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Preface

ISPRS Workshop on Laser Scanning and SilviLaser 2007, for which we use acronym LS SL 2007,
is a continuation of ISPRS Workshops on Laser Scanning, held in Dresden 2003 and in Enschede
2005, and laser scanning workshops of forestry, held e.g. in Canada and Australia 2002, Umea
2003, Freiburg 2004, Blacksburg 2005, Vienna 2006 and Matsuyama 2006. By putting together the
technology-oriented laser scanning and the forestry-related silvilaser conference series we wanted
to foster the development of methods and applications in both communities. Thus, the workshop is
intended to bring together an interdisciplinary group of researchers, system developers, data
providers, application developers, and end-users of airborne and terrestrial laser scanning on both
disciplines.

The workshop is organized in co-operation with the Finnish Geodetic Institute (FGI) and Helsinki
University of Technology (TKK). The workshop actually celebrates 10 years’ research on laser
scanning at TKK and FGI. The research was initiated in 1997 in co-operation with FM-Kartta Oy
(today known as Blom Kartta Oy). At that time, Arttu Soininen from Terrasolid Oy has already
implemented some first tools for ALS. Today, the co-operation with these companies is even
stronger. Prior to the ALS research in Finland, there were already related research going on:
laboratory measurements of lidar/laser, 3D video digitizing, waveform-based microwave radar
development and data analysis and use of profiling radar for forest inventory, and thus the physics
and background of ALS were already very familiar to the researchers. Today, both the forest
community and public authorities (e.g. National land survey) are aiming at using laser scanning for
operative forest inventory and DEM generation in Finland implying that the research has had some
impacts.

The papers in the proceedings to be distributed at the workshop are peer reviewed by at least two
(most of them by three) experts in the field. The names of the reviewers are mainly selected from
the scientific board, which we even had to enlarge due to the need of so many reviews.
Additionally, the editorial board read the papers. We hope that all our effort improved the quality of
the papers.

In the LS SL 2007, there is also a collection of keynote presentations. We were very fortunate to
have prof. Wolfgang Wagner to talk about waveform analysis techniques, software developer Arttu
Soininen, father of TerraScan and other TerraSolid products, prof. Matti Maltamo giving summary
of ALS-based experiences and possibilities in forestry, prof. Norbert Pfeifer focussing on
geometrical aspects of ALS and TLS and Petri Rénnholm talking about integrating LS and
photogrammetry. The main findings of Wagner, Maltamo, Pfeifer and Ronnholm can also be read
from the proceedings.

Finally, we want to thank all contributing authors, scientific board, other reviewers, our sponsors,
the companies in exhibition and local organizing committee. Their support was essential for
realizing the workshop, which we hope to contribute to science and practice.

Juha Hyypp4&, Petri R6nnholm and Hannu Hyyppa
Otaniemi 24 August 2007
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GENERALIZED LEAST SQUARES MULTIPLE 3D SURFACE MATCHING

Devrim Akca * and Armin Gruen

Institute of Geodesy and Photogrammetry, ETH Zurich, Wolfgang-Pauli-Str. 15, CH-8093 Zurich, Switzerland
(akca, agruen)@geod.baug.cthz.ch

Commission V, WG V/3
KEY WORDS: Surface matching, co-registration, multiple surfaces, 3D surface, pointcloud, georeferencing.

ABSTRACT:

A method for the simultaneous co-registration and georeferencing of multiple 3D pointclouds and associated intensity information is
proposed. It is a generalization of the 3D surface matching problem. The simultaneous co-registration provides for a strict solution to
the problem, as opposed to sequential pairwise registration. The problem is formulated as the Least Squares matching of overlapping
3D surfaces. The parameters of 3D transformations of multiple surfaces are simultaneously estimated, using the Generalized Gauss-
Markoff model, minimizing the sum of squares of the Euclidean distances among the surfaces. An observation equation is written
for each surface-to-surface correspondence. Each overlapping surface pair contributes a group of observation equations to the design
matrix. The parameters are introduced into the system as stochastic variables, as a second type of (fictitious) observations. This
extension allows to control the estimated parameters. Intensity information is introduced into the system in the form of quasisurfaces
as the third type of observations. Reference points, defining an external (object) coordinate system, which are imaged in additional
intensity images, or can be located in the pointcloud, serve as the fourth type of observations. They transform the whole block of
“models” to a unique reference system. Furthermore, the given coordinate values of the control points are treated as observations.
This gives the fifth type of observations. The total system is solved by applying the Least Squares technique, provided that
sufficiently good initial values for the transformation parameters are given. This method can be applied to data sets generated from

aerial as well as terrestrial laser scanning or other pointcloud generating methods.

1. INTRODUCTION

The early approach for the multiple pointclouds registration is
to sequentially apply pairwise registrations until all views are
combined. Chen and Medioni (1992) propose a method, which
registers successive views incrementally with enough
overlapping area. Each next view is registered and merged with
the topological union of the former pairwise registrations. Later,
this approach is equipped with a coarse-to-fine mesh hierarchy
(Turk and Levoy, 1994), and the least median of squares (LMS
or LMedS) estimator with random sampling (Masuda and
Yokoya, 1995).

The shortcomings of the incremental solution were recognized
early. The registration of a view does not change once it has
been added to the integrated model. However, it is possible that
a following view brings information that could have improved
the registration of previously processed views (Bergevin et al.,
1996; Pulli, 1999). Bergevin et al. (1996) propose a solution in
which every view is sequentially matched with all other
overlapping views. The procedure is iteratively executed over
all views. The iteration is stopped when the registration
converges. For each view a separate transformation is
calculated, and they are applied simultaneously before the next
run of iteration. Although it diffuses the registration errors
evenly among all views, slow convergence is the main
disadvantage. Benjemaa and Schmitt (1997) accelerate the
method by applying the new transformation as soon as it is
calculated (like the Gauss-Seidel method) and employ a multi-
z-buffer technique which provides a 3D space partitioning.
Pulli’s (1999) solution performs pairwise registrations between

* Corresponding author. www.photogrammetry.ethz.ch

every overlapping view pairs. Subsequently, these pairwise
registrations are incrementally treated as constraints in a global
registration step. However, these constraints do not imply
functional constraints in the optimization scheme. Rather, it is a
set of virtual points that uniformly subsample the overlapping
areas, called as virtual mate. This approach has the capability to
handle large data sets, since using the virtual mates from
pairwise alignments does not require loading the entire data set
into memory. A concrete mate version of this method, in which
a set of corresponding points themselves rather than the virtual
points is used as constraint, is proposed for robot navigation (Lu
and Milios, 1997). The subsequent global registration is
achieved by employing a sequential estimation procedure.

Alternatively, some works carry out the multiview registration
task in the sensor coordinate system. In Blais and Levine (1995)
couples of images are incrementally registered. It is based on
reversing the range finder calibration process, resulting in a set
of equations which can be used to directly compute the location
of a point in a range image corresponding to an arbitrary
location in the three dimensional space. Another multiview
registration method based on inverse calibration, developed
independently, called Iterative Parametric Point (IPP), is given
in Jokinen (1998). Differently, it simultaneously registers all
views using the Levenberg-Marquardt non-linear optimization
technique. Although the reverse calibration method, also called
point-to-projection technique, provides fast access mechanisms
for the point correspondence, it is performed on 2.5D range
maps. It is not suitable for truly 3D applications.



ISPRS Workshop on Laser Scanning 2007 and SilviLaser 2007, Espoo, September 12-14, 2007, Finland

Stoddart and Hilton (1996) first find the pairwise
correspondences between all the overlapping views, and then
iteratively solve the global registration using a gradient descent
algorithm. Although this is a two steps procedure, the final
transformations are simultaneously computed as one system in
the global registration step. A similar approach, developed
independently, is given in Eggert et al. (1998). Neugebauer
(1997) reduces the problem to only a global registration step,
and simultaneously registers all views using the Levenberg-
Marquardt method. Correspondence search is performed on the
range maps, which is a 2.5D approach. Williams et al. (1999)
suggest a further simultaneous solution by including a priori
covariance matrices for each individual point. The non-linear
system is solved using the Lagrange multipliers method, or so
called Gauss-Helmert estimation model.

Iterative linear (closed-form) solutions have become very
attractive. Although they are straightforward to implement,
their stochastic model is of limited value in comparison to non-
linear optimization techniques. Williams and Bennamoun
(2001) present a generalization of Arun et al.’s (1987) well
known pairwise registration method, which uses the Singular
Value Decomposition (SVD) to compute the optimal
registration  parameters in the presence of point
correspondences. This method is a closed-form solution for 3D
similarity transformation between two 3D point sets. Beinat and
Crosilla (2001) propose the Generalized Procrustes Analysis as
a solution for the multiple range image registration problem in
the presence of point correspondence. The Procrustes Analysis
is another kind of closed-form solution, which was introduced
by Schoenemann and Carroll (1970). In fact, both of the
methods use Gauss-Seidel or Jacobi type of iteration
techniques. Further similar methods are given in Sharp et al.
(2004) and in Krishnan et al. (2005).

Recently, Al-Manasir and Fraser (2006) propose an alternative
technique, called image-based registration (IBR), for digital
camera mounted/integrated terrestrial laserscanner systems,
based on the photogrammetric image orientation procedure. The
network of images is first oriented using the bundle block
adjustment, and then the exterior orientations are transferred to
the laserscanner stations provided that the camera calibration
and spatial relationship between the camera and laserscanner
coordinate systems are known. Since it exclusively uses the
imagery, registration can be achieved even in the situations
where there is no overlap between the point clouds. However,
the method is only applicable for camera mounted laserscanner
data.

Several review and comparison studies are available in the
literature (Jokinen and Haggren, 1998; Williams et al., 1999;
Cunnington and Stoddart, 1999; Campbell and Flynn, 2001).

In a previous work, we proposed an algorithm for the least
squares matching of overlapping 3D surfaces, called least
squares 3D surface matching (LS3D). The LS3D method
estimates the transformation parameters of one or more fully 3D
search surfaces with respect to a template one, using the
Generalized Gauss-Markoff model, minimizing the sum of
squares of the Euclidean distances between the surfaces (Gruen
and Akca, 2005). The mathematical model is a generalization of
the Least Squares image matching method, in particular the
method given by Gruen (1985).

In order to optimize the run-time, a rapid method for searching
the correspondence is added. It is a space partitioning method,

called 3D boxing (Akca and Gruen, 2005b). False
correspondences with respect to outliers and occlusions are
detected and eliminated using a weighting scheme adapted from
Robust Estimation methods (Akca and Gruen, 2005c).

When the object surface lacks sufficient geometric information,
i.e. homogeneity or isotropicity of curvatures, the basic
algorithm will either fail or find a side minimum. We propose
an extension of the basic algorithm in which available attribute
information, e.g. intensity, color, temperature, etc., is used to
form quasisurfaces in addition to the actual ones. The matching
is performed by simultaneous use of surface geometry and
attribute information under a combined estimation model (Akca
and Gruen, 2005a).

When more than two pointclouds with multiple overlaps exist,
we adopt a two step solution (Akca and Gruen, 2005b). First,
pairwise LS3D matchings are run on every overlapping pairs
and a subset of point correspondences are saved to separate
files, similar to Lu and Milios’s approach (1997). In the global
registration step, all these files are passed to a block adjustment
by independent models procedure (Ackermann et al., 1973),
which is a well known orientation procedure in
photogrammetry.

In some applications georeferencing is needed, which is the
procedure to transform the spatial data from a local system to
an external object coordinate system. We also provide for an
integrated solution for this problem.

1.1 Our proposed method

Terrestrial laser scanning companies (e.g. Z+F, Leica, Riegl)
commonly use special kind of targets for the registration of
point clouds. However such a strategy has several deficiencies
with respect to fieldwork time, personnel, equipment costs, and
accuracy. In a recent study, Sternberg et al. (2004) reported that
registration and geodetic measurement parts comprise 10-20%
of the whole project time. In another study a collapsed 1000-car
parking garage was documented in order to assess the damage
and structural soundness of the structure. The scanning took 3
days, while the conventional survey of the control points
required 2 days (Greaves, 2005). In a recent project conducted
by our group at Pinchango Alto (Peru) two persons set the
targets to the field and measured with Real-Time Kinematic
GPS in 17 days.

Not only fieldwork time but also accuracy is another important
concern. The target-based registration methods cannot exploit
the full accuracy potential of the data. The geodetic
measurement naturally introduces some errors, which might
exceed the internal error of the scanner instrument. In addition,
the targets must be kept stable during the whole scanning
campaign. This might be inconvenient with the scanning works
stretching over more than one day. On the other hand, target-
based registration techniques can provide immediate
georeferencing to an object coordinate system.

Surface-based registration techniques stand as efficient and
versatile alternative to the target-based techniques. They simply
bring the strenuous additional fieldwork of the registration task
to the computer in the office while optimizing the project cost
and duration and achieving a better accuracy. However, they do
not provide the georeferencing option.
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This work proposes a method which combines the advantageous
parts of both techniques based on the least squares matching
framework. The proposed method is a (truly) simultaneous one
step solution for the matching and georeferencing of multiple
3D surfaces with their intensity information. The mathematical
model is a hybrid system which contains different type of
observations. The proposed method is an algorithmic extension
of our previous work given in Gruen and Akca (2005). It
generalizes the 3D surface matching problem in the sense that
multiple 3D surfaces with their intensity information are
globally matched and simultaneously georeferenced. Multiple
primitives, surface information (geometry and intensity) and the
(reference) point features, are co-registered together.

The paper is structured as follow. The next chapter introduces
the mathematical model with the execution aspects. The third
chapter presents the experimental results.

2. MATHEMATICAL MODELLING
2.1 Least Squares Multiple 3D Surface Matching

Assume a set of n surfaces of an object: gi(x,y,z2) ,...,
2.(x,y,z). The object is defined in a 3D Cartesian coordinate
system, whereas the n surfaces are located in arbitrary local
coordinate systems. The n surfaces are discrete 3D
approximations of continuous functions of the object surface.
They are digitized according to a sampling principle.

The surface representation is carried out in a piecewise form,
individually for each surface. g;(x, y, z) stands for any element
of the i-th surface in this representation.

There are m mutual spatial overlaps between the surfaces
g:(x, v, z). Every overlap satisfies a pairwise matching:

gi(xayaz)_ei(xayaz):gj(xayaz) s isjzls“'an s

where e;(x, y, z) is a true error vector. It is assumed that i-th
surface’s noise is independent of j-th one.

In order to prevent duplication, Equations (1) are written for
every possible i-j pair with i<j.

Equations (1) are considered as nonlinear observation equations
which model the observation vector g;(x,y, z) with functions
gj(x, , z). The Least Squares matching of the j-th surface to the
i-th one is to be satisfied while the i-th surface is also subject to
a 3D transformation (with respect to a predefined datum). This
is the 3D analogy of the X-Y constraint version (i.e. grid
sampling mode) of the multiphoto geometrically constrained
matching (MPGC) (Gruen and Baltsavias, 1987) where both the
template and the search image patches are transformed.

Both surfaces are transformed to an object coordinate system
while minimizing a goal function, which measures the sum of
the squares of the Euclidean distances between them. The
geometric relationships are established via 7-parameter
similarity transformations. They can be replaced by another
type if needed.

Each surface is associated with a set of 3D similarity
transformation parameters,

X ty X0
Y| =ty | +mR;l yo (2)
z t, Zg

i i i

where R;=R;(o, ¢, k) is the orthogonal rotation matrix,
[t 8, t]7 is the translation vector, m; is the uniform scale
factor, and (x, yo, zp); stand for the initial location of the

surface.

Because Equations (1) are nonlinear, they are linearized by
Taylor series expansion.
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dx, dy and dz are the differentiations of the selected 3D
transformation model in Equation (2):

dx:dtx +ay dm+a11d0)+a12 d(p+a13 dx
dy:dty+a20dm+a21d0)+a22d(p+a23d1( (4)

dZ:dtZ +a30 dm+a31 d(,l)+ 032 d(p+a33 dK
with a,, as the coefficient terms.

Using the notation
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and substituting Equations (4), Equation (3) results in:

—ei(x,y,2)=gydty;+g,dt,; +g,dt;
+(gxja10 + &ya20 T &2a30)dm;
+(gyjan + 8 a1 +gza31)d0o;
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where a,, and b,, are the coefficient terms for the
differentiation of the transformation equations of the i-th and j-
th surface, respectively. The terms g,, g, and g. are the
numerical derivatives of the object surface function g(x, y, z).
They are defined as the elements of the local surface normal
vectors at the exact surface correspondence locations (Gruen
and Akca, 2005). The linearized observation Equations (6) are
written for each element of the i-th surface.
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Equations (6) result in the following linear systems in
matrix/vector form

— €] ZAIX—II N Pl
—e2:A2x—12 5 P2

(N

Equations (7) consist of m groups of observation equations.
They can be combined in one sub-system as

—e=Ax—1 , P (8)

where A is the design matrix, x is the parameter vector which
contains n sets of transformation parameters, P =P is the a
priori weight matrix, /=g/(x,,2)-g (x,y,z) is the
discrepancies vector that consists of the Euclidean distances
between the corresponding elements of the overlapping
surfaces. The calculation of the discrepancy vector / and the
numerical derivative terms g,, g, and g. requires an appropriate
correspondence search procedure (Akca and Gruen, 2005b).

Provided that m > n is satisfied, the sub-system (of the design
matrix) consisting of m Equations (7) implicitly contains the
multiple overlap conditions. The normal equation matrix
explicitly shows all the spatial relationships by non-zero off-
diagonal elements (see Chapter 2.3.1).

With the statistical expectation operator E{ }, it is assumed that
E{e}=0 , Efee'}=oiP;’ ©)

The parameters are introduced into the system as observables
with the associated weight coefficient matrix P, as

—e,,zIx—lb 5 Pb (10)

where I is the identity matrix and [/, is the (fictitious)
observation vector. The weight matrix P, has to be chosen
appropriately, considering a priori information of the
parameters.

2.2 The Generalized Model with Intensity Matching and
Georeferencing

When some surfaces lack sufficient geometric information,
their intensity information, if available, is introduced to the
system. The intensity information is used to form quasisurfaces
in addition to the actual ones. The formation of quasisurfaces is
given in Akca and Gruen (2005a). The quasisurfaces are treated
like actual surfaces in the estimation model. They contribute
observation equations to the design matrix, joining the system
by the same set of transformation parameters

-e.=A.x-1I. , P, (11)

where e, , A, and P, are the true error vector, the design matrix,
and the associated weight coefficient matrix for the
quasisurface observations, respectively, and /. is the constant
vector that contains the Euclidean distances between the
corresponding quasisurface elements.

Reference points whose coordinates are defined in an external
(object) coordinate system, which are imaged in additional
intensity images, or can be located in the pointclouds, serve as
the fourth type of observations. They are formulated as 3D
similarity transformations from local pointcloud systems to the
object coordinate system in linearized matrix form

—eq=Agx—1; , Py (12)

where A, is the design matrix, P, is the associated weight
matrix, and /; is the discrepancies vector which contains the
coordinate value differences of the reference points between the
transformed local system and object coordinate system. At least
7 coordinate elements of 3 control points are needed for
georeferencing.

Actually, the coordinates of the control points are not error-free
quantities. In a strict model, they are treated as observations
with their associated weight matrices as

_ee:Aex_le > Pe (13)

where A, , x, and P, are the design matrix, the parameter vector,
and the associated weight coefficient matrix for the
observations of the control point coordinates, respectively, and
I, is the discrepancy vector that contains the differences
between the observed and estimated coordinate values. Here,
the vector x is extended to include the x-y-z coordinate values
of the control points in addition to the transformation
parameters.

Equations (12) eliminate the datum deficiency existing in
Equations (8). Alternatively, the datum constraints can be
imposed by fixing the minimal number of parameters in
Equations (10).

The hybrid system of Equations (8), (10), (11), (12) and (13) is
of the combined adjustment type that allows simultaneous
matching of geometry and intensity and additionally
georeferencing of multiple 3D surfaces. The Least Squares
solution of the system gives the solution vector as

X=(ATPA+P, +AP.A, +A P A, + A P,A,)!

(14)
(ATPI+P, 1, +ATP.I +ATP,1, +ATP,1,)
and the variance factor as
T T T T T
6% _y Pv+v, Ppvy +v. Py, +v ;Pv, +v, Py, (15)

r

where » is the system redundancy, v, v, , v., v; and v, are
residual vectors for actual surface observations, parameter
observations, quasisurface observations, reference point
observations (for georeferencing) and control point coordinate
observations, respectively.

The solution is iterative. At the end of each iteration all surfaces
are transformed to their new states using the updated sets of
transformation parameters, and the design matrices and
discrepancy vectors are re-evaluated. The iteration stops if each
element of the alteration vector in Equation (14) falls below a
certain limit.
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The estimation model is the Generalized Gauss-Markoff, which
can accommodate any kind of functional constraint flexibly,
e.g. concentric scans, certain rotational differences, parallel or
perpendicular objects in the pointcloud data, etc.

2.3 Execution Aspects

2.3.1 Matrix Structures

Figure 1 shows the matrix structures of a hypothetical example
of a data set with four pointclouds and three control points. For
the sake of simplicity, the example does not cover the intensity

matching case.
&3 AcCp,
ACP,

. &2 84

&1 ACP]

(©)

M

|

(a) — (b)
Figure 1. (a) The design matrix and (b) the corresponding
normal equations matrix of a data configuration case (c) with
four pointclouds and three control points.

The design matrix (Figure la) consists of 4 sub-systems. The
first sub-system includes the observations of surface geometry.
Each overlapping pointcloud, i.e. gi-2», g»-g3, 23-g4 and g4-g1,
gives a group of observation equations. The second sub-system
represents the fictitious observations of the unknown
transformation parameters. The third sub-system contains the
reference point observations for the georeferencing. The last
sub-system consists of the x-y-z coordinate value observations
of the control points. The columns stand for 4 sets of
transformation parameters (28 elements) and the coordinates of
3 full control points (9 elements).

The normal equations matrix comprises 4 sets of unknown
transformation parameters and 3 sets of control point
coordinates. The non-zero 7x7 sub-parts show the spatial
overlaps among the pointclouds.

2.3.2 Memory Efficiency

In a typical real-world example, the data set may contain 10-20,
sometimes more than 100 pointclouds. It is not operable to load
all pointclouds into the physical memory. This most probably
exceeds the memory limit of the computer. Our software
implementation loads at maximum two pointclouds into the
memory at any instant of (processing) time. All the information,
e.g. 3D coordinates, correspondences, elements of the 3D
boxing for the space partitioning, etc. are kept in the files whose
contents are loaded into memory only when needed.

3. EXPERIMENTAL RESULTS

Because of the 125 anniversary of the construction of the
Gotthard Tunnel (Switzerland), Credit Suisse has decided to
have an exhibition in Zurich about the life and person of Alfred
Escher (1819-1882), Swiss politician, promoter of the Gotthard
Tunnel, railroad entrepreneur, and founder of Credit Suisse as
well as of ETH Zurich.

In Zurich, there is a monument of Alfred Escher, which is
located in front of the main railway station and is approximately
5 meter in high (9.5 meter considering also the basement). The
goal of the project is the production of ten physical replicas of
the Escher monument, starting from a 3D computer model.

The digitization was done with a Faro LS880 HES0 laser
scanner, placed on a cherry picker (Figure 2). Totally 36 scans
were acquired during two nights of on-site work. The data set
contains approximately 4.4 million points with an average point
spacing of 5-10 millimetres.

Figure 2. Pointcloud acquisition by laser scanning of the
Alfread Escher statue on a cherry picker.

The proposed algorithm was used for the co-registration of the
point clouds. Only the surface geometry and parameter
observations were used. The example does not include the geo-
referencing and intensity matching extensions.

At the first step, 3-5 tie points per pointcloud were interactively
measured. Initial approximations were calculated by use of the
tie point coordinates in a chained 3D similarity transformation.
The first pointcloud was defined as the datum by fixing its
parameters to a unit transformation with zero translation and
rotation elements.

The transformation parameters of the all pointclouds were
simultaneously calculated with sigma naught =2.7 mm for the
accuracy of the surface observations. Any surface
correspondence whose Euclidean distance exceeds 6 times the
current sigma naught value was excluded from the design
matrix. The final iteration of the adjustment used 20,442,040
surface correspondences. A high noise level in the data slowed
down the convergence to 16 iterations.

The computation lasted more than 18 hours processing time on
a laptop computer with Intel dual-core 2.16 GHz CPU and 2
GB physical memory. The main reason is the file-access
oriented design of our software implementation. The file access
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for reading and writing is within a few milliseconds, while the
memory access is within some nanoseconds. On the other hand,
the memory request of the software has never exceeded 300
MB during the entire calculation.

S A UE D)
Figure 3. The final 3D model of the Alfred Escher statue.

Figure 4. Still incomplete physical replica of the Alfred Escher
monument (the missing parts are attached later).

After the co-registration step, all pointclouds were merged,
filtered for noise reduction, sub-sampled and triangulated for
surface generation. The 3D modelling operations were carried
out using Geomagic Studio 9. Note that no editing has been
made on the final model, except for the cropping of the area of
interest (Figure 3). An edited version of the 3D model was used
for the replica production. Ten replicas were produced at a scale
1:2 (Figure 4).

4. CONCLUSIONS

A method for the simultaneous co-registration of multiple 3D
pointclouds is presented. It is capable of georeferencing as well
as matching of the intensity information when some parts of the
object surface lack sufficient geometry information. The
estimation model is the Generalized Gauss-Markoff which
allows any kind of object space conditions to be formulated as
functional constraints, e.g. co-centric scans, perpendicular or
parallel objects in the pointclouds, etc.

A practical experiment shows the capability of the method. A
successful solution has been achieved. However, the
computation time is the main burden. A more efficient software
implementation and a multi-resolution approach during the
iterations can accelerate the procedure substantially. The future
work will also include experimentations with the
georeferencing and intensity matching approaches.
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ABSTRACT:

Airborne laser scanning (lidar) can be a valuable tool in double-sampling forest survey designs. Lidar-derived forest structure
metrics are often highly correlated with important forest inventory variables, such as mean stand biomass, and lidar-based synthetic
regression estimators have the potential to be highly efficient compared to single-stage estimators, which could lead to increased
precision for inventory estimates. However, when a limited sample is available to develop the regression model, an estimate based
solely on the synthetic regression estimator can yield biased results for stands within a forest area where the regression model was
unrepresentative. A number of modified (approximately) design-unbiased regression estimators have been proposed that serve to
reduce this model-induced bias while also maintaining the efficient, variance-reducing properties of the synthetic regression
estimator. In this study, we use a simulation approach to explore the statistical properties of several lidar-based regression estimators
of mean stand biomass, using lidar and field plot data collected at a study site in a conifer forest in western Washington State, USA.

1. INTRODUCTION
1.1 Double-sampling in forest inventory

The use of covariate information obtained from remote sensing
in a double-sampling design (e.g. with regression estimators)
has been a well-established technique in forest survey for
decades. A double-sampling design using a combination of
remote sensing and field data is particularly cost-effective in the
inventory of large, remote forest areas, where the cost of
establishing field plots can be considerable, and the number of
plots established is necessarily limited. In these cases, the use of
remotely-sensed covariate information collected over a larger
number of plots can greatly increase the precision and
reliability of the inventory estimates for a given area. The use
of aerial photos in forest mensuration, and particularly the use
of aerial stand volume tables, has been used for many years to
decrease forest inventory costs (Paine and Kiser, 2003).
Although accurate forest measurements can be acquired from
aerial photos through manual interpretation, automated
extraction of three-dimensional information from stereo
imagery is complex and error-prone, due to the inherently two-
dimensional format of photographs, as well as shadows,
layover, and the characteristically irregular shapes and surfaces
of tree crowns. In addition, tree heights are difficult to measure
accurately using aerial photographs, unless accurate terrain
models are already available for the area. Because of these
issues, the use of aerial photos for acquisition of detailed forest
measurements in a double-sampling design has been limited in
large-scale forest inventory programs in the United States.

1.2 Lidar for forest inventory applications

Airborne laser scanning (lidar) provides data on the full three-
dimensional structure of the forest canopy, at a high resolution,
and is readily amenable to automated processing and analysis.
Due to the high demand for lidar-derived terrain information in
forested areas, high-resolution, discrete-return lidar data is
becoming increasingly available to forest managers all over the

world. Therefore, lidar has the potential to be a much more
cost-effective sampling tool for operational forest inventory
than aerial photography. In fact, the very strong correlations
between lidar metrics and plot-level variables suggest that
parameters such as stand biomass could be estimated with a
high level of precision over a large area using a relatively small
number of representative field plots.

The potential of lidar for forest measurement has already been
well-established in numerous previous studies. In studies
carried out across a wide variety of different forest types in
North America, Japan, Europe, and Australia, lidar-derived
canopy structure metrics have been shown to be highly
correlated with forest inventory variables. Nesset (1997)
reported that forest stand volume could be accurately estimated
in 36 spruce (Picea abies) stands in Norway using a pool of
various canopy height and canopy cover density metrics. Means
et al. (2000) reported that a variety of stand inventory
parameters in a Pacific Northwest forest could be accurately
estimated using lidar-derived metrics.

1.3 Use of lidar in a double-sampling forest inventory

Although the utility of lidar as a predictive tool has been
demonstrated in previous studies, the issues that arise in using
lidar as sampling tool in an operational inventory sampling
design have received less attention. Parker and Evans (2004)
presented an approach to using lidar in a double-sampling forest
inventory design in southern Idaho. In this study, lidar was
collected along a strip of plots, where every 5™ plot was
measured on the ground. Lidar-derived individual tree-based
estimates of height and stem density were used to estimate
DBH, basal area, and volume for all plots. Neasset (2002)
developed a two-stage lidar-based forest sampling procedure in
a conifer forest in Norway. This approach used a pool of lidar-
based structural metrics at the plot level, and then used stepwise
regression techniques to select the best predictive model for the
inventory variables. This study found that lidar-based stand-
level estimates for all inventory parameters were more precise
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that those obtained from conventional techniques. Although
these authors found that stand-level estimates were unbiased in
most cases (after correcting for the log-transformations), it is
likely that regression models developed using fewer plots (e.g.
25-30 plots instead of 35 — 60 plots) will result in biased
estimates for small stands within the coverage area. The models
that are developed from lidar tend to draw from a large pool of
structural metrics, and are often developed using an automated
variable selection technique (such as stepwise regression), and
therefore may not be representative of the full range of forest
conditions within the entire lidar coverage area, potentially
leading to bias in parameter estimates for the smaller stands in a
given area.

