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ABSTRACT: 
 

To map spatial patterns of floodplain vegetation structure for hydrodynamic modelling, airborne laser scanning is a promising tool. In 

a test for the lower Rhine floodplain, vegetation height and density of herbaceous vegetation were measured in the field at 42 

georeferenced plots of 200 m2 each. Simultaneously, three airborne laser scanning (ALS) surveys were carried out in the same areas 

resulting in three high resolution, first pulse, small-footprint datasets. The laser data surveys differed in flying height, gain setting and 

laser diode age. Laser points were labelled as either vegetation or ground using three different methods: (1) a fixed threshold value, 

(2) a flexible threshold value based on the inflection point in the normalised height distribution, and (3) using a Gaussian distribution 

to separate noise in the ground surface points from vegetation. Twenty-one statistics were computed for each of the resulting point 

distributions, which were subsequently compared to field observations of vegetation height. Additionally, the Percentage Index (PI) 

was computed to relate density of vegetation points to hydrodynamic vegetation density. The vegetation height was best predicted by 

using the inflection method for labelling and the 95 percentile as a regressor (R2 = 0.74 – 0.88). Vegetation density was best 

predicted using the threshold method for labelling and the PI as a predictor (R2 = 0.51). The results of vegetation height prediction 

were found to depend on the combined effect of flying height, gain setting or laser diode age. We conclude that high resolution ALS 

data can be used to estimate vegetation height and density of herbaceous vegetation in winter condition, but field reference data 

remains necessary for calibration until a standard measure of sensitivity is supplied together with the laser data. 

 
1. INTRODUCTION 

In response to the increased awareness of the socio-economic 

importance of river flooding in the past decades, considerable 

effort has been undertaken in recent years in the development of 

hydrodynamic models of overbank flow to predict extreme 

flood water levels for the design of flood defence structures. 

Hydrodynamic roughness of the floodplain surface is one of the 

key parameters of these models, and depends to a large extent 

on vegetation height and density (Baptist, 2005). Vegetation 

density is the projected plant area in the direction of the flow 

per unit volume (m2/m3 or m-1). For cylindrical vegetation, this 

equals the product of number of stems or stalks per unit area 

multiplied by the average stem diameter. Traditional methods to 

map vegetation patterns within the floodplain are based on 

classification of vegetation units or a uniform roughness is 

applied to the whole floodplain area. This leads to a 

considerable loss of within-class variation. There is thus a need 

for a fast and adequate approach to assess vegetation structure 

of floodplain surfaces. 

  

Airborne laser scanning (ALS) provides information on the 

distribution of vegetation directly, and therefore has been used 

extensively in forestry surveys to estimate forest characteristics 

(Straatsma and Middelkoop, 2006; Lim et al., 2003). It has been 

used to map vegetation height in floodplains as well, but only in 

summer when vegetation was in leaf-on condition (Davenport et 

al., 2000; Cobby et al., 2001; Hopkinson et al., 2004; Mason et 

al., 2003). However, the portability of the established relations 

in these studies was low. Moreover, in the Netherlands most 

floods occur in winter and relations derived for summer 

vegetation may therefore be unrepresentative. No studies were 

found on the extraction of vegetation density of herbaceous 

vegetation. The main goal of this study was to estimate 

vegetation height and density of dormant herbaceous floodplain 

vegetation on a field plot level using ALS data and assess the 

influence of flying height and amplification of the return signal 

at the receiver of the laser scanner.  

 

2. MATERIALS AND METHODS 

2.1 Study area and field measurements 

This study is based on laser data collected in three floodplain 

sections of the distributaries of the River Rhine in The 

Netherlands: ‘Duursche Waarden’ floodplain (DW) along the 

right bank of the River IJssel, and the ‘Afferdensche en 

Deestsche Waarden’ (ADW) and the ‘Gamerensche Waarden’ 

(GW) floodplains along the left bank of the River Waal. 

