building detection include height 

texture (e.g. Hug, 1997; Maas, 1999) or surface roughness (e.g. 

Brunn and Weidner, 1998), reflectance information from 

images (e.g. Haala and Brenner, 1999; Vögtle and Steinle, 

2000) or laser scanning (e.g. Hug, 1997), the difference 

between first pulse and last pulse laser scanner data (e.g. Oude 

Elberink and Maas, 2000; Alharthy and Bethel, 2002), and 

shape and size of objects (e.g. Tóvári and Vögtle, 2004). The 

attributes calculated for predefined segments or single pixels are 

presented as input data for a classification method which can be 

a general-purpose supervised or unsupervised method but more 

commonly is a rule-based method or other similar method 

specifically designed for the task.  

 

Each building detection method typically uses a certain set of 

attributes and rules selected by its developers on the basis of 

their knowledge and experience on the subject and/or training 

data available for the study. This approach is a feasible one and 

can lead to satisfactory results, as shown by many previous 

studies. The disadvantage of the approach, however, is that the 

development of the methods is time consuming. When new 

datasets become available, considerable time is needed to study 

their potential in building detection and include them in the 

methods. Comparative studies between different datasets and 

input attributes are also rare (for examples of comparative 

studies, see Rottensteiner et al., 2005b; Pfeifer et al., 2007), 

which makes it difficult to evaluate the usefulness of and need 

for different datasets for practical applications. For example, 

many of the methods use aerial image data in addition to laser 

scanner data, but whether this improves the results significantly 

is largely an open question. The same applies to the combined 

use of first pulse and last pulse laser scanner data. 

 

A method that has been increasingly used in the classification of 

remotely sensed data in recent years is classification trees (also 

called decision trees) (Breiman et al., 1984; Safavian and 

Landgrebe, 1991). Classification trees can be created 

automatically with data mining or statistical software tools, and 

they have many useful properties which make them attractive 

for the analysis of remotely sensed data (see Breiman et al., 

1984; Safavian and Landgrebe, 1991; Hansen et al., 1996; 

Friedl and Brodley, 1997; Huang and Jensen, 1997; Lawrence 

and Wright, 2001; Thomas et al., 2003; Lawrence et al., 2004). 

The classification tree method is non-parametric and does not 

require assumptions on the distribution of the data. It is thus 

particularly interesting when multisource datasets with different 

types of possible input attributes are used. A large number of 

different attributes can be presented for the method, and it 

automatically selects the most useful ones. This makes the 

classification process highly automatic and different from most 

other approaches, in which the user must select suitable 

attributes before classification. Different attributes can be used 

for distinguishing different classes. The structure of the 

classification tree is easy to understand and it gives information 

on the roles and usefulness of different attributes in the 

classification task, although caution is needed in the 

interpretation of this information (see Breiman et al., 1984). 
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There are still few applications of the classification tree method 

to the analysis of laser scanner data. Hodgson et al. (2003) 

studied the mapping of urban parcel imperviousness using 

colour aerial photography and laser scanner derived height 

information. Ducic et al. (2006) used the classification tree 

method to classify laser points as vegetation points and non-

vegetation points on the basis of full-waveform information. 

Matikainen (2006) tested the classification tree method for 

building detection to distinguish buildings from trees. This 

approach proved to be highly automatic and provided an 

accuracy that was very near the accuracy obtained earlier using 

the same dataset and manually created classification rules. 

 

This article presents further tests of the classification tree 

method in building detection. A large set of input attributes 

derived from last pulse and first pulse laser scanner data and an 

aerial ortho image were used. In addition to testing the 

feasibility of the method, the objective of the study was to 

acquire basic information on the importance of different 

datasets and attributes in building detection. 

 

 

2. STUDY AREA AND DATA 

Data from a study area in Espoonlahti, near Helsinki, were used. 

The area is a suburban area with small hills and plenty of 

coniferous and deciduous trees, as well as lower vegetation. 

When the laser scanner data were acquired on 14 May 2003, 

some deciduous trees were without leaves and others had small 

leaves. Colour aerial images were taken on 26 June 2003, when 

all trees were in full leaf. Separate areas covering about 0.4 km2 

and 1.4 km2 were used for training and testing the classification 

tree method. The test area was divided into two parts, one of 

which is mainly a high-rise residential area and the other is 

mainly a low-rise residential area.  