In most forest surveys, the number of plots available for model
development is constrained by accessibility and cost. Although
efforts are sometimes made to obtain a representative sample,
often the sample can be considered a random sample from the
population. Although this is certainly a simplification of reality
— managers often have previous knowledge of stand conditions
and can use this to increase the sample size in more variable
stands — for the purposes of this study we will assume that very
little a priori information is available, beyond stand boundary
information. If this sample is used in a double-sampling design
with regression, the simple synthetic regression estimators for
small domains, or stands, typically have low variance, but can
have considerable bias due the use of an unrepresentative
regression model. Approaches have been developed to reduce
the bias in estimates for small domains within a double-
sampling design (Sarndal and Hidiroglou, 1989). In particular,
these authors introduced a modified regression estimator that is
(approximately) design-unbiased but with increased variance.

In this paper, we will present an investigation of the statistical
properties of several lidar-based regression estimators for mean
stand biomass, using simulation to estimate the sampling
distribution (variance and mean) of these statistics. In
particular, we will discuss the use of a synthetic regression
estimator, a modified synthetic regression estimator, a

dampened regression estimator, and the possible effect of
transformation bias on mean stand biomass estimates.

2. STUDY AREA
2.1 Capitol Forest study area

The study area for this project was a conifer forest within
Capitol State Forest, in western Washington state, USA. This
forest is composed primarily of Douglas-fir (Pseudotsuga
mensiezii), western hemlock (Tsuga heterophylla), and western
redcedar (Thuja plicata). This area is the site for an ongoing
silvicultural trial resulting in a wide variety of residual stand
densities and structures, including patch cuts, group selection,
heavy thinning, light thinning, clearcut, and control (see Figure
1). The stands used in this study varied in age from 35 to 70
years.

2.2 Field plot data

The USDA Forest Service and University of Washington have
established 98 growth plots in each of these stands, as well
some surrounding younger stands (Figure 1), with plot sizes
ranging from 0.02 ha to 0.2 ha.

Species and diameter were recorded for each tree with diameter
greater than 14.2 cm. Total height was measured using a
handheld laser rangefinder on a representative subset of these
trees, and regression-based height-diameter models were used
to estimate height for all unmeasured trees within the plots. In
addition, very accurate locations for the plots were acquired
through a closed-traverse survey. More detailed information on
the plot measurements can be found in Curtis et al (2004).
Using the measured tree list data, biomass estimates (kg/ha) for
each plot were generated using the BIOPAK software package
(Means et al., 1994).

Figure 1. Capitol Forest study area, Washington State, USA. Stand numbers are shown in red, field plots are shown in white.

3. LIDAR DATA

Lidar data were collected over the study area in March, 1999
with a SAAB TopEye system mounted on a helicopter platform.

The details of the lidar acquisition are provided in Andersen et
al. (2005). The nominal pulse density was 4 returns/m”, and the

footprint diameter was approximately 0.4 m. The contractor
provided raw lidar point data along with ground returns filtered
using a proprietary algorithm.
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4. METHODS
4.1 Background

Previous analyses of lidar-based double sampling techniques
have used cross-validation (Nasset, 2002) and comparison to
the field plot data used in the second stage of the survey (Parker
and Evans, 2004) to validate their survey methods. Using a
leave-one-out cross-validation procedure, Nasset (2002)
assessed the predictive value of the models developed for three
different stand types (young, mature(poor site), mature(good
site)). This was essentially a test of the predictive quality of the
regression models, as opposed to an assessment of the sampling
distribution of the regression estimator, since all of the plots
(except one) were used to develop the regression models.
Parker and Evans (2004) implemented a traditional double-
sampling design, where only a limited number of the lidar plots
were measured on the ground. The relatively limited number of
ground-measured field plots allowed for an assessment of bias,
but limited their ability to assess the variance of the regression
estimator.

In this study, we used a simulation approach to analyse the
sampling distributions of several lidar-based regression
estimators of mean stand biomass in the Capitol Forest study
area. For the purposes of this study, we assumed that the
complete set of 98 plots represented the population, and in each
iteration of the simulation, 30 plots were randomly sampled
from this population. Using the R statistical package, at each
iteration a stepwise regression procedure was used to find the
(presumed) best fit model relating a suite of lidar-derived, plot-
level metrics (mean height (ht), maximum ht, coefficient of
variation of heights, 10"™ percentile ht, 25" percentile ht, 50"
percentile ht, 75" percentile ht, 90™ percentile ht, and 2-
dimensional canopy cover) to the square root of the biomass at
the plot (R-Development-Core-Team, 2006). Previous analyses
had indicated that the square-root transformation was
appropriate in the estimation of biomass (Andersen et al.,
2006). The predictive model that was selected using the sample
of 30 plots was then used to estimate the biomass for all 98
plots in the area. Various estimators of stand biomass (sample
mean, synthetic regression estimator (SY), modified regression
estimator (MRE), and dampened regression estimator (DRE))
were then generated from these predicted plot-level biomass
values. This procedure was repeated for 50000 iterations to
develop the sampling distribution of the various estimators.
Although all of the plots were available in the model
development stage of this study, only stands with multiple plots
were used in the stand-wise analysis, giving a total of six stands
(Stand 1: 35-yr Douglas-fir, Stand 2: 70-yr Douglas-fir (heavily
thinned) , Stand 3: 70-yr Douglas-fir (group selection), Stand 4:
70-yr Douglas-fir (patch-cut), Stand 5: 70-yr Douglas-fir
(lightly thinned), and Stand 6: 70-yr Douglas-fir (uncut)). The
variables selected in each iteration were also observed to assess
the stability of the models. Canopy cover was selected as a
significant predictor variable in every iteration, while the other
selected variables tended to vary among the different height-
based metrics (52% of models included 25™ percentile ht, 48%
of models included mean ht, 40% of models included 50"
percentile ht, etc.). Interestingly, the least-used variable was
maximum height, possibly due to the generally homogeneous
nature of the stands used in this study, where height was much
less variable than density, understory density, etc.
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4.2 Estimators of mean stand biomass

4.2.1  Single-stage estimator

The single stage estimator of mean stand biomass is the
arithmetic mean of plot-level biomass measurements from a
given stand, or the sample mean. This estimator is unbiased, but
can have a high variance, depending upon the number of plots
sampled and the variability of a given stand. Following Sérndal
and Hidiroglou (1989), U denotes the population of plots U=
{1,....k,...,N} that is divided into D domains (or stands), Uy,...
Ug ,...Up. If the biomass for a given plot is denoted as Yy, Ug
are the plots in U that fall in stand d, and Ny is the size of Uy,
then we want to estimate the mean stand biomass

ty= Zyk /Ny M
keUq
If s denotes a sample of size n that is drawn randomly from U
with inclusion probabilities m, then Sq denotes the part of U that
falls in stand d. The estimated mean biomass for stand d is then
given by: fd :Zyk /n, - The sampling distributions for the
Sd

single-stage estimate of mean stand biomass for each stand is
show in Figure 2.

4.2.2  Lidar-based two-stage regression estimators

The use of auxiliary covariate information obtained over a
larger number of plots, or in this case, every element within the
population, has the potential to greatly increase the efficiency
of an estimator. For example, a vector of lidar-based metrics
generated at the plot level can be used to increase the precision
of estimates of mean stand biomass. In the case of double-
sampling with regression, and again following Sirndal and
Hidiroglou (1989), a linear regression model is used to relate
the variables of interest, Y, to X, a vector of correlated variables.
If the coefficients of the population linear model of y on X can

be denoted as B, then the estimated coefficients are B. The
predicted values are §, = x;é, and the e, =y, — ¥, are the

residuals. The so-called synthetic regression estimator (SY) of
the mean stand biomass is then given by: £, = Zyk /N, In
Ug

cases where the regression model is not representative of the
entire population, the synthetic regression estimator can yield
estimates for small areas that are significantly biased. In order
to reduce this bias, Sdrndal (1981, 1984) developed the
(approximately) design-unbiased estimator:

Ak k/ k
[Uzﬂ:y +§e 7[] e

N,

dRE —

This estimator consists of the synthetic regression estimator (the
left term in the numerator) and an adjustment term (right term
in the numerator) that will correct for bias due to use of an
unrepresentative model. However, the variance of the design-
unbiased estimator is typically higher than the synthetic
estimator, because the adjustment term is, in effect, inflated by
the expansion factor m,. Hidiroglou and Sérndal (1985) went
on to develop a modified design-unbiased estimator:
Zek/ 4
D9+ Ny 2
G “ ) o

t
dRE N,
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where [(L :Zl/q. As Sdrndal and Hidiroglou (1989) point out,
S
this estimator tends to have smaller variance than the
unmodified version because the ratio term will give heavier
weight to the adjustment term in cases where the model fit in a
particular domain is poor. Unlike the unmodified version, the
modified estimator has the additional property that, in the case
of simple random sampling, it is consistent as the size of the
sample approaches the size of the population, or { 4 =ty when

s, =U,. However, these authors also note that in cases where

the sample size for a domain is particularly small (e.g. ng < 5),
and the model fit is therefore particularly poor in this domain,
the modified regression estimator can yield unacceptable results
due to the heavy weight given to the adjustment term (for
example, negative estimates in cases where the residuals are
overwhelmingly negative). Sdrndal and Hidiroglou (1989)
therefore suggest using a dampened version of the modified
regression estimator:

[Z% (NN e, /;sz
fuRsz = = (4)
Nd
where:
H=0 if N,>N,
=h if N, <N,

Previous studies have found that using h = 2 provided a
reasonable level of dampening. This has the effect of inverting
the ratio term when a sample is disproportionally undersampled,
giving less weight to the correction term.

4.3 Transformation bias

Typically in a double-sampling framework it is desirable to
obtain estimates in the units of the original data. However,
simply applying the reverse-transformation of the square-root,
or logarithmic, transformation, can result in biased estimates
(Nasset, 2002). In the case of the square-root transformation, it
has been shown that adding the residual variance (¢°) to the
predicted values can correct for much of this bias (Miller,
1984).

5. RESULTS AND DISCUSSION
The summary statistics (mean, variance) of the simulated

sampling distributions for each estimator, and for each stand,
are shown in Table 1. It should be noted that the mean

deviation of the R® values was 0.04. The simulated sampling
distributions for the various estimators, and the true mean stand
biomass values, are shown in Figures 2-5. The possible
influence of transformation bias in converting back to original
data units (tons/ha for biomass) is shown in Table 2.

In general, the variance of the single stage estimator is quite
high, especially in highly heterogeneous stands (e.g. 3, 4, and 6)
(Figure 2). In contrast, in homogeneous stands (e.g. 1 and 2) the
sampling error is quite low and even small samples can
precisely characterize the population parameter. However, it
should be noted that the single-stage mean stand biomass
estimates shown here are based only on cases where at least one
plot was available in the sample from a given stand, and
therefore underestimates the variance of the single-stage
estimator, especially in stands with few plots, such as Stand 1
(which was likely unsampled in many of the iterations). As
expected, in general the application of the synthetic regression
estimator dramatically reduces the variance of the estimator,
especially in the more heterogeneous stands (Figure 3). For
example, in stand 4, the variance decreased from 3494.8 to
192.7, and in stand 6, the variance decreased from 4569.6 to
892.2. However, as expected, the synthetic estimator’s
complete reliance on the sometimes ill-fitting regression model
led to significant bias for most of the stands (Table 1). This is
particularly striking in the case of stand 3, where use of the
synthetic estimator led to an 82% reduction in the variance but
also introduced a significant 5% bias. Application of the
modified design unbiased regression estimator served to
dramatically reduce this bias in almost all stands (Figure 4).
However, the price of this reduction in bias was a consistent
increase in the variance. In general, the variance was still well
below that of the single stage estimator. For example, in stand
3, the bias was reduced to 0.5 %, while the variance was
reduced to 65% of the variance of the single stage estimator.
The form of the dampened estimator appears to moderate both
the bias-inducing influence of the synthetic regression term and
the variance-inflating effect of the adjustment term (Figure 5).
The application of these modified regression estimators may be
particularly useful in situations where unbiased estimates are
desired for smaller stands within a lidar coverage area.

The results indicate that applying the reverse square-root
transformation to recover the original data units does generally
lead to a slight negative bias, as we would expect from the
explanation in Miller (1984) (Table 2). In all but one stand,
application of the bias correction as proposed by Miller (1984)

coefficient of determination (R?) values for the 50000 does remove a portion, but not all, of this bias.
regression models for sqrt(biomass) was 0.88, and the standard
Stand
1 2 3 4 5 6
Population mean stand biomass 583.9 311.3 625.7 562.6 620.9 668.2
Single-stage estimator 583.9 311.2 625.7 562.8 620.7 667.6
(149.8) | (648.6) | (894.8) | (3494.8) | (418.5) | (4569.6)
Synthetic regression estimator | 575.0 3345 594.4 561.9 628.5 692.3
(8Y) (965.7) | (592.3) | (162.8) | (192.7) | (222.2) | (892.2)
Modified design unbiased 580.3 315.6 622.3 561.4 622.3 671.4
regression estimator (MRE) (755.5) (680.9) (315.9) (759.5) (340.8) (2240.1)
Dampened design unbiased 578.6 321.1 616.4 561.3 623.8 677.1
regression estimator (DRE) (760.2) | (650.0) | (298.8) | (458.3) | (249.8) | (1636.9)

Table 1. Statistical properties of (square-root transformed) mean stand biomass estimators (mean (above) and variance (below) of
simulated sampling distribution). The stand biomass for the population is shown in the top row.
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Figure 2. Simulated sampling distributions for the single-stage estimator for mean stand biomass. Vertical red line indicates the true

mean stand biomass within the population.
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Figure 3. Simulated sampling distributions for the synthetic regression estimator for mean stand biomass. Vertical red line indicates

the true mean stand biomass within the population.
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Figure 5. Simulated sampling distributions for the dampened design-unbiased regression estimator for mean stand biomass. Vertical
red line indicates the true mean stand biomass within the population

Stand
1 2 3 4 5 6

Population 341 100 399 335 388 465
mean

Estimate w/o 336 104 380 316 389 460
bias correction

Estimate with 340 107 384 320 392 463
bias correction

Table 2. Effect of applying reverse square-root
transformation to recover original data biomass units
(tons/ha).

6. CONCLUSIONS

This investigation confirm the results of previous studies that
use of lidar-based regression estimators can significantly
increase the precision of estimates for important forest
inventory variables, such as mean stand biomass. These
results also indicate that use of simple synthetic regression
estimators can lead to biased stand-level estimates. The
application of a modified regression estimator can reduce the
bias at the stand level and will incorporate both the variance-
reducing properties of the synthetic regression term and the
bias-reducing properties of the correction term.
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ABSTRACT:

Terrestrial laser scanners provide a three-dimensional sampled representation (i.e. point cloud) of the surfaces of objects. They have
great potential to improve the measurement and representation of remote and widespread objects for applications such as engineering
metrology, cultural heritage recording and forestry, among others. Prior to performing measurement tasks such as these, proper error
modelling and estimation is essential in order to remove the inherent systematic effects such as range finder offset, collimation axis
error, etc.. A rigorous, point-based self-calibration method has been demonstrated to be effective, but it is very labour-intensive since
it requires manual measurement of a large number of signalised targets. In this paper, we propose a planar-feature-based “on-site”
self-calibration method that can reduce the manual labour needed in the point-based method. After outlining the principles and
mathematical models of the proposed method, the subject of model identification is addressed. Tests with simulated datasets reveal
that the residual patterns from the plane-based method are markedly different from those of the point-based method. The ramification
of this outcome is that systematic error identification, an important process for new instrumentation such as terrestrial laser scanners,
is not straightforward. In addition, the tests of the proposed method with real terrestrial laser scanner datasets are presented and
analysed.

1. INTRODUCTION manually measure a large number of targets. The use of planar
features is therefore favoured as their extraction from point
Terrestrial laser scanners (TLSs) have emerged as new clouds can be highly automated, though it is recognised that
measurement instruments for surveying, photogrammetry and signalised target extraction and measurement could also be
computer vision for their fast data acquisition time to measure a automated to a large extent. An on-site calibration method has
three-dimensional point cloud of objects in a matter of minutes. been pursued due to the apparent instabili[y of the calibration
Consequently, the scientific and practical interest in developing parameters (as reported in Lichti, 2007) of the instrument under
calibration procedures to remove systematic errors inherent in investigation, the FARO 880 laser scanner. The idea is that
terrestrial laser scanner datasets has expanded. calibration can be performed on-site using planar features that
exist on many industrial and heritage recording sites, for

In photogrammetry, “on-site” or “on-the-job” calibration example, with minimal manual labour.

methods are often used as an alternative to laboratory
calibration (Luhmann et al., 2007). This is particularly relevant After outlining the principles and mathematical models of the

when the temporal stablhty of the camera used is in doubt. This proposed method, the Subject of model identification is
procedure is performed by imaging portable frames or targets addressed. Tests with simulated datasets are undertaken to
positioned beside the object(s) of interest. Exterior orientation, explore the difference in the residual patterns from the plane-
object space points and camera calibration parameters are based and point-based methods. In addition, the precision of the
estimated simultaneously. In this paper, we propose an on-site proposed method with terrestrial laser scanner datasets is

calibration method for terrestrial laser scanners using planar presented and analysed.
features in the point cloud.
2. PLANE-BASED CALIBRATION
Much work has been done on point-based TLS calibration by
exploiting their similarities with theodolites or total stations, 2.1 Observation equation
(e.g. Lichti and Franke, 2005; Lichti and Licht, 2006; Lichti,
2007; Reshetyuk, 2006). Amiri Parian and Griin (2005) The spherical co-ordinate observations of the ith object space
developed a point-based calibration method by based on a  point in the j" scanner space are range, p;, horizontal direction,

panoramic camera model for the Z+F Imager 5003. Gielsdorf et 0j, and elevation (vertical) angle, oyj, which are parameterised
al. (2004), however, proposed error models and a calibration in terms of scanner space Cartesian co-ordinates (Xy, y, Z;) as
method using planar targets for their own low-cost laser scanner. follows:

Though the point-based methods are rigorous and have been [ tvitz2 4 A (1)
shown to be effective, their principal drawback is the need to Py = /Xy T Yy T2y P
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Gij = arctan Jii + A0 2)
X..
ij
zZ,
oy = arctan ! + Ao 3)

2, 2
VX TY5

The spherical observation correction terms are given by Lichti
(2007) as follows:

u

Ap = A, + A, sin (@, )+ A, sin jj—”p[j
1

“)
+A, cos| —p, ]+ A sin o;
1 2
+A, cos Py [+A4;sin (49[], )+ A; cos (49,7 )
2
AG=B sec(ozij)+Bztan(og.j)+B3 sin(291.j) )
+B, cos (291.1. )+BS(9U + B, cos (3% )+B7 cos (4% )
Ao=C,+C, sin(ocij )+ C, sin(39ij )+ C, cos(39ij) 6)

where the sensor-driven additional parameters (APs) for
terrestrial laser scanners for range, horizontal direction and
elevation angle components of the observations are expressed
as A, B and C, respectively. The term U, in Eq. 4 represents
half the finest modulating wavelength, which is approximately
equal to 0.6m. The term U, in Eq. 4 equals one-half the median
unit length, which is approximately 4.8m. These terms need to
be included since the FARO 880 scanner measures range on the
basis of the phase-difference method. The aim of a plane-based
calibration procedure is to accurately estimate these proposed
additional parameters with low correlation among the exterior
orientation and plane parameters and other APs.

The problem underlying terrestrial laser scanner calibration is
that of model identification. Some systematic error sources,
such as those common to total stations, are expected to be
observed in the residuals from a registration-only least-squares
adjustment. Investigation of these residual patterns has
permitted us to develop a systematic error model for laser
scanners.

The models can be categorised to two groups: the physical and
empirical additional parameters. The physical interpretation of
latter is not necessarily apparent, although their systematic
trends may be observed in the residuals of a highly redundant
and geometrically strong, minimally constrained least-squares
adjustment. Detailed description of all the additional parameters
and their residual plots can be found in Lichti and Licht (2006),
Lichti and Franke (2005) and Lichti (2007).

2.2 Formulation of the proposed plane-based calibration

The proposed plane-based self-calibration method utilises the
combined least-squares method that minimises the distance
between points and their corresponding planes with a constraint
condition. The exterior orientation, plane and the additional
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parameters presented in Eqs. 4-6 can be simultaneously
estimated. Since the observations and parameters of the point-
on-plane condition equation are not separable and each
condition includes more than one observation, the combined (or
Gauss-Helmert) adjustment model is used.

Let xeR" be the parameter vector and 1€R" be the observation
vector, where u and n are the number of parameters and

observations, respectively. Let fl_jk (x,l) be the distance

function between the i™ point in the j™ scanner space (p;) and
the k™ plane target in the object space whose normal vector and
orthogonal distance from the origin are n=(ay, by, c;) and dy,
respectively. The distance function is given as

fyo(x1) =0 (M]p, +Tr )~d, =0 %)

where M; and Tr; are the rotation and translation parameters
between the object and j™ scanner spaces, respectively. In other
words, this is the condition function for the registration between
multiple point clouds and one fixed scan, i.e. the object space.
Then the linearised equation for the Gauss-Helmert model is
given by

Adx+Bv+w,=0 (®)

where m is the total number of point observations, AeR™" and
BeR™" are the Jacobians of fi/_k (X, l) with respect to x and 1,

respectively, v is the residual vector, w, is the misclosure vector
and dx is the vector of corrections to the approximate parameter
values. In its current form, the adjustment is minimally
constrained since the inner constraint equations for plane
parameters are still under development.

Note that u equals the sum of u., u,, and u, where u. is the
number of the transformation parameters, u,, is the number of
the additional parameters and u, is the number of plane
parameters, respectively. The unit length constraint on the
direction cosines for each plane is given as

gk(ak’bk’ck’dk)znznk_lzo ©
and the linearised constraint equation can be given as
Adp+w, =v, (10)

where A .eR“"?is the Jacobian of gi(ay, by, ¢, dy) with respect
to the k™ plane target, dp is the vector of corrections to the
approximate plane parameter values and c is the number of
constraints. The cost function to be minimised with respect to

@=v'Pv+Vv Pv_+2k" (A dx+Bv+w,)
+2k! (A dp+w, -vV,)

1D

where P and P, are the weight matrices for point observations
and the constraint for the plane parameters, respectively, and k
and k. are the Lagrange multiplier vectors. Minimisation of the
cost function leads to the following system of normal equations

Ndx+w =0 (12)

where
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0 0

AT ST YL
N=A"(BP'B") A+{O ATPA.

} (13)

(14)

and

AT ST V! 0 .
w=A"(BP'B") W”{A{Pcwj

2.3 Nonlinear least-squares

The Newton-Raphson solution method can be successfully
utilised for point-based calibration (Amiri Parian and Griin,
2005; Lichti, 2007). In the case of plane-based calibration, the
inclusion of the point-on-plane condition equations renders the
cost function highly nonlinear and thus a nonlinear least-
squares method is required in order for the solution to converge
rapidly to a global minimum (Shewchuk, 1994; Golub and Van
Loan, 1989; Teunissen, 1990).

The normal equations for the proposed method with the Gauss-
Helmert model from Eq. 12 can be expressed as

)

4 99 _ .
Jx”

Jx

dx + (15)

‘When the cost function is either linear or can be linearised,
the solution of Eq. 15 is given by

which is a special case of the gradient-decent method
(Shewchuk, 1994). In the case of the minimisation of nonlinear
cost functions, the gradient of the cost function given in Eq. 10

may not be the optimal direction for searching the solution.
Therefore, the conjugate gradient method proposes to search a

dx = (16)

2’9 ) 2y,
ox’ ox

0
solution in a direction calculated from —a—(p using Gram-
X

Schmidt orthogonalisation (Shewchuk, 1994). Details of the
conjugate gradient method and its implementation can be found
in Shewchuk (1994) and Golub and Van Loan (1989).

2.4 Outlier detection

The reliability matrix, standardised residuals and variance
component estimation (Baarda, 1968; Schaffrin, 1997; Cothren,
2005) are utilised for outlier detection in the proposed plane-
based calibration method. For the linearised Gauss-Helmert
model equations given (Eq. 12), the reliability matrix R is given
by

R=P'B'P'(I,-AN'AP')B amn

where P is the weight matrix, P = BP 'B” , and I, is the
identity matrix with rank of n. The i standardised residual r is
calculated from its corresponding a priori observation precision,
oy, the ith component of the residual vector, v;, and it diagonal
element of R, R;;, as

v (18)
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Assuming that a priori variance factor is known is conducted
under the standard null hypothesis that the standardised residual
follows a zero-mean, unit variance Gaussian density function
(Schaffrin, 1997; Cothren 2005).

3. EXPERIMENTS

The subject of the self-calibration experiments described herein
is the FARO 880 TLS. Two sets of experiments are described in
the following sub-sections. The first used simulated data in
order to learn how the various systematic errors manifest
themselves in the residuals and to investigate the accuracy of
AP estimation. The second use real data in which the results are
compared to those from point-based calibration.

3.1 Model identification using residual patterns

Eight simulated point clouds of a room (dimensions 4.0m x
10m x 10m) were generated from two different scanner
locations (4 orthogonal scans were captured at each position).
The distance between two scanners was 8m and the height of
the scanner was set to 2m. Six 1.5m x 1.5m planar targets on
were simulated to lie in the centre of each wall, the floor and
the ceiling of the room. The sampling was such that each target
had 100 points—see Figure 3a. In short, the simulated dataset
represents the point clouds captured by an ideal laser scanner in
a test room with perfectly flat walls, floor and ceiling.

0.01
s o — g
> YW g g
-0.01 : : : :
-50 0 50 100 150 200
o)
(a) Without plane-based calibration
0.01
< 9 o -
>
-0.01 | | | |
-50 0 50 100 150 200

o)
(b) With plane-based calibration
Figure 1. Residuals of the plane-based calibration method in the

presence of a collimation axis error (B1= 50") for the simulated
dataset.
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> .
-5 | | | |
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x10°
>CL
-5 | | | |
2 4 6 8 10 12

p(m)
(b) With plane-based calibration

Figure 2. Residuals of the plane-based calibration method in the
presence of a rangefinder additive constant (Ay= 1mm) for the
simulated dataset
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The systematic errors of terrestrial laser scanners described in
Eqs. 4-6 were first added one-by-one to the error-less,
simulated point clouds. In a point-based method, most
misclosure patterns appear very similar to functional form of the
corresponding systematic error model (Lichti, 2007). For
example, the vertical eccentricity error, C, in Eq. 6, can be
observed as a sine function of the elevation angle in the residual
pattern of the point-based method.

Figures 1 and 2 are plots of residual due to collimation axis
error (B;) and rangefinder additive constant (A,), respectively.
These residual patterns are quite different from those observed
in the point-based calibration method (Lichti and Franke, 2005)
in which the residuals appear as the expected secant function
for collimation axis error and the effect of the rangefinder offset
is manifest as a linear function of range due to correlation with
the positional elements of exterior orientation. These
differences make it difficult to identify the systematic errors in
the residuals from plane-based self-calibration.

3.2 Optimal locations of laser scanners with simulated data

An empirical investigation into optimal laser scanner location
for the plane-based self-calibration was also conducted under
the previously-described conditions. This investigation with
simulated datasets in Figure 3 was based on the ratio of the
estimated additional parameter to the true value, i.e. artificially
added systematic error to the simulated data. With one of the
two scan locations fixed at location “101” shown in Figure 3b,
point clouds for the second position were simulated from each
of the 9 locations “102” to “110”. We found that the accuracy
of the range and elevation angle additional parameters was as
high as 99% for this test. On the other hand, the accuracy of the
collimation axis error (B1) varies in different laser scanner
combinations.
plane3

i 105 | 110
3 = 4 104 __ 109
Loe plmlﬂ 103 I 108 Ivlmez
‘ 5\%% Ty o T W
"~ 101 106
) Lk 4 planed
() (b)

Figure 3. (a) Simulated point clouds for finding the optimal
scanner locations. Square sign is the centre of the test room. (b)
The scanner is located in the centre of each cell, e.g. 105. The
height of the scanner is 2m.

Q02

107 108

103 104 105 1
scanner location

Figure 4. The ratio between the estimated and true B, for
different laser scanner locations when the first location of the
scanner is 101 in Figure 3(b).
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For all combinations of scanner locations in Figure 3(b), the
accuracy of the estimated APs was high except for the
collimation axis error, B;. The ratio of its estimated to true
value was found to be strongly dependent on the scanner
location, as can be seen in Figure 4. This additional parameter
is accurately estimated at all locations except for the
combination of 101 and 106. For the collimation axis error, the
best laser scanner combinations were 105 and 110 with the
location 101 in the case of this test room.

3.3 Accuracy tests with simulated datasets

The plane-based self-calibration method was applied to the
simulated data described in the previous section. Two
systematic errors, Apand B, were added to the error-less point
clouds. The standard deviations of residuals for the range,
horizontal direction and elevation angle without correction,
with correction of Ay only and with correction of Ay and B, are
given in Table 1. In addition, the residual patterns of these cases
are presented in Figure 5. Clear improvements in all spherical
observations were observed and, in particular, that of elevation
angle is the largest. The difference between the standard
deviations of range in the cases with A, correction only and
with Ay and B, correction is on the order of 10. This suggests
that a priori knowledge of the existing systematic error, i.e. Ay
and B, is required in order to achieve the maximum
observational precision from calibration since, as already
mentioned and can be seen in Figure 5a, model identification is
difficult.

o
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Figure 5. Residual plots in the presence of rangefinder additive
constant (Ag) and the collimation axis error (B;). (a) Without
calibration (i.e. registration only) (b) with A, only (c) with Ay
and B,

No correction Ag Ay and B,
STD v, (mm) 0.70 0.24 0.02
STD v, (") 1.00 0.42 0.03
STD v, () 1.50 0.03 0.04

Table 1. Residual statistics of the plane-based self-calibration
method in three different cases: without correction (registration
only), with A, correction only, and with A, and B correction.
STD is the standard deviation.

A further series of accuracy tests was conducted in which a
range of possible AP values was added to the simulated dataset.
The range for rangefinder additive constant (Ap) was 0.25mm to
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10mm, 10” to 200” for the collimation axis error (B;) and for
the vertical circle index error (Cy) was 10” to 100”. These values
were chosen for consistency with other studies (e.g. Lichti and
Licht, 2006). A maximum bias of 0.006% was observed for all
three additional parameters, with larger values generally being
estimated more accurately. Some difficulty in the estimation of
collimation axis error is expected when the magnitude of the
applied B, is increased as shown in Figure 5(b). For example,
from Table 1, we observed a slight increase in v, in
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(c) Elevation angle correction term (Co)

Figure 6. Accuracy of some additional parameters with
simulated datasets, which defined as the ratio of the true and
estimated parameters.

