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ABSTRACT: 
 
To meet obligations under Article 3.3 of the Kyoto Protocol, New Zealand is required to estimate, in an unbiased manner, forest 
carbon stock change, over the Protocol’s first commitment period (2008-2012). New Zealand has three categories of forest, namely: 
natural forest; forests planted prior to 1990; and forests planted in non-forest land after 1990. Carbon credits can be earned from net 
carbon accumulated in the last forest category: these forests are referred to as ‘Kyoto forests’. However, field access to these Kyoto 
forests for sampling is not guaranteed, and a plot-based forest carbon inventory system, which relies on the use of airborne scanning 
LiDAR, was therefore developed. Circular plots, 0.06 ha in area, will be located within these forests on a systematic 4 km grid. This 
paper describes investigations to confirm the relationship at the plot scale between LiDAR variables and (a) forest carbon, and (b) the 
key inputs (namely height, basal area, age, and silvicultural regime) to a New Zealand-specific forest growth model. The study has 
demonstrated that airborne scanning LiDAR provides an alternative approach to estimate carbon stock change for the first 
commitment period of the Kyoto Protocol, and can provide inputs to forest growth and carbon models enabling forecasts of carbon 
sequestration beyond 2012. The paper also describes some considerations for an operational forest carbon inventory system which 
will be implemented in early 2008. 
 

1. INTRODUCTION
 
New Zealand is a signatory to the Kyoto Protocol and the 
United Nations Framework Convention on Climate Change. A 
requirement under Article 3.3 of the Protocol is annual reporting 
of carbon stock changes arising from land use, land-use change 
and forestry (LULUCF) activities. Reporting is required for the 
Protocol’s first commitment period, from 2008 to 2012. Good 
Practice Guidance for LULUCF activities requires carbon stock 
changes to be estimated in an unbiased, transparent, and 
consistent manner. Further, uncertainties must be determined 
and these are required to be reduced over time. 
 
To meet LULUCF reporting requirements, New Zealand will be 
classifying forests into three categories: natural forest; forests 
planted prior to 1990; and forests planted after 1990 into non-
forest land. The latter category is referred to as ‘Kyoto forests’. 
Forests to be measured by New Zealand under the Protocol have 
been selected by the following parameters: minimum area of 1 
ha; at least 30 % canopy cover; at least 5 m in height; and a 
width of 30 m. Carbon credits (net carbon stock change) derived 
from Kyoto forests over the first commitment period can then 
be used to either offset greenhouse gas emissions and/or for 
carbon trading. New Zealand planted forests are comprised 
predominantly (89 %) of radiata pine (Pinus radiata), with the 
remainder made up of other species, mostly (6 %) Douglas-fir 
(Pseudotsuga menziesii) (MAF, 2006). 
 
A plot-based forest inventory system has been developed for 
Kyoto forests. Circular plots, 0.06 ha in area, will be located 
within these forests on a systematic 4 km grid across New 
Zealand. Field access to the mostly privately-owned Kyoto 
forests is not guaranteed. Accordingly, airborne scanning Light 
Detection and Ranging (LiDAR) will be used to inventory those 

plots without field access. Plot measurements are then used as 
inputs to a New Zealand specific radiata pine growth model, the 
300 Index (Kimberley et al., 2005) and a carbon allocation 
model, called C_Change (Beets et al., 1999). These two models 
can be linked, with the growth model used to parameterise the 
carbon allocation model. Under the Kyoto Protocol the four 
biomass carbon pools that must be reported are aboveground 
biomass, belowground biomass, dead wood, and litter. The 
amount of carbon in each of the four biomass carbon pools, at 
any stage of tree growth and stand development, is determined 
by running these two linked models. 
 
In recent years researchers have published a wide range of 
methods using remotely-sensed data to help identify forest type 
and forest structure. Much of this work has been focused on 
mapping at a small scale using satellite imagery.  New digital 
metric cameras and airborne LiDAR scanning instruments allow 
forest information to be measured in three dimensions with 
precision over moderately large areas at low unit cost. In some 
countries the data derived from digital airborne surveys and/or 
scanning LiDAR are being used (Næsset, 2002; Holmgren and 
Wallerman, 2006).  
 
Airborne LiDAR has been studied for its application in forestry 
since 1978. However, it is only in recent years that the 
combination of global positioning systems (GPS), inertial 
navigation systems and improvements in post-processing 
capabilities have allowed the scanning LiDAR and digital 
camera technology to progress to operational use (Næsset, 
2002; Nilsson, 1996; Watt, 2005).  
 