 

The laser scanner data were acquired simultaneously in first 

pulse and last pulse modes with the TopoSys FALCON system. 

The flying altitude was 400 m above ground level (a.g.l.), which 

resulted in a point density of about 10 points per m2. The 

average point density in the datasets, including overlap between 

adjacent strips, is about 17 points per m2. First pulse and last 

pulse digital surface models (DSM) in raster format and with a 

pixel size of 30 cm × 30 cm were created using the TerraScan 

software (Soininen, 2005; Terrasolid, 2007). The highest (first 

pulse DSM) or lowest (last pulse DSM) value within the pixel 

was assigned to each pixel, and interpolation was used to 

determine values for pixels without laser points. The original 

laser points were also classified in TerraScan to detect points 

located above 2.5 m a.g.l.. This classification for the last pulse 

points was used for distinguishing buildings and trees from the 

ground surface before application of the classification tree 

method. An aerial colour ortho image with a pixel size of 30 cm 

× 30 cm was created from the aerial images, which were taken 

with a Leica RC30 camera and had red, green and blue 

channels. The images were acquired and scanned by FM-Kartta 

Oy.  

 

Two additional raster images were derived from the DSMs: 

slope calculated from the last pulse DSM and difference 

between first pulse and last pulse DSMs. Both of these were 

filtered using morphological opening and closing operations to 

remove building edges and to smooth areas covered with trees.  

 

A building map from 2003 obtained from the city of Espoo and 

a forest map obtained from FM-Kartta Oy were used as training 

data. The building map was also used for estimating the 

accuracy of the building detection results. The map data were 

converted from vector to raster format (pixel size 30 cm × 30 

cm). Before this, neighbouring building polygons were merged 

to obtain one polygon for each building and polygons smaller 

than 20 m2 were eliminated to exclude very small buildings and 

other constructions from the analysis. Compared with some 

ground measurements in the study area, the positional accuracy 

of buildings in the original building map is 0.5 m or higher. 

There are, however, many differences in the appearance of the 

buildings on the map and in the laser scanner and aerial image 

data. For example, building outlines on the map represent the 

ground plans of the buildings instead of roof edges. Some more 

details of the laser scanner, aerial image and map data can be 

found in Matikainen et al. (2004; 2007). 

 

 

3. METHODS 

3.1 Classification tree tools 

The classification (and regression) tree tools available in the 

Statistics Toolbox of the Matlab software (The MathWorks, 

2007) were used in the study. These tools can be used to 

construct a classification tree with a binary tree structure and to 

apply the tree to classification (for a detailed description of the 

classification tree method, see Breiman et al., 1984). A 

classification tree has a root node, non-terminal nodes and 

terminal nodes. The root node and each non-terminal node 

contain a question that asks whether a given attribute satisfies a 

given condition. Beginning from the root node, an object to be 

classified goes to the left or right descendant node, depending 

on whether or not it satisfies the condition of the node. Finally, 

it ends up at one of the terminal nodes and is assigned to the 

corresponding class. When a classification tree is constructed, 

the most useful attributes and splits are selected using a splitting 

criterion. The Gini’s diversity index was used as the splitting 

criterion in our study. This criterion is a measure of node 

impurity and is defined as 
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where t is the node, and p(it) is the proportion of cases xn ∈ t 

which belong to class i (x is the measurement vector). At each 

node of the tree, a search is made for the split that most reduces 

node impurity. (Breiman et al., 1984; The MathWorks, 2003.) 

 

The resulting tree is normally large and can overfit the training 

data. Therefore, it must be pruned, which means that a set of 

smaller subtrees is obtained. The best level of pruning can be 

estimated by computing the cost of each subtree in the optimal 

pruning sequence (for details, see Breiman et al., 1984; The 

MathWorks, 2003). This was carried out using the training data 

and 10-fold cross-validation. The costs were based on the 

misclassification costs of classes (default; 1) and probabilities 

of the terminal nodes. The best level of pruning was the level 

that produced the smallest tree within one standard error of the 

minimum-cost subtree. When the tree was initially created, a 

threshold value of 10 (default) was used for splitting nodes, 

which means that a node had to contain at least 10 training 

objects to be split.  
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3.2 Workflow for building detection 

The building detection method used in the study included the 

following stages: 

1. Segmentation of the last pulse DSM into 

homogeneous regions. The segments were the objects 

to be classified. The multiresolution segmentation 

method (Baatz and Schäpe, 2000) of the Definiens 

Professional software (Definiens, 2006; 2007) and a 

homogeneity criterion based completely on the height 

values in the DSM were used. The software also 

provides a large number of different attributes for 

each segment.  