3.4 Estimation of the APs of the FARO 880 from real data

The FARO 880 terrestrial laser scanner offers a near spherical
field of view made possible by a 320° vertical angle scanning
range and a 180° horizontal field of view. The scanner features
two orthogonal inclinometers that correct the captured data for
instrument tilt. The manufacturer specifies 0.01° (36”) for the
inclinometer accuracy and 3mm linearity error at 10m with 84%
target reflectivity for the rangefinder. See Lichti (2007) for a
description of its salient properties.

Two datasets, named here Datal (28 October/2005) and Data2
(7 December/2005), captured with the FARO 880, were utilised
for the test. A total of eight point clouds of a room were
captured from two locations. The scanner was manually rotated
on the tripod by 90° after each of the set of four scans was
captured.

The dimension of the room in Datal is (H, W, L) = (3m, 5m,
9m) with 18 planar targets. The nominal distance between the
two scanner locations was 4m. The radial distance from the
laser scanner to the object was approximately from 1.5m to
7.5m. The plane-based calibration adjustment (minimally
constrained) had 5641lobservations with 5538 degree of
freedom. The dimension of the room Data2 is (H, W, L) = (3m,
9m, 12m) with 25 planar targets. The nominal distance between

the two scanner locations was 6.7m. The radial distance from
the laser scanner to the object was approximately from 2m to
10m. The plane-based calibration adjustment (minimally
constrained) had 8231 observations with 8107 degree of
freedom.

Note that the planar targets for this on-site calibration were
manually extracted from wall, ceiling and floors of the original
point clouds and some obvious outliers were removed by
investing the results of the first order plane fit. For the proposed
plane calibration method, spherical coordinate observations
were derived from the Cartesian coordinates exported using the
commercial software, iQscene. Variance component estimation
and the outlier detection method explained in Section 2.5 were
used to optimise the contribution of each of the three groups of
spherical observables.

For the point-based calibration with the room Datal, 134 planar,
Ad-size targets were mounted on all four walls, the floor and
the ceiling. Target center measurement was conducted using the
commercial software, iQscene. The point-based calibration
method (with free-network) adjustment had 2469 observations
with 2019 degrees of freedom. For the point-based calibration
with the room Data2, 131 planar, A4-size targets were mounted
on all four walls, the floor and the ceiling. The point-based
calibration method (with free-network) adjustment had 2193
observations with 1738 degrees of freedom.

\)Ziltl}ll g;l;tis;:rllf— With calibration Imprz)g;}e)ment
STD v, (mm) 12 1.2 5.4
STD v, (") 67.9 18.6 72.6
STD v, (") 24.3 19.9 184

Table 2. Residual statistics from plane-based calibration after
outlier removal for Datal (28 October/2005).

inltlIll s;l:ﬁs;llf_ With calibration Imprz)g;}e)ment
STD v, (mm) 24 1.9 21.0
STD v, (") 86.3 35.2 59.2
STDv_ (") 51.8 46.5 10.3

Table 3. Residual statistics from point-based calibration after
outlier removal for Datal (28 October/2005).

Wcliltllll s;l:tis;:rllf— With calibration Imprz)g;}e)ment
STD v, (mm) 1.0 0.8 21.4
STD v, (") 49.2 473 3.8
STD v, (") 55.3 49.5 10.6

Table 4. Residual statistics from plane-based calibration after
outlier removal for Data2 (7 December/2005).

inltlIll s;l:ﬁs;llf_ With calibration Imprz)g;}e)ment
STD v, (mm) 2.3 1.7 26.1
STD v, (") 109.8 36.7 66.6
STDv_ (") 65.88 20.9 68.3

Table 5. Residual statistics from point-based calibration after
outlier removal for Data2 (7 December/2005).

Only a reduced set of the additional parameters (Ao, B;, B,, Bs,
B4, Cy and C,) was used for all calibrations. The standard
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deviations of the residuals for the range, horizontal and
elevation angle for both the plane- and point-based methods are
given in Tables 2 and 4. Both datasets showed significant
improvement in the precision of all spherical observations.

The plane-based calibration provided greater precision in the
spherical observables than did the point-based method. In
contrast, Lichti and Licht (2006) reported a similar level of
point observational precision with all physical and empirical
additional parameters of terrestrial laser scanners.
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Figure 7. Horizontal direction residual vs horizontal direction

without plane-based self-calibration (Datal).
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Figure 8. Horizontal direction residual vs horizontal direction
with plane-based calibration (Datal).
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Figure 9. Horizontal angle residuals vs elevation angle without

plane-based self-calibration (Datal).
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Figure 10. Horizontal angle residual vs elevation angle with

plane-based self-calibration (Datal).

Plots of the residuals of horizontal direction angle both with
and without, additional parameter correction from the plane-
based case are presented in Figures 7-10. Although they clearly
show an improvement in the precision of the observations, they
also show residual systematic effects that are likely due to un-
modelled errors since only a reduced-AP model has been
implemented thus far.

4. CONCLUSIONS

A plane-based self-calibration method based on terrestrial laser
scanner systematic error modelling has been presented and has
been demonstrated to improve observational precision of the
self-calibration residual standard deviation up to 72.6% with

the help of outlier detection and variance component estimation.

The contributions of this paper can be summarised as follows:
First, the residual patterns of the plane-based calibration
method are shown to be different from the functional models of
systematic errors. This could cause great difficulty in systematic
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error model identification, not only for formulating error
models but also for confirmation of the removal of the targeted
systematic errors. Second, the results of the plane-based
calibration are improved over those of the point-based method,
although there are some difficulties in the accurate estimation of
some known additional parameters.
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ABSTRACT:

Nowadays orthophotos from satellite and aerial imagery are very requested products, considering their low cost motivated by the
highly automated production chain. The generation of orthophotos requires a block of oriented images and a digital model of the
ground (DTM or DSM). In case a DTM is adopted, the lackness of information about buildings results in distortions. The availability
of a LIDAR DDSM allows to overcome this problem, even though if the spatial resolution is not very high, some problems in
correspondence of building contour might arise. To solve for this drawback, a method based on thickening a LIDAR DDSM from an
initial grid of 2x2 m2 to a 0.2x0.2 m2 one is proposed here. This method has been implemented by exploiting the availability of a
spatial DB of the same area, which allows to classify all points of the thickened DDSM in two categories: those belonging to a
building and those not. A test of the method has been carried out on a photogrammetric block taken over the town of Lecco
(Northern Italy) by a RC30 Wild camera at 1:17,000 mean scale, and afterward digitized by scanning. The LIDAR DDSM adopted
has been provided by Lombardia Region at a spatial resolution of 2x2 m2. The thickening of the DSM has been performed using a
building mask extracted from the new spatial DB of Lecco. Orthophotos created in this manner take advantage of the whole
cartographic and spatial material already available at the Public Administration Department, and presents an improved accuracy than
a classic orthophoto with a computation time approximately equal.

1. INTRODUCTION problems may be solved using other mapping products
generally available at government agencies and departments.
In recent years, increasing demand for digital orthophotos has The results obtained should be considered as practical
been pushing researchers to improve data quality and reduce guidelines for institutions which would allow them to
production costs. Indeed, if in the past orthophotos were improve orthophoto quality by exploiting already available
considered a cheap alternative to vector maps, or a by- material (Dequal & Lingua, 2004).
product of the photogrammetric mapping process, today they The resulting orthophotos will not have perspective
have come to play an autonomous role. This is mainly deformations and can therefore be directly superimposed
motivated by two factors: the growing worldwide diffusion of onto spatial databases or vector maps, which are not affected
web location services (see c.g. Heipke, 2005; Walter, 2005; by such deformations. The generation of accurate
Leberl, 2007) requiring geographical support, which might orthophotos based on the use of DSM to model ground
help on-line users to access information; the need of geometry was first proposed by Amhar et al. (1998) under the
organizations to produce detailed and up-to-date term “True-Ortophoto®”. It was then implemented in
geographical data describing land changes, a particularly different photogrammetric packages. From a theoretical point
important task when dealing with urban areas, where data of of view, the generation of a true-orthophoto® does not
high resolution and accuracy are required. Furthermore, the significantly differ from that of classical orthophotos;
availability at an operational level of new technologies, such however, it does introduce further problems, requiring
as IMU sensors, airborne digital cameras and aerial laser suitable solutions (Schickler, 1998; Brown, 2003). For
scanners, has significantly contributed to the development of example, when a building is correctly represented, no
orthophoto production. information is obtained about the ground level area due to the
Not long ago, before the development of LiDAR technology, occlusion produced by the building itself. If the generation of
dense DTMs/DSMs could be generated at low cost only by orthophotos is based on single images, there is no way to
means of aerial photogrammetry. However, especially in correctly fill in these empty areas. Consequently, the portions
highly urbanized areas, due to perspective occlusions, a of orthophoto relative to these areas are usually generated by
photogrammetric DTM/DSM may produce a higher error rate means of the DTM alone without the DSM, and this results in
than LiDAR (Brovelli & Cannata, 2004). duplication of the image content (“ghost image”). The
Therefore, we would like to investigate how urban area solution to this problem is to combine several images from
orthophotos could be improved through the use of LiDAR different points of view (Rau et al, 2002, Biasion et al.,
DSMs. 2004), so if there is an occlusion area on an image,
Currently, Italian government agencies and departments tend information about this area can be extracted from another
to buy gridded DTMs/DSMs with a resolution of 2x2 m or images.
Ix1 m. A more complex issue to cope with is that of roof modeling.
Therefore, we have looked into problems related to using If the goal is the realization of a high resolution true-

such DSMs, and we have tried to understand somehow these
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orthophoto® and the DSM has a lower planimetric resolution,
information about where the roof border of a building is
located might be lacking, and here the algorithm does not
know if a pixel of the image represents a piece of terrain or
roof. The result is a rough roof border, without a straight line
(Figures 7 and 9).

The aim of this paper is to present a solution which corrects
this unwanted effect by exploiting a Dense Digital Surface
Model (DDSM) using LiDAR data integrated into a spatial
database which provides information about the building
ground coverage. This solution may seem contradictory,
given that the generation of an orthophoto is based on the
availability of a higher quality product, such a Spatial DB.
However, given the occlusion issues discussed here, this
practical solution results in improvements to the quality of
spatial data which can be used by government institutions,
especially if the following considerations are taken into
account:

1. digital orthophotos can be generated and upgraded
with a higher frequency and a lower cost with
respect to existing vector maps;

2. upgraded orthophotos are a very useful tool for
checking landscape content and detecting changes,
especially in urban areas.

In addition to the presentation of the method implemented for
deriving geometrically corrected orthophotos, and to the
results of its application, in the following an analysis of cases
in which corrections may or may not be truly necessary will
be reported.

2. THE PROPOSED METHOD

As shown in Section 1, the problem focused in this paper has
aimed to correct the border effects (see Fig. 7) due to the
absence, which is very common, of break-lines in the
DDSMs used to derive digital orthophotos. In urban areas
this outcome is evident for buildings, specifically when they
show large difference in height with respect to their
surrounding terrain.

Break-lines can be obtained by three different strategies. The
first one is based on the automatic extraction of the building
contours from the DDSM itself (i). However, DDSMs have
often resolution of about 1 m or less, which makes
approximate the derived contours, especially when buildings
do not have simple shapes, such as regular figures with sides
much longer than the DSM resolution (Forlani ez al., 2005).
The automatic detection of a detailed roof perimeter needs a
resolution of a few tens of centimetres, which is rarely
available.

Indeed, even though LiDAR data are usually acquired with a
higher point density, they are usually delivered, after
filtering, at a resolution of 1-2 m. The other possible
strategies rely on the building contour availability from
external data source (ii), e.g. vector maps, or on their manual
digitization from imagery (iii); the last solution is generally
of low practical interest because of its high cost. Both the two
solutions (ii) and (iii) require also the knowledge of the
height of each building, whose availability is not
commonplace in all countries. However, also when building
heights can be derived from maps, these are limited to mean
values, which do not enable to correctly model the roof
geometry.
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The proposed method tries to exploit the high accuracy in
describing the building height, which is typical to DDSM,
coupled by the detailed description of building contours,
which can be extracted from existing Spatial DB or digital
vector maps, data that are generally available for the most
urban areas.

Starting from the original LiDAR DDSM, a denser one at a
few centimetres resolution is generated, according whether
the new grid node lies on the roof or on the terrain.
Considering the planimetric layout of all building contours
(and possibly accounting for other objects which need to be
corrected due to their relative height with respect to the
surrounding terrain), two binary masks are generated (see
Fig. 1):

1. the building mask (BM): the building raster map;
2. the terrain mask (TM): the raster map which is
complementary to the BM.

Figure 1. The building mask (on top) and the terrain mask
(on bottom).

Obviously the sum of both masks gives the entire zone. From
an original vector format the two masks are rasterized with a
planimetric resolution higher than that of the DDSM (few
centimetres). Then the original DDSM is resampled
according to new denser regular grid. Every new node will
have the height of the nearest cell of the original DDSM,
considering if the point lies on the BM or on the TM (Fig. 2).
The approach allows the roof to be determined with a
precision equal to the raster masks.

The densification of the original DDSM is carried out at first
on the zone covered by the BM, in such a way that the new
node outside this mask is classified as a null value. The same
operation is later performed with the TM. The sum of the two
resulting DDSMs gives the whole DDSM useful for the
generation of the geometrically corrected orthophoto.

The flow chart of the developed method is shown in Figure 3.
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In the following sections some applications of the proposed
method based on different data set covering the same area
will be shown.
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Figure 2. The creation of the Building and Terrain DDSMs
Legend: e node of the original DDSM
+ node of the new DDSM
/I mask

| Creation of the Building and Terrain Masks |

|Creation of the Buildings and Terrain DDSMs|

|
l l

| Buildings and Terrain orthophotos creation | | DDSMs union |

Orthophotos union Orthophoto creation

Figure 3. Flow chart of the proposed method

3. ORTHOPHOTO USING A GRID DTM
3.1 Data set description

The proposed method for the generation of orthophoto has
been tested on a small aerial block (8 images) captured over
the city of Lecco (Lombardia, Italy) by an analogue camera
Wild RC30, equipped with a standard lens (150 mm). Images
have been taken during 2003 and feature a mean scale of
about 1:17000, covering an area of about 10,000 m?. The
transformation from analogue to digital has been
accomplished by using a photogrammetric scanner at a
geometric resolution of 14 pum pixel size, corresponding to a
footprint on the terrain of about 20 cm.

The aerial triangulation and the ortho-rectification have been
performed by Geomatica V10 Orthoengine, i.e. by using a
standard commercial processing package. The advantage of
the proposed technique relies in the fact that no special
algorithms have to be implemented for the orthophoto
generation, but only a pre-processing of the DSM is needed.
This consists in the creation of both masks adopted to classify
points on the terrain and on buildings, that are derived from a
spatial DB of the study area. This has been created by a
digatal photogrammetric process on the basis of the same
image block adopted for the generation of the orthophotos
themselves. Indeed, either the spatial DB and the images
represent the landscape exactly at the same time, and
therefore they should not show differences. On the other
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hand, discrepancies might arise concerning the DSMs and the
DTM adopted for testing the procedure, which have been
captured at different epochs.

In the next sub-sections, results using DTM and DSM with
different resolution will be shown.

3.2 Results using a 20 m DTM

Initially orthophotos at two different image resolution (50 cm
and 20 cm, respectively) have been created based on a DTM
covering the whole Lombardia region, featuring a grid of 20
m resolution.

In figure 4 a patch of the resulting orthophoto at the
resolution 20 cm is reported. The layer corresponding to
buldings on the spatial DB has been super-imposed to
orthophoto, in order to check the quality of the geometry
correction. In reality, these tests have been performed on a
wider area than that shown in figure 4. For the sake of picture
clarity and readability, here we only show a detail of
orthophotos generated by different data sets and methods
over the area where a large commercial centre designed by
Renzo Piano arises. This choice is motivated by the complex
geometry of the roof and the height of this building (50 m),
representing a very critical case study to check the
effectiveness of the proposed approach.

In figure 5 a zoom on the central area of figure 4 is reported,
showing that low buildings are correctly represented because
the use of a DTM does not result in significant errors. On the
contrary, the piece of orthophoto corresponding to the central
building has not an adequate correspondence with the vector
map, because a DTM in this area is not able to provide
information to correct geometric distortions. The mean
magnitude of this misalignement error results in the order of
some meters. Very similar results have been obtained with
both 20 cm and 50 cm resolution orthophotos.

Figure 4. Orthophotos with resolution 20 cm generated by
using a 20 m resolution DTM; the building layer
(in red) has been super-imposed.
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Figure 5. Detail on errors concerning the Renzo Piano
building by using the DTM at 20 m resolution.

3.3 Results using a 2 m LiDAR DTM

LiDAR (Light Detection and Ranging) technology is able to
provide a complete 3-D model (DSM) of the investigated
surface. By filtering vegetation, buildings and other objects, a
DTM can be derived with an accuracy in the order of
decimetres.

In this test, a DTM at a resolution of 2 m has been provided
by the Land Administration Dept. of Lombardia Region.

A detail of the orthophoto generated using a LIDAR DTM at
20 cm image resolutions is shown in Figure 6. Also in this
case, like in Fig. 4, there is not a good correspondence to
vector maps in case of tall buildings.

Figure 6. Orthophotos at an image resolution 20 cm
according to a LIDAR DTM of 2 m resolution.

4. ORTHOPHOTO USING A GRID DSM

LiDAR allows also to derive a DSM of the interested area,
that can be used to straighten up the position of each
buildings, especially when the height is relevant. The adopted
DSM was also provided by Lombardia Region at a 2 m
spatial resolution.

Some tests have been performed at the original resolution of
the DSM (2 m), and with other two reduced resolutions (4 m
and 10 m). These last DSMs have been created with a thin
out operation on the original DSM, up to 4 m (deletion of the
50% of the nodes), and 10 m (deletion of the 96% of the
nodes). In Fig. 7 the orthophoto at image resolution of 20 cm
according to a DSM of 2 m is shown.
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Likewise the previous case when a DTM has been adopted,
here the correspondence between orthophoto and vector data
is satisfying not only for low buildings, but also for the tall
constructions. Moreover, results achieved by using DSMs at
different resolutions (2, 4 and 10 m) are quite similar, even
though the results correspond to the use of the DSM at the
higher resolution (2 m). After a more accurate analysis, it is
possible to pick out a jagged gutter line on each orthophoto,
generated by a lack of data along the roof edges (see Fig. 7).
Indeed, here an interpolation of the grid DSM is needed,
because the resolution of the orthophoto is higher than the
resolution of the DSM, but the algorithm has not information
about where the roof edge is really located. The interpolation
is based on the height values of the points in a surrounding
area, independently if a point is located on a terrain or on the
roof building.

Figure 7. Orthophoto at image resolution of 20 cm,
according to a DSM at resolution 2 m (on top); on
the bottom a detail showing the jagged gutter line

effect is reported.

5. ORTHOPHOTO USING THE PROPOSED
METHOD

5.1 Generation of orthophotos

The method to generate orthoimages proposed in this paper
has been developed to avoid the jagged gutter line effect due
to the use of a coarse DSM.

As described in Section 2, the first step is to create the
buildings and terrain masks of the considered area in raster
format. Using a spatial database provided by the
administration of the city of Lecco, we could extract only the
zone relating to the surface covered by buildings, while the
remaining part have been classified as terrain. From an
original vector format, both masks have been rasterized with
40 cm and 20 cm pixel size resolution (see Figure 1). These
resolutions allow to derive information about where a
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building border line is really located with a largest error of 40
and 20 cm, respectively.

The following step is the thickeness of the original 2 m
LiDAR DSM to the same resolution of the masks. Initially,
the portion covered by the BM has been thickened, by
assigning the height value of the first nearest node (nearest
neighbour method) to each new grid node of the derived
DDSM, considering only the point inside the mask. To each
point outside the mask a “nodata” value has been assigned.
The same operation has been performed with the TM. These
tasks have been implemented to be carried out in GRASS and
ArcGIS GIS environments.

By using these two DDMSs is now possible to generate of
the corresponding orthophotos (Figure 8).

The last step is tth fusion of both orthophotos, being one the
complementary of the other. The same result could be
achieved by the preliminary mosaicking of two DDMSs and
the generation of the complete orthophoto in only one step.

Figure 8. Orthophotos generated in correspondence of
buildings and terrain DDSMs.

5.2 Results with the proposed method

In order to show the improvement in the orthophoto quality
obtained by adopting the proposed method, we focus on the
results achieved in correspondence of the building of Renzo
Piano already used in the previous cases. In Fig. 9 the
orthophotos generated on the basis of the building DDSM
and the full orthophoto are reported. In this case the building
DDSM has a resolution of 20 cm, exactly the same of the
orthophoto. Results are very good, being the jagged gutter
line effect fully removed. Figures 10 illustrates the results
using the complete DDSM with the union of both buildings
and terrain DDSMs to generate an orthophoto at the
resolution of 20 cm. Here both DDSMs at resolutions of 20
and 40 cm have used.
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In these cases the correspondence between the vector map
and the corrected orthophoto is verified in zones with both
low and tall buildings, therefore in every area of the picture.

Figure 9. The orthophoto generated on the basis of the
buildings DDSM and the complete orthophoto.

Sa N\

e

Figure 10. Orthophoto generated from a 20 cm DDSM.

5.3 Quantitave check of the results

A quantitative control of the results using a 20 m resolution
DTM and a 2 m LiDAR DSM has been performed with the
evaluation of the displacements between the spatial DB and
the generated orthophotos. In particular, a sample of 100
buildings around the tall Renzo Piano building adopted a
case study has been chosen for this control. The histograms
in Figure 11 represent the measured displacements.

As it can be seen by analyzing the histograms, with a 20 m
DTM the errors vary from a few centimetres up to 5-6 meters,
the latter corresponding to the tallest buildings. Using a 2 m
DSM, the error is always less than the DSM resolution but
the jagged gutter line effect is present.

Finally the check with the proposed method has given errors
in the range of few centimetres, because the orthoprojection
of buildings has been corrected to coincide to the contours
coming from the vector map.

Moreover, it was verified that the 40 cm DDMS resolution
orthophotos have also a high quality, even though the best
results can be obtained by fixing the resolution of the DDSM
exactly equal to the resolution of the orthophoto, (in our case
20 cm).



IAPRS Volume XXXVI, Part 3 / W52, 2007

o

o

Figure 11. Displacement histograms (in m) measured using a
20 m DTM (on top) and 2 m LiDAR DDSM (on
bottom)

5.4 Computational cost

It was verified that the computational cost depends mainly on
the values of the output parameters, and specifically on the
final orthophoto image resolution. In the test executed with
the different DTMs, DSMs and DDSMs, the time necessary
for the orthophoto production was about the same if the
orthophoto resolution was kept constant. This is quite
obvious, because with a low resolution DTMs or DSMs the
software must execute a grid interpolation to get the height
values needed for the rectification of each pixel of the
original image. Instead, with a DDSM the interpolation is not
necessary and this can increase the computation speed. In any
case the file dimension is considerable (for example passing
from 2 m up to 20 cm resolution, the dimension of the file
has increased by about 96%) and therefore, considering the
need to manage a so large file, the computational time
remains about the same.

6. FINAL CONSIDERATIONS AND FURTHER
IMPROVEMENTS

This paper proposes a method, which has been tested on real
data, for generating orthophotos geometrically corrected to
account for modelling of buildings. The implemented
technique exploits a Dense Digital Surface Model (DDSM)
acquired through LiDAR technology, coupled with a vector
map describing the shape of the buildings. The method is
useful when the goal is to create a high accuracy orthophoto
in which every building is correctly rectified.

For this reason, it is particularly suitable for areas where
there is a high density of tall buildings. When generating
such orthophotos (also described in the literature as “True-
orthophoto®”), the main problem to consider is the
rectification of the gutter line of every building with a
precision of the same order of the orthophoto’s geometric
resolution. Tests carried out during this research have shown
that this problem cannot be solved for by using DTM or
DSM only.

In the paper, the orthophoto corresponding to the building
roof is generated by deriving heights from the DSM through
a simple interpolation method (nearest neighbour). This
technique could be improved by better 3-D modelling of the
roof structure (e.g. by using a parameterized model), or by a
more refined interpolation technique. The decision about
which portion of the ground is covered by buildings is
currently taken by using existing vector maps of the same
area. However, the vectorization of raster maps (Brovelli &
Zamboni, 2006) would make available this kind of data as
well.
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ABSTRACT

The improvement of laser scanning as a proficient technology to better understand the complexity of the forest has recently allowed
the detection of the forestry parameters at tree level. From a forest inventory point of view, however, a common use of such
technology is related to the accuracy that can be obtained if vast and differently composed forestry surfaces are considered. In this
paper, an improvement in the morphological analysis methods for tree extraction is presented. The method, developed in an open
source environment, is based on the automatic determination of the forest structure by means of some LiDAR-extracted vegetation
indexes. The study site is located in some mountainous parts of Friuli Venezia Giulia (N-E Italy) characterized by coniferous, mixed
and broad-leaved forests with high variability in terms of population densities and composition. The results have been validated
using topographic total station data surveyed in situ, in 13 forestry sample plots with a total of about 550 reference trees. Moreover,
some further datasets have been studied by mean of photo-interpretation process on high resolution aerial images. The paper
highlights the advantages of using this dynamic approach for tree extraction.

1. INTRODUCTION

Monitoring of the forestry ecosystem is a current topic in the
context of quantification and sustainable management of
wooded resources. To characterize the vegetation from an
ecological state and biomass content point of view, an accurate
knowledge of the population density is needed. The assessment
of such parameters is critical in terms of field operations and
time needed. In this context, Airborne Laser Scanning (ALS) is
a promising survey technique for forestry inventories because of
its capacity to directly assess the three dimensional structure of
the forest due to the high point number of sampling per surface.

Computer science plays a major role in the laser surveying field:
the data processing and the developing of new algorithms for
filtering, classifying and modelling of LiDAR data in the
forestry field are research topics constantly being developed.
Part of the research activities carried out within the Interreg I11A
Italy-Slovenia 2003-2006 project "Cadastral map updating and
regional technical map integration for the Geographical
Information Systems of the regional agencies by testing
advanced and innovative survey techniques" at the University of
Udine concerned the use of LIDAR data in the forestry field. In
this context, attention has been focused on the development of
informative methodologies and algorithms useful in the
automatic extraction of the parameters characterizing the three-
dimensional structure of the trees. The experiments were
performed using an original software developed in the
laboratory. The main components of the software allow the
visualization of the laser scanning data, to draw sections, to
calculate DTM and DSM and to overlap them with other
cartographic maps (Beinat, Sepic, 2005). On this basis a specific
tool were implemented in order to extract forestry parameters of
interest like the cartographic position of the single trees, the tree
height, the crown shape and the crown insertion depth.

* Corresponding author.
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From a tree-level inventory point of view, the extraction of tree
position is the most important parameter to determine. The tree
parameters (e.g. crown area, crown depth, volume) can be
derived starting from the preliminary detected tree position, as
many authors have already done (Hyyppé et al, 2004; Morsdorf
et al., 2003; Pitkdnen et al, 2004; Weinacker et al., 2004). The
results obtained for individual tree extraction have varied
significantly from study to study. Many factors contribute to
cause this variation: the methods applied and the forest
characteristics are the principal ones. Concerning the methods,
the first studies were related to the use of rasterized Crown
Height Model (CHM) as input data to perform local analysis
while, recently, a trend towards using the point cloud data
directly has been noticed (Pyysalo and Hyyppé, H., 2002; Tiede
et al., 2005; Barilotti and Sepic, 2006). As far as the forest
composition is concerned, some authors derive forest
information using laser data in synergy with high resolution
aerial images. The latter technique provides color information
usable for classification (Leckie et al., 2003; Persson et al.
2004). In this paper, a new methodology for tree extraction is
presented. The characteristic elements of the implemented
procedure are based on the assessment of local forest structure
which is carried out by a multivariate analysis on laser-derived
vegetation indexes. This allows the application of mathematical
morphology in an auto-adaptive way. The method, following an
automatic approach, is able to dynamically fit the apex
searching parameters on the basis of the dataset characteristics,
increasing the efficiency of the tree extraction process.

2. MATERIALS

The study areas are located in some mountainous areas of Friuli
Venezia Giulia Region (N-E Italy) essentially characterized by
coniferous forests (spruce, spruce-fir), broad-leaved forests
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(beech) and mixed forests (spruce, fir, beech and Alpine Larch).
Within these areas some sub-zones of interest have been located
and geo-referenced using topographic total station and GPS.
This has allowed the precise and accurate determination of the
coordinates of 13 circular forestry plots (transects) with radius
ranging between 12 and 25 meters. During a field measuring
campaign, detailed information on the morphology and the
structure of each tree were collected. Using a topographic total
station the cartographic position of all trees (diameter at breast
height more than 5 cm) and the crown extension (4 sampling
points for each one) were measured (e. g. in Figure 1). The total
data acquired in situ using topographic instruments covers
approximately 550 tree points and 2200 crown points.

Figure 1 — Example of trees collected on site in MBD plot. The
correspondent high vegetation laser points can be
seen in the background of the image.

The forestry characteristics of the studied plots with the
respective laser point densities are reported in Table 1.

n° of

Plot trees/h Area Forest LiDAR data
1D rezs (m?) characteristics characteristics
FOA 663 450 Mature - mixed 2 pt/m®- F&L
FOB 531 450 Mature - mixed 2 pt/m’- F&L
MBA 619 450 Mature - mixed 6 pt/m* - Multi
MBB 1525 450 Juvenile - spruce 7 pt/m* - Multi
MBC 575 450  Juvenile - spruce 8 pt/m* - Multi
MBD 463 2000 Mature - spruce 10 pt/m* - Multi
PRB 840 450 Ouvemileadult- o b peL
spruce
PRC 752 45 Juvemileladult- oo 2 per
spruce
SAA 336 2000 Mature - beech 4 pt/m” - F&L
TUA 538 700  Juvenile - beech 2 pt/m’ - F&L
TUB 862 450 Juvenile-beech 2 pt/m’- F&L
TUC 553 450 Juvenile - beech 2 pt/m’- F&L
VBA 1105 450 Juvenile - spruce 5 pt/m’ - Multi

Table 1 — Summary of the georeferenced plot characteristics.
Considering the different age and composition of the
13 transects compared to the different laser densities,
8 different forestry situations can be found.

