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ABSTRACT:  
 
Airborne laser scanner technique is broadly the most appropriate way to acquire rapidly and with high density 3D data over a city. 
Once the 3D Lidar data are available, the next task is the automatic data processing, with major aim to construct 3D building models. 
Among the numerous automatic reconstruction methods, the techniques allowing the detection of 3D building roof planes are of 
crucial importance. Three main methods arise from the literature: region growing, Hough-transform and Random Sample Consensus 
(RANSAC) paradigm. Since region growing algorithms are sometimes not very transparent and not homogenously applied, this 
paper focuses only on the Hough-transform and the RANSAC algorithm. Their principles, their pseudocode - rarely detailed in the 
related literature - as well as their complete analyses are presented in this paper. An analytic comparison of both algorithms, in terms 
of processing time and sensitivity to cloud characteristics, shows that despite the limitation encountered in both methods, RANSAC 
algorithm is still more efficient than the first one. Under other advantages, its processing time is negligible even when the input data 
size is very large. On the other hand, Hough-transform is very sensitive to the segmentation parameters values. Therefore, RANSAC 
algorithm has been chosen and extended to exceed its limitations. Its major limitation is that it searches to detect the best 
mathematical plane among 3D building point cloud even if this plane does not always represent a roof plane. So the proposed 
extension allows harmonizing the mathematical aspect of the algorithm with the geometry of a roof. At last, it is shown that the 
extended approach provides very satisfying results, even in the case of very weak point density and for different levels of building 
complexity. Therefore, once the roof planes are successfully detected, the automatic building modelling can be carried out. 
 
 

1. INTRODUCTION 

The quick acquisition of 3D data as well as the automatic data 
processing are two key-tasks for the majority of surveying 
fields. Airborne laser scanning systems generate 3D data with 
high speed, good accuracy and density. Thus, the use of this 
technique in urban region is more and more frequent.  
In order to construct automatically 3D city models, two 
successive steps have to be considered. The first one is the 
automatic segmentation of the point cloud into three classes 
which are terrain, vegetation and buildings. Once the city cloud 
is segmented, the modelling of buildings can start. Two types of 
approach called model-driven and data-driven approaches in the 
literature are proposed for constructing building models. The 
model-driven approaches search the most appropriate model 
among primitive building models contained in a model library 
(Maas and Vosselman, 1999). They consider that a primitive 
building can be described by a set of parameters. That implies to 
calculate the values of the parameters before constructing the 
3D model. On the other hand, data-driven approaches try to 
simulate each part of the building point cloud for obtaining the 
nearest or the more faithful polyhedral model (Rottensteiner, 
2003).  
In the context of data-driven approaches which provide more 
universal models, the automatic detection of planes is a crucial 
operation. Many methods are proposed in order to carry out this 
procedure such as region growing, 3D Hough-transform and 
RANSAC. Only the two last techniques are studied in this paper 
since region growing algorithm are sometimes not very 
transparent and not homogenously applied. Furthermore, the 
principles and the pseudocodes of 3D Hough-transform and 

RANSAC algorithms are detailed and compared. In order to 
clarify their operating mode and assess them, they are applied 
on samples of buildings with different forms and complexity 
levels. At last, the RANSAC algorithm is extended to be able to 
solve the majority of building cases.   
 
 

2. 3D HOUGH-TRANSFORM 

 2.1   Related works and principle  

The 2D Hough-transform technique (Hough, 1962) is normally 
used in the field of digital image processing in order to detect 
geometric primitives. Many applications in this field as well as 
its algorithm are presented by (Davies, 1988; Gonzalez et al., 
2004; Nguyen et al., 2005). This technique is used to detect the 
straight lines like building contour polygons, and curves such as 
circles and ellipses. With the 3D point cloud, the demand is 
increased for detecting 3D planes. In this context, the 2D 
Hough-transform has been extended to 3D (Vosselman and 
Dijkman, 2001; Oda et al., 2004; Overby et al., 2004). Later, its 
principle has been extended to the extraction of other 3D 
geometric forms like cylinders (Rabbani and Van den Heuvel, 
2005).   
The principle of the 2D Hough-transform is the representation 
of a points set, defined initially in the Euclidian space, in 
another space. This transform allows detecting the points 
composing specific geometric primitives. For example, in 
(OXY) space, the equation of a line has the form (1). 
 