Vegetation consisted of hardwood and softwood forest and 

shrubs, but is dominated by herbaceous vegetation. Vegetation 

is characterized by a heterogeneous pattern of vegetation types 

and structure. Herbaceous vegetation consists mostly of sedge 

[Carex hirta L.], sorrel [Rumex obtusifolius L.], nettle [Urtica 

dioica L.], thistle [Cirsium arvense L.] and clover [Trifolium 

repens L.].  

 

We measured vegetation height and density in 42 field plots of 

homogeneous vegetation: 12 plots in the DW and ADW 

floodplain in March 2001, and 30 plots in the GW floodplain in 

March 2003. Field measurements were carried out 

simultaneously with the ALS survey. The plots were geo-

located using a Garmin GPS12 resulting in a horizontal 

accuracy of 5 meter.  

 

2.2 Laser scanning data 

The laser data were acquired by Fugro-Inpark using the FLI-

MAP system. FLI-MAP, Fast Laser Imaging and Mapping 

Airborne Platform, is a first-pulse scanning laser range finder 

combined with a dGPS and an Inertial Navigation System for 
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Table 1. Metadata for the three laser scanning campaigns 
 

Acquisition 

Time 

Floodplain 

location 

scan 

angle 

no. of 

sensors 

sensor 

age 

Flying 

height 
Gain 

point 

density 

Flight 

strips 

March 2001 DWADW ± 30° 1 old 80 m 100% 12 pts/m2 Single 

March 2003a GWhigh ± 30° 2 new 80 m 80% 75 pts/m2 Double 

March 2003b GWlow ± 30° 2 new 55 m 100% 60 pts/m2 Single 
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Figure 1. Labelling of vegetation point (black bars) and ground points (grey bars); a) threshold value of 0.15 m, b) inflection point, c) 

difference between Gaussian fit and point distribution. 
 
positioning. FLI-MAP has an additional option to change the 

gain setting. The gain is the amount of amplification of the 

return signal before it is converted to a digital signal. Surveyors 

may increase the gain to compensate for the declining emission 

of energy due to ageing of the laser diode. Table 1 summarizes 

the characteristics of the three laser scanning campaigns carried 

out in three floodplain sections in the Rhine distributaries. The 

laser data collected in 2001 in the ‘Duursche Waarden’ and the 

‘Afferdensche en Deestse Waarden’ floodplains is referred to as 

‘DWADW’ dataset. Between 2001 and 2003, Fugro-Inpark 

added a second laser range finder to FLI-MAP, resulting in a 

doubling of the data collection rate and a re-orientation of the 

scanners. Instead of one nadir looking scanner, the two scanners 

were facing 7° forward and backwards to decrease the number 

of occlusions in built-up areas. With the new FLI-MAP 

configuration two datasets were collected in the ‘Gamerensche 

Waard’ floodplain in 2003. One was acquired from a height of 

about 80 m and with normal gain setting of the receiver, 

resulting in the ‘GWhigh’ dataset, the second from a minimum 

height of 55 m and with the maximum gain, called the ‘GWlow’ 

dataset. The GWhigh dataset covers the entire GW floodplain, 

while each flight line was flown twice to increase the point 

density resulting in a point density of 75 points/m2. The GWlow 

dataset only covers 10 field plots. The three datasets enable the 

evaluation of the resulting regression equations to estimate 

vegetation height, which are influenced by the different flight 

parameters (table 1). 

 

2.3 DTM extraction and labelling  

For the determination of the vegetation height, the effect of the 

undulations of the terrain was eliminated. We constructed a 

Digital Terrain Model (DTM) for each plot using iterative 

residual analysis based on a simplified version of the method of 

Kraus and Pfeifer (1998). In each step, a surface was computed 

as a local second order trend surface in a moving window. The 

window radius was 1.5 m to ensure enough points are available 

for a robust fit. The residual distance to this surface was 

computed for each point. Points with positive residuals are 

likely to be vegetation points. Since the range of values for an 

unvegetated, flat surface was computed and proved to be 

approximately 30 cm, a simple weight function was applied to 

compute the surface in the next iteration: points with an residual 

value of more than 15 cm were excluded from further analysis 

in the DTM processing. With the remaining points a new DTM 

surface was computed. Iterations were continued until all points 

had residuals less than 15 cm. The final DTM was a smooth 

surface running through the middle of these ground points. 