The height of crown insertion was measured using portable
instruments (length and angle). The diameter at breast height
was also measured. These values were used to localize the
dominated vegetation. However, the individual trees whose
apex did not reach the top of the canopy were objectively
surveyed during the field operations. As far as the laser data is
concerned, the main characteristics of the datasets are reported
in column 5 (Table 1). Some datasets were detected using a
multiple pulse laser scanner (Optech ALTM 3100). On one
hand, such an instrument increases the capacity to sample the
intermediate layers of the vegetation but, on the other, it does
not substantially furnish extra information on the higher part of
the canopy, when compared to the First and Last (F&L) data.
However, in these cases we have plots with higher sampling
points (5-10 pts/m?) than those surveyed with a F&L pulse laser
scanner (low density, 1.5 — 2 pts/m?). The flight altitude was
about 1000 m above ground and the laser beam divergence was
0.2 mrad (small footprint), according to the different datasets. It
has to be specified that none of this laser data was specifically
collected for forestry measurements.

Moreover, 4 further datasets have been studied using high
resolution aerial photography (20 cm pixel) which allowed us to
single out the position of the trees by a photo-interpretation
procedure. The forest characteristics were also photo-
interpreted. The corresponding LiDAR dataset was surveyed
with a F&L instrument (Optech ALTM 3033) for an average
density of about 3 point/mz, as shown in Table 2.

Plot tI;e:sI; Area Forest LiDAR data
ID ha (m?) characteristics characteristics
PHA 1380 450 Juvenile - spruce 3.5 pts/m* - F&L
PHB 410 2000 Adult-spruce 3 pts/m”- F&L
PHC 385 2000 Mature-spruce 3 pts/m” - F&L
PHD 185 2000 Mature - mixed 2.5 pts/m® - F&L

Table 2 — Summary of 4 photo interpreted transect. The PHA
transect, in particular, is composed of a very dense
population of planted spruces.

Approximately 258 trees were photo-interpreted on the basis of
the high resolution aerial photography.

3. METHODS

The methods presented here for tree extraction are related to the

morphological mathematical approaches. The procedure is

composed of a series of elaborations and transformations that
can be schematized as follows:

e  Pre-processing of the raw laser data (true DSM);

e Application of mathematical morphology algorithms,
following a single tree approach, to extract the canopy
apexes;

e Application of a dynamic search radius based on
multivariate analysis of LiDAR-extracted indexes.

The last step is an important improvement in the method used
for tree extraction because it makes it possible to automatically
apply the morphological analysis in a local context. As will be
shown later, such a dynamic and auto-adaptive procedure has
been implemented in order to eliminate the need for a detailed
knowledge of the dataset characteristics and the forest
composition as well. A description of the implemented
algorithms and the related steps of elaboration are reported
below.
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3.1 Pre-processing (true DSM)

The implemented step relating to the laser data pre-processing
consists of an algorithm that eliminates from the dataset the
points corresponding to the laser beam reflection under the
canopy. The algorithm executes a first triangulation (Delunay)
of all points, then analyzes the height (z) difference between the
vertices of each triangle. Those vertices whose height difference
is greater than a threshold value (according to the minimal
height of the forest) are eliminated. This allows the creation of a
Digital Surface Model (DSM) without any triangulation inside
canopy (true DSM) and therefore introduces a higher degree of
DSM adhesion to the external forest surface.

3.2 Morphological analysis

3.2.1 Mathematical morphology
The method proposed for the tree extraction is based on the
morphologic analysis of the laser point distribution.
Accordingly, the Top Hat algorithm, whose formulation is
related to the image elaboration theory (Serra, 1982), was
implemented. This mathematical function allows the extraction
of the highest elements in the scale of the represented values,
independently from the image typology (Andersen et al., 2001,
Barilotti and Turco, 2006). If we considering f(x) as the grey
value of a generic pixel x of a point localized in u; f(X) as the
corresponding value of the transformation of the matrix X; 4 as
the structural geometric element to determine (or as the
dimension of the explorative kernel centred in x), the Top Hat
function is based on the Opening transformation (1) defined as
follows:

0" f(X) = D* [E* f(X)] (1)
Therefore, the following transformations of Erosion (2) and
Dilatation (3) are applied:

E* f(X) = inf {f(u) : u € A} )

D* f(X) = sup {f(u) : u e A} (3)
The Erosion operator (2) associates to the centre of the kernel
(Ax) the inferior (inf) value among the surrounding pixels while
the Dilatation operator (3) associates the superior (sup) value.
The extraction of the local maximums in the scale of the
image values is carried out by using the function Top (4)
that subtracts the primitive image (function) from the Opening-
transformed function:

TOP = {x: f(x) - O f(X)} )
Extending the Top Hat concept directly to the pre-filtered point
cloud, the method allows the detection of the set of points
belonging to the top of the crown, avoiding the interpolation
on raster images. A preliminary set of higher points (seed
points) is obtained in this way, the number of which depends on
the kernel used (e.g. A = 3 x 3 and cell value of 1 meter). It is
assumed that these points are an over estimation of the real
trees, particularly when a kernel smaller then 3 meters is used
(e.g 2 =3 x 3 and cell value of 0.5 meters).

3.2.2  Fixed search radius

In order to diminish this kind of error, a checking algorithm that
identifies and corrects the erroneously classified apexes (often
localized in the crown edges) was introduced. The algorithm
compares the height value of each extracted apex to the nearest
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laser points, using an opportune (user defined) search radius. If
a point with a greater height value is found inside the search
window, it becomes the new apex. Normally, a search radius
slightly bigger than the kernel (A used in the morphological
analysis) maintains the high level of the method efficiency but,
on the other hand, the number of false positive trees remains
high. Experimentally, it has been observed that the optimal
radius ranges between 1.50 and 1.80 meters when a 3 m kernel
is used. This average radius can be manually set up and
optimized on the basis of the expected forest typology.
However, different A and radius should be used depending on
the forestry species present and population density.

3.3 Pre-detection of forestry composition

When the study area is characterized by a very high variability
of forest composition and structure, the working procedure
should foresee a sub segmentation of the LiDAR dataset,
applying different analysis parameters. To avoid this procedure,
which is expensive in terms of time, a method to automatically
assess the forest structure was introduced, performing a multi-
variate analysis on two different LIDAR-extracted indexes:
Laser Penetration Index (LPI) (Barilotti et al, 2006);
Crown Height Model (CHM).

3.3.1 Laser Penetration Index (LPI)

The laser beam penetration through the canopy varies
depending on to the macro-species composition, the tree
density, the height of the forest. Concerning the broad-leaved
forests, the season of survey plays an important role for the
laser penetration capacity, which is reduced by the presence of
the foliage cover. Moreover, geometric LIDAR parameters like
the laser beam dimension, the flight altitude and the scan angle
should be taken into consideration but, as constant flight
setting, are not considered here. This specific capacity of the
LiDAR measurements in penetrating the canopy can be studied
in terms of ground point number variation through the dataset.
On the basis of this assumption, a Laser Penetration Index (LPT)
(5) was defined as follows:

Where Gj; = Ground Point Density
V; = High Vegetation Point Density (h > 1
above the ground)

Gj in the denominator allows the normalization of local
sampling density due to LiDAR strips overlapping and
variations in the helicopter speed. Because of the non-
homogenous distribution of LiDAR sampling points in the
studied areas, Gj and Vj are calculated on the basis of a
neighbourhood analysis by means of an explorative radius
which is determined using the initial point sampling density.

An example of LiDAR data elaboration is given below: Ground
Point Density and High Vegetation Point Density are reported
in Figure 2-Upper and 2-Center, respectively. In the sequence
the values are represented using a yellow-blue coloured scale.
As normalized index, LPI ranges between 0 and 1, as expected
(yellow to blue respectively in Figure 2-Lower). LPI values
close to 0 describe dense vegetation while values close to 1 are
characteristic of an open stand or clear ground. Intermediate
values of the LPI synthesize local variations of the forest in
terms of structure and composition. An analysis of the LPI
values leads us to the following conclusions:

e The denser the population the less the penetration (this is
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particularly true when the same species is considered);

The laser penetration is lower in the broad-leaved forests
than in the coniferous forests if the dataset is surveyed in
summer (the opposite is true in autumn, because of the
absence of foliage cover);

A multi-layered forest tends to reduce the LPI values;

The penetration is generally lower when tall stand or very
dense populations are considered.

Figure 2 — Penetration index (LPI) elaboration in a mixed forest
area. Upper: Ground Point Density map; Center:
High Vegetation Point Density map; Lower: Laser
Penetration Index.

3.3.2  Crown Height Model (CHM)

The Crown Height Model is a widely used vegetation index
allowing the automatic estimation of the forest height, the forest
cover and, in the case of multi-temporal surveyed data, the
detection of the forestry cover changes. This index can be easily
obtained by an algebraic subtraction between the rasterized
Digital Surface Model and the Digital Terrain Model (Hyyppé
et al., 2001). Even though a tendency to underestimate the real
heights has been highlighted (Patenaude, 2004), the information
on the CHM can be used to interpret the age of the forest.
In a natural ecosystem, if the same species is actually
considered, the higher the average stand height, the more
mature the population, therefore, the lower the density.

3.3.3 Multivariate analysis

Multivariate statistical analysis allows the exploration of the
relationship between many different types of attributes. In an
unsupervised classification, the features actually at any
specified locations are unknown. The structure of the forest can
be however derived in a relative way. Reading the spatial
variability of the LPI and CHM values it is possible to aggregate
each of the locations into one of a specified number of groups or
clusters. The following examples (Figure 3) show 9 classes of
variability in 3 different forested areas when multivariate
analysis is performed using LPI and CHM. The sequence
highlights the capacity of the method to separate differently
composed areas. Each clustered area corresponds to a different
forestry composition. Thus, the multivariate map can be used
for an automatic sub-segmentation of the dataset.
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Figure 3 — Examples of multivariate map on three different
forested areas. From top to bottom: coniferous forest
(spruce with larch.), mixed forest (spruce and
beech), broad-leaved forest (beech).

3.4 Dynamic morphological analysis

A dynamic process which considers the multivariate values was
implemented allowing the local application of morphological
methods previously described. On the basis of the classified
index values, a double entrance table was implemented. The
search radius is considered as the independent variable which
value is empirically determined. Moreover, independently from
the stand characteristics, the local density of laser points was
taken into consideration for tree extraction processes.
This further variable was introduced by performing a triple-
entrance table. This means that, for each class of laser density, a
double entrance table was implemented. Thus, each location
(apex) can be visualized as a point in a multidimensional
attribute space whose axes correspond to the represented
variables. The method is applied to the preliminary apexes,
extracted using the Top Hat algorithm. In this case, a 3 x 3
kernel (A) with cell dimension of 0,5 m was used in order to
guarantee the maximum degree of efficiency. For each seed
apex, the average values of LPI, CHM and laser density are
calculated within an explorative surrounding window. The
combination of these values furnishes the best value to use as a
search radius within each preliminary space location.
Afterwards, the search radius procedure is iteratively applied,
until the false apexes converge to the correct ones. The
convergence procedure is performed until no greater height
values are found inside the dynamic-defined search window.

4. RESULTS

The result of the comparison between field trees (see Table 1)
and laser extracted trees is reported in Table 3 and Table 4. The
former table is related to the fixed radius approach shown in
paragraph 3.2.2. In this case, the analysis parameters (4 and
radius) were manually determined and optimized according to
the real tree locations. The latter table reports the results of the
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correlation between field trees and LiDAR—extracted trees when
the dynamic search radius method is performed (3.4 chapter).

Plot LiDAR Correct Correct False
ID Extracted dominant dominated  positives
FOA 70 85 0 13
FOB 92 100 0 25
MBA 86 68 0 39
MBB 29 63 0 0
MBC 65 81 0 0
MBD 86 88 0 9
PRB 84 82 0 13
PRC 85 76 0 21
SAA 95 83 0 17
TUA 118 100 33 50
TUB 79 85 0 21
TUC 80 71 0 12
VBA 60 83 0 0
PHA 61 61 0 2
PHB 68 68 0 0
PHC 79 79 0 0
PHD 84 81 0 3

Table 3 — Comparison between field tree number and LiDAR-
extracted trees using the fixed search radius method.
All values are reported in percentage.

Plot LiDAR Correct Correct False
ID Extracted dominant dominated  positives
FOA 60 90 0 0
FOB 38 100 12 17
MBA 89 84 0 32
MBB 29 63 0 0
MBC 81 100 0 0
MBD 95 99 0 8
PRB 71 79 0 3
PRC 68 69 0 9
SAA 97 89 0 12
TUA 116 100 38 45
TUB 79 89 0 18
TUC 120 83 0 40
VBA 60 83 0 0
PHA 82 82 0 2
PHB 86 85 0 1
PHC 85 85 0 0
PHD 111 95 0 16

Table 4 — Comparison between field tree number and LiDAR-
extracted trees using the dynamic search radius
method. All values are reported in percentage.

In the two tables, trees with a diameter which significantly
inferior to the surrounding ones are considered “dominated”.
Moreover, the apexes which are located 3 meters beyond field
surveyed trees are considered “false positives”. In Figure 4, an
example of the use of these approaches is given. The green
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triangles represent the position of the trees surveyed on site.
The red points identify the trees extracted using a fixed search
radius, while the black ones, which are tagged with the
corresponding radius used, derive from the application of
dynamic radius. As can be seen in the image, three more apexes
were detected while a false positive one was extracted in this
transect.
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Figure 4 — Example of dynamic search radius application in the
MBC transect. The green triangles are the real trees
and the black points the extracted trees using a
dynamic approach. The apexes, extracted using the
fixed-radius method, are shown in red.

A summary of the percentage differences between the two
approaches is given in Table 5.

plot o Diff-correct  Diff. correct  Diff. false
= dominant (%)  dominated (%)  positives (%)

FOA 5 0 13
FOB 0 12 8
MBA 16 0 7
MBB 0 0 0
MBC 19 0 0
MBD 11 0 1
PRB 3 0 1
PRC -7 0 12
SAA 0 5
TUA 5 5 5
TUB 0 3
TUC 13 0 28
VBA 0 0 0
PHA 21 0 0
PHB 18 0 |
PHC 5 0 0
PHD 14 0 14

Table 5 — Comparison between percentage of extracted trees
using fixed and dynamic search radius methods. The
values reported in red show a decreased quality of
the results obtained using the dynamic method.

The first column, showing positive values, implies that the
dynamic method generally enhances the performance of the tree
extraction process. This improvement reaches significant values
especially in the case of juvenile forests, characterized by small
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diameters, where the population density is very high. The results
also seem to improve significantly when the forestry plot is
mature and mono-layer structured (even-aged). In this case, the
percentage of trees extracted correctly reaches high values,
meaning that the most interesting part of the forest (from an
above ground biomass content point of view) is extracted in
coniferous forests as well in broad-leaved forests. Only two
transect (PRB, PRC) show worse results. This is probably due to
the insufficient density of the laser survey (< 1.5 pts/m?).
However, the second column in table 5 is related to the
differences regarding trees which were extracted but were in
fact “false positive”. In this case negative values indicate that
the dynamic radius approach is able to maintain a lower level of
local overestimations, due to the high variability of laser point
distribution. However, this overestimation remains high in the
case of juvenile converted broadleaved forests. Within these
forestry categories, as the LPI tends to assume minimum values,
the corresponding search radius become much small. Further
experiments should be done, in order to consider whether the
use of denser laser surveys could diminish this kind of error.

5. CONCLUSIONS

An innovative method of laser scanning data processing to
automatically detect tree positions is proposed. The method,
developed in an open source environment, is based on the
automatic determination of the forest structure by means of
some LiDAR-extracted vegetation indexes. This information is
used to improve the quality and the accuracy of the tree
extraction process based on mathematical morphology analysis.
The main characteristic of the method is its high flexibility due
to the multivariate approach implemented that not only
considers the local forest composition but also adapts itself to
the relative distribution of the laser sampling points. A field
survey campaign in some mountainous geo-referenced plots
highlighted the optimal performances of the method as far as the
positioning and counting of the dominant trees (the main source
of forestry biomass), in both coniferous and broad-leaved forests
is concerned. The high percentage values of trees extracted
prove the LiDAR to be an interesting and efficient technology in
improving the knowledge of the forestry ecosystems and may be
useful in the better management of natural resources.

REFERENCES

Andersen, H.E., Reutebuch, S.E., Schreuder, G.F., 2001.
Automated  Individual  Tree  Measurement  through
Morphological Analysis of a LIDAR-based Canopy Surface
Model. Proceedings of the first International Precision Forestry
Cooperative Symposium, Seattle, Washington.

Barilotti, A., Turco, S., Alberti, G., 2006. LAI determination in
forestry ecosystem by LiDAR data analysis. Proceedings
International Workshop 3D Remote Sensing in Forestry, pp. 248
- 252, Wien, 14-15 Feb. 2006.

Barilotti, A., Turco, S., 2006. A 3-D GIS for the sustainable
management of forest resources. Proc. of the 4th Meeting of
IUFRO Working Party 8.01.03, Pattern and Processes in Forest
Landscapes - Consequences of human management, pp. 349 -
354, Locorotondo (Italy), 26-29 Sept. 2006

Barilotti, A., Sepic, F., 2006. Delineazione automatica delle
chiome in diverse tipologie forestali attraverso analisi di dati
LiDAR. Atti della 10° Conferenza Nazionale ASITA, Bolzano
(Italy), 14-17 Nov. 2006

31

Beinat, A., Sepic, F., 2005. Un programma per I'elaborazione di
dati Lidar in ambiente Linux. 50° Convegno Nazionale della
Societa Italiana di Fotogrammetria e Topografia, Mondello,
(Ttaly), 29-30 Jun. 2005.

Morsdorf, F., Meier, E., Koetz, B., Niiesch, D., Itten, K.,
Allgower, B., 2003. The potential of high resolution airborne
laser scanning for deriving geometric properties of single trees.
In EGS - AGU - EUG Joint Assembly, Nice, France. 2003.

Hyypp4, J., Mielonen, T., Hyyppd, H., Maltamo, M., Yu, X.,
Honkavaara, E., Kaartinen, H., 2005. Using individual tree
crown approach for forest volume extraction with aerial images
and laser point clouds. ISPRS WG 1lIA, V/3 Workshop “Laser
scanning 2005, Enschede, Sept. 12-14.

Leckie, D., Gougeon, F., Hill, D., Quinn, R., Armstrong, L.,
Shreenan, R., 2003. Combined high-density lidar and
multispectral imagery for individual tree crown analysis.
Canadian Journal of Remote Sensing 29, No. 5, pp. 633-649.

Patenaude, G., Milne, R., Dawson, T.P., 2005. Syntesis of
remote sensing approaches for forest carbon estimation:
reporting to the Kyoto Protocol. Environmental Science &
Policy, 8, pp.161-178.

Persson, A., Holmgren, J., Séderman, U., Olsson, H., 2004.
Tree species classification of individual trees in Sweden by
combining high resolution laser data with high resolution near
infrared digital images. Proceedings of the Natscan Conference,
4-6 Oct. 2004.

Pitkénen, J., Maltamo, M., Hyypp4, J., 2004. Adaptive methods
for individual tree detection on airborne laser based canopy
height model. International Archives of Photogrammetry,
remote Sensing and Spatial Information Sciences, Vol. XXXVI
- 8/W2.

Pyysalo, U. and Hyyppa, H., 2002. Reconstructing Tree
Crowns from Laser Scanner Data for Feature Extraction. ISPRS
Commission Il Symposium, Graz, Austria.

Serra, J., 1982. Image analysis and mathematical morphology 2.
Theretical advances, Academic press, London.

Tiede, D., Hochleitner, G., Blaschke, T., 2005. A full GIS-
based workflow for tree identification and tree crown
delineation using laser scanning. /APRS, Vol XXXVI, Part
3/W24, Vienna, 29-30 Aug. 2005.

Weinacker, H., Kock, B., Heyder, U., Weinacker, R., 2004.
Development of filtering, segmentation and modelling modules
for LiDAR and multispectral data as a fundament of an
automatic forest inventory system. International Archives of
Photogrammetry, remote Sensing and Spatial Information
Sciences, Vol. XXXVI - 8/W2,2004.

ACKNOWLEDGEMENTS

This work was carried out as a part of the research
activities supported by the extended INTERREG IIIA
Italy-Slovenia 2003 - 2006 project "Cadastral map updating
and regional technical map integration for the Geo-
graphical Information Systems of the regional agencies
by testing advanced and innovative survey techniques".



ISPRS Workshop on Laser Scanning 2007 and SilviLaser 2007, Espoo, September 12-14, 2007, Finland

REGISTRATION OF TERRESTRIAL LASER SCANS VIA IMAGE BASED FEATURES

Shahar Barnea, Sagi Filin

Dept. of Transportation and Geo-Information Eng., Technion — Israel Institute of Technology, Haifa 32000, Israel
{barneas, filin}@tx.technion.ac.il

Commission V, WG 3

KEY WORDS: Registration, Feature Extraction, Terrestrial Laser Scanner, Point Cloud, Algorithms

ABSTRACT:

The complexity of natural scenes and the amount of information acquired by terrestrial laser scanners turns the registration among
scans into a complex problem. This problem becomes even more complex when considering the relatively low angular resolution of
terrestrial scanner compared to images, the monotonicity of manmade surfaces that makes the detection of corresponding objects
difficult, and the lack of structure of vegetated objects that makes the detection of meaningful features difficult. Since most modern
scanners are accompanied with consumer cameras of relatively high quality, it stands to reason making use of the image content for
the registration process. Such alternative will benefit from the large body of image based registration work that has been carried out
for several decades and therefore has the potential of providing an alternative and simple approach for the registration of pairs and
multiple scans simultaneously. In this paper, we study the registration of terrestrial scans via image-based information. For this
purpose, we propose an efficient autonomous model that supports the registration of multiple scans. Following the presentation of the
model, we analyze its application to outdoor, complex scenes, ones that are common to find in actual laser scanning projects.

1. INTRODUCTION

Terrestrial laser scanners are rapidly becoming a standard
technology for 3D modeling in surveying and engineering
projects. In most cases, the acquisition of several scans is
needed to obtain full scene coverage, and therefore requires the
registration of the individual scans into one global reference
frame. For the registration, the common practice involves the
deployment of artificial targets in the scene as tie objects, with
typical targets having the form of spheres, which are easily
distinguishable, or reflectors whose high-energy return eases
their detection. Following the detection of the tie objects, the
rigid body transformation between the coordinate systems can
be solved. To avoid manual intervention in the registration
process, a growing body of work addresses the problem of
autonomous registration in relation to both range images and
terrestrial laser scans. The commonly studied model usually
involves variants of the Iterative Closest Point (ICP) algorithm
family (Besl and McKay, 1992; Chen and Medioni, 1992) that
differ in the features toward which distances are minimized (see
e.g., Rusinkiewicz and Levoy, 2001), and the numerical
framework that is being used (e.g., Mitra et al., 2004; Pottmann
et al., 2006). Dalley and Flynn (2002) sort the iterative
algorithms by their robustness to initial pose parameters, rate of
convergence, and by their sensitivity to outliers. For reasons
such as existence of local extrema in the solution space,
existence of outliers, occlusions, and lack of information
regarding the point distribution in the object space, no guaranty
can be given that convergence to the actual solution is reached
unless the iterations begin close enough.

As the iterative methods require good initial pose parameters,
autonomous techniques for their approximation have been
proposed for range images of relatively simple objects, with
well-defined shape and structure, and high-level of connectivity
(see e.g., Gelfand et al., 2005; Huber, 2002; Huang et al., 2006).
A small number of works address the actual complexity of
terrestrial laser scans. Bae and Lichti (2004) are using a
variation in curvature as the matching criterion on local points.
This requires the computation of the normal vector and the
curvature itself. Dold and Brenner (2006) propose an
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autonomous matching procedure that is based on planar patches.
Following their extraction, patches from different scans are
matched subject to geometric constraints. Gruen and Akca
(2005) present a least squares matching based registration
scheme. The reported algorithm is more stable than the classic
ICP, but still requires an initial transformation.

The registration of terrestrial laser scans can be aided by the
images that are usually acquired simultaneously with the range
data. Images enjoy high spatial resolution, and record color
content of the scene, which is usually very rich and diverse. The
role of image content for realistic texture rendering suggests
that the tight link between the two sensors is only due to
increase. As such, it provides an alternative candidate to form
the registration process of laser scans. Image based registration
also benefits from the vast amount of research that has been
devoted to the registration problem. Registration of laser scans
supported by images received indeed some attention in recent
years. Ulirch et al. (2003) define a framework to integrate image
information with scanning data. Kang et al. (2007) propose
using the Moravec operator and cross correlation as a means to
find point correspondence between images and use those for the
registration phase. Al-Manasir and Fraser (2006) suggest using
relative orientation between images for scans registration
supported by the placement of artificial, signalized, targets. Seo
et al. (2005) present an approach that uses image-matching
schemes on relatively small scenes acquired by a table scanner.
Finally, Liu et al. (2006) consider a more general framework
with no rigid attachment between the camera and the scanner
but with the imposition of some specific geometric constraints.

Since image-based content is only an integral part of most laser
scanning systems, it stands to reason investigating the potential
in the registration of laser scans using intensity information.
Normally, such registration will be purely image based (e.g., via
bundle adjustment), where images will be mutually matched
and simultaneously solved. However, laser-scanning projects
usually acquire data from a relatively wide base, and therefore,
especially in open scenes, only a limited number of images
overlap between scans, particularly for establishing a strong
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Figure 1. Top: panoramic view of the scanned scene as acquired by a camera mounted on the scanner (for the original images see

Figure 5), Bottom: Polar representation of terrestrial laser scans; the horizontal and vertical axes of the image represent the values of
0, ¢ respectively and intensity values as distances p (bright=far). *"No-return" and "no-reflectance" pixels are marked in red.

photogrammetric image block. Additionally, image based
registration will relate to object space by up to a scale factor.
Therefore, establishing this link requires a subsequent
registration, and if autonomous registration is of concern, such
registration should relate to the laser point cloud.

The approach proposed here is based on using the direct relation
between the acquired images and the laser data (see Fig. 1), but
instead of solving a block of images it solves a set of rigid body
transformations, which are more robust, efficient, and require a
small subset of points. The model applies to the registration of
pair of scans as well as multiple scans and assumes no support
in the form of artificial targets or a priori scanning pose
parameters. Essentially the assumption is that a digital camera is
attached to the laser scanner equipment and is calibrated with
respect to it. Our objective is to utilize both the relatively robust
geometric models for the registration of 3D scans with the
powerful techniques of keypoint image matching as a means to
generate the initial set of correspondences. Our aim is to
develop an algorithm that can handle the data volume and the
expected complexity of the scanned scenes. To make the
registration more reliable and robust we make use of the known
calibration between the laser scanner and the imaging system to
treat the problem in a dual manner — extracting features and
matching them in 2D image space but computing the actual
transformation between the scanners, in 3D space. With the
proposed model, we test the applicability of the model to the
registration of terrestrial laser scans. We analyze the advantages
and disadvantages of image supported terrestrial laser scans
registration. The results provide an insight into how these
sources of information can be used jointly for the registration of
terrestrial laser scans.

2. METHODOLOGY

Generally, there are two reference frames involved in the model
— the image reference frame (and there are n images acquired
per scan), and the scanner reference frame. Essentially, our
objective is to recover the scanner pose parameters, using the
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image content. Such problem can be approached in two ways: i)
solving the image (relative) pose parameters and then
computing the scanner pose parameters using a boresight
transformation, see e.g., Al-Manasir and Fraser (2006), and ii)
using the boresight computation between scanner and images to
find the local 3D point coordinates and computed directly the
scanner pose parameters using a rigid body transformation.

While the first approach offer slight advantages in terms of the
quality of the matched entities (therefore, leading to better
registration accuracy) it leads to a more complex framework
involving the simultaneous orientation of multiple images. In
contrast, the second approach that estimates a rigid body
transformation, involves only a single transformation per scan,
one that is relatively easier to compute.

2.1 Camera to scanner registration

The camera mounted on top of the scanner can be linked to the
scanner body by finding the transformation between the two
frames shown in Figure 2. Such relation involves three offset
parameters and three angular parameters. This relation can also
be formulated via the projection matrix P. With P a 3x4 matrix
that represents the relation between world 3D point (X) and
image 2D point (x) in homogeneous coordinates. Compared to
the six standard boresighting pose parameters, the added
parameters (five in all) will account to interior orientation
parameters. The projection matrix can be formulated as follows:

x=KR[I|-t]x = PX @
with
fx § xO
K= fy Yo
1

fe and f, are the focal lengths in the x and y directions
respectively, s is the skew value, x, and y, are the perspective
offset across the two image axes. R is the rotation matrix
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between the scanner and the camera reference frames (the red
and the blue coordinate systems in the figure respectively) and ¢
the translation vector (Hartley and Zisserman, 2003).

For the estimation of the relative pose offset between the
scanner and the camera image, points for which well-defined
3D laser points exist are selected. Using the laser points as
control information allows computing the projection matrix
directly and linearly. In this regard, we point that the calibration
of the lens distortion parameters (radial and decentring) will
provide an even better accuracy. At each scanning position, n
images are acquired in predefined “stops” along the scan (e.g.,
every 360/n degrees). For each image, the projection matrix, P,
represents the relation between the image and the scan. The
proposed model assumes that, i) the camera is rigidly mounted
to the scanner, ii) the interior camera parameter are fixed and
known, and iii) the acquisition position is fixed across all
scanning positions. These standard assumptions enable using
the same projection matrices for all images in the same “stop”
in different scans.

2.2 Detection of corresponding points

Finding an image points correspondence has been an active
research for several decades. Mikolajczyk and Schmid (2004)
present a comparative review of the modern methods, and note
that they are composed of two fundamental steps: extraction,
and matching. The goal of the extraction phase is to detect
keypoints (sometimes terms interest points) in a repeatable
manner. The challenge in this stage is to yield high repeatability
rate even under extreme viewpoint, resolution, and exposure
changes (e.g., brightness and contrast). The goal of the
matching phase is to find correspondence among the keypoints
that were extracted from the different images. For this purpose,
descriptors that provide distinctive characterization of the
keypoint are used. Following the generation of a descriptor for
each detected keypoint, the matching is performed by searching
for similar descriptors in different images and upon finding
them, recording them as candidate tie-points. The challenge in
the matching phase is to design a descriptor that offers unique
and descriptive features while being insensitive to small
detection errors and perspective deformation. Following the
generation of proposed correspondences phase, some correct
and some not, comes the computation of the transformation
between the images. This will usually be driven by the Random
Sampling Consensus (RANSAC) algorithm (Fishler and Bolles,
1981). An important aspect in the application of the RANSAC
algorithm is the minimal number of points required to compute
the hypothesis transformation in each iteration. This number
affects the number of required iterations and thus, the chances
to finally converge to the correct solution. In this regard, one
should prefer a geometric model with a small set of points to
calculate the hypothesis transformation.

For the extraction of keypoints and their descriptors, we make
use of the Scale Invariant Feature Transform (SIFT) that was
proposed in Lowe (2004), and was applied in photogrammetry
in Shragai et al. (2005), and L&be and Forster (2006).