2. Exportation of the segments and various attributes for 

the segments from Definiens Professional.  

3. Classification of the segments into classes ‘ground’ 

and ‘building or tree’ on the basis of the preclassified 

laser points. A segment was classified as ‘building or 

tree’ if most of the last pulse laser points within it had 

been classified as having a height value of 2.5 m or 

over (a.g.l.). Within each pixel, only the lowest point, 

which was also used in forming the last pulse DSM, 

was considered. 

4. Definition of training segments on the basis of 

training data. A segment from the training area was 

defined as a training segment for building or tree if 

over 80% of its area was labelled as building or forest 

in the map data (some forest areas were excluded 

because they included a considerable area covered by 

roads). Segments classified as ground were excluded 

from the training data. The total number of training 

segments was 2464, which included 396 building 

segments and 2068 tree segments. The building 

segments covered an area of about 3.2 ha and the tree 

segments covered an area of about 0.8 ha. 

5. Construction of a classification tree on the basis of the 

attributes of the training segments.  

6. Classification of all ‘building or tree’ segments on the 

basis of their attributes and the classification tree. 

 

The classification tree method has also been applied to 

segments and attributes obtained from the Definiens (previously 

eCognition) software in some previous studies. For example, 

Thomas et al. (2003) used this approach for land-cover/land-use 

mapping. 

 

3.3 Attributes and classification experiments 

Four sets of attributes were selected to be used as input data for 

the classification of buildings and trees (Table 1, left column). 

Attributes calculated from the last pulse DSM included standard 

deviation, texture and the mean slope of the segments. In 

addition to these more common attributes, two attributes that 

were available in the Definiens Professional software and were 

expected to be potentially useful were included. Contrast to 

neighbour pixels is an attribute that describes the difference (in 

this case, height difference) between a segment and its 

surrounding area. Standard deviation of neighbour pixels is the 

standard deviation of the surrounding area. The surrounding 

area of a segment consisted of pixels that were located inside 

the bounding box of the segment (extended by one pixel at the 

edges) but did not belong to the segment. Attributes calculated 

using the first pulse DSM comprised standard deviation, 

texture, and the mean difference between the first pulse and last 

pulse DSMs. Aerial image attributes included the mean value, 

standard deviation and texture in different channels. Shape 

attributes comprised 27 different shape descriptors available in 

Definiens Professional.  

 

The texture attribute used in the study, Grey Level Co-

occurrence Matrix (GLCM) homogeneity, is one of the texture 

measures originally presented by Haralick et al. (1973). It can 

take into account grey level variations between neighbouring 

pixels in different directions. We used the option ‘all 

directions’. For a more detailed description and formulas of this 

and other attributes, the reader should refer to Definiens (2006).  

 

Four classification tests were carried out, each with a different 

combination of attributes (Table 1, middle column). These tests 

could correspond to four practical situations with different data 

sources available. The last pulse DSM, which was also used for 

segmentation, was considered as the primary data source and 

was available in each test. The shape attributes calculated for 

the segments could also be used in each case. 

 

3.4 Accuracy estimates 

Completeness (corresponds to interpretation accuracy or 

producer’s accuracy), correctness (corresponds to object 

accuracy or user’s accuracy) (Helldén, 1980; Congalton and 

Green, 1999) and mean accuracy (Helldén, 1980) were 

calculated for buildings by comparing the classification results 

with the reference map pixel by pixel in the test area. As 

described in Section 2, the test area was separate from the 

training area. 

 

 

4. RESULTS 

Attributes selected automatically for the classification tree in 

each of the classification tests are listed in the right-hand 

column of Table 1. The corresponding pruning level is also 

mentioned (for example, ‘pruning level 3/8’ means that there 

were 8 pruning levels in the tree and level 3 was selected; level 

0 is the full tree without pruning). In each classification test, the 

script created for the construction of the tree was run five times 

to find the best level of pruning. The estimated level may vary 

slightly between the runs because the subsamples for cross-

validation are selected randomly. If different levels were 

selected as the best in different runs, the classification was 

carried out using each of these. The level that gave the best 

mean accuracy for buildings in the whole test area is shown in 

Table 1 and following figures and tables. In practice, the 

differences in mean accuracy between the different levels were 

very small (less than 1 percentage unit).  