This study was undertaken to determine the potential of 
airborne scanning LiDAR to determine forest characteristics at 
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the plot scale (Watt and Haywood, 2007a). The criteria used to 
test the potential of airborne scanning LiDAR included accuracy 
with which the key inputs to the 300 Index growth model could 
be determined, and the accuracy of predicting total carbon at the 
inventory plot scale. The key inputs to this growth model 
include: mean top height; basal area; tree age; and silvicultural 
regime (stocking (trees per ha), pruning, and thinning). Mean 
top height is the mean height of the 100 largest diameter stems 
per ha, and its method of calculation is described by Dunlop 
(1995). Mean top height is derived from plot tree total heights 
and stem diameters measured in the field. 
 
 

2. MATERIALS 
 
2.1 Study Area 
 
The study was located in the central area of the North Island, 
New Zealand (39º S, 176º E) and consisted of both planted 
forest inventory plots and experimental trial plots for which we 
had unrestricted field access. Field and LiDAR data were 
collected between August and October 2006. The forests in 
these plots were representative of the radiata pine dominated 
forests in New Zealand. 
 
2.2 Field Plot Data and Carbon Stocks 
 
To determine how well LiDAR could predict inputs to the 
growth model, 121 plots were used ranging in size from 0.04 to 
0.245 ha, and arrangement: circular, square and/or rectangular. 
The circular plots had been measured in 4 plot clusters (a 
central plot with three satellite plots within 35 m of the central 
plot), while the square and rectangular plots were generally 
measured as part of existing experiments. Measurements 
recorded for each plot included: age; stocking; tree diameter at 
breast height; tree heights; and pruned height. Radiata pine 
plantations occurred in 117 of these plots. A summary of the 
field measurements and statistics is provided in Table 1. 
 
Field plot centres were located using a 12-channel differential 
GPS. The positional accuracy of the survey is expected to be 
within ± 3 m. In a majority of plots individual tree locations 
were also recorded in relation to the plot centre. 
 

 
Table 1. Summary of plot statistics (n=121). 

 
To determine the accuracy of LiDAR variables to predict total 
carbon per plot, 140 plots were used. Thirty six Kyoto forest 
radiata pine plantation plots with a pasture land-use history 
were added to the original (121) plot set, and 17 of the original 
plots, comprised of very young trees, were excluded. The total 
carbon for each of the 140 plots was determined by using field 
measured and derived inputs to the 300 Index growth model. 
The mean total carbon for the 140 plots was 117 t/ha, with a 
range from 36 - 261 t/ha. 
 
2.3 LiDAR and Photographic Data 

 
The LiDAR data were acquired using a small footprint (0.2 m) 
Optech ALTM 3100EA system at 8-10 returns/m². The 3100EA 
system is capable of recording the return time of up to four 
pulses, the first is usually reflected from the top of the canopy 
and intermediate pulses from the lower canopy or ground.  
Aerial photographic data were captured, for reference only, 
using a natural colour Rollei AIC medium format digital 
camera. These data had a pixel size corresponding to 20 cm on 
the ground.  
 
 

3. METHODS 
 
3.1 LiDAR Data Analysis 
 
The analysis of the LiDAR data involved a five-stage process, 
as listed below. 

1.Calculation of LiDAR plot-level variables, such as height 
percentiles and coefficient of variation of above ground 
pulse responses. LiDAR data were also used to determine 
ground height within the plots. 

2.Exploratory analysis of the two datasets - field 
measurements and LiDAR data - to investigate their 
underlying data structure.  

3.Generation, using bivariate and multiple regression 
methods, of relationships at plot level between field 
measurements (mean top height, stocking, and basal area) 
and total carbon per plot to LiDAR-derived variables. 

4.Determination of stocking using an individual tree detection 
method.  

5.Progressive decimation of the number of LiDAR returns on 
the ability of LiDAR to predict top height and basal area at 
the plot level. 

 
3.2 Variables Derived from LiDAR Data 
 
The following variables were calculated from the LiDAR data 
and extracted over co-located field plots for quantitative 
analysis: LiDAR height percentiles; mean intensity percentiles; 
standard deviation of laser dispersals; percentage of ground 
returns; coefficient of variation; skewness and kurtosis.  
 
LiDAR height percentiles provide information on the structure 
of the forest canopy at different height levels. Using the LiDAR 
data the pulses above 0.5 m were divided into quantiles 
corresponding to every 10th percentile from the 10th to the 100th, 
as well as the 5th, 95th and 99th percentiles. The 0.5 m was used 
as a threshold to account for undulations in terrain. This 
provided 13 variables of an average LiDAR canopy height by 
percentile. 
 