Heights relative to the DTM were used in subsequent 

computations.  

 

In a second step, a detailed study was carried out to decide 

which points should be labelled as vegetation. Three different 

methods were evaluated: (1) a threshold method, (2) an 

inflection method, and (3) a Gaussian method. The first method 

is based on a fixed threshold value above the DTM, the other 

two are based on histogram analysis of normalised heights. For 

the threshold method, we used 15 cm above the DTM as a 

threshold (figure 1a), similar to the DTM filtering setting. For 

the second and third method laser points were binned in 2 cm 

vertical bins. Narrower bin intervals led to very spiky 

histograms, wider intervals to a loss of detail. The vertical point 

distribution was considered as a combination of a noise 

distribution of ground points and a uniform distribution of 

vegetation points. The inflection method finds the point of 

maximum concave-up curvature in the upper limb of the 

histogram, the so-called inflection point. The rationale behind 

the selection of this point as a threshold value is that the sum of 
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a noise distribution of the ground points and the uniform 

distribution of the vegetation points gives a strong concave up 

curvature. Any point that lies above the inflection point value is 

labelled as a vegetation point, all points below are ground 

points. To find the inflection point, a Harris function was fitted 

through the upper part of the histogram for each field plot 

(figure 1b). The Harris function is defined as: 

 

  y(h) = (a+b*hc)-1    (1) 

  

where y(h) is the frequency of occurrence in a bin at height h. 

Parameters a, b and c are estimated from a least squares fit 

using a minimum of 15 bins to ensure stability of the fit. The 

inflection point was obtained by determining the height at 

which the second derivative of the Harris function reaches the 

maximum value. The height of the inflection point in the 

example is 0.09 m (figure 1b). The Gaussian method fits a 

Gaussian curve to the histogram. The Gauss curve is defined as: 
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where p(h) is the frequency of noise occurrence at height h, µ is 

the mean, σ is the standard deviation. Fitting the Gauss curve 

boils down to finding the mean and standard deviation of the 

ground points. The mean of all points in the plot however also 

considers the vegetation points. Therefore, we used the mode of 

the distribution instead of the mean to estimate µ. The 

disadvantage of the mode is that the data have to be binned 

which introduces a dependence on the choice of the bin 

boundaries. Moreover, the mode can be undetermined. To 

counteract this effect we used the weighted mode, the average 

of the seven most frequent values in the point distribution, 

weighed by frequency. The standard deviation was based on the 

points lower than the weighted mode. The Gauss curve was then 

scaled by the product of twice the number observations below 

the weighted mode and the bin width (figure 1c). The difference 

between the histogram values and the fitted Gauss curve in the 

range above one standard deviation above the mode provided 

the number of points per bin that were assumed to represent 

vegetation. In each bin, points were labelled randomly as 

vegetation up to the predicted number of vegetation points. This 

ensured a spatially random distribution of the vegetation points. 

 

2.4 Normalized point height distribution and comparison 

with field data 

The three methods, described in the previous section, result in 

three height distributions of vegetation points for each plot. 

With respect to predicting the vegetation height, each point 

distribution was described by 21 different statistics: 

• Central tendency: mean, median, mode 

• Variability: standard deviation and variance 

• Shape: skewness and kurtosis 

• Percentiles: D10, D20,....., D100 + D95, D96, D97, D98, D99 

 

The observed vegetation heights in the field were subsequently 

compared to these statistics using correlation as an indicator of 

the strength of the relation. Forward stepwise linear regression 

was subsequently carried out to determine the strongest 

predictors (Wonnacott and Wonnacott, 1990). The effects of 

gain setting and flying height were tested using two statistical 

tests; a t-test on differences in means and a paired sample t-test 

of the D95 percentiles of the GWhigh and GWlow data set. 