Y = a. X + b                                (1) 
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where (a, b) are the line parameters. 

This line can be represented by a point with coordinates (a, b) in 
the parameter space (O’ a b). In an opposite way, one point (Xi, 
Yi) belonging to the space (OXY) is represented by a line in the 
parameter space (O’ a b) as expressed in Equation 2.  
 

b = - Xi .a +Yi                                 (2) 
 

where (Xi, Yi) are the parameters of this line.  

Supposing that M1, M2, … Mn are a set of points in the space 
(OXY) and that they belong to the line P following Equation 1. 
Each one of these points represents a line in the parameter 
space. The intersection of these lines in the parameter space is 
the point (a1, b1) which represents the parameters of the line P 
in a 2D-space.   
 
If the line equation has the form X = constant, then it can not be 
presented in the parameter space (O' a b), because the Y-axis 
coefficient is equal to zero. In order to solve this problem, it is 
suggested to use the normal form of the line (Equation 3). 
 

cos θ. X + sin θ. Y = ρ                               (3) 
 

where θ and ρ are the parameters of the normal passing through 
the origin (see Fig.1). 
 
 
 
 
 
 
 
Figure 1. Presentation of one line and its normal in a 2D-space 

 
So, θ and ρ are constant for one line. The parameter space in 
this case is (O’ θ ρ). Hence, one point (X1, Y1) in the 2D-space 
represents a sinusoid in the parameter space (see Fig.2).  
 
 

 
 
 
 

 
Figure 2. Presentation of a point in the parameter space using 

the normal form 
 
The same principle can be applied in a 3D case in considering 
that one plane belonging to the (OXYZ) space (Equation 4) can 
be represented by a point (a, b, c) in the parameter space 
(O’abc).  

Z = a. X + b. Y +c                                (4) 
 

In the same manner, if the plane equation has the form (5), then 
it can not be presented in the parameter space because the Z-
axis coefficient is equal to zero. In order to solve this problem, 
(Overby et al., 2004) suggest to use also the normal form of the 
plane (Equation 6).   

a X+ b Y + c = 0                                       (5) 

cos θ. cos φ. X + sin θ. cos φ. Y + sin φ. Z = ρ         (6) 

where θ, φ and ρ are the parameters of the plane normal passing 
through the origin (see Fig.3). 
 

So, θ, φ and ρ are constant and the parameter space is (O’ θ φ 
ρ). In this case, one point (X1, Y1, Z1) in the 3D-space 
represents a sinusoidal surface in the parameter space. 
Since the principles of the 3D Hough-transform are explained, 
the aim of the next section is to deliver its algorithm. 
 

 
 
 
 
 
 

 
 
 

 
Figure 3. Representation of plane equation elements in the 

normal form 
 
 2.2   3D Hough-transform algorithm  

The input data are the steps on θ, φ and ρ axis (discrete 
intervals), called θ_step, φ_step and ρ_step respectively. The 3D 
point cloud is represented by three coordinate lists X, Y and Z. 
Algorithm 1 presents the pseudocode of the 3D Hough-
transform.  
 
 
 