Laser intensity, the intensity of each return pulse (sometimes 
referred to as laser amplitude), represents this reflected energy 
and provides a concentrated measurement of the object’s 
reflectance unaffected by shadows or occlusions. This 
reflectance may vary based on the reflectance properties and 
porosity of the targeted material, path length and incidence 
angle of the pulse. Accordingly, for this study the data are 
regarded as uncalibrated, and is only used as a relative measure 
of intensity. For each plot the mean intensity for each of the 13 
height percentiles was calculated.  
 
The standard deviation of laser dispersals provides a simple 
measurement of the variation or dispersal within the laser height 
distribution of each field measurement plot. 
 

 Mean SD Median Min Max 
Top Height 
 (m) 

 
22.9 

 
8.6 

 
22.7 

 
2.8 

 
39.1 

Basal Area 
 (m2/ha) 

 
33.3 

 
13.6 

 
35.9 

 
0.4 

 
62.0 

Stocking 
 (trees/ha) 

 
468 

 
446 

 
468 

 
81 

 
4435 

Age  
(years) 

 
16.1 

 
5.5 

 
19 

 
4 

 
26 
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The percentage of ground returns (pczero) provides a measure 
of canopy density, and is calculated by dividing the sum of all 
above ground returns by ground observations with height values 
below 0.5 m by the total number of returns. All returns above 
this threshold are considered to be canopy hits. Areas with large 
numbers of ground returns will be those with sparser, more 
open canopies. 
 
The coefficient of variation (CV) summarises the relative 
variation, or dispersion, of the LiDAR height distribution within 
each sample plot. It is the ratio of standard deviation and mean, 
and is expressed as a percentage. As a measure of crown 
density, higher CV values indicate sparse, open canopies and 
low CV values dense, closed canopies (e.g. <20%). The 
inclusion of CV has proven useful to other researchers for 
estimating basal area, volume and biomass (Næsset, 1997; 
Nelson et al., 1997; Næsset & Økland, 2002).  
 
Skewness (skew) and kurtosis (kurt) of LiDAR height 
distribution also provide measures of canopy structure and 
density. If returns from the forest canopy only are considered, 
then as trees increase in height and the canopy develops, 
skewness and kurtosis of the laser height distribution change. 
 
3.3 Exploratory Data Analysis 
 
This analysis was used to explore, organise and summarise 
patterns in the LiDAR data, to explain variation and strength of 
relationships between the LiDAR-derived variables. Firstly, 
computation of summary statistics (Table 1) and the exploration 
of the distributional properties of all variables using histograms 
was undertaken. This was important to both detect and remove 
errors in the dataset and to identify factors such as outliers (due 
to uncertainty in location of field plots) that may potentially 
influence any modelling. Secondly, the correlation between 
each variable within the datasets was calculated as an initial step 
to the identification of potential relationships. 
 
3.4 Regression Modelling 
 
Regression equations were fitted to predict five forest structural 
variables, namely: top height; basal area; stocking; age; and 
total carbon. LiDAR data from the 117 radiata pine plots were 
used to calculate the predictor variables in these regression 
equations. Eight types of predictor variables were used in this 
analysis. These are: mean LiDAR height by height percentile; 
mean intensity by height percentile; standard deviation of 
LiDAR dispersion; percentage of ground returns (pczero); 
reciprocal of pczero (pcveg); coefficient of variation (CV); 
skewness (skew); and kurtosis (kurt).  
 
Two regression modelling approaches were used given the 
relationships between the datasets. These approaches were 
bivariate (for top height) and multiple regression (for basal area, 
stocking, age, and total carbon). 
 
Bivariate regression uses the different LiDAR derived data 
individually as predictor variables for the estimation of the 
structural parameters. For each variable, the laser height 
percentile with the highest R2 and lowest residual mean square 
(RMS) error values was used. Selection was guided first by the 
R2 and then RMS values. This approach was only applied to top 
height, as previous studies showed that that although bivariate 
regression worked well with top height, it would not be 
sufficient for the estimation of the other forest structural 
parameters (Donoghue and Watt, 2006; Watt and Haywood, 
2006). 

 
Multiple regression analysis was conducted to determine if 
further variation in the models could be explained by the 
inclusion of LiDAR-derived measures of intensity and canopy 
structure/density. 
 