 

To give an idea of the relative importance of different attributes 

in the classification, the total number of training segments 

passing through nodes with a given attribute is shown in 

brackets in Table 1. Some training segments had undefined 

values for one of the shape attributes (main direction) and were 

not taken into account in the construction of the trees. The total 

number of training segments used by the algorithm was 2224 

(391 building segments and 1833 tree segments). If one 

segment passed more than one node with the same attribute, it 

was counted more than once for this attribute. The number of 

training segments per attribute can thus exceed the total number 

of training segments.  

 

The classification tree obtained for Test 3 is shown in Figure 1 

(pruning level 3/8). Classification results for Test 1 and Test 3 

in the high-rise area and Test 2 and Test 4 in the low-rise area 
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Table 1. Attributes and classification tests. The complete set of attributes used in the study is shown on the left, attributes available 

for the classification tests are shown in the middle and attributes selected automatically by the classification tree method 

in the different tests are shown on the right. The number of training segments passing through nodes with the given 

attribute is given in brackets. The accuracy obtained in the classification (completeness/correctness/mean accuracy) is 

also shown for each test. 

 

Attributes 

 

Attributes from the last pulse (LP) DSM 

LP DSM, standard deviation 

LP DSM, GLCM homogeneity 

LP DSM, contrast to neighbour pixels 

LP DSM, standard deviation of neighbour pixels 

Slope from LP DSM, mean 

 

Attributes from the first pulse (FP) DSM 

FP DSM, standard deviation 

FP DSM, GLCM homogeneity 

FP DSM - LP DSM, mean 

 

Attributes from the aerial image 

Aerial image, red, mean 

Aerial image, red, standard deviation 

Aerial image, red, GLCM homogeneity 

Aerial image, green, mean 

Aerial image, green, standard deviation 

Aerial image, green, GLCM homogeneity 

Aerial image, blue, mean 

Aerial image, blue, standard deviation 

Aerial image, blue, GLCM homogeneity 

 

Shape attributes 

Area 

Area (polygon-based, excluding inner polygons) 

Area (polygon-based, including inner polygons) 

Asymmetry 

Average length of edges 

Border index 

Border length 

Compactness 

Compactness (polygon-based) 

Density 

Edges longer than 10 pixels 

Elliptic fit 

Length 

Length of longest edge 

Length/Width 

Main direction 

Number of edges 

Number of inner objects 

Number of right angles with edges longer than 

10 pixels 

Perimeter 

Radius of largest enclosed ellipse 

Radius of smallest enclosing ellipse 

Rectangular fit 

Roundness 

Shape index 

Standard deviation of length of edges 

Width 

Attributes available for the classification 

tests 

 

Test 1  

Attributes from the LP DSM 

Attributes from the FP DSM 

Attributes from the aerial image 

Shape attributes 

 

Test 2  

Attributes from the LP DSM 

Attributes from the aerial image 

Shape attributes 

 

Test 3  

Attributes from the LP DSM 

Attributes from the FP DSM 

Shape attributes 

 

Test 4  

Attributes from the LP DSM 

Shape attributes 

 

 

 

Attributes selected for classification and 

accuracy obtained (completeness/ 

correctness/ mean accuracy) 

 

Test 1  

(Pruning level 3/8) 

Aerial image, blue, mean (2224 segments) 

FP DSM - LP DSM, mean (2186) 

Length of longest edge (1872) 

Average length of edges (38) 

Area (12) 

-> Accuracy 92.0/85.8/88.8% 

 

Test 2  

(Pruning level 1/6) 

Aerial image, blue, mean (2224 segments) 

LP DSM, standard deviation (2183) 

Length of longest edge (1872) 

Aerial image, blue, standard deviation (1834) 

Slope from LP DSM, mean (344) 

Edges longer than 10 pixels (48) 

Average length of edges (38) 

-> Accuracy 92.1/86.4/89.2% 

 

Test 3  

(Pruning level 3/8) 

FP DSM - LP DSM, mean (4022 segments) 

FP DSM, GLCM homogeneity (1881) 

Average length of edges (1805) 

LP DSM, GLCM homogeneity (1803) 

Slope from LP DSM, mean (560) 

LP DSM, standard deviation (343) 

Radius of largest enclosed ellipse (36) 

-> Accuracy 92.5/87.4/89.9% 

 

Test 4  

(Pruning level 3/10) 

Length of longest edge (2224 segments) 

Slope from LP DSM, mean (2189) 

LP DSM, GLCM homogeneity (1921) 

LP DSM, contrast to neighbour pixels (420) 

Area (330) 

LP DSM, standard deviation of neighbour 

pixels (55) 

-> Accuracy 92.8/86.7/89.7% 

 

 

 

Table 2. Numerical accuracy estimates for the building detection results (%) (Test 1/Test 2/Test 3/Test 4). 