1. X_min = min(X); Y_min = min(Y); Z_min = min (Z)  
2. X_max = max(X); Y_max = max(Y); Z_max = max (Z) 
3. Calculation of: Dis_min; Dis_max 
4. θ = from 0 to 360, step = θ_step; n_θ = length(θ)  
5. φ = from -90 to +90, step =  φ_step; n_φ = length(φ)   
6. n_ ρ = 2* (Dis_max - Dis_min) / ρ_step 
7. ρ = from Dis_min to Dis_max; step = ρ _step 
8. θ_mat (n_φ, n_θ) = [θ  θ  θ … θ]’ *π/180 
9. φ_mat(n_φ, n_ θ) = [φ φ φ …. φ] * π /180 
10. H(n_θ, n_φ, n_ ρ) = 0 
11. ratio = (n_ ρ – 1)/( ρ (n_ ρ) – ρ (1))  
12. for k = 1 to length(X) 
13. ρ_mat = cos (φ_mat)*cos (θ_mat)* X (k) + ... 
        cos (φ_mat)*sin (θ_mat)* Y (k)+ sin(φ_mat)* Z (k) 
14.  ρ_indix = round (ratio *( ρ_mat  – ρ (1)+1)) 
15.  for  i = 1 to n_φ 
16.  for  j = 1 to n_ θ  
17.  H (j, i, ρ_index (i, j)) = H (j, i, ρ_index (i, j)) +1  
18. next j ; next i ; next k 
 
In this algorithm, Dis_min and Dis_max are the distances 
between the origin and the two extremities of the cloud points 
calculated at lines 1 and 2; H is a 3D matrix; θ_mat, φ_mat and 
ρ_mat are 2D matrices; θ, φ and ρ are three lists. 
 
The result of the algorithm is the 3D matrix H which contains 
the representation of the original cloud in the parameter space. 
Each point of (OXYZ) space gives a sinusoidal surface in the 
parameter space.  
 
Fig.-4a shows the visualization of one horizontal plane in the 
3D matrix H. Fig.-4b shows the result of the roof planes 
detection. For improving this result, it is necessary to use 
parameter values as small as possible. But, in this case the 
processing time and the needed memory will be much higher. 
The sample used for this figure is a building whose 
characteristics are detailed in section 3.3. 
 

X Y 

Z

(X1, Y1, Z1) 

φ 

θ 

ρ 

O 

P 

Algorithm 1: 3D Hough-transform for plane detection  
P : cosθ. X+ sin θ. Y = ρ 

(X1,Y1) 

X 

Y 

θ 
ρ 

X1 

Y1 

O 

ρ1 O’ 

cosθ. X1+ sin θ. Y1 = ρ 
θ 

ρ 

Sinusoid 
θ1 (ρ1, θ1) 

408

ISPRS Workshop on Laser Scanning 2007 and SilviLaser 2007, Espoo, September 12-14, 2007, Finland



 
 
 
 
 
 
 
 
 

Figure 4. a) Horizontal plane in the 3D matrix H, (with plane 
number ρ = 75); b) Roof plane detection result using the 3D 

Hough-transform. 
 

The next step consists in detecting the peaks from the 3D matrix 
H as marked by red circles in Fig.-4a. Each peak represents one 
plane in (OXYZ) space. This operation can be performed by 
searching voxels having the maximum values in the matrix H) 
and then applying a 3D region growing algorithm.    

 2.3   Analysis 

The 3D Hough-transform uses a pure mathematical principle in 
order to detect the best planes from a 3D point cloud. That 
means that it looks for point sets which represent statistically 
the best planes without taking into account their signification in 
the building point cloud. In this context, the best plane does not 
mean the most probable plane calculated according to the least 
squares theory. But it means the plane containing the maximum 
number of points. Therefore, it detects perhaps a set of points 
which represents several roof planes or which belongs to several 
planes.  
 
Moreover, the 3D Hough-transform spends a long time for 
calculating the matrix H and for detecting the peaks in it. 
Furthermore, the application of 3D Hough-transform requires 
the use of four parameters. The first three one are the steps 
(discrete intervals) on θ, φ and ρ axis. When the used step 
values are small, the quality of the detected plane is improved, 
but the processing time and the needed memory are much 
higher and vice versa. The fourth parameter is a threshold 
entering in the 3D region growing algorithm. It represents the 
difference between the voxel value and its neighbours. The 
determination of the four threshold values are related to the 
characteristics of the point cloud and of the building roof 
planes. Thus, it is very difficult to determine them 
automatically.  
 