2.3 Scale Invariant Feature Transform

The Scale Invariant Feature Transform - SIFT (Lowe, 2004) is a
methodology for finding corresponding points in a set of
images. The method designed to be invariant to scale, rotation,
and illumination. The methodology consists of the following
four steps:

34

Figure 2. Reference frames of the scanning system with a
mounted camera.

1. Scale-space extrema detection — using the difference of
Gaussian (DoG), potential interest points are detected.

2. Localization — detected candidate points are being probed
further. Keypoints are evaluated by fitting an analytical
model (mostly in the form of parabola) to determine their
location and scale, and are then tested by a set of
conditions. Most of them aim guaranteeing the stability of
the selected points.

3. Orientation assignment — orientation is assigned to each
keypoint based on the image local gradient. To ensure scale
and orientation invariance, a transformation (in the form of
rotation and scale) is applied on the image keypoint area.

4. Keypoint descriptor — for each detected keypoint a
descriptor, which is invariant to scale, rotation and changes
in illumination, is generated. The descriptor is based on
orientation histograms in the appropriate scale. Each
descriptor consists of 128 values.

With the completion of the keypoint detection (in which
descriptors are created), the matching process between images
begins. Matching is carried out between the descriptors, so the
original image content is not considered here. Generally, for a
given keypoint, matching can be carried with respect to all the
extracted keypoints from all images. A minimum Euclidian
distance between descriptors will then lead to finding the
correspondence. However, matching in this exhaustive manner
can be computationally expensive (i.e., O(N? with N the
number of keypoints). Common indexing schemes cannot be
applied to improve the search here because of the descriptors
dimensionality. However, an indexing paradigm, called Best
Bin First (BBF) can be applied (Lowe, 2004). The BBF
algorithm reduces the search to a limited number of the most
significant descriptors values and then tries locating the closest
neighbor with high probability. Compared to the exhaustive
matching, this approach improves the performance by up to two
orders of magnitude, while difference between the amounts of
matched points is small. Our proposed solution follows Brown
and Lowe (2003) where all key points from all images are
organized in one K-d tree. Once a set of matching points has
been generated, another filtering process is applied.

Figure 3 shows the keypoints extracted in a scene that mixes
structured and unstructured objects, the squares around each
keypoint illustrates the scale in which it was detected and the
small vector, its orientation.
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Figure 3. SIFT keypoints with orientation and scale.
2.4. Linking the laser scans and the image information

Since the registration scheme is based on a rigid body
transformation, the extraction of keypoints in image space
should now be transferred into the local 3D object space.
Generally, this transfer requires tracing the ray into object
space. However, we apply here a back projection of the 3D
point cloud onto the image using the boresight parameters that
were derived in the calibration phase (see Section 2.1). We then
assign the 3D coordinates of the relevant laser point to the
keypoints. The result of the back-projection of the laser point
cloud into the imaging system reference-frame is demonstrated
in Figure 4. Notice that vegetation expression in the range
image compared to intensity one.

The 3D coordinate assignment is not immediate, however.
Keypoints are defined by their position and scale (window size),
therefore, for each keypoint, candidate 3D coordinates are
collected from the scale dependent corresponding window (see
Figure 3). Generally, the coordinate assignment problem can be
partitioned into two cases the first is when the point falls on a
solid object; the second is when the point falls between
surfaces. In the first case, we assign the nearest 3D coordinate
in terms of angular distance between the keypoint direction and
laser point direction, while in the second we assign the 3D
coordinates of the point closest to the imaging system. The
motivation for this is as follows, for solid objects the keypoint
location is well defined and, therefore, the nearest 3D point will
have the smallest bias among all candidates (we note that some
refinement to the ray direction can be applied, but this is
negligible). For the other case, with lack of any other
information we opt toward assigning the closest distance within
the candidate 3D points under the realization that it is the
foreground object, which is likeliest to do with the detection of
the point as keypoint. Differentiation between the two cases is
achieved by computing the std. of the 3D points' depth.

2.5 Registration between scans

With the candidate matches, the registration of the laser scan
becomes an estimation problem of the rigid body
transformation,

X=X +(I+8)"(1-S) @)
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where 7 is a 3x3 identity matrix, and S is an skew-symmetric
matrix, defined as:

0 c -b
S=|-c O a
b —-a O

The transformation can estimated linearly using such methods
as the one proposed in Horn et al. (1988). Since some of the
proposed matches are outliers, a RANSAC solution guides the
parameter estimation. One of the appealing properties of the
registration based on the rigid body transformation is that only
three points are needed to generate a hypothesis. Therefore,
even if a small fraction of inliers is assumed, the number of
trials will be controllable and very efficient. Choosing the
relative orientation option and using, for example, the well-
known eight-point algorithm to estimate the fundamental matrix
(Hartley and Zisserman, 2003) will obviously have a much
higher cost under a small fraction of inliers assumption.

Figure 4. Depth image calculated to fit the original image, left:
the depth image, right: the original image. Because the spatial
resolution of the laser point cloud is much sparser than the
image resolution (0.12° compared to 0.03° here) filling of depth
image was applied for demonstration purposes only.

3. RESULTS

To demonstrate our approach we test the proposed algorithm on
three scans acquired in a row by Riegl 360. The image
sequences of the three scans are presented in Figure 5. The
distance between the scanners is 8.15, and 22.28 [m]
respectively, and the maximal scanning range ~100 [m]. Six
mega-pixel size images acquired by the Nikon-D100 were
processed in full resolution. For each image SIFT keypoint were
extracted with 4,000-11,000 keypoints per image evaluated for
the matching. Figure 3 shows a typical set of keypoints (with
some pruning for visual clarity). Matches are then evaluated
between each image in a scan to all seven images in the
counterpart scan (for multiple scans a similar procedure will
apply). Tables 1, 2 list the number of matches (descriptor wise)
between each image in one scan and the images in the other.
Even though Table 1 has a dominant diagonal, the structure of
the match matrix is arbitrary and depends on similarity between
the images in the scans. Figure 5 clearly shows why the first set
is diagonal dominant. Figures 6 (top and center) shows the
matched keypoints between the pair of sixth images in set 1-2.
Generally most matches are correct, but some outliers can be
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seen, e.g., point 134 (encircled) that has no counterpart. Figures
6(bottom) shows the matched keypoints between image 7 of
scan 2 and 3 of scan 3. One can see that the number and quality
of the matches is relatively poor compared to the first pair.
Overall, 1256 matched points (sum of all values in the table)
were found all scans in set 1-2, and 123 points between 2 and 3.
For each matched keypoint, 3D coordinates are assigned (see
Section 2.3). Image pairs with less than four matched points are
overlooked due to the realization that such a small number is
most likely the result of lack of overlap between the images
with only accidental matches found (this was also validated by
manual inspection). This further pruning reduces the number of
matched keypoints to 1219 and 68 matches respectively.
Following the assignment of the 3D coordinates to the matched
keypoint comes the RANSAC guided 3D rigid body
transformation.

Table 1: number of matches, scans 1 & 2 —baseline 8.15 [m]

scan 2
img# | 1| 2| 3 4 5 6 7
1 4 16| 4 0 1 3 0
2 411|111 3 4 3 3
" 3 0|5 |16 | 5 0 3 0
8 4 o1 233 ]| 2 |4
= 5 4 11| 1 0 | 347 | 115 | 6
6 2 13| 4 0 55 | 414 | 38
7 512 1 0 2 4 96
Table 2: number of matches, scans 2 & 3 —baseline 22.28 [m]
scan 3
img# | 1 2 3 4 5 6 7
1 3 2 1 11210 2
2 0 2 1 112 ] 2 2
" 3 0 3 0 6 | 2| 4 1
8 4 3 5 0 0| 3|5 0
~ 5 0|12 | 4 | 8| 1| 2] 2
6 1 6 7 4 10| 2 0
7 0 2 113 | 3|2 |1 0

Out of 1219 proposed matches, 979 were found correct (amount
to 80.3% of the proposed matches) for set 1-2. In contrast, out
of the initial 68 candidates in the 2-3 scan, 18 proposed
correspondences were found (amounts to 26.5%). The
differences in correct correspondences reflects the change in the
baseline between the scan pair (8 compared to 22 [m]). The
comparison of the estimated parameters to manual calculation,
considered as ground truth, shows that the translation error on
the scanning position is on order of 0.65 [m] for the first pair
and 1.15 [m] for the second one; the angular error was (0.12,
0.3, 0.01) [°] for w,p,x angles respectively and (0.18,0.07,1.09)
for the second. Those offsets can related to errors that are
accumulated in the course of the process (calibration errors,
image to range data conversion errors and matching accuracy
errors). However, these values are good enough to launch an
ICP procedure between the point clouds, which is advisable to
perform for tuning the registration.

4. CONCLUSIONS

The registration results of the two scans show the great potential
of registration via images. As the paper has demonstrated when
considering the image-based registration problem between scans
as a platform for an eventual rigid body transformation, the rich
image-based information (extracted keypoints) allows using
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homologous registration candidates which wouldn't have been
naturally detected using any of the range data registration
methods one finds. The rigid body transformation also allows
using small subsets of points for the RANSAC hypothesis
generation, thereby allowing greater flexibility in the feature
extraction phase.

Figure 6. Matched keypoints between images pairs, up) from
scans 1-2, center) blowup showing the quality of the matches,
bottom) matches from scan 2-3 the different viewing geometry
dropped the number of matches.
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ABSTRACT:

The amount and variability of dead wood in a fotsind is an important indicator of forest biodsity, and relates to both the
structural heterogeneity and the amount of hahitatlable for biota. In this study, we investigtte capacity of light detection and
ranging (lidar) technology to estimate the percgataf dead trees in coastal forests on Vancoulands British Columbia, Canada.
Twenty-two field plots were established from whitle tree structural classes, or wildlife tree (WeBsses, of all stems (DBH > 10
cm) were estimated. For each plot, the frequenstyilbutions of the WT classes were highly skewsalJognormal distributions
were fitted, and the meang) (and standard deviations)(of the log-transformed data were extracted. fhationship between
and the percentage of dead trees within the plass highly significant = 0.77, p < 0.001). A variety of metrics wereragted
from the lidar vegetation returns and compared resyai, and results indicated that the natural logarithitthe coefficient of
variation was the best predictof & 0.75,p < 0.001), followed by the heights of the"2percentile (f = 0.69,p < 0.001). In
general, results indicated that the lowest lidaghtepercentiles were more significant predictofg,owhich is likely based on the

direct linkage between the number of dead tre@ssitand and its canopy architecture.

1. INTRODUCTION

in forests in the western United States, and ntitatithe direct
estimation of coarse woody debris loads may beeaehie.

The Canadian province of British Columbia containsOne important variable that has not been examinedever, is

approximately half of the country’s softwood lumlxeventory,
and in 2005 the forestry industry was responsitetb% of the
province’s manufacturing shipments (BC Stats 200%Yhile
forestry’s economic benefits are significant, estien must be
performed in a sustainable manner. In responde@dmeed, the
Province of British Columbia has developed a safteesource
values to monitor forest health and sustainabilgéych as
biodiversity, timber, and soil, amongst others.

Each resource value is assessed by monitoring eberuof

indicators, such as tree height, diameter at bresight (DBH),

species richness, and wildlife tree (WT) classdecay class),
which are traditionally measured using field-basgroaches
in association with aerial photography. Field asseents,
however, can be expensive, labour intensive, peowschall

sample sizes and intensity, and often cover oniyiteéd

geographic areas, while aerial photography suffemn time

and cost issues, is prone to operator bias anéaibfy, and is
limited by a shortage of trained interpreters. aAsesult, there
has been increased interest in augmenting ecosystdrtimber
inventory mapping initiatives using digital remotensing
technologies, including recent research into ligétection and
ranging (lidar).

Various measures of forest structure and bioditerbave
previously been estimated within the context of stal
northwest forests using lidar (e.g. Lefsky et H199; Hudack et
al., 2002; Anderson et al., 2005; Lefsky et al Q24 Lefsky et
al., 2005b; Coops et al., 2007). Seielstad ande®U&003)
discussed the ability of lidar to characterise foedl roughness

" Corresponding author
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the decay class or structural life stage of the, tnehich captures
the growth form of the current individual tree, froyoung

vigorous trees, to older large live trees and agigrto standing
dead snags, to broken stems in various stagescaf/d@/ithin

British Columbia the form classification is knowrs dhe

wildlife tree class, which when accumulated overstand

provides an indication of the amount of dead traed their

state of decay. The amount and variability of deadd is an
important indicator of forest biodiversity (Nos€99B). Snags
are a critical component of coastal forests, irgrepstructural
heterogeneity and providing habitat for forest di¢€layoquot
Sound Scientific Panel, 1995). The goal of thipgrawas to
estimate the percentage of dead trees within platemanaged
forests by developing statistical relationshipsaeen plot-level

distributions of WT class and lidar-derived vegetaimetrics.

2. METHODS
2.1 Areaof Investigation

Our investigation focused on the Kennedy Flats,y@jaot
Sound, Vancouver Island, British Columbia, Cangd&0’35”
N, 12537°21” W). Clayoquot Sound includes both maturstfi
and second growth forest. The area is classifiedCaastal
Western Hemlock (CWH) zone, based on the Bioge@dion
Ecosystem Classification (BEC) system (Meidinged &ojar
1991), and has been mapped using the province'seStgal
Ecosystem Mapping (TEM) classification system, whish
derived from 1:20,000 to 1:50,000 aerial photogyafMitchell
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et al.,, 1989; Demarchi et al.,, 1990). Based on T
classification system, the area encompasses thadiuge of
forest structural stages from shrub and herb (18%6tal area),
pole and sapling (32%), young forest (4%), and facest
(46%).

2.2 Field Data Collection

Field data were collected in 2005 and 2006 fronfid2@st plots
ranging from pole/sapling to old forest based or TFEM
classification (Table 1). Five of the old foresbigl were located
in variable retention harvest blocks. Data werdectéd from
625 nf or greater rectangular plots, with plot centresl an
corners mapped at a horizontal accuracy of apprateiy 1-5 m
using a post-processed differentially corrected GiP@&mble
GeoXT). For each stem with a DBH > 10 cm, distanoe
bearing from plot centre, tree height, DBH, andcsgse were
recorded, with crown dimensions measured for efiéthytree.
For conifers, the WT class was estimated usingeld f§heet
showing growth and decay stages ranked 1 througlaSses 1-
2 were living trees; 3-5 were dead trees with hambd; 6
represented dead trees with broken tops and spangd; 7
and 8 were dead trees with broken tops and softinerad class
9 represented dead and fallen trees.

Pole/Sapling | Young Forest| Old Forest
Variable n=5 n=3 n=12
(mean/range)| (mean/range)| (mean/range)
Stems ha 1491/ 1544 1147/ 816 957 /1391
BasalArea| 1,/ 4/1273| 841/368| 142.3/3726
(m*ha”)
Mean
Height (m) 19.3/5.3 18.3/3.9 12.6/12.6
Standard
Deviation 6.1/2.0 5.1/1.3 6.33/12.1
of Height
(m)
Maximum | 5, 5 /15 9 25.8 /4.7 27.0/30.4
Height (m)
Mean DBH | 7 5/ 128 25.6/5.5 31.3/37.2
(cm)
Maximum
DBH (cm) 107.6/106.8 125.7 /1 98.9 170.5/343.2
Standard
Deviation
of DBH 17.2/13.7 15.8/5.4 29.4/63.4
(cm)
Dead Trees
(WT Class 12.0/18.1 13.1/9.0 19.6/12.1
3+) (%)

Table 1. Summary statistics for sample plots by egss for
stems with a DBH > 10 cm. Two outliers were exeldidrom
this summary and all subsequent analyses.

Initial examination of the field data indicated thavo plots
were outliers and excluded from analysis. The fivgas

composed of extremely dense overstocked conifer anflsing linear regression techniques. These parasnetze then
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contained no lidar ground returns; the second weatéd in a
stand which had experienced significant disturbapossibly
from insect infestation, resulting in a stand siwoe not
replicated in the dataset.

2.3 Fitting Lognormal Probability Density Functionsto WT
Class Data

For all plots, the majority of the trees were lyi(WT classes 1
and 2), with the small remainder being dead andarious
stages of decay (WT classes 3-9), resulting in skew
distributions. Lognormal distributions may be fittto data that
are highly skewed, which is a common problem acribss
biological sciences (Limpert et al., 2001). A randeariable
(x) has a lognormal distribution if log(x), usuallige natural
logarithm, is normally distributed. For each plgnormal
probability density functions (PDFs) were then fa the
frequency distributions of WT classes using thelofeing
equation:

2
1 In(x) -
(00 = cerp] - (N0~ 1) W
xXov 2 20
where  fk) = the lognormally distributed variable

4« = mean ok or scale parameter
o = standard deviation ofor shape parameter

Theu ands parameters are related to the frequency distohuti
of WT class of a given plot in similar ways. Starmbntaining
large numbers of healthy living trees (e.g. WT €la} tend to
have small values fqr andes. Increases in the percentages of
dead trees, however, particularly in the more adedrstages of
decay, will cause increases in both parametersi(€ig).

180 T T T T T T T T T

“\\Pole/Sapling: u =0.11, 0 = 0.41
“\_Young Forest: y=0.18, 0 = 0.47 -
“\Old Forest: u = 0.45, 6 = 0.57
“\.Old Forest: y = 0.46, 0 = 0.77
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Figure 1. Examples of lognormal distributionstitWT class
frequencies in one pole/sapling, one young forst, two old
forest plots. Note increasgsandc as stand age increases.

The lognormaly and o parameters were compared to the
percentages of dead trees (WT classes 3-9) withah @lot
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used as proxies to represent the percentage oftcessiwithin 3. RESULTS
each plot.

3.1 Predicting the Percentages of Dead Trees with Lidar-
2.4 Lidar Data Collection and Variable Extraction Derived Variables.

Small footprint laser data were collected duringy 2005 by  The best lidar-derived variables for directly peiig the
Terra Remote Sensing (Sidney, British Columbia)ingisa  percentages of dead trees in the plots (where @fitates a
TRSI Mark Il two-return sensor onboard a fixed-wislgtform. ~ Stand contains no dead trees, and 100% is indécafia stand
Flying at a mean height of 800 m above ground |etre  Wwhere all trees are dead and showing some sigeazy) were
survey was optimized to achieve a nominal pointispof one the natural logarithm of the coefficients of Va'D'ﬂt(f2 =0.42,r
laser pulse return every 1.52rfTable 2). Ground and non- = 0.64, RMSE = 4.4%, p = 0.0021) and the heightthef2d’
ground returns were separated using Terrascan 064.0 percentiles fr=0.39, r = 0.62, RMSE = 4.5%, p = 0.0033).
(Terrasolid, Helsinki, Finland).

3.2 Lognormal Distribution Parameters and Percentages of

Dead Trees
Sensor and Survey . . . .
Parameters Value Using the plot-based field observations, the refethip
- between the percentage of dead trees and the perarderived
Sensor Type TRSI ll/lark Il discrete from the fitted logarithmic distributions (i.e. and o) were
return sensor explored. Results indicated that(mean of the lognormally
Number of Returns Two, first and last distributed variable, or scale) was the best ptediof the
) percentage of dead trees (Figure 2).
Beam Divergence 05
Angle (mrad) '
Wavelength (nm) 1064
Mean Flying Height 800 % ' ' ' ' '
Above Ground (m)
Pulse Frequency
(kHz2) >0 s
Mirror Scan Rate )
(H2) 30 g
(&}
Scan Angle (degrees) +23 g
Mean Footprint 0.4 §
Diameter (m) §
Table 2. Lidar sensor and survey parameters.
A 0.5 m spatial resolution digital elevation modeEM) was 0 ) ) . ) )

created by applying a natural neighbour interpotatilgorithm
to the ground returns (Sibson, 1981; Sambridgd.etl895).
The heights of the vegetation returns above theirgtowere

then C(_)mputed by _subtracting the DEM heights_ frame ¢ Figure 2. The best predictor of the percentagdeafd trees in
vegetation return heights. A large number of \désa were each plot was the lognormaparameter. Model2r 0.77
extracted from the lidar vegetation data based obakken and [ _ 4 gg RMSE = 2 8% = <0.001. y e T

Neesset (2005), and Neesset (2002; 2004), but witeoutving
returns below a height threshold. These variabtemmat to
capture vertical structure by classifying hits irmercentiles
based on their height distribution through the $obmnopy, and

included the 5, 10, 15... 95 percentiles, in additionthe  The pest predictors of the WT class lognormphrameter were
means, maximums, standard deviations, and coefti®f  he natural logarithm of the coefficients of vagat (Figure 3)
variation of vegetation return heights within egubt. The  gng heights of the Jopercentiles (Figure 4) The lowest height
natural logarithms of the cases of each variableewaso percentiles, from the "5to the 3%, were each capable of
computed. explaining 60%-70% of the variance im, and all were
negatively correlated with the parameter. This cidpa
diminished with increases in the percentiles (Fégix.

0.0 0.1 02 0.3 04 0.5 0.6
WT Class Lognormal p Parameter

3.3 Predicting the Lognormal u Parameter with Lidar-
Derived Variables

25 DataAnalysis

The lidar-derived variables were compared to thgndomal
parameters for the WT class distributions usind lwatrrelation
analyses and simple regression approaches to test
significance of these relationships.

Figure 6 shows the height of the "2@ercentile and the
percentage of dead trees by structural class. ofestf stands
increase in age, the percentage of dead treeshamluimber of
canopy gaps increase, allowing lidar pulse rettonpenetrate
deeper through the forest canopy. The trend of rtean

vegetation return height varies closely with thisthe 20"
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percentile (r = 0.88). The standard deviationhaf vegetation
return heights, however, were relatively stableosgrthe age
classes, resulting in an increase in the coefficenvariation
from approximately 0.15 to 0.3 for pole sapling aymling
forest, to 0.4-1.2 for old forest.

4. DISCUSSION

The distribution of WT classes, or tree structwtakses, within
a plot is an important variable to consider whewettgping an
understanding of the current structure of a fos¢mtd, as well
as for managing the stand for wildlife and biodsigr values.
Whilst the range of wildlife tree classes from 1Qowithin a
plot is highly variable, fitting distributions tché observed
frequency of WT classes and correlating these peterniwith a
simplified index of the proportions of live and destems is, we
believe, an important result. Once we have deweslop
confidence in our capacity to understand how thetribution
parameters vary over the landscape as a functistanfl form,
we then look to lidar technology to extrapolaterdaege areas.

The results presented here indicate the capacitfidaf to
estimate lognormal parameters describing the p&agenof
dead trees within plots in unmanaged forests. fb#hod was
superior to simply attempting to predict the petagae of dead
trees directly using lidar-derived variables. Thatural
logarithm of the coefficient of variation was thesb predictor
of u, however, generally all of the lower percentilesrevalso
strongly and negatively correlated with the paramet We
believe this is a result of the direct linkage oy Clark et al.
(2004) between tree mortality and overall standcstire.

Clayoquot Sound’s old forests are characterized

heterogeneous canopies and patchy understorieb, geips
where old trees have died and young ones are negenge
(Clayoquot Sound Scientific Panel, 1995). Thegesgat least
partly the result of the presence of defoliatedermflimbless
snags with very different structures than livingess, increased
the mean penetration depth of lidar returns inte fbrest

canopy, and decreased the heights of the lowerhheigT A. and Harding, D, 1999.

percentiles. Critically, non-ground returns we@ removed
below a given height threshold, and though many maye
actually intercepted the understorey, coarse watstyis, large
stones, or the ground, their inclusion was nonetizelan
important contribution to the analyses.

Increasing the number of plots across the full eang tree
structural class distributions is a necessary sésp to both
adequately capture the heterogeneity within andvdst the
structural classes (especially old forests) foundthe study
area. Additional field data will also enable theplgation of
multivariate statistical techniques, where morentlza single
predictor variable can be employed. Furthermoraitasal
research is required to determine if these teclasiqcan be
extended to managed forests. We believe that lligioin
parameters can be robust proxies for plot-basettatats of
forest structure and biodiversity, and can be ugefacologists
and forest managers interested in augmenting tbairent
mapping initiatives using lidar remote sensing.
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ABSTRACT:

Within the paper, the combined application of terrestrial image and LIDAR data for fagade reconstruction is discussed. Existing 3D
building models as they are available from airborne data collection are additionally integrated into the process. These given models
provide a priori information, which efficiently supports both the georeferencing of the terrestrial data and the subsequent geometric
refinement. Approximate orientation parameters for the terrestrial LIDAR measurements are provided by suitable low-cost
components. Exact georeferencing is then realised by an automatic alignment to the building models, which are given in the required
reference coordinate system. The automatic relative orientation of the terrestrial images is implemented by tie point matching. A
modified version of this matching process is then used to align these images to the terrestrial LIDAR data, which were already
georeferenced in the preceding step. After this fully automatic orientation process, the given 3D model is refined by the extraction of

window structures from the LIDAR point clouds and fagade images.

1. INTRODUCTION

Terrestrial LIDAR is frequently used for the collection of highly
detailed 3D city models. Urban models are already available for
a large number of cities from aerial data like stereo images or
airborne LIDAR. However, while airborne data collection is
especially suitable to provide the outline and roof shape of
buildings, terrestrial data collection from ground based views is
especially suitable for the refinement of building facades. Thus,
terrestrial and aerial data provide complementary information
during 3D city model generation. In our approach, this is
realised by using given 3D building models from aerial data
collection as a priori information during geocoding of the
terrestrial data. This automatic alignment for both the terrestrial
LIDAR and image data is one of the main focuses of this paper.
In the second part of the paper, the combination of LIDAR and
image data for fagade modelling while using the given 3D
models as reference surfaces will be discussed.

Spatially complex areas like urban environments can only be
completely covered by terrestrial laser scanning (TLS) if data
collection is realised from different viewpoints. Usually, scans
from different viewpoints are aligned based on tie and control
point information measured at specially designed targets. These
targets are manually identified while a refined measurement is
performed automatically. In contrast, our approach allows for
fully automatic registration and georeferencing by matching the
point clouds from terrestrial laser against the corresponding
faces of the given 3D building model. This can be implemented
by the standard iterative closest point algorithm introduced by
(Besl & McKay 1992) since a coarse alignment of the scans is
available. For this purpose, the position and orientation of the
scanner is determined simultaneously to point measurement by
integrated GPS and digital compass.

One of the main applications of 3D city models is the
generation of realistic visualisations. This requires a suitable
texture mapping for the respective building surfaces in addition

a4

to geometric data collection. Thus, in order to simultaneously
capture corresponding colour information, a digital camera is
directly integrated in some commercial 3D systems. However,
this limits the camera viewpoints to the laser scanning stations,
which might not be optimal for the collection of high quality
image texture. Additionally, laser scanning for the
documentation of complex object structures and sites frequently
has to be realised from multiple viewpoints. This can result in a
relatively time consuming process. For these reasons, the
acquisition of object geometry and texture by two independent
sensors and processes to allow for an image collection at
optimal positions and time for texturing will be advantageous.
Even more important, images collected from multiple terrestrial
viewpoints can considerably improve the geometric modelling
based on the TLS data.

Captured images can be directly linked to the 3D point cloud if
the camera is directly integrated to the laser scanner and a
proper calibration of the complete system is available. In
contrast, for independent viewpoints of camera and laser, the
combined evaluation requires a suitable co-registration process
for the respective range and image data sets. The automatic
orientation of terrestrial images considerably benefits from the
recent availability of feature operators, which are almost
invariant against perspective distortions. One example is the
affine invariant key point operator proposed by (Lowe 2004),
which extracts points and suitable descriptions for the following
matching based on histograms of gradient directions. By these
means robust automatic tie point measurement is feasible even
for larger baselines.

We use this operator to align both the terrestrial images and the
terrestrial LIDAR data. First, a bundle block adjustment based
on the matched key points between the digital images is
realised. The resulting photogrammetric network is then
transferred to object space by additional tie points which link
the digital images and the TLS data that were georeferenced in
the preceding step. For this purpose, the feature extraction and
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matching is also realised using the reflectivity images as they
are provided from the laser scanner. These reflectivity images,
which are usually measured in addition to the run-time during
scanning, represent the backscattered energy of the respective
laser footprints. Thus, the intensities are exactly coregistrated to
the 3D point measurements. Despite the differences between
these reflectivity images and the images captured by a standard
digital camera with respect to spectral band width, resolution
and imaging geometry they can be matched against each other
automatically by the key point operator.

While the automatic georeferencing of the different data sets
will be discussed in Section 2, their combined use for a refined
3D modelling will be presented in Section 3. The benefit of
using both image based measurements and densely sampled
point clouds from terrestrial laser scanning is demonstrated for
automatic facade refinement by the extraction of window
structures.

2. DATA PREPARATION AND ORIENTATION

Within our investigations, a standard digital camera NIKON
2Dx was used for image collection, while the Leica HDS 3000
scanner was used for LIDAR measurements. This scanner is
based on a pulsed laser operating at a wavelength of 532 nm. It
is able to acquire a scene with a field of view of up to 360°
horizontal und 270° vertical in a single scan. The typical stand-
off distance is 50 to 100 meters, but measurements of more than
200 meters are possible. The accuracy of a single point meas-
urement is specified with 6 mm. Within our tests the facades of
the historic buildings around the Schillerplatz were recorded. In
order to be able to reconstruct the scene in detail, the resolution
on the facades was chosen to about ten centimetres, which is
typical for this type of application. To prevent holes in the point
cloud i.e. due to occlusions by the monument placed in the
centre of the square, the dataset is composed of three separate
360°-scans from varying stations.

For direct georeferencing of the terrestrial scans, a low-cost
GPS and a digital compass were additionally mounted on top of
the HDS 3000 laser scanner. Digital compasses such as the
applied TCMVR-50 can in principle provide the azimuth at a
standard deviation below 1°. However, these systems are
vulnerable to distortion. Especially in build-up areas the Earth’s
magnetic field can be influenced by cars or electrical
installations. These disturbances usually reduce the accuracy of
digital compasses to approximately 6° (Hoff and Azuma, 2000).
The used low cost GPS receiver mounted on top of the digital
compass is based on the SIRF II chip. Since it was operated in
differential mode, the EGNOS (European Geostationary
Navigation Overlay Service) correction signal could be used.
By these means the accuracy of GPS positioning can be
improved from 5-25m to approximately 2m. The vertical
component of the low-cost GPS measurement was discarded
and substituted by height values from a Digital Terrain Model.