Samples could be paired for the GW datasets since the same 

reference plots were used. To gain insight in the effect of laser 

diode age and the flight parameters, the slopes of the regression 

models for vegetation height were compared using three 

Student’s t-tests. 

 

Vegetation density was predicted using the Percentage Index 

(PI), which computes the percentage of laser hits that fall within 

the height range of the vegetation (h1 to h2): 

 

 tot

hh
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in which Nh1-h2 is the number of vegetation points between 

height 1 and 2 above the ground surface, Ntot is the total 

number of points in the field plot including vegetation points 

and ground surface points. The height interval for PI is equal to 

the height of the vegetation. The first term in the equation is 

added, because higher vegetation would increase Nh1-h2, but 

does not necesserily increase the vegetation density. Ideally, h1 

should be set to zero, and h2 to the maximum height of the 

vegetation. However, h1 should not include noise of the ground 

surface. Therefore we chose the lower limit of the vegetation 

point height distribution as a minimum value.  

 

3. RESULTS 

3.1 Vegetation height and density 

Vegetation height in the 42 sample plots ranged from 0.26 to 

1.66 m. Vegetation density varied between 0.0003 and 0.72 m-1. 

For each plot, three different labelling methods were applied 

and 21 laser-derived statistics were computed. The correlations 

between the field vegetation heights and the laser statistics were 

are shown in figure 2. The following parameters showed the 

highest correlations: (1) D30 for the threshold method (r = 0.72), 

(2) D90 to D98 plus the standard deviation and variance for the 

inflection method (r > 0.85), and (3) D70 for the Gaussian fit (r = 

0.70).  

 

The parameter with the highest correlation was chosen for 

vegetation height prediction for each labelling method. For the 

inflection method, a few parameters showed a high correlation. 

The 95 percentile was selected to maintain congruency in 

predictors even though the standard deviation and the variance 

showed a marginally better correlation coefficient. Figure 3 

shows nine scatter plots depicting the measured vegetation 

heights versus the predicted heights based on the selected laser 

percentiles. Forward stepwise regression was carried out to 

select the best regression model, starting with the selected 

percentile (D30, D95, and D70 for the threshold, inflection and 

Gaussian method respectively). This did not result in the 

selection of any additional parameters for any of the regression 

models, due to multicollinearity constrictions. Table 2 

summarizes the regressions. Results of the prediction of 

vegetation density using the Percentage Index (PI) are shown as 

scatter plots (figure 4). The threshold and Gaussian method 

show a positive relation with vegetation density (R2 = 0.51 and 

0.49 respectively). Conversely, prediction based on the 

inflection labelling shows a weak negative relation (R2 = 0.09). 

Table 3 summarizes the equations. 

 

3.2 Effect of flying altitude and gain setting 

The GWhigh and GWlow laser datasets share 10 field plots, 

which allowed to compare the combined effect of lower flying 

altitude and increased the gain setting (cf. table 1). The 

following tests were performed using the inflection labelling  

method and the D95 percentile: 
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Figure 2. Effect of point labelling methods on the strength of correlation between laser-derived statistics and field vegetation heights. 

Dx = X percentile of the vegetation points, cv = coefficient of variation, sk = skewness, kurt = kurtosis, var = variance, sd 

= standard deviation 
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Figure 3. Scatter plots of predictions of vegetation height per dataset using three different point labelling methods: a), b), and c) 

threshold method, d), e) and f) inflection method, g), h) and i) Gaussian method 
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Figure 4. Scatter plots of predictions of vegetation density per dataset using three different point labelling methods: a) threshold 

method, b) inflection method and c) Gaussian method 
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Table 2. Regression equations for vegetation height 