 

3. RANSAC ALGORITHM FOR PLANE 
DETECTION       

 3.1   Related works and principle 

In the digital image processing domain, RANdom SAmple 
Consensus (RANSAC) algorithm is used to detect mathematical 
features like straight lines and circles. Its principle is well 
explained by (Fischler and Bolles, 1981; McGlone McGlone et 
al., 2004; Nguyen et al., 2005). In the field of automatic 
buildings modelling based on Lidar data, many authors suggest 
its use for achieving different tasks. For example, (Ameri and 
Fritsch, 2000; Brenner, 2000) use RANSAC algorithm for 
detecting the building roof planes. (Forlani et al., 2004; Forlani 
et al., 2006) apply RANSAC algorithm in order to correct the 
building roof segmentation result which are obtained using a 
partition in 8 classes of the gradient orientation. Moreover, to 
carry out the 2D segmentation of the building contour polygon 
pixels in straight lines, the same technique is also applied. 
(Bretar and Roux, 2005) use the Normal Driven RANSAC 

(ND-RANSAC) for extracting 3D planar primitives. For this 
purpose, they calculate the normal vectors for each point. Then, 
they select randomly three points but having the same 
orientation of normal vectors. In our case, RANSAC algorithm 
is used with the aim of roof planes detection. 
 
The principle of RANSAC algorithm consists to search the best 
plane among a 3D point cloud. In the same time, it reduces the 
number of iterations, even if the number of points is very large. 
For this purpose, it selects randomly three points and it 
calculates the parameters of the corresponding plane. Then it 
detects all points of the original cloud belonging to the 
calculated plane, according to a given threshold. Afterwards, it 
repeats these procedures N times; in each one, it compares the 
obtained result with the last saved one. If the new result is 
better, then it replaces the saved result by the new one.  
 
 3.2    RANSAC algorithm 

This algorithm needs four input data which are:  

- The 3D point cloud (point_list) which is a matrix of three 
coordinate columns X, Y and Z;  

- The tolerance threshold of distance t between the chosen 
plane and the other points. Its value is related to the 
altimetric accuracy of the point cloud;  

- The forseeable_support is the maximum probable number 
of points belonging to the same plane. It is deduced from 
the point density and the maximum foreseeable roof plane 
surface.  

- The probability α is a minimum probability of finding at 
least one good set of observations in N trials. It lies 
usually between 0.90 and 0.99. 

Algorithm 2 details the pseudocode of RANSAC algorithm. 
 
 
1. bestSupport = 0; bestPlane(3,1) = [0, 0, 0] 
2. bestStd = ∞; i = 0 
3. ε = 1 – forseeable_support/length(point_list)             
4. N=round (log (1 – α)/log (1 – (1 –  ε) ^3))  
5. while (i <= N)  
6. j = pick 3 points randomly among (point_list) 
7. pl = pts2plane(j)  
8. dis = dist2plan(pl, point_list)  
9. s = find(abs(dis)<= t)   
10. st = Standard_deviation (s)  
11. if (length(s) > bestSupport or (length(s) = … 
      bestSupport and st < bestStd)) then 
12. bestSupport = length (s)  
13. bestPlan = pl; bestStd = st; endif 
14. i = i+1; endwhile  
 
In this pseudocode, ε is a percentage of observations allowed to 
be erroneous; the function pts2plane calculates the plane 
parameters from three chosen points. It is advised to use the 
normal form of the plane instead of the classical form (see 
Equation 6) in order to consider the general expression of a 
plane; the function dist2plan calculates the signed distances 
between point set and given plane (the distance takes negative 
or positive value) as given in Equation 7. 
 

    ρ- Zφsin+Yφcosθsin+Xφ cos θ cos=dist2plan        (7)    
                

where X, Y and Z are the three columns of the matrix point_list; 
θ, φ and ρ are the plane parameters (see Equation 6). 

a) 

Algorithm 2: RANSAC for plane detection  

b) 
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It is important to note that the number of trials N can be 
considered directly as an input of the algorithm, instead of 
calculating it by a pure probability law. For this purpose, a table 
of different urban typologies and point densities can suggest the 
N value. Therefore, it replaces the introduction of values for 
forseeable_support andα. This operation is one of the 
modifications proposed for improving the basic RANSAC 
algorithm. 
In order to detect the whole roof planes, the algorithm is applied 
several successive times. In each iteration, the set of considered 
points is excluded from the original cloud. This operation is 
repeated until the number of non-modelled points becomes 
smaller than a given threshold.  
 