For our test area the geometry of the respective buildings is
already available from a 3D city model, which is maintained by
the City Surveying Office of Stuttgart. In the following this
building geometry is used both for georeferencing and refined
modelling. The quality and amount of detail of this data set is
typical for such 3D models, like they are available area covering
for a number of cities. For the applied city model the roof faces
were collected semi-automatically by photogrammetric stereo
measurement. In contrast, the outlines of the buildings were
captured by terrestrial surveying. Thus, the horizontal position
accuracy of facade segments, which were generated by extru-
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sion of this ground plan, is relatively high, despite the fact that
they are limited to planar polygons.

2.1 Georeferencing of LIDAR data

A global orientation of the laser scanner head in WGS 84 is
measured by the low-cost GPS in combination with the digital
compass. This approximate solution is further refined using the
iterative closest point (ICP) algorithm introduced by (Besl &
McKay 1992). The result of the direct georeferencing is used as
an initial value for the iterative registration of the laser scans.
Once the registration of the TLS data has converged, it is kept
fixed. Then the complete dataset is registered with the city
model using the same algorithm. Since the initial approximation
of the direct georeferencing is within the convergence radius of
the ICP algorithm, this approach allows for an automated geo-
referencing of TLS data (Schuhmacher & Bohm 2005).

3D point cloud from laser scanning aligned with a
virtual city model.

Figure 1:

As it is demonstrated in Figure 1, after this step the 3D point
cloud is available in the reference system as provided by the 3D
city model.

2.2 Alignment of image data

The integration of image data into the facade reconstruction
requires image orientation in a first step. The images have to be
aligned with each other and registered according to the already
georeferenced laser point cloud. This is usually performed by
means of a bundle block adjustment providing accurate
estimates of the orientation parameters. While tie points are
necessary for connecting the images, control point information
is needed for the georeferencing. Aiming at a fully automatic
reconstruction process, both tie points and control points are to
be derived automatically.

2.2.1 Image to image registration

Image to image registration based on tie points is a prerequisite
step for photogrammetric 3D modelling. In the recent past,
much effort has been made to develop approaches that
automatically extract such tie points from images of different
types (short, long, and wide baseline images) (Remondino &
Ressl 2006). While matching procedures based on cross-
correlation are well suited for short baseline configurations,
images with a more significant baseline are typically matched
by means of interest points. However, these techniques would
fail in case of wide baseline images acquired from considerably
different viewpoints. The reason is large perspective effects that
are caused by the large camera displacement. Points and corners
cannot be reliably matched. Therefore, interest point operators
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have to be replaced by region detectors and descriptors. As an
example, the Lowe operator (Lowe 2004) has been proved to be
a robust algorithm for wide baseline matching (Mikolajczyk &
Schmid 2003).

Figure 2. Image data for photogrammetric modelling.

Figure 2 shows images from a calibrated camera (NIKON D2x
Lens NIKKOR 20mm). For the automatic provision of tie
points the SIFT (scale invariant feature transform) operator has
been applied to extract and match key points. Wrong matches
were removed by a RANSAC based estimation (Fischler &
Bolles 1981) of the epipolar geometry using Nister’s five point
algorithm (Nister 2004). Finally, the image orientations were
determined from 2079 automatically extracted tie points.

2.2.2 Image georeferencing

The provision of control point information, which is necessary
for the determination of the orientation parameters, typically
involves manual effort if no specially designed targets are used.
The reason is that object points with known 3D coordinates
have to be manually identified in the images by a human
operator. The idea to automate this process is linking the images
to the georeferenced LIDAR data by a matching process (Bohm
& Becker 2007) which is similar to the automatic tie point
matching as described in Section 2.2.1.

Common terrestrial laser scanners sample object surfaces in an
approximately regular polar raster. Each sample provides 3D
coordinates and an intensity value representing the reflectivity
of the respective surface point. Based on the topological
information inherent in data acquisition, the measured

reflectivity data can be depicted in the form of an image. This
allows for the application of image processing tools to connect
the images captured by the photo camera to the LIDAR data.

Measured laser reflectivities as 3D point cloud (left)
and 2D image representation (right).

ﬁigure 3.

Figure 3 (left) shows the laser point cloud of an already
georeferenced scan. The position of the laser scanner is marked
by the coordinate axes of the local scanner system. The image
representation derived from the reflectivity values is given in
Figure 3 (right). Each pixel with a valid laser reflectivity value
refers to the 3D coordinates of the related sample point. Thus,
obtained point correspondences between the laser image and the
photos provide control point information which is necessary for
the determination of the photos’ orientation parameters.
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However, images generated from laser reflectivities
considerably differ from images that have been captured by
photo cameras. On the one hand, the laser intensities represent
the reflectivity of the measured surface only in a narrow
wavelength range (for example 532 nm for the HDS 3000).
Furthermore, the viewing direction and the direction of
illumination are identical in case of laser scanning. By contrast,
photo cameras usually work with ambient light sources which
may cause shadow areas on the object and therefore lead to grey
value edges in the photograph. On the other hand, the laser
image is not based on central projection but on polar geometry.
Thus, like it is visible in the right image of Figure 3, straight 3D
lines appear curved in the reflectivity image. Another aspect is
the sampling distance, which is often much higher for a laser
scan compared to the spatial resolution of a photo captured by a
camera. For these reasons, the determination of point
correspondences between a laser reflectivity image and a
photograph requires an algorithm which is insensitive to
changes in illumination and scale and uses region descriptors
instead of edge detectors.

Figure 4 depicts the laser reflectivity image (left) and one of the
photographs captured by the NIKON camera (right) in real
proportions. In order to have similar intensity values in both
images, only the green channel of the photograph has been
considered for the determination of corresponding points. The
resulting key points were extracted and matched by means of
the SIFT implementation provided by Vedaldi (2007). Using
default settings 492 key points are detected in the laser
reflectivity image and 5519 in the photograph. Of those 31 are
matched to corresponding key points represented by the red
dots and lines in Figure 4. Due to the decreasing reflectivity
values in the right part of the laser image, correct matches could
be found only on the left part of the building facade.

Figure 4. Key point correspondences for the laser reflectivity
image (left) and one of the photographs (right).

In a next step, wrong matches are to be removed by a RANSAC
based computation of a closed form space resection (Zeng &
Wang 1992). For this purpose, the SIFT point correspondences
are used as control point information. However, the accuracy of
orientation parameters obtained from a minimal set of points
strongly depends on the point configuration. If the points are
close together, the solution of the space resection becomes
unstable and the uncertainty of the SIFT point coordinates
(Remondino & Ressl 2006) leads to significant variations in the
orientation parameters. Therefore, it is difficult to find the
correct solution within the RANSAC process. In order to
improve the accuracy of the key point positions and the derived
orientation parameters, the initial set of point correspondences
is augmented: For each pair of key points, new point
correspondences are generated by randomly shifting the key
point in the photograph by a few pixels. Out of these additional
point correspondences only the one is kept which contributes to



IAPRS Volume XXXVI, Part 3 / W52, 2007

the best solution for the exterior orientation. Beyond that, for a
further stabilisation of the RANSAC process, a priori
information on the ground height is integrated. Assuming a
smooth terrain in front of the building, only those solutions are
considered, where the positions of the camera and the laser
scanner differ less than 1m in height. In this way, about 22% of
the key point matches are confirmed as valid correspondences.

The resulting approximate orientation parameters for the
photographs are then refined in a final bundle adjustment. For
this purpose the Australis software package was used. The
average standard errors of the estimated orientation parameters
are ox = 7.6cm, oy = 5.6cm, 6; = 8.1cm, c,, = 0.167°, 6, =
0.164°, o,y = 0.066°. The average precision of the computed
object coordinates is 6x = 3.3cm, oy =4.7cm, 6z = 2.1cm.

3. FACADE RECONSTRUCTION

After this georeferencing process, the collected terrestrial data
sets are aligned to the existing building model, which is
provided from the existing 3D city model. Thus, both the
LIDAR point clouds and the images can be used to enhance this
coarse model. In the following, this is demonstrated exemplarily
for the geometric refinement of the building facade by a two-
step approach. First, the LIDAR point clouds are used to
decompose the given building model into 3D cells to
additionally represent facade structures like windows and doors.
This cell decomposition, which can be used very effectively to
represent building models at multiple scales (Haala et al 2006),
is then refined in a second step by photogrammetric analysis of
the images. Thus, the amount of detail is further increased for
the window frames while profiting from the higher resolution of
the image data.

3.1 Facade Refinement by Terrestrial LIDAR

As a first step of the LIDAR based refinement of the building
facade, suitable 3D point measurements are selected by a simple
buffer operation. While assuming that the fagade can be
described sufficiently by a relief, the vertical distances between
the measured 3D laser points and the given facade polygon can
be used to generate a 2.5D representation, or can even be
interpolated to a regular grid. Thus, further processing like the
following segmentation is simplified considerably by such a
mapping of the 3D points against the given fagade plane.

3.1.1 Point cloud segmentation

The LIDAR measurement will be used to decompose the coarse
3D building with a flat front face into suitable fagcade cells. For
this purpose, planar delimiters are derived by segmenting
LIDAR points measured at the window borders.

3D pomtcloud as used for the geometric refinement
of the corresponding building facade.

Figure 5.
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Figure 5 shows a point cloud, which was selected for a building
facade based on the alignment to the virtual city model as
depicted in Figure 1. This 2.5D representation clearly
demonstrates that usually fewer points are measured at window
areas than the facade of a building. This is due to specular
reflections of the LIDAR pulses on the glass or points that refer
to the inner part of the building and were therefore cut off in the
pre-processing stage. If only the points are considered that lie
on or in front of the facade, the windows will describe areas
with no point measurements. Taking advantage thereof, our
point cloud segmentation algorithm detects window edges,
which are defined by these no data areas. In principle, such
holes can also result from occlusions. This is avoided by using
point clouds from different viewpoints, though. In that case,
occluding objects only reduce the number of LIDAR points
since a number of measurements are still available from the
other viewpoints.

Our segmentation process differentiates four types of window
borders: horizontal structures at the top and the bottom of the
window, and two vertical structures that define the left and the
right side. As an example, the edge points of a left window
border are detected if no neighbour measurements to their right
side can be found in a pre-defined search radius at the facade
plane. We used a search radius a little higher than the scan point
distance on the facade, otherwise, no edge points would be
found at all.

Figure 6. Detected horizontal and vertical window lines.

Based on the extracted edge points, which are depicted in
Figure 6, the window borders can be determined in the
following step.

3.1.2 Spatial-Partitioning of the building facade

Within this step, horizontal and vertical lines are estimated from
non-isolated edge points. As it is also visible in Figure 6, these
boundary lines are then used to decompose the building facade
in suitable cells. Each of these cells represents either a
homogeneous part of the facade or a window area. After a
classification based on the availability of measured LIDAR
points, window cells can be eliminated from the facade and the
refined 3D building model is generated.

The separation of cells into building and window fragments is
based on a ‘point-availability-map’. This low resolution binary
image provides pixels which either represent fagade regions,
where LIDAR points are available, or areas with no 3D point
measurements. This image is then used to compute the ratio of
fagcade to non-fagade pixels for each facade cell as required for
the following classification. A refined classification is
implemented based on neighbourhood relationships and
constraints concerning the simplicity of the resulting window
objects. Uncertain cells are for example classified depending on
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their neighbours in order to align and adapt proximate windows
in horizontal and vertical direction. Within this step, convex
window objects can additionally be guaranteed.

3.1.3 Model Refinement

Finally, the fagade geometry is modelled by eliminating the
classified window cells from the existing coarse building
model. For this purpose, a plane parallel to the facade at
window depth is determined from LIDAR points measured at
the window crossbars.

Figure 7. Refined facade of the given building model.

As depicted in Figure 7, the classified facade cells are then
carved out from the building model at this window depth.
While the windows are represented by polyhedral cells, also
curved primitives can be integrated in the reconstruction
process as demonstrated by the round-headed door of the
building. Furthermore, our approach is not limited to the
modelling of indentations like windows or doors. Details can
also be added as protrusions to the facade.

3.2 Image based Facade Refinement

For our data set, the point sampling distance of terrestrial laser
scanning was limited to approximately 10cm. Thus, smaller
structures can not be detected. However, the amount of detail
can be increased by integrating image data in the reconstruction
process. This is exemplarily shown for the reconstruction of
window crossbars.

3.21 Derivation of 3D edges

By matching corresponding primitives, the georeferenced image
data is used to derive the required 3D information. In order to
reconstruct linearly shaped fagade detail such as crossbars, edge
points are extracted from the images by a Sobel filter. These
edge point candidates are thinned and split into straight
segments. Afterwards, the resulting 2D edges of both images
can be matched. However, frequently occurring facade
structures, such as windows and crossbars, hinder the search for
corresponding edges. Therefore, the boundaries of the already
reconstructed windows are projected into both images. Only the
2D edges within these regions are further processed. Thus,
possible mismatches are reduced, even though, they cannot be
avoided completely. Figure 8 depicts the selected 2D edges for
an exemplary window in both images.

Remaining false correspondences result in 3D edges outside the
reconstructed window. Therefore, these wrong edges can be
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easily identified and removed. In addition, only horizontal and
vertical 3D edges are considered for the further reconstruction
process. The reconstructed wrong (green) and correct (red) 3D
edges are shown in local facade coordinates in Figure 9. The
position of the window that has been derived from the LIDAR
data is illustrated in black.

Figure 9. Wrong (green) and correct (red) 3D window edges.

3.2.2 Reconstruction of additional fagade structures
Photogrammetric modelling allows the extraction of well-
defined image features like edges and points with high
accuracy. By contrast, points from terrestrial laser scanning are
measured in a pre-defined sampling pattern, unaware of the
scene to capture. That means that the laser scanner does not
explicitly capture edge lines, but rather measures points at
constant intervals. For this reason, the positional accuracy of
window borders that are reconstructed from LIDAR points is
limited compared to the photogrammetrically derived 3D edges
at crossbars. As a consequence, the 3D reconstructions from
laser points and images may be slightly shifted. Therefore, the
reconstruction of the crossbars is done as follows:

For each window, hypotheses about the configuration of the
crossbars are generated and tested against the 3D edges derived
from the images. Possible shapes are dynamically generated as
templates by recursively dividing the window area in two or
three parts. Recursion stops when the produced glass panes are
too small for a realistic generation of windows. The minimum
width and height of the glass panes are restricted by the same
threshold value. After each recursion step, the fitting of the
template with the 3D edges is evaluated. The partition is
accepted if 3D edges are available within a buffer area around
the dividing line. In a final step, the crossbars and the window
frame are modelled. For this purpose, new 3D cells with a pre-
defined thickness are generated at the accepted horizontal and
vertical division lines as well as at the window borders. The
result is exemplarily shown for two windows in Figure 10.
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Figure 10. Reconstructed crossbars for two windows.

Most crossbars can be reconstructed reliably. However,
problems may arise for windows that are captured under
oblique views. This is due to perspective distortions or
occlusions making it difficult to detect 2D edges at crossbars
(Figure 11). Consequently, only a reduced number of 3D edges
can be generated thereof in those areas.

Figure 11. 2D edges for a window under an oblique view.

In order to stabilize the modelling process of crossbars,
neighbourhood relationships are taken into account. The
crossbar configuration is assumed to be equal for all windows
of similar size which are located in the same row or column.
Based on this assumption, similar windows can be
simultaneously processed. Thus, the crossbar reconstruction
leads to robust results even for windows that are partially
occluded or feature strong perspective distortions in the
respective image areas.

Figure 12. Refined facade with detailed window structures.

The final result of the building facade reconstruction from
terrestrial LIDAR and photogrammetric modelling can be seen
in Figure 12. This example demonstrates the successful
detection of crossbars for windows of medium size. However,
the dynamic generation of templates even allows for the
modelling of large window areas as they often occur at facades
of big office buildings.
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4. CONCLUSION

Within the paper the combined use of terrestrial image and
LIDAR data for the extraction of facade geometry was
presented. For this purpose a fully automatic geoereferencing of
the collected data sets based on SIFT algorithm was realised in
a first processing step. As presented, SIFT matching is a
promising tool for the marker-free connection of photos and
laser data. It is working well in standard scenarios for relative
small baselines when the viewing direction of the laser scanner
is approximately perpendicular to the dominating object
surfaces. In this case, perspective distortions and decreasing
reflectivity values in the laser image are negligible. However,
problems may arise if the point density of the laser scans is low
compared to the spatial resolution of the photograph leading to
an instable matching and orientation process.

The refinement of 3D building models is based on a cell
decomposition approach. As it was already proved for the
automatic generation of topologically correct building models at
different levels of detail (Haala et al 20006), this approach allows
the simple integration and removal of geometric detail for given
building models. Even more important, symmetry relations like
coplanarity or alignment can be guaranteed even for larger
distances between the respective building parts. Thus, despite of
the limited extent of the window primitives, which were
extracted from terrestrial LIDAR and images, structural
information can be generated for the complete building.
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ABSTRACT:

Forest inventory schemes collect, besides tree species and some area parameters, geometric tree parameters such as diameter at
breast height (DBH), tree height, stem profiles, azimuth and distance. For some years the use of a terrestrial laserscanner for this
forestry inventory task has been discussed. Dense 3D point clouds recorded in forest stands may form the basis for automatic
determination of forest inventory parameters.

The paper presents an algorithm to detect trees in a horizontal cross section through a point cloud. This algorithm is divided in two
segmentation steps to minimise the probability of false detections. The first segmentation step is a point cluster search in a cross
section of the point cloud. In a second step all clusters are verified or discarded by analysing the point density in neighbouring cross
sections. A study with 547 trees shows a detection rate of 97.4 % in single scan laserscanner data. Two other plots with heavy
branching show a detection rate of 100 % and 94 %. Besides the tree detection, a new parameter is introduced to eliminate miss-
fitted stem diameters. By using this parameter a least squares polynomial model is generated to smooth the diameters along the stem.
Finally some results are demonstrated.

1. INTRODUCTION et al. (2004) demonstrated tree detection by overlaying a
manually surveyed tree map on the point cloud layer. Fully
Almost 73% of the European forest areas are used as production automatic segmentation and tree identification is presented in
forest (Food and Agriculture Organisation of the United Aschoff et al. (2006). A horizontal cut from the scanned point
Nations, 2007). In order for efficient cultivation and planning to cloud is mapped to a constant raster and after a layer
take place the current timber volume of standing trees inside a segmentation a Hough-transforination is perforn’ied. Based on
forest holding needs to be carefully monitored. Therefore forest this work Thies and Spiecker (2004) present a detection rate of
inventories are carried out at regular intervals. Besides other 22% in sing]e scan and 52% in mu]tip]e scan setups.
inventory parameters, the most important geometric tree
parameters are diameter at breast height and tree height, which The approach presented here was first suggested in Bienert et
are typically measured manually. Measurements on standing al. (2006). The goal was to develop a program to determine
trees to determine the timber present isa time-consuming and forest inventory parameters by analysing laserscanner point
costly process. The boles are typically measured after felling. clouds. In the following section, the plot acquisition and
Terrestrial laserscanning is an important technique which  different data sets, provided in several study areas, will be
enables a non-destructive determination of standing timber. In  outlined. Previous work had shown that the tree identification in
the last 5 years terrestrial laserscanning has become an  single scans still produce false detections (classified as type I
interesting tool for forest application. For instance, Aschoff et and type II errors). Heavy branching or dense undergrowth
al. (2006) have researched the forest hunting habitats of bats  influence the tree identification. Sometimes a detection rate was
with the use of terrestrial laserscanner data. obtained of less than 15%. Thus, the tree detection method was
enhanced to minimise the probability of false detections.
Laserscanner point clouds have a very high point density, which  Section 3 will present the automatic identification of forest trees
enables an extensive analysis and an automation of several scanned in single scan setups by using two different approaches
utilisation processes. Different studies have been published with of segmentations. Beyond the use of segmentation, section 4
the aim of automatically determining forest inventory  will show the profile fitting at several heights along the stem. A
parameters from point clouds (Simonse et al., 2003; Hopkinson ~ parameter which eliminates miss-fitted diameters will be
et al., 2004; Watt and Donoghue, 2005; Henning and Radtke,  introduced. In section 5 a diameter smoothing technique using a
2006b). least squares polynomial model along the stem is given. Finally,
section 6 will present the segmentation results of study areas
Segmentation and tree identification is done in a horizontal cut  containing a total of 547 trees of different species. Additionally

of the point cloud, to reduce processing time. Scan points on  results of the profile fitting and smoothing will be presented.
stem surfaces are mapped as an arc within the layer. Hopkinson
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2. DATA SETS
2.1 Data recording

All data sets presented in this paper were acquired with the
terrestrial laserscanner FARO LS 800 HE80. This full spherical
laserscanner with a field of view of 360° horizontal and 320°
vertical has a range up to 80 m. With a distance accuracy of
+3 mm and a data rate of 120 000 points per second, point
clouds with more than a million accurate measured surface
points can be obtained in a short time (a typical 30 million point
scan can be performed in 8 minutes). The LS 800 HE80 uses
the phase-shift principle for range determination where a mirror
rotates and directs the laser pulses (Faro, 2005).

To ensure a levelled instrument a built-in spirit level was used.
The start direction was aligned to north to calculate azimuths
without an offset. All plots were scanned in the single scan
mode, so the scanner was placed at the plot centre.

2.2 Study areas

In May 2006 (leaf-on), 21 plots were acquired in several stands
in the Vienna Woods 25 km west of Vienna. 52% of all plots
were mixed plots with coniferous and deciduous trees, 33%
were beech (Fagus sylvatica) and 5% spruce (Picea abies)
plots. The stands ages are between 65 and 140 years. Manual
reference data like DBH, tree height, azimuth and distance were
measured subsequently. The radius of each plot was 15 m and
the used scan resolution was 0.045°.

Another test site was acquired in March 2007, close to
Aberfoyle in Scotland. These plots (plot A and B) contained 34
year old spruce (Picea abies) and were located on hilly terrain
with less undergrowth. Both were scanned with a scan
resolution of 0.036° and had a plot radius of 10 m. Figure 1
shows an intensity image of plot A. In contradiction to the study
area of the Austrian forest, heavy branching on the lower region
of the stems is present.

b e e =

S

Figure 1. Intensity image of plot A

Yet another plot (plot C) was scanned 2006 in a Sitka spruce
(Picea sitchensis) plantation in North Tipperary near Roscrea,
Ireland. This plot was located on flat terrain and had a stand age
of 35 years. A scan resolution of 0.036° was used. Inside a plot
radius of 12 m harvester data was available to compare the
diameter along the stem obtained from the program. Harvesters
equipped with the appropriate sensors are able to measure
diameter and length of boles.
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3. TREE DETECTION

After a terrain model reduction, as described in Bienert et al.
(2006), tree detection was undertaken. The segmentation was
subdivided into two different algorithms to minimise
classification errors, which is helpful on data sets from plots
with heavy branching. Initially a segmentation based on a point
cluster search was done. Then all clusters were analysed in a
second step, to determine their point density inside a raster. The
outcome of the tree detection was the number of trees in the
plot and the approximate position of each tree.

3.1 Segmentation based on point cluster search

As outlined in Bienert et al. (2006) and Scheller and Schneider
(2006) the segmentation was done on a slice with a thickness of
10 cm cut through the point cloud 1.3 m above the terrain
model. The whole slice was analysed by a 2D-quadratic
structure element with a size s. This element moves over the
slice in X/Y projection and searches for point clusters with
more than n>n,,;, points. One object will be separated into two
objects if the distance between one point and the nearest one is
bigger than s/2. To classify the objects as trees, a circle fitting
with all points of an object was done. As exclusion criteria the
error of unit weight and the fitted diameter of the circle fitting
are used to classify objects.

This algorithm produces type I and type II errors. Points which
belong to a branch produce an error of unit weight bigger than
the present threshold value and so the object will be rejected.
As a result of this segmentation an object list was generated
with all classified trees (containing false objects — type II
errors) and a rejected object list with point clusters which fail
the classification (containing tree cluster points — type I errors).

3.2 Segmentation based on point density raster analysis

Scanning techniques are characterised by a regular point grid
area on a surface. The number of points inside this defined
raster area depends on the scan resolution used and the
alignment of the object surface to the scanner. A cut with a
thickness greater than (minimum two times) the vertical scan
resolution through a point cloud produces different numbers of
points inside this defined raster in X/Y projection.

Subsequently the point density raster analysis of the object and
rejected object list from the first segmentation step could be
performed. The rejected object list was used to minimise type I
errors, given that it contained stems which are not detected in
the first segmentation phase. The 2D-bounding box for each
cluster with X, Ximax> Ymin a0d Yax defined the object size and
a raster with a cell size of 4 cm was overlaid (Figure 2a).
Because of the distance from scanner to object and scan
resolution are known, a maximum number of target points,
which exist inside one raster (Figure 2c), can be calculated
(equation 1 and 2). To get the number of redundant points a
diagonal oriented vertical object surface (inside a raster
element) was used. Because of the perpendicular stem direction,
raster elements with a very high point number were produced
(Figure 2b). Minimising the predicted target number by about
30% the minimum threshold for the raster analysis was defined.
All scan points of a raster element above the threshold (Figure
2d) were copied to a new co-ordinate list, which includes only
points of the stem surface. After analysing all rejected objects
the new co-ordinate list was checked with the cluster search
method mentioned in section 3.1.
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where:  n = number of points

Az = cut thickness

cellgiag = diagonal cell size

Ad” = average distance between object point
S = distance from scanner to object

0. = scan resolution
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points
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Figure 2. a) Rejected object with overlaid raster; b) number of
points inside the raster; c) threshold value
calculation with simulated scan parameters; d) raster
elements which pass the threshold (yellow elements)

The object list, which contained type II errors, was examined,
repeating the technique of point density analysis. Type II errors
caused by branching or undergrowth were characterized by a
lower point density. Raster elements with a point number
beneath the threshold were detected and therefore deleted from
the object list.

4. DIAMETER PROFILE FITTING

Stem profiles at different height intervals (Figure 3) can be
determined with the knowledge of the approximate position and
diameter returned by the tree detection process. Starting from
the reference ground point (Bienert et al., 2006) the profile
fitting was done, using a least square circle fitting algorithm
(Bienert et al., 2006). This procedure minimises the mean
square distance from the fitted circle to the data points, which is
similar to the algorithm shown in Henning and Radtke (2006a).
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Henning and Radtke (2006a) show that surface points caused by
branching appear outside of the stem cross-section. An
overestimated diameter will result. If only a short section of the
stem profile is visible, it is not possible to determine reliable
diameters.

Figure 3. Point cloud of a spruce (left); generated profiles
(middle); combined side view of a cut-out (right)

A new parameter, the “Reliability Factor”, was introduced to
detect these over- and underestimated diameters as outlined in
Bienert et al. (2007). Attributes of the circle fittings are used to
evaluate the quality of the fit. The belonging to the universe is
defined by the probability P, of each parameter x. The
following information are used:

e the error of unit weight of the circle fitting (Py),

e the standard deviation of the fitted diameter (Pypjameter)s

e the visible stem section (angle of the visible circle section)
(P.),

e  the ratio of the scanned point number and the calculated
number of points (determined by scan resolution, distance
to stem, cut thickness) (Po,)

e amedian filtering with 11 neighbour elements of the fitted
diameters along the stem (Pyedian)-

The probability Py Pspiameter and P, are determined by
calculating the ratio of each value to a threshold (P, = x / TH,).
To consider the median filtering the diameter is compared with
the median of its five neighbour up- and downward diameters.
If the difference between the diameter and the median diameter
is smaller than 5% of the median diameter, Pypegia, iS 1
otherwise 0. All five summands consist of values
between 0 and 1. The reliability factor was calculated as an
arithmetic mean (equation 3). In general, diameters with a
factor greater than 0.7 are deemed as reliable.

7P = (PGO + PcDiameler + Pa + P% + PMedian)/S (3)

To predict the taper of standing trees taper equations and basic
taper models are extant (Nieuwenhuis, 2002). A modified
Kozak taper equation was used. Therefore a prediction of taper
in non-observable stem heights can be done based on observed
measurements.
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5. UTILISING A POLYNOMIAL MODEL TO SMOOTH
THE STEM

To improve the value recovery in forest stands, accurate stem
shape and position of trees is essential. The efficiency of the
harvesting operations can be greatly increased by determining
the crop “profile”. Three important aims are to consider:
maximising of (timber) volume, maximising of (timber) value
and minimising of costs (Nieuwenhuis, 2006). Even just a few
noisy values in the predicted stem profile can greatly impact on
the processes used to determine the expected products extracted
form a stem and its overall value. This in turn means that there
are inaccuracies the inventory data. In order to ensure the stem
profile is as accurate as possible the effects of noisy values
must minimised as much as possible. In pursuit of this goal a
weighted polynomial function is an invaluable technique to
smoothen stem diameters.

In fitting a smoothing function, such as spline or polynomial
model to the stem diameters, the important point to realise is
that one can obtain a fit as close to the data as one wants,
simply by adding more and more breakpoints. However, what
one really wants is a smooth curve, flexible enough to capture
the (unknown) functional relationship underlying the data, yet
smooth enough not to follow the noise component in the data
due to measurement errors. The problem of separating the noise
from the underlying trend becomes more manageable if an
indication of reliability can be determined. During the circle
fitting process the reliability factor was determined as outlined
in section 4.

This Reliability Factor was used to produce a set of weights for
each point on which the polynomial model was to be built. This
helps to ensure that unreliable data does not impact greatly on
the fitted model. The inputted data to the model is the set of
diameters from the circle fitting process and their corresponding
reliability values as weighting factors. The polynomial model
was fitted to the weighted set of inputs, using least squares
regression. This minimised the residual sum of errors over the
data (Hastie et al., 2001). A polynomial model was used instead
of an interpolating spline, as the goal in fitting the model is to
approximate the trend of the data and minimise the effects of
noise. Approximating spline models exist and a smoothing
spline was orginally used for this purpose (De Boor, 1978).
However, given the levels of noise and relatively simple shape
of tree stems the least squared polynomial model was favoured.
This simpler model was found to track the underlying trend
adequately, given the noise and did not require the specification
of a smoothing parameter.

6. RESULTS
6.1 Segmentation

The results shown here are derived from the 21 plots acquired
in May 2006. Overall 533 of 547 trees could be detected
correctly and therefore the detection rate was 97.4%. There
were 14 type I errors, mainly caused by occlusions of trees and
vegetation standing in the foreground. Therefore not enough
laser points were landing on the stem surface within the
horizontal data cut. 60 type Il errors are produced. Figure 4
shows the number of errors caused in the different plots.