 
Labelling 
method / 

dataset 

Regression equation R2 
RSE 

(m)a 

Threshold    

 DWADW Hv = 17.20D30 - 2.45 0.58 0.17 

GWhigh Hv = 10.57D30 - 1.26 0.41 0.24 

GWlow Hv = 6.98D30 - 0.83 0.57 0.21 

Inflection    

DWADW Hv = 2.51D95 + 0.11 0.76 0.13 

GWhigh Hv = 1.47D95 + 0.28 0.74 0.16 

GWlow Hv = 1.06D95 + 0.40 0.88 0.11 

Gaussian    

DWADW Hv = 5.13D70 - 0.39 0.37 0.21 

GWhigh Hv = 2.67D70 + 0.02 0.46 0.23 

GWlow Hv = 1.80D70 + 0.19 0.65 0.19 
a 

Residual Standard Error 

 
Table 3. Regression equations for vegetation density using 

three different methods  

 

 Regression equation R2 RSE (m-1)a 

Threshold Dv = 1.18PI + 0.03 0.51 0.08 

Inflection Dv = -0.13PI + 0.14 0.09 0.11 

Gaussian Dv = 1.16PI +0.01 0.49 0.08 
a Residual Standard Error 
 

A paired sample t-test revealed significant differences 

between the height of the D95 percentile of the GWhigh and 

GWlow datasets (α = 90%, p = 0.08). These results indicate 

that a low flying height, combined with a high gain improves 

detection of the top of the vegetation.  

 

The slope of the regression lines between laser data and 

observed vegetation height also indicates the ability of the 

laser signal to detect the top of the vegetation. A steeper 

slope indicates a poorer detection of the vegetation top. 

Figure 3 shows the regression lines for the DWADW, 

GWhigh and the GWlow data sets. The slope of the 

DWADW is steepest, and the slope of the GWlow dataset is 

mildest. Based on three Student’s t-tests, all differences in 

slope were significant at the 95 % level of confidence.  

 

4. DISCUSSION 

4.1 Vegetation height and density estimation 

Vegetation height of herbaceous floodplain vegetation can be 

predicted reliably at the plot level using high-density first-

pulse airborne laser scanning data (R2 = 0.74 to 0.88 using 

the inflection labelling method), while estimation of 

vegetation density is less accurate (R2 = 0.51 using the 

threshold method). The inflection method shows the best 

predictions of vegetation height for all three datasets (figure 

3). The threshold and the Gaussian method in general 

selected fewer points, and are therefore more sensitive to 

outliers in the height distribution. Conversely, vegetation 

density was predicted better by the threshold and Gaussian 

method (figure 4). The PI relates point density of vegetation 

points to hydrodynamic vegetation density. The inflection 

method labels more points as vegetation than the two other 

methods, but the PI values did not correlate well with field 

reference values, and are even negatively correlated. This 

could be caused by the height at which the vegetation density 

was measured in the field, which was at least at 13 cm above the 

ground surface (half the minimum vegetation height). This is well 

above a typical inflection height of 5 cm. The threshold method 

performed marginally better than the Gaussian method. The 

inverse dependence of PI on h2 minus h1 (eq. 3) could lead to 

unrealistic values in case h2 nears or equals h1. This should not be 

a problem for vegetation higher than 25 cm as in this study. 

 

The quality of prediction of vegetation height in this study is 

similar to the results obtained in regression models for forests: 

Means et al. (1999), Naesset and Bjerknes (2001), and Naesset 

(2002) reported regression models explaining 74 to 95 percent of 

the variance in the field reference data of vegetation height. 

Similar to our study, forestry studies obtained better results for 

vegetation height than for parameters related to vegetation density. 

Given the small range in height of herbaceous floodplain 

vegetation, it is remarkable that the results obtained in our study 

are of similar quality as those obtained in forestry surveys.  

 

Davenport et al. (2000), Cobby et al. (2001) and Hopkinson et al. 