 

 Test area 

 High-rise residential Low-rise residential All 

Completeness 92.6/92.3/92.6/92.3 91.5/91.9/92.5/93.2 92.0/92.1/92.5/92.8 

Correctness 91.0/91.1/91.9/91.0 82.2/83.2/84.4/83.8 85.8/86.4/87.4/86.7 

Mean accuracy 91.8/91.7/92.2/91.6 86.6/87.4/88.3/88.2 88.8/89.2/89.9/89.7 

Buildings classified as trees 0.6/0.9/0.6/0.9 2.6/2.2/1.6/0.9 1.8/1.6/1.2/0.9 

Buildings classified as ground 6.8/6.8/6.8/6.8 5.9/5.9/5.9/5.9 6.3/6.3/6.3/6.3 
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Figure 1. Classification tree obtained for Test 3. Attributes are: x20: FP DSM - LP DSM, mean; x21: slope from LP DSM, mean; 

x14: FP DSM, GLCM homogeneity; x32: LP DSM, standard deviation; x5: average length of edges; x26: radius of 

largest enclosed ellipse; x15: LP DSM, GLCM homogeneity. 

 

 

are presented in Figure 2. Figure 3 shows classification results 

for Tests 1–4 in a smaller area of the low-rise residential area. 

Four input data sources derived from the laser scanner data are 

also shown for this subarea. The accuracy estimates for the 

building detection results are shown in Table 2. The percentage 

of building pixels classified as trees or ground is also presented 

(here, it should be noted that the ground classification was the 

same in each test). The accuracy estimates obtained for the 

whole test area are also shown in Table 1. 

 

 

5. DISCUSSION 

The classification tree approach allowed rapid and automatic 

testing of different attribute combinations for the classification 

of buildings and trees. Different attributes were selected for the 

trees, but the quality of the results, evaluated either visually or 

numerically, was very similar in each test and relatively good, 

taking into account the differences between the remotely sensed 

data and reference map. This suggests that satisfactory building 

detection results can be obtained with different combinations of 

input data sources. By using a large training dataset and a 

statistical approach, it is possible to find useful rules for 

separating buildings and trees in different cases. The highest 

mean accuracy, 89.9%, was obtained in Test 3, which used 

attributes calculated from the last pulse and first pulse DSMs, in 

addition to the shape attributes, which were used in each test. 

The mean accuracy obtained in Test 4, using the last pulse DSM 

alone, was only slightly lower, i.e. 89.7%. The lowest accuracy, 

88.8%, was obtained in Test 1, which used both last pulse and 

first pulse DSMs and the aerial image. The difference in 

accuracy between this and other tests, however, was very small. 

The percentage of building pixels misclassified as trees was 

remarkably small in each test. Direct comparison of 

classification results from different studies is not possible, but 

the accuracy estimates are also in accordance with those 

obtained in other studies (e.g. Rottensteiner et al., 2005a; 

2005b). 

 

Many of the attributes were selected in several trees. These 

included the mean value of the segment in the blue channel of 

the aerial image, the mean difference between first pulse and 

last pulse DSMs, the mean slope calculated from the last pulse 

DSM, standard deviation and texture calculated from the last 

pulse DSM, and shape attributes ‘length of longest edge’, 

‘average length of edges’ and ‘area’. These are obviously useful 

attributes for distinguishing buildings from trees. Some other 

attributes appeared occasionally in the trees, but most attributes 

were never selected. It should be noted, however, that there can 

also be useful attributes among those that were not selected (see 

Breiman et al., 1984). At each node, the algorithm selects the 

best split according to the splitting criterion, but there can be 

several attributes and splits that would be almost equally good. 

The lower splits in the tree also depend on the splits selected 

earlier. This can explain the difference in the attributes selected 

in different tests. The tree obtained in Test 2 was also different 

from the tree obtained in our earlier study (Matikainen, 2006), 

which used basically the same input data sources but somewhat 

different attributes and training data. 