 3.3   Comparison and quantitative analysis  

In order to assess the capacities of the algorithm, two samples of 
buildings are used. They contain buildings of different forms 
and complexity levels. Only some results are illustrated in this 
paper, but they are based on characteristic samples (covering 
simple as well as complex building types) and consider low and 
high point densities. The first sample contains 12 buildings and 
its point density is equal to 7 points/m². The second sample 
contains 46 buildings, with a point density of 1.3 points/m².  
 
Fig.5 presents the results of roof planes detection using 
RANSAC algorithm. 
 

 
 
 
 
 
 
 

Figure 5. Visualisation of the 2D point clouds resulting from 
roof planes detection using RANSAC. 

a) Point density: 7 pts/m². b) Point density: 1.3 pts/m². 
The colours represent the different building roof planes.  

 
The application of classic RANSAC algorithm on these samples 
gives successful results in 70% of cases for different building 
forms and different point cloud densities. It means that it detects 
correctly the roof planes for 41 buildings. For example, Fig.-5a 
illustrates very good plane detections, whereas Fig.-5b shows 
unsatisfying results. In extreme situations, the algorithm can 
provide unacceptable errors (see Fig.-7b). That can be explained 
by the use of a pure mathematical principle, without taking into 
account the particularity of the building Lidar data. The same 
remark has already been made for the 3D Hough-transform in 
section 2.3. That is why, it may detect a set of points which 
represents several roof planes or which belongs to several 
planes. Therefore, the classic algorithm needs to be adapted in 
order to detect the best roof planes instead of the best 
mathematical planes in a 3D point cloud. 

(McGlone et al., 2004) note that the RANSAC algorithm aims 
at significantly reducing the number of necessary trials for large 
N values. However, it reduces N at the expense of having no 
guarantee for a solution free of gross errors. That means that 
there is not any guarantee for obtaining the same result after 
each iteration.  
Afterwards, several experiments have been made on the point 
cloud including the 41 buildings, i.e. the cloud for which 
RANSAC generated successful results. They demonstrate that 
the iterative application of RANSAC algorithm gives the same 

set of roof planes, but in a different order. Since the plane order 
is not important here, the RANSAC algorithm can be 
considered as an algorithm which guarantees a successful result. 
Furthermore, the processing time, even in the case of a large 
point cloud, is negligible in comparison with the processing 
time required by 3D Hough-transform.  
 
It is important to note that the segmentation quality could be 
actually evaluated only after the stage of 3D modelling. 
Moreover, the quantitative comparison between the results of 
3D Hough-transform and RANSAC algorithms will not be 
correct. Indeed, the Hough-transform results are related to three 
aspects: the segmentation quality, the processing time and the 
needed memory, while the last two aspects are negligible for 
RANSAC algorithm.  
 
 3.4  3D Hough-transform or RANSAC algorithm? 

As evoked in previous sections, RANSAC algorithm provides 
not only results in a shorter time but also results of higher 
quality with a large percentage of successful results in 
comparison with 3D Hough-transform. This assertion is made 
after several experiments carried out on the same data for both 
algorithms. For example, the result of 3D Hough-transform 
mentioned in Fig.-4b is based on the same building as those 
used with RANSAC and presented in Fig.-5a.Therefore it is 
chosen in our approach leading to detect automatically building 
roof planes using Lidar data. Therefore, in the next paragraph, 
the RANSAC algorithm is extended in order to increase the 
percentage of successful plane detection from 70% to more than 
95%.    
 

4. EXTENSION OF RANSAC ALGORITHM 

Two directions are proposed for extending the capacities of 
RANSAC algorithm to a better roof plane detection. The first 
one is the improvement of the data quality; the second one is the 
adaptation of RANSAC algorithm to roof detection. 
 