(2004) studied vegetation height of low vegetation in leaf-on 

condition. Conversely, in our study, we predicted vegetation 

height of dormant herbs. This means that the vegetation signal is 

much weaker, due to the smaller plant surface. Still, the predictive 

quality of vegetation height found in this study is comparable to 

the studies on low vegetation in leaf-on condition. The differences 

found in the regression equations from this study and previous 

studies (Davenport et al., 2000; Cobby et al., 2001; Hopkinson et 

al., 2004) demonstrate that portability of the derived relations is 

low. It points to the need for future field reference data. A 

standardized empirical measure of sensitivity could be provided 

together with the laser data by laser scanning of artificial objects 

with varying reflectivity as suggested by (Wotruba et al., 2005). 

Further improvements are expected from a decrease in laser point 

accuracy. Our data showed a 4 cm standard deviation, but present 

day scanners show standard deviations down to 1.5 to 2 cm, which 

might allow mapping vegetation heights of meadows. 

 

4.2 Effects of flight parameters; flying height, laser diode age 

and gain setting  

The DWADW and GWhigh data sets yielded different slopes of 

the regression models to estimate vegetation height, which was 

significant at the 99.9 confidence level. The reason for this 

difference might be the age of the laser diode age, the calibration 

settings or the larger average incidence angle in the GWhigh 

dataset, due to the reorientation of the laser scanners between 2001 

and 2003. The slope of the GWlow dataset was significantly 

steeper than for the GWhigh dataset. The paired sample t-test also 

showed significant differences between the GWhigh and GWlow 

datasets. Remarkably, the increase in the regression slope of the 

GWhigh and GWlow dataset was significant even though the field 

and laser data were collected on the same day. The reason for the 

difference in slope and 95 percentile must therefore be the 

combination of the reduced flying height and increased gain 

setting for the GWlow dataset. Together these effects result in a 

larger amount of energy reaching the analogue to digital converter 

in the laser scanner from an equally reflective object. 

Consequently, small objects are detected better, and the regression 

slopes are lower. Naesset (2004) concluded for spruce and pine 

forest that the effect of flying altitude is marginal and that the 

flying altitude can be increased by 60 % without any serious effect 

on the estimated stand properties. These conclusions for forests are 

contrary to our conclusions for herbaceous floodplain vegetation. 

The reason for this difference might lie in the shape and structural 

properties of the vegetation involved. Trees are larger and 

Naessets data were collected in leaf-on conditions, which make 
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detectability of trees better than thin floodplain herbs, which 

seem at the edge of detectability. With these datasets, it is 

impossible to assess the influence of the individual 

parameters. However, as long as the parameters influencing 

the regression equations are unclear, field reference data will 

remain necessary to establish the regressions.  

  

5. CONCLUSIONS 

Laser scanning provides detailed and accurate estimates of 

vegetation height and to a lesser extent of vegetation density. 

Three different vegetation labelling methods were evaluated 

(threshold, inflection and Gaussian). Vegetation height 

estimation was most successful using the inflection method 

for point labelling. The 95 percentile proved the best 

predictor, (R2 = 0.74 to 0.88). However, regression models 

differed significantly for datasets that were acquired with 

different flying height, gain, and laser diode age. The validity 

range for vegetation height is the height range order of 0.2 to 

2 m. Vegetation density was predicted using the Percentage 

Index (PI), which relates vegetation point density to 

hydrodynamic vegetation density. The PI based on the 

threshold (R2 = 0.51) and Gaussian (R2 = 0.49) labelling 

method proved better estimators of vegetation density than 

the PI based on the inflection method (R2 = 0.09). This might 

be caused by difference in reference heights between field 

and laser data. The validity range for vegetation density is in 

the order of 0.001 to 0.7 m-1.  

 

Because these herbs in winter are low and thin, height 

estimation is sensitive to the combined effect of flying height, 

gain setting and age of the laser diode. The common factor in 

these parameters is that they influence the amount of energy 

at the receiving end of the laser scanner. With increasing 

energy, the vegetation detection increases too. We conclude 

that airborne laser scanning data can be used to map 

vegetation height and density of dormant floodplain 

vegetation for floodplain roughness parameterization. Field 

observations of vegetation structure remain, however, 

necessary to calibrate the regression models until a standard 

measure of laser sensitivity is supplied together with the laser 

data. 
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