 

The classification tree based method seems to be a feasible 

approach for building detection. Satisfactory results can be 

obtained rapidly and with a high level of automation. When 

new data sources become available, they can be easily included 

in the classification. Once the input data are in the correct 

format, the construction of the tree can be carried out in 

seconds. This means a remarkable saving of time compared with 

the typical manual (or semi-automatic) process of attribute 

selection and rule development. The classification process itself 

is also fast. The method could thus be well suited to automatic 

processing of large areas. A training area with up-to-date map 

data, or manually delineated buildings and trees, is required for  

x20 < 0.128347 

x14 < 0.192925 x21 < 48.1429 

x14 < 0.109359 x5 < 3.34908 x26 < 0.278277 

x15 < 0.166807 

x20 < 0.902471 

x21 < 26.4 

x32 < 4.58016 

Building Tree Tree Building Building Building Tree 

Building 

Tree 

Tree Building 
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Last pulse DSM, high-rise area 

 
Test 1 Test 3 

 
Last pulse DSM, low-rise area 

 
Test 2 Test 4 

  Building  Tree  Ground  Outside study area 

Figure 2. Last pulse DSM and building detection results for Test 1 and Test 3 in the high-rise residential area and Test 2 and Test 4 

in the low-rise residential area. 

 

 

 
Last pulse DSM 

 

 
First pulse DSM 

 
Test 1 

 
Test 2 

 
Difference between first pulse and 

last pulse DSMs (filtered) 

 
Slope calculated from the last 

pulse DSM (filtered) 

 
Test 3 

 
Test 4 

 

Figure 3. Four input data sources and classification results for Tests 1–4 in a subarea of the low-rise residential area. 
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training, but it is likely that the classification rules created in 

one training area could be applied to classification of other 

similar areas if the characteristics of the laser scanner and aerial 

image data are stable. For example, the rules from our training 

area could be largely applicable to other suburban areas in 

Finland. Further improvements of the classification method 

might be achieved by testing multivariate trees, alternative 

splitting rules and pruning methods, and advanced methods of 

using training data (see, for example, Breiman et al., 1984; 

Safavian and Landgrebe, 1991; Lawrence et al., 2004).  

 

The classification tree based results can be improved by 

eliminating obvious misclassifications. This was tested by 

filling holes (classified as trees) in buildings and removing 

buildings smaller than 20 m2. This increased the mean accuracy 

of the building detection results in Tests 1–4 to 90.0%, 90.1%, 

90.6% and 90.4%, respectively. The use of aerial imagery with 

an infrared channel should also be tested in the future. The 

application of the classification tree method to the first 

classification step of building detection, i.e. distinguishing 

buildings and trees from the ground surface, could also be 

tested. Some preliminary experiments related to this were 

carried out and promising results were obtained, although 

further study is needed. The use of the classification tree 

method for ground classification too, could further speed up 

and simplify the process of building detection. 

 

 

6. CONCLUSIONS 

A classification tree based approach for building detection was 

tested. Segments derived from the last pulse DSM were first 

classified into classes ‘ground’ and ‘building or tree’ on the 

basis of preclassified laser points. ‘Building and tree’ segments 

were further classified into buildings and trees by using the 

classification tree method. Four classification tests were carried 

out by using different combinations of 44 input attributes. 

These included attributes calculated from the last pulse DSM, 

first pulse DSM and aerial colour ortho image, as well as shape 

attributes. The classification tree method appeared to be a 

feasible and highly automatic approach for distinguishing 

buildings from trees. The attributes of 2224 training segments 

were used as input data in the method, which automatically 

constructed a classification tree for each test. The trees were 

then applied to classification of a separate test area (1.4 km2). 

Compared with a building map, a mean accuracy of almost 90% 

was achieved for buildings in each test. The best results were 

obtained using attributes derived from the last pulse and first 

pulse DSMs, and the shape attributes. The differences in 

accuracy between the different tests, however, were very small. 

The results thus suggest that satisfactory building detection 

results can be obtained with different combinations of input 

data sources. By using a statistical method, it is possible to find 

useful attributes and classification rules in different cases. Most 

importantly for practical applications, the use of only last pulse 

DSM may be sufficient. The use of aerial images or first pulse 

DSM does not necessarily improve the results significantly. 

However, if new and potentially useful data sources become 

available in the future, they can be easily included in the 

classification process. 
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