IN)

error type

0 10 20 30 40 50 60
number of errors

70

O beech plot (155 trees)
I spruce plot (26 trees)
@ deciduous tree plot (23 trees)

@ mixed tree plot (313 trees)
| coniferous tree plot (30 trees)

Figure 4. Detection errors

To assess the efficiency of both segmentations two plots (plot A
and B) with heavy branching (Figure 5) were processed. Plot A
and plot B consist of each 16 trees inside a plot radius of 10 m.
By using the segmentation based on point cluster search only 2
(plot A) and 6 (plot B) stems could be found correctly. After the
second segmentation using point density raster analysis all trees
of plot A could be identified correctly and only one tree of
plot B could not be found. The results of the segmentation of
both plots are outlined in Table 1.

Figure 5. Spruce with heavy branching (left); top-view of a
horizontal 10 cm cut

Segmentation based on

point cluster search point Sg;iigsmswr
Data Plot A Plot B Plot A Plot B
Trees 16 16 16 16
Classified objects 23 21 16 21
Correct found stems 2 6 16 15
Detection rate 12.5% 37.5% 100% 93.75%
Type I error 14 10 0 1
Type II error 21 15 0 6
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Table 1. Results of the segmentation
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6.2 Diameter profile fitting

To assess the accuracy of profile fitting along the stem
harvester stem file data was used. Figure 6 shows the
comparison between the profile fitting and the diameters from
the harvester along a Sitka spruce stem located 8.5 m from the
laserscanner. The underestimation caused by too few survey
points landing on a short stem segment, while the
overestimation is caused by branching. The standard deviation
of the profile differences of all fitted diameters (yellow
rectangles in Figure 6) along the stem is 3.91 cm. Thus, all
under- and overestimated diameters can be detected by using
profiles with a “Reliability Factor” bigger than 0.69 (Figure 7).
A standard deviation of 1.36 cm is obtained.

diameter [mm]

81 101 121 141 161 181 201

stem height [dm]
——harvester diameter o program diameter

41 61

Figure 6. Derived diameters from the profile fitting of a Sitka
spruce in comparison with the diameter obtained
from the harvester

diameter [mm]

81 101 121 141 161 181 201

stem height [dm]

1 21 41 61

—— harvester diameter = program diameter

Figure 7. Derived diameters of a Sitka spruce with an
“Reliability Factor” bigger than 0.69 in comparison
with the diameter obtained from the harvester

The stem was smoothed up to a height of 7.8 m with a standard
deviation of 0.64 cm by a polynomial model (Figure 8 - green
triangles). As a height of 7.9 m a taper prediction based on the
modified equation of Kozak, as outlined in section 4, was done
(Figure 8 — red points). This equation was specific for spruce
species with Ireland-Centric coefficients.

Table 2 summarises the accuracies of the profile fitting (all
diameters, reliable diameters), the smoothing and the predicted
taper for the tree from Figure 8. Finally the standard deviation
of 22 trees inside a 12 m radius of the Sitka spruce plantation
(plot C) are shown in Table 3.

diameter [mm]

0 — T T T T T T T T T T T T T
1 1121 31 41 51 61 71 81 91 101111121131 141 151161171181 191201211

stem height [dm]

—+—harvester diameter = program diameter -a- polynomial model —- predicted taper

Figure 8. Reliable diameters, smoothed data and predicted taper
compared with harvester data of one Sitka spruce

[em] Standard Arithmetic Max. Min.
cm deviation mean difference difference
A.H 3.91 1.03 0.168 0
diameters

Reliable 1.36 -0.94 5.30 0
diameters

Polynomial 0.64 220 230 0
model

Predicted 136 0.20 3.70 0
taper

Table 2. Results of the profile fitting of one Sitka spruce located
in plot C (compared with harvester data)
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[em] Standard Arithmetic Maximum Minimum
deviation mean difference difference
Reliable ” 248 ‘ -0.64 ’ 19.60 ‘ 0
diameters

Table 3. Results of the profile fitting of plot C with 22 trees
(compared with harvester data)

7. CONCLUSION

In collaboration with TreeMetrics (www.treemetrics.com), a
computer program (AutoStem™) was developed in the C++
programming language to automatically determine forest
inventory parameters based on terrestrial laserscanner point
clouds. Figure 9 shows the AutoStem™ user interface. By
processing a point cloud (X, Y, Z), stem number ordered by
azimuth, stem position, diameter at breast height (DBH -
measured at a height of 1.3 m), tree height and profiles along
the stem in user specific heights are displayed. Data sets
recorded in natural or production forests from one position
(single scan mode) or more positions (multiple scan mode) can
be processed. Obstructions such as undergrowth, rocks and
heavy branching do limit the effective range of a single scan. In
these situations multiple scans are done to gather the necessary
information.

By using two segmentation algorithms a slice of a point cloud
was analysed. The rate of success was enhanced by using both
algorithms for plots with heavy branching. Type I errors were
minimised by the second segmentation process. Furthermore
robust tree detection is possible, which the detection rate of
97.4% confirms. Nevertheless some type I and type II errors are
present.
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Figure 9. AutoStem™ user interface

The newly introduced reliability factor enables the detection of
badly fitted diameters (Figure 7 vs. Figure 8) allowing a better
determination of the stem shape to be made. An average
standard deviation of 2.48 cm for 22 Sitka spruces was
presented for profile fitting with a height interval of 10 cm,
compared with harvester data. Henning and Radtke (2006a)
present a standard deviation of nine loblolly pine trees of
2.1 cm estimated at every 1-m bole section. However, this was
done using co-registered datasets of three separate scanner
positions around each tree. By processing point clouds obtained
in multiple scan setups, occlusions can be reduced and accuracy
increased.
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ABSTRACT:

Recently, a laser scanner technology has been receiving more attention. Nowadays use of terrestrial laser scanners (TLS) is
continuously increasing. This technique offers the possibility of measuring millions of points within short period of time. Thus, it is
possible to record complete 3D objects efficiently. In this communication the process followed to model the hull and the deck of the
ship will be described. To perform this process, a point definition from a terrestrial laser — scanner Faro LS 880 was used as
information source. From this data, the commercial package software Geomagic Studio 8 has been used, to obtain the three-
dimensional model of two differentiated parts of the ship. The importance of this process lays on the fact that an inverse process has
been followed: it is the model that has been obtained from the real ship. From these 3D models some series of analysis and
verifications could be made, like diverse measurements, construction defects, determination of possible asymmetries, etc. even though
these aren’t presented in this communication. Another remarkable objective of this project is to calculate the volume of the underbody.
The waterline which indicates the level at which the ship floats in the water (thus it’s a line which separate underbody from dead

works of the ship) helps us to obtain the 3D model of the underbody by means of Geomagic software and then to calculate its volume.

1. INTRODUCTION

The construction of sporting, pleasure and fishing craft has, in
recent years, become an important source of revenues for the
shipbuilding sector. Demand, moreover, is steadily growing,
and this grow is expected to continue in the medium term.
Consequently, an increasing number of businesses are entering
into the sector which is made increasingly competitive.

The manufacturing process for this type of craft, which is
largely manual, relies on the expertise of individual operatives,
and results in products that are generally unique and different.
Moreover, rigorous quality control programmes are rarely
implemented and construction or assembly workflow diagrams
are not generally used. Parts are on occasion wasted or re-
worked due to production errors, for example, causing
production delays and increased costs. This situation, combined
with the urgent need to increase productivity and competitivity,
is putting pressure on shipbuilders to improve production
processes with the incorporation of design and new
manufacturing technologies, which - without increasing costs
significantly — will define a priori the quality of the final
product and ensure that the different parts of the finished craft
contain no asymmetries or construction defects.

The construction of accurate three-dimensional models that use
terrestrial laser scanning techniques, which permit millions of
points to be measured in a question of minutes, offers particular
promise in terms of the design and construction of boats
(Thiyagarajan, 2003), replacing other traditional, slower and
more inaccurate methods based on moulds subsequently
adapted to the definitive boat shape.

Terrestrial laser scanner measurement techniques generate a
large quantity of information, which requires substantial
processing to arrive to the point where a definitive 3D model is
obtained.

* Corresponding author
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2. 3D LASER SCANNER TECHNOLOGY
APPLICATIONS

Cultural heritage recording (Barber, 2005; Stenberg, 2006;
Vistini, 2006), architectural modelling (Levoy, 2000; Akca,
2006), building reconstruction (Alshawabkeh, 2005), accident
investigation (Pagounis, 2006) and structural engineering
(Gordon, 2004) are just some of the subjects now benefiting
from the use of terrestrial laser scanning.

The most important area of application of laser scanning to
engineering is 3D modelling of existing structures and industrial
equipment (Straiger, 2002). 3D plant models are needed as
basic data for design, especially when modernising industrial
plants. Plant models are also used in maintenance and facility
management systems of industrial plants as a 3D virtual reality.
The 3D virtual model gives dimensions for efficient
maintenance.

The main infrastructure applications are for modelling of
buildings, bridges, tunnels, underground facilities and for
virtual city modelling (Kretschmer, 2004; Béhm, 2005; Arayici,
2005). Laser scanning is also used for mining industry and
modelling in the shipbuilding (Gutiérrez, 2006; Arias, 2006).

3. AIMS OF THIS PROJECT

In this paper the investigations of the 3D modelling using the
terrestrial laser scanning system are presented. It describes a
project whose final aim was to establish overall conditions of a
wooden boat, because of the future possibility to do up it. Other
important aim of the project was to calculate a volume of the
underbody. To reach this goal of the work we needed to mark a
waterline on the hull. The waterline refers to an imaginary line
marking the level at which the boat floats in the water, thus it’s
a line which separate underbody from dead works of the boat.
The ship speed is determined by, amongst other things, the
waterline length.
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The boat is based on a structure consisting of two differentiated
parts: the deck and the hull. From a mosaic of TLS point clouds
we have constructed three-dimensional models of these two
components using the commercial package software Geomagic
Studio 8.

4. MEASURING OF THE SHIP

3.1. Instrumentation

The equipment used for the data collection is listed as follows:

- Three-dimensional terrestrial laser scanner FARO LS 880
(Figure 1). Each scan covers a 320° vertical and 360°
horizontal field-of-view.

- Magnetic targets were implemented to increase the
precision in assembling the different scans.

- Laptop computer. Terrestrial laser applications require the
scanner to be connected to a computer in which the point
clouds recorded by the laser are stored in real time.

- Tripod. A tripod provides the support necessary to ensure
the terrestrial laser scanner during scanning operations.

- Software application for linking up the point clouds
captured in each of the scans.

- Software for cleaning up, debugging and filtering the point
clouds generated by the scans.

- Software for generating 3D surface models from the pre —
processed point clouds.

The measure of success

Figure 1. The 3D laser scanner FARO LS 880

3.2. Data Acquisition

Preliminary steps. Prior to commencing the scanning tasks, the

surroundings of the element to be modelled should be analysed

in detail. The following points need to be taken under
consideration:

e  Suitable positions to capture data, using the laser that will
minimise both the number of scan locations and
information lost, must be identified.

e  Elements that may prevent correct data capture or that may
introduce information that could hinder subsequent
processing, must be identified.

57

e Any possible sources of vibrations near the scanning area
must be removed to avoid adverse effects on the quality of
the scans.

Scanning procedure. Once these preliminary steps have been
taken, the fieldwork stage can proceed. This phase is structured
as follows:

1) Creation of sketches, indicating the position of elements of
interest and of the scanner in each scanning session is
extremely useful for subsequent information processing
phases.

2) The scanner is positioned in the previously selected
locations and scanning commences. The scanning
procedure consisted of moving the 3D laser scanner around
the ship, so that the studied object was surrounded
completely. During the scanning process, the following
guidelines should be followed:

a. Ensure overlaps of about 20% between adjacent areas
of interest and avoid shadow areas where there is no
information. This will ensure that all areas are fully
covered so that when the different scans are finally
put together, no essential elements will be excluded
from the final model.

b.  Once the data capture process commences, ensure that
the objects to be scanned are not moved.

c. Avoid any movement or vibration, no matter how
small, of the scanner.

d. It is recommended that targets that can be

automatically recognised by the software are used as
control points. In this way overlapping between scans
can be minimised.
In our case this matter was essential. Every scan was
made with 10 targets always ensuring overlaps of 5
targets between two following scans. It was especially
important at the moment of assembly of the hull and
the deck. During the scanning process of the hull at
least one of the targets was placed on the deck, which
helps us during assembly process.

3) Finally, it is recommended during this phase to assemble

the successive scanned models prior to leaving the site.
This will avoid any subsequent problems arising as a
consequence of incomplete data, corrupted files, etc. The
additional time required for this work is more than
compensated for by the avoidance of possible subsequent
complications that may be difficult to rectify.

The measurement procedure followed for the data collection
took approximately 7 working hours, scanning both elements of
the boat, the hull and the deck.

The waterline that refers to an imaginary line marking the level
at which the boat floats in the water, was marked by some
targets to help us to recognize it on the scans (showed by Fig.2).
The waterline was the essential date to calculate the volume of
the underbody in this case.

Figure 2. Waterline marked with black and white targets
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Discussion. In general, our scanning procedure works quite
smoothly.

Our biggest failure was the lack of calibration of the scanner
before the scanning procedure that caused a standard deviation
of registration accuracy of about 3-4 cm.

We have found some problems during the automatic recognition
of white spherical targets by the software especially with the
direct sun. It was needed to find the way to make a shadow in
the place of the targets (i.e. to cover it with something dark, i.e.
umbrella in our case) and repeat the scan. It takes up about one
working hour in the course of our outside work. During the
registration some difficulties were encountered as will be
discussed in section 5.

In my opinion the registration accuracy could be improved
changing direction of scanning procedure. Instead of moving
the 3D laser scanner around the ship (the beginning point and
the end point are the same), it could be moved from the
beginning to the end along the left side of the ship and then
from the beginning to the end along the right side of the ship.
This procedure should be applied both to the hull and to the
deck of the ship.

3.3. Data processing: 3D visualization

Data processing. Once the previous phase is completed, the
next stage is data processing, which will result in the 3D surface
models. This is a slow and laborious process performed using a
computer and specialised software for pre-processing the 3D
point clouds. This phase, in fact, represents the bulk of the work
involved in the project. Therefore, the cost of this phase is
largely dictated by the cost of labour for the information
processing process in the laboratory.

The scans, registered in the global coordinate system, are
analysed in order to locate points not relevant to the project. The
scanner records measurements returned from all the elements
within its field of view, many of which will not be parts of the
boat (surrounding things, other boats, work tools and
accessories, etc). These data are removed from the point cloud
with the help of the photographs.

The “cleaning” process and data processing are made by the
commercial package software Geomagic Studio 8. Our work
consists of three main phases:

e  Point Phase,
e Polygon Phase,
e and the last one — Shape Phase.

Point Phase. The first one is the phase of point elimination and
noise reduction. In this phase redundant information is
eliminated from the point cloud that is to be modelled with the
intention of reducing the volume of data, thereby simplifying
subsequent operations. We need to remove these stray point,
known as disconnects or outliers that may exist around the
object. These can be identified as points that are far away from
the main point cloud and don’t represent any geometry that we
want to keep. The filtering process requires a certain degree of
skill and experience, as there is a risk of filtering out too much
data - with the consequent loss of information — or too little
data, which can cause subsequent problems due to excessive
information and overly-large files.

Frequently, during the scanning process, an element of “noise”
is introduced into the data. This “noisy data” is identified by a
rough, uneven appearance in the surface object and is due to
such factors as small vibrations in the scanning device,
inaccurate scanner calibration, or the character of the surface on
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the object being scanned. It’s need to minimize this noise.
Finally we can use sampling to reduce the number of points in
the object while maintaining an accurate representation of the
part. With unordered data, we can use uniform sampling to
reduce the number of points and leave points organized so they
produce triangles roughly the same size when wrapped.

The point cloud prepared like that (“clean point cloud”) is ready
to go to the wrap phase.

Polygonal Phase. Once the point object has been cleaned and
organized, it is time to wrap the object with a polygon mesh.
Three-dimensional surface models comprising triangular facets
are constructed for the hull and for the deck from the filtered
point clouds. Correct triangulation is the basis for subsequent
correct modelling of curves and surfaces, and the results will
largely depend of how well the point clouds have been filtered.
In regular areas with simple shapes, filtering may be more
intense, resulting in a lower number of triangles with longer
sides. In irregular areas with complex shapes, filtering should be
less intense, resulting in a larger number of triangles with
shorter sides.

The wrapping process shows us the first result of our work.
Before the coming to the finish part of the project, it’s need to
fill the missing data.

Shape Phase. Once the polygon model has been edited to fix
any imperfections and holes, it is ready for the next phase. This
would be the Shape Phase, which is the phase where it’s
creating NURBS (Non-Uniform Rational B-Spline) surfaces
over the polygon object using autosurfacing.

The figures 3 and 4 show the results of three main phases of the
project of both parts of the ship.

Figure 3. Results of Point Phase, Polygon Phase
and Shape Phase of the hull

Discussion. How well our data processing flow works? In most
cases, it works well. However, it was time-consuming because
of the enormous quantity of points. Sometimes the computer
works very slowly, especially in cases of surface extraction. In
the worst cases the computer suspended after the long working
hours and it was needed to repeat the Shape Phase, which was
the most time-consuming task.

We were disappointed by the number of holes, some several
centimeters in size, even with the results of the application of
“fill holes” tool. The Shape Phase of the hull wasn’t very
satisfactory because of the too much missing data. The deck
was a more complex structure but personally we were quite
more pleased with the results of the filling holes of the deck
then of the hull.
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Figure 4. Results of Point Phase, Polygon Phase
and Shape Phase of the deck

5. RESULTS

Scanning procedure. Fieldwork lasting approximately 7 hours
was performed by a team of 3 individuals, as follows:

1) A sketch was first created of the position of the
elements to be modelled, as also of the position of the
scanner and of the field of vision for each scan. The
scanner was prepared to capture data within its 320° x
360° field of view.

The 360° field of view was necessary because some
targets were placed around the ship to obtain the best
precision possible in every scan. It helps us during the
assembly process then.

Magnetic targets, which are automatically recognised
by the software, were used to mark a series of control
points on the objects. About 7 hours’ fieldwork was
necessary for the measurements, and over 41 million
points were measured.

Finally all the scans were registered to object space.
During this operation some difficulties were
encountered, for example variation of the sea level
(flow and ebb) between start and final of the scanning
process, difficulties of placing the laser scanner in
some scans, etc.

There were 11 scans needed to scan the deck of the
boat and 15 scans to scan the hull. 10 targets were
used in every scan, always ensuring overlaps of 5 of
them between two following scans. During the
scanning process of the hull at least one target was
place on the deck and then during the scanning of the
deck, one of the targets was placed in the same site.
This method works perfectly and helps us to assembly
the deck and the hull during the laboratory work.

All the scans were registered in the computer using
the software FARO SCENE and the results were quite
satisfactory.

2)

3)

Data processing. The first step before start the 3D modelling
was to apply the previous filtering to the point clouds of the hull
and the deck. The results of this process were the point clouds
with spaces between the neighbour points of 10 cm.
The surface models were obtained as follows:
1) Point Phase. Areas of irrelevance to the project were
eliminated from the scans aligned in the global
coordinate  system, mainly representing the

surrounding things, other boats, work tools and
accessories, etc. The pre-processing of the point
clouds was carried out separately for the hull and the
deck, with 778,742 points obtained for the hull, and
332,213 points for the deck.
Redundant information on the point clouds and points
falling outside the future model surface were
eliminated to facilitate file handling. Given the
simplicity of the hull surface, the noise reduction
wasn’t apply, only the filtering process and uniform
sampling were performed, thereby reducing the
number of points to a total of 139,446. Since the deck
was a more complex structure, we applied the noise
reduction, and then filtering process and uniform
sampling were performed, resulting in a final total of
179,874 points.
The Figure 5 shows the standard deviation values along the
deck of the ship after application of noise reduction. The
mean value of standard deviation in shape after noise reduction
was of 0.0221 m.
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Figure 5. The standard deviation values along the deck of the
ship after application of noise reduction

2) Polygonal Phase (the wrapping). The quality of this
polygonal model depends directly on the filtering
process. The hull, with relatively simple shapes,
resulted in fewer triangles with longer sides compared
to the deck (more complex shapes, therefore more
triangles and shorter sides). Triangulation of the point
clouds for the hull resulted with 211,794 current
triangles, and for the deck, with 312,932 current
triangles.

In the above Table 1 we find the results after the Polygonal
Phase applied to the hull and the deck of the ship. The hull has
no residuals in this case because we haven’t applied the noise
reduction.

The standard deviation gives the reference to deviation in shape
between the point cloud data set and polygonal model.

The hull The deck
Value [m] | Positive | Negative Positive Negative
Max. 0 0.008162 | -0.008197
distance
Average 0 0.000008 | -0.005841
distance
Standard 0 0.000319
deviation
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Table 1. Values of standard deviation and the residuals after the
Polygonal Phase
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3) Fill Holes. Identification of missing data and manual
completion. This task was mainly manual.
4) Shape Phase (autosurfacing). Using the triangles

obtained, the next stage was definition of the surfaces
that would form the models. This operation was again
carried out separately for the deck and the hull.
The figure 6 shows the standard deviation values along the hull
of the ship after application of autosurfacing. The full results
after the Shape Phase applied to the hull and the deck of the
ship are shown in Table 2.
The standard deviation gives the reference to deviation in shape
between the point cloud data set and surface model.

Figure 6. The standard deviation values along the hull of the
ship after the autosurfacing

5) Assembly of the two main elements of the boat — the
hull and the deck (first part of the Figure 7 shows the
result of the assembly).

The hull The deck
Value [m] Positive | Negative | Positive | Negative
Max.
distance 0.029997 | -0.029840 | 0.059953 | -0.059851
Average | 604767 | -0.003123 | 0.007784 | -0.008039
distance
Standard 0.006847 0.012581
deviation

Table 2. Values of standard deviation and the residuals after the
Shape Phase

About 46 hours of laboratory work was required for above
mention tasks. The results of the 3D modelling were quite
satisfactory. The standard deviations of shape (between the
point cloud data set and the surface model) for the 3D models
resulted of 0.006847m for the hull and 0.012581m for the deck.

It’s possible to apply three above mentioned phases to 3D point
cloud of the whole boat.

We have started with 1,110,955 points and we applied the noise
reduction. Then filtering process and uniform sampling were
performed, resulting in a final total of 167,750 points in Point
Phase.

Triangulation of the point cloud for the boat resulted with
323,862 current triangles, in Polygon Phase. Finally the Shape
Phase resulted with 5342 patches obtained by applying the
autosurfacing. The final results of every one of these phases are
shown in Fig. 7.
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Figure 7. The results of Point Phase, Polygon Phase
and Shape Phase of the ship

The standard deviation (deviation in shape between the point
cloud data set and the surface model) resulted of 0.012161m for
the 3D model of the whole boat.

The residuals are shown in Table 3.

Value [m] Positive Negative
Max. distance 0.059715 -0.059498
Average distance 0.008139 -0.006322
Standard deviation 0.012161

Table 3. Values of standard deviation and the residuals of the
whole ship after the Shape Phase

One of the most important matters when we speak about the
speed of the boat it’s surely the power of the engine.

The essential information to start calculating the power that we
need for the boat is its length of waterline. So the length of
waterline was the crucial date needed.

There exist diverse ways to obtain the power that we need in the
propeller of the boat to reach the wished speed relating the
length of waterline with the displacement of the boat. The
length of waterline was obtained by means of marking it on the
hull with black and white targets which were easily recognized
on the scans.

The displacement of the boat is related with the submerged
volume of underbody (in this case it was 145 m®) and with its
form. These would be easily obtained by means of use of
commercial package software Geomagic Studio 8.

The underbody point cloud is demonstrated in Fig. 8.

Figure 8. The form of the underbody of the ship
(the point cloud)
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Discussion. Our results were quite satisfactory because we
obtained 6,8 mm of deviation of shape in the hull and 12,5 mm
of deviation in shape in the deck case. Considering the size of
the whole ship (about 40 m) the results obtained were really
good. The residuals weren’t so big so the stability of the laser
scanner during the data acquisition was quite good.

The final results could be improved by previous calibration of
the laser scanner.

Comparing the results of the whole boat with the results of the
hull and the deck, which we obtained during the separate
processing results of better values for the whole boat (we
obtained 12,5 mm of deviation in shape for the whole model of
the ship), but it can result little objective in this case because of
different ways of pre — processing of the point clouds of the
boat: separate handling and joint handling. The first one permits
personal and separate processing of both parts of the boat and
the second one requires applying of the same processing
parameters to the hull and the deck what can provoke a loss of
some information. Besides it’s easier to work with separate
parts of the boat because the point clouds contain less points
and it facilitates the 3D modelling.

6. CONCLUSIONS

Nowadays, three-dimensional models can be rapidly and
effectively created using laser scanning techniques, which can
measure millions of points in a matter of minutes with
millimetre-level precision. Moreover, they avoid the error
propagation that is typical of classical topographic methods.
Specific software is used to process the point clouds and to
develop the final 3D surface models.

Although these techniques offer the potential for improving the
working methods currently employed in most companies in the
sector, they have some drawbacks. The two major
disadvantages are: the cost of the equipment and the highly
specialised, laborious and lengthy data processing work
required to develop the 3D models. Nevertheless, it is likely that
equipment costs fall, and the data processing and 3D model
creation become less complex in the future.
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ABSTRACT:

The relationships between measures of forest structure as derived from airborne laser scanner data and the variation in quantity of
young trees established by natural regeneration in a size-diverse spruce forest were analyzed. A regeneration success rate (RSR) was
regressed against 27 different laser-derived explanatory variables. The 27 different models were ranked according to their Akaike
information criterion score. Each laser variable was then associated with two categories. These were return and type. Within the
return and type categories, the variables were grouped according to if they originated from first or last return echoes and if they were
canopy height or canopy density metrics. The results show that the laser variables strongest correlated to the quantity of small trees
could be attributed to last return and density metrics.

1. INTRODUCTION existing recruitment models or constructing new ones based
solely on laser variables.

The number of seedlings in uneven-aged forest types is
influenced by several factors. An essential requirement for The objective of the present study was to analyze the
regeneration is a source of seeds. Furthermore, the  relationship between measures of forest structure as derived
establishment of a seedling from a seed is dependent on the  from airborne laser scanner data and variation in the quantity of
properties of the humus layer, competition from other plants,  young trees in the height range of 0.1 to 3 m in a size-diverse
nutrient availability, and microclimate (moisture and light/heat) spruce-dominated forest. The focus was on exploration and
at the specific site. Many of these factors are directly or jdentification of laser-derived variables that have a potential for
indirectly influenced by stand structure. For instance, stand  development of future prediction models that might be used in
structure will affect below canopy light levels, which not only operational forest management.
determine energy input but also influence temperature, the
composition of the bottom- and field layer species, humus layer

processes and so on. Thus, under varying forest structure, the 2. MATERIALS AND METHODS
quantity and vitality of the young growth will be expected to
vary accordingly. 2.1 Field inventory

Small footprint airborne laser scanning has shown to produce  The data were collected on 72 circular field plots of 25 m? each.
good data for reproducing forest structures. The laser depicts ~ The plots were located in 18 clusters comprising four plots in a
the canopy by transmissions of geo-referenced laser pulses,  boreal forest reserve outside Oslo (59° 50°N, 11° 02°E, 190-370
recording vegetation heights at the hit point of each pulse. m a.s.l). Stand characteristics appear in Table 1. The forest area
Structural characteristics of the canopy have been modelled is further described by Bollandsas and Nesset (2007). From the
from discrete laser returns by several authors (e.g. Maltamo et centre of each cluster, one plot of 25 m? was located 12 meters
al., 2004; Parker and Russ, 2004; Tickle et al., 2006). The from this centre in each cardinal direction. The position of each
results have been good because laser pulses can penetrate at  cluster centre was determined by differential GPS+GLONASS
least 40 % of maximum canopy height (Neesset, 2004a) and ~ Measurements. Each plot was split into four by two
therefore account for much of the variation in canopy structure. ~ perpendicular lines through the plot centre in a north/south and
However, the retrieval of small trees (say diameter less than  east/west direction. In each of these resulting 6.25 m?
five cm in breast height) under a dominating canopy by means ~ quadrants, the number of seedlings between 0.1 and 3 m were
of laser scanning is challenging. Still, even though there are ~ recorded. A regeneration success rate (RSR) was computed
several factors that influence establishment and growth that are ~ from these records by first counting seedlings in each quadrant
not, or only partly, affected by the stand structure, it is likely ~ (ni). However, we stopped counting if the number reached a
that there exist some relationship between the laser-depicted  limit considered sufficient on an area of 6.25 m” (ny). This
canopy and the variation in young growth. We believe that  limit was set to three seedlings. Then we summed n; for the four
utilization of laser data describing canopy structure to detect ~ quadrants and RSR was computed as this sum relative to a
young growth could be a valuable contribution for improving number of seedlings considered sufficient for the entire plot

(4ngy). The reasons for using RSR instead of the actual number

* Corresponding author.
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are that above a certain number, the establishment is most likely
dependent on growth factor variations on a very small spatial
scale, for instance the occurrence of partly decomposed downed
logs or bare mineral soil, but also that RSR will be more

representative of the number of seedlings needed for the
regeneration to be successful.

Characteristic® n Mean STD Range
Minimum diameter (cm) 18 3.2 0.3 30 - 40
Maximum diameter (cm) 18 47.0 7.3 333 - 606
Diameter range (cm) 18 43.8 7.3 303 - 571
Mean diameter by basal area (cm) 18 21.11 3.8 1460 - 3032
Lorey's mean height (m) 18 21.65 3.7 1520 - 28.90
Dominant height (m) 18 26.27 3.3 19.80 - 32.00
Number of stems (ha™) 18 1033 308 630 - 1780
Stand basal area (m*ha®) 18 34.2 5.7 216 - 455
Volume (m3ha®) 18 360.7 110.4 171.9 - 6348
Species distribution (%)

Spruce 18 90 71 - 100
Pine 18 0 0o - 2
Deciduous 18 10 0 - 28

Table 1. Forest data by clusters.

2.2 Laser scanner data

A Hughes 500 helicopter carried the ALTM 1233 laser
scanning system produced by Optech, Canada. The average
footprint diameter was approximately 18 cm. The mean number
of pulses transmitted was 5.0 m™. First and last returns echoes
were recorded.

First and last pulse height distributions were created for a circle
(r=8.46 m) around each sample plot centre from the laser
echoes considered to be reflected from the tree canopy, i.e.,
echoes with height values of >3 m. The radius of 8.46 is the
maximum radius that could be used without having overlap
between laser data from adjacent plots. The tree canopy
threshold value of 3 m was set to correspond to the maximum
height of trees belonging to the understorey. From these
distributions a total of 27 variables were derived. Three
percentiles of 10%, 50%, and 90% of maximum height
characterized both first and last return laser heights. We
labelled these as the height variables. Accordingly, measures of
canopy density were derived by dividing the range between the
lowest laser canopy height (>3 m) and the maximum canopy
height into four uniform fractions. Cumulative canopy densities,
henceforth called density variables, were then computed as the
proportions of first and last pulse laser hits between the lower
limit of each fraction and maximum laser height to total number
of pulses. Moreover, maximum and mean height values,
standard deviations and coefficients of variation were derived.
Further details are provided by Nasset (2004b).