 4.1   Improvement of data quality 

It is well known that the point cloud coordinates contain errors 
related to position accuracy, artefacts, and multi ways. 
Moreover, noise and the small details composing building roofs 
are considered as obstacles. At last, variable point densities may 
occur for the same building roof. So, irregular distribution of 
points on a building roof is also a cause of errors in the 
calculated plane. All these reasons allow thinking about the 
necessity of improving the quality of the point cloud.  
 
This remark leads to generate a new point cloud. On the one 
hand, the new cloud should present a homogeneous point 
density, and on the other hand, the errors of point coordinates 
and the noise should be eliminated or decreased.  

For this purpose, a resampling of the building point cloud is 
performed firstly. The sampling value defining the generated 
DSM is deduced from the average point density (Tarsha-kurdi 
et al., 2007); and then values are assigned to the DSM cells. In 
the latter operation, the original cloud is superimposed on the 
DSM grid. Hence, some cells are empty and other cells contain 
one or more points. In the case of a non empty cell, the 
corresponding DSM pixel takes the maximum of the Z values 
occurring among the points. In the case of an empty cell in the 
building body, the corresponding DSM pixel value takes the 
mean of the non null neighbouring pixels. On the one hand, this 
operation allows eliminating a high quantity of points 
describing the facades. On the other hand, it allows filling the 

b) a) 
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empty pixels, while respecting the mathematical characteristic 
of the plane.  
Secondly, in order to decrease the errors of point coordinates 
and the noise, a simple low-pass filter is applied. The last step 
consists in converting the generated DSM into a 3D cloud. The 
analysis of the new point cloud shows that the position accuracy 
of the inner roof plane boundaries has decreased. This has to be 
related to the low-pass filtering. Hence, the new cloud is used 
exclusively for detecting the roof planes, but not for the future 
building modelling operations where the return to the original 
point cloud is inevitable. 
 
 4.2   Adaptation of RANSAC algorithm 

The second enhancement consists in adapting RANSAC 
algorithm, in order to adapt the mathematical aspect of the 
algorithm with the geometry of a roof. Indeed, RANSAC 
algorithm searches to detect the best mathematical plane in a 
building cloud, regardless if the detected plane represents a roof 
plane or another plane.  
The adaptation of RANSAC algorithm consists of improving its 
pseudocode, and of using additional procedures for improving 
the quality of the detected planes.    
 
4.2.1 Improvement of RANSAC algorithm: In section 3.2, the 
11th line is the essential line in the algorithm, because it 
represents a gate which allows to accept or to refuse the 
calculated plane. Indeed, the used condition is the number of 
points belonging to the calculated plane. Then the algorithm 
accepts the new plane if it contains more points than the last 
calculated one, else the new plane will be refused. 
After the experiments, it was found that the best condition for 
validating plane detection is to take into account not only the 
number of points, but also simultaneously the standard 
deviation. Indeed, the use of standard deviation decreases the 
negative influence of the distance tolerance threshold t. As 
already mentioned, this threshold allows accepting whole points 
having distances to the plane smaller than t.  
For example, let us take a “bad” plane which does not represent 
a roof plane, with a large standard deviation and containing a 
large number of points. In this case, in reason of the condition 
imposed by the number of points, the RANSAC algorithm will 
not accept another plane for replacing it. For solving this 
problem, a new threshold is introduced. This threshold is the 
number of points of the smallest foreseeable plane surface 
(PN_S). It is equal to the product of the smallest foreseeable 
plane surface by the point density. Then the 11th line in the 
algorithm becomes:  
 
          if  st < bestStd and  length(s) > PN_S  then                    (8) 

 
After this modification, the percentage of successful results 
reached by the application of the adapted RANSAC algorithm 
reaches 85%.  
 
4.2.2 Improvement of the detected planes quality: As already 
mentioned, the application of RANSAC algorithm allows the 
detection of planes which do not necessarily present roof planes. 
It represents perhaps one roof plane in addition to other noisy 
points which belong to other roof planes, as the points inside the 
red circles in Fig.-6a. These noisy points have to be eliminated 
from the detected plane, and have to be reassigned to the initial 
cloud.  
Furthermore, inside the detected plane, there are some lost 
points (inside the blue circle in Fig.6a). These points have to be 
added to the fitted plane and extracted from the cloud in the 
same time.  