3.5 Progressive decimation of LiDAR returns 
 
To test the sensitivity of the relationships to changes in LiDAR 
point density, returns classed as vegetation and ground data 
surrounding the plots were progressively decimated (reduced in 
number) using a randomised sampling routine (Watt and 
Haywood, 2007b). A ground surface model was generated for 
the area around each plot cluster for each iteration. It is 
necessary to process an area larger than the plot extent to ensure 
that there are an adequate number of LiDAR ground returns to 
generate the ground surface model. Using the surface model as 
a reference, relative height of each LiDAR return above the 
ground was calculated for the area in and surrounding the plot. 
 
The impact of progressively reducing the number of laser 
returns on regression model error was tested using tenfold 
cross-validation. In tenfold cross validation each dataset is 
divided into 10 subsets of approximately equal size; the model 
is re-run 10 times, each time leaving out one of the subsets and 
utilising it for testing the model. The sample error is then 
calculated each time and averaged to obtain an estimate of the 
true error. For each run the ‘optimal model’ was selected 
measured in terms of the model with the lowest RMS error. 
 
3.6 Automatic Tree Detection 
 
An individual tree detection algorithm was also used as a 
method for determining tree stocking. The algorithm uses 
canopy returns to detect individual tree crowns, and is based on 
the work conducted by Holmgren and Wallerman (2006). The 
algorithm was evaluated over 10 stands with the accuracy of the 
detection compared plot-level stocking. 
 

 
4. RESULTS 

 
4.1 Top Height Prediction Using LiDAR Percentiles 
 
The percentile height with highest R2 and lowest RMS error was 
selected as the predictor for estimation of top height. In this 
case, laser height values corresponding to the 70th percentile 
(p70) were used. Figure 1 illustrates there is a strong linear 
relationship (R2 = 0.96) between the 70th height percentile (p70) 
and field-measured top height. 
 
With an R2 of 0.96 using a single variable it is clear that a 
simple model that uses a single height percentile is the most 
effective approach to a predication of top height. Canopy 
density variables did not add any additional value to the 
predictive model in terms of explaining the remaining variation. 
 
4.2 Basal Area Prediction Using LiDAR Data 
 
Multiple regression showed that none of the intensity 
measurements were significant (with p >0.05). Accordingly, the 
30th height percentile (p30) measurement and skewness (skew) 
were the only variables included in the model. This model had 
an R2 of 0.66 with an RMS error of 8.02 m2 (25%). Figure 2 
shows the relationship between basal area and the two 
significant variables (p30 and skew). The 30th height percentile 
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is positively correlated with basal area, while skewness is 
negatively correlated. 
 
Figure 2 shows that there are no strong outliers in the dataset 
causing undue influence on the regression. There are no major 
patterns or structure in the residuals, which indicates that the 
model predicts basal area reasonably well at both high and low 
basal area. 

Figure 1. Top height against LiDAR 70th height percentile
 (p70) (n=117). 

Figure 2. LiDAR-derived basal area against field measured 
basal area (n=117). 
 
4.3 Stocking (Stems per ha) 
 
Multiple regression analysis showed that the only models found 
to be significant were models with a single height percentile 
measurement. The model with the highest R2 and lowest RMS 
error was the model that included maximum height (p100). The 
stocking model based on the highest R2 (R2 = 0.26 and RMS 
error = 167 stems/ha (35%)) does not provide a good 
relationship. There are no strong outliers in the dataset causing 

undue influence on the regression. The RMS error is high, 
limiting its practical use for providing stocking estimates. 
 
4.4 Tree Age Prediction Using LiDAR Percentiles 
 
The best model for predicting age included both height and a 
canopy structural measure. A model that includes height (p60) 
and kurtosis (kurt), explained 74% of the variation with an RMS 
error of 2.85 years (18%).  

 
4.5 Total Carbon Per Plot Using LiDAR Data 
 
Bivariate regression showed that there was a strong relationship 
between modelled total carbon per plot and tree height. A single 
LiDAR canopy height percentile (p30) explained 71 % of the 
variation in modelled total carbon. When combined with canopy 
structure (pczero) there was a significant improvement with fit, 
with 80 % variance explained (Figure 3). It was established that 
if a robust measure of stocking were available for LiDAR, then 
87% of the variation in modelled total carbon could be 
explained. 

Figure 3. Modelled versus predicted carbon using LiDAR-
derived inputs to the 300 Index growth model and the 
C_Change carbon allocation model (n=140). 
 