The last two problems can be solved by applying mathematical 
morphology procedures on the binary Digital Surface Model 
(DSMb) calculated for the detected plane.  
Results obtained by processing the data of Fig.-6a are shown in 
Fig.-6b. If the detected plane represents a set of points 
belonging to different roof planes and distributed stochastically, 
then the plane is rejected. Moreover, an additional condition 
checking if the new parameters never occurred previously is 
added automatically to the 11th line of the algorithm. So this 
plane is avoided in the next trials.  
 
After detecting all planes covering perfectly the roof, the 
remaining points are normally either noisy points or small roof 
details (Fig.-6c). For classifying these points, a region growing 
algorithm is used, deciding if the set of points represents noise 
or roof details. Hence, the two criteria used are: the smallest 
foreseeable surface of a roof detail and the segment form. Thus, 
if the doubtful set of points represents noise, it is added to the 
nearest plane, else it is considered as a new plane. Fig.-6d 
presents the final result of roof planes detection obtained with 
the extended RANSAC algorithm. 
 
 4.3 Results and accuracy analysis 

The building used for testing the approach in Fig.7 has 
numerous details on its roof (chimneys, dormers, windows). 
Moreover, the majority of roof plane surfaces are small 
regarding the point density. Furthermore, its point density is 
relatively weak (1.3 points/m²).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. a) DSMb of the detected plane. It corresponds to the 
yellow plane in Fig.6d; b) DSMb of the improved detected 

plane; c) DSMb of the remaining points after detecting the roof 
planes; d) Final result of roof planes detection. 

 
 
 
 
 

 
 
 
 
 

Figure 7. Roof planes detection results. a) Aerial image. b) 
Using classic RANSAC algorithm. c) After extension of 

RANSAC algorithm. The colours in b) and c) represent the 
different building roof planes  

a) b) 

c) d) 

b) c) a) 
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All these reasons lead to plane misdetection when the original 
RANSAC algorithm is applied (see Fig.-7b). On the other hand, 
after applying the extended RANSAC algorithm, the automatic 
roof plane detection over the same building is satisfactory. Fig.-
7c illustrates clearly the improvements gained by the extension 
of RANSAC algorithm. 
 
Finally, the same test has been achieved on almost 58 buildings 
with different forms and different Lidar point densities. The 
good results confirm the potentiality of the extended RANSAC 
algorithm. Although the improvements showed promising 
results, it must be noted that the level of generalisation and 
consequently the result quality depend obviously on the point 
cloud characteristics (point density, position accuracy, noise), 
on the architectural complexity of the building roof and on the 
dimensions of the building roof planes and their details. 
 
 

5. CONCLUSION 

This paper presented and compared two methods for automatic 
roof planes detection from Lidar data. These methods are 3D 
Hough-transform and RANSAC algorithm. The principle and 
the pseudocode of each one were detailed. In order to test the 
original and the improved algorithms, two sets of point clouds 
characterized by different densities and containing different 
building forms were used.  
 
It is stated that both methods are based on pure mathematical 
principles in order to detect the best planes from 3D point 
clouds. This characteristic leads sometimes to the production of 
intolerable errors. The main advantage of RANSAC algorithm 
is its rapidity and the percentage of successful detected roof 
planes. These reasons were our main motivations. 
 
Thus, two enhancements were suggested in order to increase its 
capacities. The first one was the improvement of the original 
data by generating a new point cloud. The second improvement 
was the adaptation of the algorithm, so that the extended 
algorithm allows detecting the best roof plane instead of the best 
mathematical one. At last, the satisfying results obtained for 
different clouds even with weak point density validate the 
proposed processing chain. Once the building roof planes are 
detected automatically, it becomes easier to complete the 
processing chain and achieve the last steps leading to the 
complete 3D building model.    
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