4.6 Decimation of LiDAR Returns 
 
Top height and basal area relationships behaved in a similar 
manner with the decimation model structure, remaining 
relatively stable throughout all runs. As expected the RMS error 
tends to increase as laser point density decreases with the 
greatest observed once densities fall below 1%, a nominal point 
density of 0.1 returns/m2. At densities below this the models 
start to perform poorly. 
 
4.7 Stocking Estimates From Automatic Tree Detection 
 
The ability of the algorithm to detect trees depends on the laser 
return density, crown size, tree height and growth stage. The 
RMS error of the non-linear least square regression is 140 
stems/ha. Overall the algorithm underestimated the number of 
trees, with larger errors observed in plots that contain higher 
numbers of trees. The proportion of detected trees saturates 
once stocking levels exceed 1200 stems/ha. 
 
 

5. DISCUSSION  
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This study sought to determine the potential benefit of airborne 
scanning LiDAR as an input to carbon models and to estimate 
carbon per plot for New Zealand Kyoto forests. It is anticipated 
that some of the methods described in this paper will become 
operational and that LiDAR data will be used routinely to 
provide plot-based estimates of carbon as well as some key 
carbon model parameters. Based on work reported here, we 
have demonstrated that LiDAR is able to provide estimates of 
total carbon per plot (R2=0.80), mean top height (R2=0.96), 
basal area (R2=0.66), and age (R2=0.74). The following 
discussion compares this research against an earlier South 
Island study in New Zealand (Watt and Haywood, 2006) and 
also attempts to place the results in a wider international 
context. 
 
Total carbon per plot could be predicted with a reasonable level 
of precision (R2=0.80; RMS error = 23 t (carbon) per ha (19%)), 
where LiDAR derived height at the 30th percentile (p30) has an 
R2 = 0.71. Predictive performance was improved by including 
stocking in the regression model (R2=0.87; RMS error = 19 t 
(carbon) per ha (16%)). These results were superior to results 
from the earlier South Island study (Watt and Haywood, 2006), 
where the regression model with three LiDAR variables had an 
R2=0.59 and an RMS error = 24 t (carbon) per ha (37%). This 
inferior result is likely to be due to difficulties in precisely 
matching ground and LiDAR plot locations, and a result of the 
time of LiDAR data acquisition being up to 1.5 years after the 
plot measurements were made for the 74 plots. 
 
In this study a strong relationship (R2 = 0.96; RMS error = 1.82 
m (8%)) between mean top height and LiDAR derived heights 
above the 70th percentile (p70) was established. This result is 
similar to that obtained in the earlier New Zealand study (Watt 
and Haywood, 2006) which yielded R2 values of � 0.87 with an 
RMS error of � 1.36 m. Again, the results from the Watt and 
Haywood (2006) study suggest that the linear model is 
relatively insensitive to LiDAR height distribution percentiles 
above 60%. Combined, these results agree with international 
findings where the accuracy of LiDAR-derived height is 
comparable to that of manual field survey methods (Donoghue 
and Watt, 2006; Næsset, 1997; Watt, 2005; Lim and Treitz, 
2004). To achieve a good level of accuracy the density of laser 
returns must be sufficient to (a) define the underlying terrain 
and (b) capture variations in terms of tree crop height and 
spatial arrangement. Generally a survey that records at least 1 to 
2 first returns/m2 at a scan angle of <= 10° either side of nadir 
should be sufficient to capture the detail required (Watt, 2005; 
Watt and Haywood, 2007b). 
 
Basal area estimates based on LiDAR measurements were 
found to be less accurate than top height; the best model found 
had an R2 of 0.66 with an RMS error of 8.02 m2 (25%). The 
error found in this study is of a similar magnitude to that found 
in the earlier New Zealand study (Watt and Haywood, 2006). 
The field-measured basal area was found to be strongly 
correlated with top height (R2 = 0.73). The final model included 
height (p30) and skewness. The height measure can be 
interpreted as being a measure of the development phase of the 
plot which is related directly to basal area. In European conifer-
dominated forest Næsset (2002) reported R2 values of 0.86 for 
basal area in southern Norway, and Lim et al. (2003) reported 
basal area estimates of R2=0.86 in a Canadian hardwood forest.  
 
Stocking was not reliably predicted using LiDAR measurements 
in this study. The RMS error is high (167 stems/ha (35%)) 
limiting its practical use for providing accurate estimates of tree 

density. This result is in contrast to other studies where the 
inclusion of measures of canopy characteristics derived from the 
LiDAR height distribution, in combination with selected 
LiDAR height percentiles, have proven useful for estimating 
stocking (Næsset, 2002). One explanation is that after stocking 
has changed (a standard silvicultural treatment) in New Zealand 
conifer forests the tree crowns expand to fill the canopy gaps 
and so while the stocking may change the distribution of 
LiDAR points may be similar to areas that have received no 
treatment once the canopy has closed. 
 
The evaluation of the single tree detection algorithm shows that 
the RMS error is marginally lower than the plot-based method. 
Overall the algorithm provides better results in stands less than 
1200 stems/ha. Above this stocking level the method saturated, 
especially in areas with coalescing crowns. To measure higher 
density stands it would be necessary to sharpen the tree top 
extraction algorithm. The detection rate would probably also 
improve if a higher density laser dataset was used. However, 
according to the simulations, the detection rate would still 
decrease as a function of stem density even if a high density 
laser dataset (20 returns/m2) were available. Therefore, it would 
be necessary to have a method for the estimation of the number 
of sub-dominant or suppressed trees. 
 
Estimates of age were improved by including more than just 
LiDAR-derived height. A model that includes height (p60) and 
kurtosis (kurt) explains 74% of the variation with RMS error of 
2.85 years (18%). Here, kurtosis provides a measure of canopy 
permeability which is related to tree crop development stage.  
Both variables included in the model are uncorrelated, so assist 
in explaining variation associated with the prediction. 
 
Any reduction in the point density (number of pulses/m2) of a 
LiDAR survey has the potential to reduce acquisition costs of 
data. This study evaluated for basal area and top height the 
effect of systematically reducing the laser point density and 
showed that basal area and top height estimates are stable even 
after 95% of the original data has been removed. This is 
equivalent to reducing the initial point density of 9 returns/m2 to 
0.5 returns/m2. A plausible explanation is the simple structure of 
top height and basal area models, as for both, height percentiles 
are the most significant variables. Consequently, the models are 
relatively insensitive to the decimation process. These findings 
are similar to other research that has evaluated different laser 
point densities and their impact on plot-level forest predictions 
(Næsset, 2002; Goodwin et al., 2006). Also of relevance to this 
work is that little change is observed in predictions if pulse 
density is kept constant and footprint size (0.2 to 0.6 m) and 
platform altitude are increased (Næsset, 2002; Goodwin et al., 
2006). 
 
While silvicultural status was not assessed in this study, an 
earlier study in New Zealand (Watt and Haywood, 2006) noted 
that for Kyoto forest plots, prune heights can be determined by 
visual assessment of LiDAR data. If automatic methods do not 
show promise in determining this aspect of management, then 
visual methods could be employed. 
 
 

6. CONCLUSIONS 
 
Where field access to forest plots is not possible, the study has 
demonstrated that airborne scanning LiDAR provides an 
alternative operational approach to estimate, at the plot-level, 
total carbon change for the first commitment period of the 
Kyoto Protocol. Forest top height, basal area, and age can be 
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determined with acceptable accuracy. It is expected that either 
visual assessment of either digital photography and/or LiDAR 
data can address the stocking (stems per ha) issue. 
 
This study suggests that laser point density can be taken as low 
as 0.5 to 1 returns/m2 without unduly affecting predictions of 
basal area and top height. Assessment of stocking using laser 
returns will require a much higher density. Given there will be 
variation in the number of returns across a survey area (in the 
study the range was 3-19 returns/m2 due to overlapping LiDAR 
swaths), it is prudent to acquire data at more than 4 returns/m2. 
This should provide a margin of safety and reduce the 
possibility of plots being excluded from the analysis due to 
insufficient laser returns, and to support use of LiDAR data to 
assess stocking should visual assessment of photographic 
imagery not be possible. 
 
The ability of LiDAR to provide inputs to the linked forest 
growth and carbon models with some degree of accuracy will 
assist in forecasting carbon sequestration beyond 2012. 
 
Operationally, adequate measurements to estimate carbon stock 
change for the first commitment period of the Kyoto Protocol 
could be achieved by surveying the Kyoto forest plot network 
located on a 4 km grid in 2008 and in 2012. The Kyoto forest 
plots will be circular, and 0.06 ha in area. During this five year 
period, as more data are acquired, the regression relationship 
between LiDAR variables and carbon per plot will be reviewed 
and improved. This will enable more accurate relationships to 
be applied to past plot data, which subsequently will lead to 
updated carbon assessments and a reduction in uncertainties, as 
is required under the Kyoto Protocol. 
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