2.3 Data analysis

Because the data originate from clustered plots, there exists
spatial dependency between plots within clusters. Thus, data
analysis was carried out by means of the PROC MIXED
procedure of the SAS statistical software package (Anon.,
1999), estimating random coefficient models. Each variable
extracted from the laser data were regressed against RSR.
Subsequently, each of the models was ranked by their Akaike
information criterion (AIC) (Akaike, 1974) score. This yielded
a rank of each laser variable according to the goodness of fit of
each model.
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Then, each laser variable was attributed to groups of first- or
last return; and height- or density variable. The first- and last
return groups constitute what we labelled the return category.
Similarly, the height- and density groups constitute the type
category.

3. RESULTS

Table 2 displays the results from the ranking of the laser
variables according to the AIC values. The table shows the
modus group (most frequent group of variables within the
category) with the corresponding frequency for both variable
categories. The best explanatory variables for RSR according to
these rankings are attributed to last return echo and density
metrics. Of the five highest AIC-ranked variables 80% were
related to last return echo and 100% to density metrics.

Return 2 TypeP
Modus  Freq. Modus Freq.
# of ranked group (%) group (%)
variables
5 Last 80 Density 100
10 Last 70 Density 100
15 Last 60 Density 100

Table 2. The most frequent group of variables (modus group) of
the best AlIC-ranked 5, 10, and 15 variables assigned to return
and type categories.

& First or last laser echo.
® Type of laser variable (height or density variable).

4. DISCUSSION

Establishment — measured as regeneration success rate —was
found to be best explained by density metrics and variables
originated from last return data. While the first return data
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describes the surface of the canopy, the last returns penetrate
deeper into the canopy and thus account for more vertical
canopy variation. Last return data are therefore better
accounting for light conditions on the ground. This may also be
the reason why density metrics are better than height metrics.
Since they are greatly affected by the density and structure of
the canopy, they also account for light conditions on the ground
better than the height variables.

For germination and early establishment of spruce seedlings,
soil temperature and humidity are the most important factors
(Mork, 1938; Bjor, 1971). Light levels affect both temperature
and the distribution of bottom and field layer vegetation, which
can be important for water availability. Even though the nearest
neighbour trees may have a large influence on light conditions,
light levels below the canopy will be affected by trees on a
large scale in this mature forest. In fact, the radius of 8.46 m
that we used in this study was not very large, as light levels
below the canopy are affected by trees or gaps up to at least
twice the dominant stand height at northern latitudes
(Flemming, 1962; Golser and Hasenauer, 1997). Our radius was
set to avoid overlap between adjacent plots, but in further
studies different and greater radii should be investigated.

Establishment may be influenced by many stochastic factors, of
which weather conditions are the most important, having a
strong influence on seed production, germination, and seedling
mortality. Also non-stochastic factors like soil conditions,
ground vegetation or micro-topography may influence
establishment, regardless of stand structure. Our study was
conducted in a multi-storied, natural spruce forest. In a
managed spruce forest, the relationship between structure and
regeneration may not be completely the same. One obvious
difference may be the type and frequency of treefall gaps,
which enhances regeneration by soil disturbance and woody
debris and are important regeneration niches in a natural spruce
forest (Kuuluvainen, 1994). Those elements are created mostly
by the downfall of (over-) mature trees and related to stand
structure. In the managed forest trees are removed at an
economic maturity age, and the presence of treefall gaps and
downed logs are lower and not related to stand structure in a
similar way as in natural forests. Thus, a separate study should
be conducted for managed forests.

5. CONCLUSION

Our study was a screening which aimed at identifying laser
variables that might explain regeneration success. A full
correlation between laser data variables derived from the
canopy and regeneration will never be found, as factors not
affected by canopy structure also strongly influence
regeneration success. However, the study has shown that
already existing data derived from laser scanning, for instance
during a regular forest inventory, may give us surplus
information on regeneration. Our data show that there is a
relationship between canopy structure and seedling number,
possibly strong enough for prediction of regeneration success in
future prediction models.
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ABSTRACT:

There is an increasing interest of the scientific community in the generation of 3D facade models from terrestrial laser scanner (TLS)
data. The segmentation of building facades is one of the essential tasks to be carried out in a 3D modelling process. Since in reality,
majority of facade components are planar, the detection and segmentation of geometric elements like planes respond to the previous
task. The RANSAC paradigm is a robust estimator and probably the most widely used in the field of computer vision to compute
model parameters from a dataset containing outliers. Indeed, RANSAC algorithm is usually successful for fitting geometric
primitives to experimental data like for example, 3D point clouds resulting from image matching or from airborne laser scanning.
The innovative idea of this study is the application of RANSAC algorithm to TLS data, characterized by a meaningful proportion of
outliers. Therefore, this paper presents an approach allowing automatic segmentation and extraction of planar parts of facades
scanned by TLS. Firstly, potential planes describing planar surfaces are detected and extracted using RANSAC algorithm. Then, a
quality assessment based on manually extracted planes is carried out. The obtained results are evaluated and prove that the proposed
method delivers qualitatively as well as quantitatively satisfactory planar facade segments.

1. INTRODUCTION which aims to decompose facades into planar surfaces is carried
out using RANSAC paradigm.
The reconstruction of geometric 3D models is one of the most
important goals of 3D modelling in urban areas. In recent years, After introducing the RANSAC algorithm, the methodology
advances in resolution and accuracy have rendered airborne used to segment and extract multiple planes describing planar
laser scanners (ALS) suitable for generating Digital Surface surfaces is presented. Furthermore, each operation is illustrated
Models (DSM) and 3D models. These data alone do not provide and applied on a point cloud describing a multi-planar facade.
complete 3D models since they do not cover building facades. Finally, the results are presented and evaluated in a qualitative
In this context, generation of 3D city models with both high as well as in a quantitative way.
details at ground level, and complete coverage for bird’s-eye
view became more and more a challenging task. On the one
hand, facades are acquired at ground level using Terrestrial 2. RELATED WORKS
Laser Scanners (TLS). On the other hand, roof shapes and
terrain information are deduced from a DSM produced by ALS A variety of techniques applied to the classification and 3D
data (Tarsha-Kurdi et al., 2006). segmentation of point clouds originally result from traditional
photogrammetric, computer vision and signal processing fields
However, if numerous approaches have been developed over (Belton and Lichti, 2006). Some of these include
the past 10 years for airborne laser data, the situation is not so transformations from one space into a parameter space, like for
bright for terrestrial laser data. This is due, among others, to the example the Hough transform and the Gaussian sphere
gap between the architectural 3D range scanning and an (Vosselman et al., 2004). They try to gather common elements
efficient use of the data by professionals (Spinelli et al., 2006). based on the surface parameters and surface normal information
respectively. Techniques such as tensor voting (Tong et al,
According to (Barber ef al., 2001; Stephan et al., 2002), the way 2004; Schuster, 2004) and region growing (Besl and Jain, 1988)
in which point cloud modelling is performed depends strongly have been applied to segmented data based on localised
on the aim of the study. Generally, two modelling approaches information. Morphological approaches such as medial axis and
can be distinguished: approaches fitting geometric primitives skeletonisation have also been used by introducing diffusion
and approaches based on meshing methods. The latter allows equations, radial basis function and grass-fire techniques (Gorte
fitting unspecified objects having irregular shapes and that and Pfeifer, 2004; Ma et al., 2003).
cannot be approximated by simple geometric primitives.
Related to facade segmentation collected by TLS, extended
The goal of this paper is to introduce an approach allowing region growing algorithms are often used to extract planar
automatic segmentation and extraction of planar parts from surfaces (Pu and Vosselman, 2006; Stamos et al., 2006; Dold
facades acquired by TLS. This approach is in line with fitting and Brenner, 2004; Lerma and Biosca, 2005). It starts by
geometric primitives approaches. The step of segmentation determining a seed surface (a group of nearby points that fit to a
plane), and then the seed surface grows according to specific
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criteria. On the one hand, the proximity criterion means that
only points within a certain distance to a seed surface can be
added to this seed surface. On the other hand, the globally
planar criterion means that a plane equation is determined after
fitting a plane passing through all points located in this seed
surface. Points can only be added if the perpendicular distance
to the plane is below some threshold. Although it provides
interesting results, the limitations of this algorithm come from
the big number of thresholds needed. Also computing time is
considerable when the algorithm is applied on 3D point clouds.

Another method is increasingly used to extract planar surfaces
especially by fitting geometric primitives. It is the RANSAC
(RANdom SAmple Consensus) paradigm, which is applied to a
wide range of problems dealing with model parameters
estimation. Indeed, (Bauer et al., 2005) use RANSAC method
to detect and extract the main facade planes. Promising results
are obtained for creating plane based models for buildings, even
using dense 3D point clouds. However, the 3D point cloud was
not acquired by TLS, but through image matching. According to
(Durupt and Taillandier, 2006), RANSAC estimation algorithm
can also be used to extract planar primitives directly from
cadastral limits and from a DEM (Digital Elevation Model).
Through their study, it is shown that an evaluation carried out
on 620 buildings in a dense urban centre provides encouraging
results. Nevertheless, the algorithm has only been tested on
ALS data.

Often, when one wants to compute model parameters from a
dataset containing a significant proportion of outliers, many
computer vision algorithms - especially algorithms including
robust estimation steps - are adopted. The RANSAC algorithm
is probably the most widely used robust estimator in this field
(Matas et al., 2002). Nevertheless it has rarely been applied on
TLS data for fitting models, although affected by noise and
artefact errors. Hence, it is interesting to study the performance
of this algorithm in estimating model parameters in a purpose of
segmenting TLS data.

3. RANSAC PARADIGM

The RANSAC paradigm is an algorithm for robust fitting which
has been introduced by (Fischler and Bolles, 1981). It is one of
the probabilistic voting methods known to reduce the
computing time. Indeed, it was developed in order to reduce the
number of necessary trials of traditional voting techniques, like
Hough Transform for example. In spite of the simple structure
of RANSAC algorithm, it is known to be efficient.

Firstly, subsets are randomly selected from the input data and
model parameters are computed so that they fit the sample. The
size of the sample depends on the mathematical model (line,
plane, cylinder, sphere...) one wants to find. Typically, the size
of the sample is the “smallest” number of points sufficient to
determine the model parameters. For example, to find a plane in
the dataset, one has to select a set of three points, since three
points are required to determine the parameters of a plane
(normal vector and distance of plane to origin).

In a next step, the quality of the model will be evaluated.
Typically, an error tolerance determines a volume around the
geometric primitive within which all compatible points must
fall in. Then, a cost function computes the quality of the model,
the standard one being the number of inliers, i.e. points which
agree with the model within an error tolerance. But other quality
criteria could be used such as a standard deviation of distances
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from points to model for example. Therefore, the plane
containing more points is considered to be the best plane. The
process terminates when the likelihood of finding a better model
becomes low.

The minimum number (m) of trials needed to reach a
probability (p) to find at least one good set of observations -
assuming a certain percentage (w) of observations to be
erroneous - is given by relation (1).

log(1 - p)

5 M
log(1—-(1-w)”)

where (S) is the minimum number of points necessary to

calculate the parameters of the model (in the case of a planar

model, $=3). Demonstration of the equation mentioned above

can be found in (Fischler and Bolles, 1981).

The next part explains the methodology used and refined in
order to segment a 3D point cloud of a facade into multiple
planes.

4. SEGMENTATION METHODOLOGY

The segmentation proposed in this work starts with the
decomposition of a 3D point cloud into many planes. After data
description, a facade segmentation algorithm based on
RANSAC procedure is presented. Then the step of plane
extraction is explained. It must be noted that in this context, a
“segment” means a set of 3D points belonging to the same
surface.

4.1 Data description

The point cloud used for testing the segmentation approach
covers the facade of the Graduate School of Science and
Technology (INSA) of Strasbourg. It is composed of many
planar surfaces containing different elements (windows, planar
wall, balconies) and characterized by different materials
(concrete, pane, stone). A photograph of the facade is presented
in Fig. 1.

L
#mz

ng!:;m
mm'

Figure 1. Photograph of the building under study

The dataset used in this study is a point cloud acquired by a
Trimble GX laser scanner. The technical specifications of this
kind of TLS are depicted in Table 1. Generally, a cloud is
composed of 3 dimensional points defined by their Cartesian
coordinates. The point cloud used as sample contains 47710
points acquired with a horizontal and vertical resolution of 150
mm at 50 m. Other properties assigned to the points provided by
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the laser scanner such as colour properties are voluntarily not
used in this study.

Technical specifications
Distance accuracy 7 mm at 100 m
12 mm at 100 m
60 prad (Horizontal)
70 prad (Vertical)
3 mm at 100 m with no restriction

Position accuracy
Angular accuracy

Grid Resolution

over 360° on number of points in a scan
Spot size 3 mmat 50 m
Speed up to 5000 points per second

Table 1. Technical specifications of Trimble GX laser scanner.

The points captured through glass and returned by parts located
behind the facade have easily been manually removed using the
RealWorks Survey software (Trimble). Fig. 2 shows the point
cloud of the facade presented in Fig. 1, acquired by Trimble
GX.

Figure 2. Point cloud describing the facade sample under study.
4.2 Facade segmentation using RANSAC algorithm

The RANSAC algorithm is used here in order to detect and
extract planes describing planar parts of the facade. Practically,
a plane is a row of four values [a b ¢ d]. The first three define
the unit normal vector (a?> + b*> + ¢ = 1); the fourth is the
distance of the plane to the origin. Thus, all points (x, y, z)
fulfilling the Equation 2 belong to the same plane.
ax+by+cz=d 2)
The basic RANSAC approach is limited by the assumption that
a unique model accounts for all of the data inliers. The term
inliers means points which agree with the model according to an
error tolerance.
However, one would like to extract all potential planes from the
data. To do this, it is suggested to apply sequentially RANSAC
algorithm and to remove the inliers from the original dataset
every time one plane is detected. This constitutes the first
adaptation of RANSAC algorithm in our context. The
sequential process guaranties that each point belongs to one
unique segment (plane) and that there is no intersection between
two segments. Thus, a point contributes only to the fitting of the
plane it belongs to.

To determine the points belonging within some tolerance to the
given plane, the Euclidian distance between a point P (x,y,z)
and a plane PL(a,b,c,d) is calculated (see Equation 3).

d(P,PL)=|ax+b.y+cz=d| (3)
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In reality, data acquired by terrestrial laser scanning are not
immediately compatible with mathematical models. In other
words, no planar walls, no straight edges, no right angles are
directly provided in the digital model. Therefore, to obtain
planes representing walls, one tolerance value describing the
authorized thickness of a plane is imposed. Thus, the researched
plane is considered to be a parallelepiped, but this is necessary
at first to get meaningful segments.

In this process, different planes are detected one after the other.
It is obvious that the number of planes detected depends
strongly on the tolerance value chosen as input. The more this
value is low, the more the number of detected planes is large.
This is because each segment is a parallelepiped firstly, and
tends to become a planar surface when tolerance value tends to
zero. Therefore, the threshold value must be carefully chosen.

After many experiments, it turns out that the tolerance value
used to get significant planes has to be set between ¢ = 20 mm
and t = 40 mm. For instance, with threshold ¢ = 5 mm, the
segments obtained are too numerous and not significant (Fig. 3).
The main characteristic of these planes is to contain an
insufficient number of points. It becomes clear that this kind of
result is unusable for a later modelling process.

Figure 3. Detection of meaningless planes when data are
segmented using ¢t = Smm. Each colour represents one plane.

On the other hand, the threshold should not overcome some
tolerance (in our case ¢t <=4(0 mm). Over this value, two or more
different planes are considered as one unique plane (Fig. 4).

Figure 4. Detection of only two planes when data are segmented
using t = 350 mm.

Logically, the threshold value must be close to the thickness of
the cloud. The thickness is usually generated by noise coming
from the surface roughness, the object colours and the TLS
resolution capacities. In the point cloud under study, it reaches
about 2 to 4 cm. Thus, with ¢t = 40 mm, the expected planes are
correctly detected and extracted (Fig. 5). However, it is
necessary to underline that an optimal tolerance value can only
be obtained in an empirical way depending heavily on the
objects under investigation, on the data characteristics and the
objective of the study.
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Figure 5. Successful segmentation with ¢ = 40 mm.

The minimum number of trials needed to get the best plane is
given by Equation (1). Considering a value of 0.2 for w, a
probability of 99% should theoretically be reached after 1000
trials.

4.3 Planes extraction

Once the main planes are determined by automatic
segmentation, each plane is extracted and displayed separately.
Fig. 6 shows four different planes containing points belonging
to the same planar facade. The first segment is composed of
points belonging to windows (Fig.-6a); the second one describes
horizontal and vertical beams (Fig.-6b); the third is composed
by balconies (Fig.-6¢). The last one is a principal planar wall
(Fig.-6d).
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Figure 6. Four planes displayed separately; a) windows; b)
beams; c) balconies; d) principal wall.

In the plane composed of windows, some windows are filled by
points and others are empty. This is because either no return is
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measured (due to specular reflectance), or the available points
refer to curtains. In principle, such holes in a point cloud can
also result from shadows generated by objects located between
the laser and the facade. However, this phenomenon is avoided
by using several point clouds acquired from different points of
view.

It can be remarked, that the extracted planes are coherent and
correspond to a specific planar part of the facade. Now the
results must be evaluated in detail, regarding the geometric
accuracy, as well as the semantic coherency.

5. RESULTS EVALUATION

In order to evaluate the accuracy of the plane detection obtained
by the presented approach, a reference model is necessary. For
this purpose, a manual segmentation has been performed on the
same point cloud and provided the planar surfaces composing
the facade under study. These planes are then compared to their
homologous, extracted automatically in the previous part. Only
the results of the evaluation performed on a successful
extraction (plane of Fig.-6b) and a less successful extraction
(Fig.-6d) are presented in this section.

Fig. 7 presents with two colours, the same plane extracted
automatically (in blue) and manually (in red). This
superimposition enables to compare the results of the proposed
approach to the reference data.

Figure 7. Superimposition of two layers: plane extracted
manually (red points) and his homologous detected
automatically (blue points).

A qualitative analysis of the superimpositions lead to the
conclusion that both layers (automatically extracted plane
against manually extracted plane) are similar. The planes
extracted automatically are satisfactory, since their form and
aspect are almost identical to those of the planes extracted
manually.

The quantitative analysis consists in comparing two
homologous planes. For this purpose, operators like intersection
(N) and difference (/) are applied on the two layers to be
compared. Considering that each plane is composed of a set of
points defined by their Cartesian coordinates, let’s denote (A) as
the set of points belonging to the automatically extracted plane
and (M) the set of points belonging to the manually segmented
plane.

Table 2 shows the results of the comparison of the automatically
and manually segmented planes corresponding to Fig.7.
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Plane Number Description
of points

A 4658 Points extracted automatically

M 4888 Points extracted manually
ANM 4406 Points common to both A and M

planes.

A/M 482 Points of (A), not present in (M).
M/A 252 Points of (M), not present in (A).

Table 2. Comparison between automatically (A) and manually
(M) extracted planes.

In proportion, 4406 among 4658 points of the automatically
extracted plane (A) are correctly detected. In terms of
percentage, they represent 94.6 % of points. Indeed, only 252
points are lost by the proposed algorithm.

On the other hand, 482 points are in excess of the expected
points. This can be explained by the fact that a plane determined
by RANSAC algorithm is defined by its mathematical equation
(Equation 2). Thus, all points fulfilling this equation are
considered belonging to the plane, regardless of the
architectural constraints describing a plane. Fig.8 shows the
geometrical constraints characterizing the plane extracted in
Fig.7.

Figure 8. Part of the facade corresponding to the detected plane

in Fig.7 (contours digitized in red)

Actually, manually extracted planes correspond to well-defined
walls. Moreover, the architectural or semantic constraints are
quite present in the manual segmentation. On the other hand, an
automatically detected plane is based only on the mathematical
criterion of flatness. This explains the presence of points
randomly dispersed outside the expected wall (Fig.9-b), which
are absent in Fig.9-a. In consequence, the percentage of points
common to both planes ((A) and (M)) does not overcome 87.8%
(ANM).

This problem can be attenuated by adding constraints of
topological and geometrical nature to the proposed algorithm.
Indeed, from a topological point of view, a criterion of vicinity
(characterized for example by a tolerated number of neighbours
around each point within a given radius), enables to eliminate
points lying outside the expected planar surface. From a
geometrical point of view, a criterion of surface enables to keep
only the significant objects. This can be done for example by
converting the set of points into an image and applying image
processing tools, like region growing algorithms in order to
remove the meaningless points (points of (A) that are absent in

(M)).
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Figure 9. Representation of a planar wall, extracted in two
ways; a) manual extraction; b) automatic extraction.

Moreover, the plane parameters estimated by RANSAC
algorithm are not very accurate, since they are established based
on three initial points only. They will be recomputed and
adjusted, for example by a least-square fitting, to all points
assigned to the detected plane.

Nevertheless, considering purely the segmentation and
extraction approach proposed in this study, it can be concluded
that the method is reliable. Indeed, 90% of the points composing
the complete sample of the facade are correctly extracted.

6. CONCLUSION AND FUTURE WORK

The approach described in this paper aims to segment
automatically and extract planar surfaces from a building facade
captured by TLS. Firstly, the point cloud is segmented into
several planes using sequential RANSAC algorithm. The results
obtained are satisfactory, because they are produced based on
the unique assertion that the best plane is the plane containing a
maximum of points. Thus, considering that no additional
constraint is needed, the global accuracy is better than expected.
Therefore, the proposed methodology enables reliable facade
segmentation with weak processing time, using TLS data. It
constitutes a first and primordial step in the generation of
complete 3D building models.

Future work will focus on the enhancement of segmentation
operation. In order to avoid problems discussed above and
increase the global and relative accuracy of the results,
additional geometrical and topological constraints will be
considered. Moreover, further investigations regarding the
empirical parameters of RANSAC algorithm will be carried on.
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ABSTRACT:

There is a growing body of literature that points to the value of using the intensity measures of the backscattered laser light in addition to
the pulse range measurements for studying a range of environments, including forests. However, there is a lack of literature that has
validated the lidar intensity values captured in a campaign, and therefore limited understanding in the full utility of these data. This paper
presents preliminary analyses of lidar intensity values captured over an area of woodland in the UK in comparison with concurrently
acquired HyMap data, which measures the passive reflected radiation at the same wavelengths. The study concludes that lidar intensity
values are broadly representative of the NIR radiation reflected from the forested landscape and therefore could be utilised. However,
there is a real need for calibration of intensity data, particularly if flight lines are to be merged. Furthermore, if lidar intensity values are to
be interpolated into a raster and used in a similar way to conventional image analysis, the selected interpolation technique significantly

affects the resultant lidar values.

1. INTRODUCTION

1.1 Background

Airborne lidar systems are able to record the intensity of the
backscattered laser light, with intensity measured either as the
maximum of the returned pulse or signal integration over the
returned pulse width. This is in addition to the pulse range
measurements (Wehr and Lohr, 1999). Intensity data thus
provide a record of the backscattered intensity of reflection for
each laser pulse, supplying information about the reflecting
surface or object at sampled points across the landscape. This
ability to capture backscattered reflectance from returning
pulses has proved useful for the identification of broad land
cover types (e.g., Brennan et al., 2006) and as ancillary data for
post-processing (e.g., Liu et al., 2007). This intensity
information within lidar echos is a function of the wavelength
of the source energy (often within the near infrared spectral
region (NIR: 0.7 — 1.5pum) for terrestrial applications), path
length and the composition and orientation of the surface or
object which the pulse has hit. For any data capture project, the
system specific factors are known (but may be unavailable),
whilst those that are site specific are typically unknown.
However, tabulated values of reflectances of materials are
available through endeavours of spectroscopy (e.g., Clark et al.,
2003 - http://pubs.usgs.gov/o0f/2003/0fr-03-395/0fr-03-395.html) and
suggest that there is scope in using lidar intensity for
applications common place in remote sensing.

The potential in the exploitation of lidar intensity has recently
being realised and been demonstrated in a number of
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application areas. These include the identification and mapping
of the age of lava flows from active volcanoes (e.g., Mazzarini
et al., 2007); glacial features (e.g., Arnold et al., 2006;
Kaasalainen et al., 2006); features of archeological interest such
as palaecochannels (e.g., Carey et al.., 2007); and vegetation
types (e.g., Farid et al., 2006). Within forestry, lidar intensity
has been used to estimate forest volume and biomass in a
temperate forest of coniferous, deciduous, and mixed stands
(van Aardt et al., 2006); to filter lidar-height to estimate the
basal area of northern hardwood forests (Lim et al., 2003). and
as a predictor in tree species classification (Holmgren and
Persson, 2004). Hudak et al. (2006) concluded that lidar
intensity was more useful than the EO-1 Advanced Land
Imager multispectral data acquired concurrently for predicting
basal area and tree density of coniferous forests. All these
studies illustrate that lidar intensity values are being utilized in
ways beyond perhaps originally intended. The emergence of
full-waveform laser scanners may well increase this trend.

1.2 Factors determining lidar intensity

There are a number of factors that determine the lidar intensity
values captured by a system and can be conveniently grouped
into system variables and target variables, with the effect of
exhibiting co-dependency. The system variables include target-
emitter distance, beam divergence (there is a loss of intensity
with the diverging beam), the laser footprint size, angle of
incidence, atmospheric attenuation and signal processing.
Target variables include target reflectivity, surface roughness
and bidirectional properties and the size of the target (Wagner
et al.,, 2006). Within forests this is mainly a function of leaf
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area, leaf inclination, species type, and tree density. Another
factor to consider, if the data are converted from a point cloud
into an interpolated 2-dimensional surface, is the post-
processing procedure. Interpolation technique and selected
output cell size will influence the nature of the resulting
surfaces. All of these factors need to be considered and
understood if lidar intensity values are to be used optimally.

Limitations in the effective use of lidar intensity values are the
lack of calibration techniques (Kaasalainen et al., 2005) and the
lack of validation of the lidar intensity values obtained over a
particular environment. Much progress has been made to
calibrate intensity both under laboratory and field conditions
(e.g., Coren and Sterzai, 2006; Ahokos et al., 2006). Validation
of lidar intensity by means of comparison with a similar
product derived by more “conventional” means should lead to a
better understanding of the parameters within which lidar
intensity values can be employed. The challenge for validating
lidar intensity data is the lack of reference data at appropriate
spatial, spectral and temporal resolution to compare with lidar
intensity values. In this study, HyMap data have been acquired
concurrently with small-footprint lidar data over a woodland
area in the UK, thus enabling an exploration of the lidar
intensity across a landscape.

2. STUDY AREA

The study area focuses on two woodland sites, Monks Wood
and Bevill’s Wood, and their immediate agricultural vicinity, in
Cambridgeshire, UK (52° 24’ N, 0° 14 W). Monks Wood,
covers 157 hectares and is a National Nature Reserve
comprising broadleaf forest. Monks Wood is divided up into 30
compartments for management purposes. It is a complex
woodland environment and extremely heterogeneous in terms
of the woody species comprising the canopy and understorey,
their relative proportions in any area, canopy closure and
density, tree height and stem density (Hill and Thomson, 2005).
The dominant tree species are ash Fraxinus excelsior L., oak
Quercus robur L., field maple Acer campestre L., elm Ulmus
carpinifolia Gleditsch. and aspen Populus tremula L., while the
dominant shrub species are hawthorn Crataegus monogyna
Jacq., hazel Corylus avellana L., blackthorn Prunus spinosa L.,
dogwood Cornus sanguinea L., and wild privet Ligustrum
vulgare L. The majority of overstorey trees are 70-80 years old.
The soils are gleyed brown calcareous and surface water gley
resting on impervious clay. To the south of Monks Wood,
separated by a minor road, is Bevill’s Wood, a 36-hectare site
that was almost entirely clear-felled and replanted in the 1950s—
1960s. Bevill’s Wood has stands dominated by beech Fagus
sylvatica L., Scots pine Pinus sylvestris L. and Norway spruce
Picea abies L.. These patches of woodland have a relatively
homogeneous structure and tend to lack an understorey. There
are, however, stands of pine and spruce that have areas of ash
and scattered beech intermingled. The edges of stands inside
Bevill’s Wood are ringed with ash or willow trees. Both Monks
Wood and Bevill’s Wood have an outer fringe comprising ash,
oak, field maple, hazel, hawthorn and blackthorn, and
throughout both woods are open areas of herbaceous vegetation
with scattered shrubs.
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The woods are divided up into compartments. Within the
compartments are stands and in July 2000, five contrasting
stands in Monks Wood were surveyed. These covered the
species composition and structure present within Monks Wood,
providing a representative sample of the composition of the
broadleaved woodland area. For further information on the
stands refer to Table 1 in Patenaude et al., 2003 and Hill 2007.

3. REMOTELY SENSED DATA

3.1 Airborne Lidar data

An Airborne Laser Terrain Mapper (Optech ALTM 1210—see
http://www.optech.on.ca) was flown over the study site in a
east-west direction in June 2000. Laser pulses were emitted by
the ALTM with a NIR wavelength of 1.047 pm. By scanning in
sweeps perpendicular to the flight-line, the forward motion of
the aircraft generated a saw-toothed pattern of point sample
elevation and intensity recordings. A small scan angle range of
+10° was selected to minimize the influence of varying
incidence angle on the penetration into the canopy of each laser
pulse (Leckie, 1990) and thus the effect of incidence angle on
intensity (Ahokas et al., 2006). The parallel flight lines had
overlapping swaths of data acquisition, resulting in an irregular
distribution of points. On average, one point was recorded
every 4.83m?” across the study site. Both first and last return
range and intensity data were recorded for each laser pulse,
which generated a circular footprint on the ground surface with
a diameter of approximately 0.25m at nadir. Based on the
instrument specifications supplied by the manufacturer and the
flying altitude, the lidar data had a horizontal and vertical
accuracy of approximately 0.6m and 0.15m respectively. The
Lidar data acquired by the ALTM were supplied by the
Environment Agency of England and Wales as an ASCII file of
X-, y- and z- British National Grid co-ordinates for the first and
last significant return of each laser pulse and the associated
intensity values. The intensity values themselves are unitless as
no method was applied to calibrate them. The individual flight
lines of point sample data were supplied merged together into a
single point cloud.

3.2 Hymap image data

The HyMap sensor records reflected radiation in 126
wavebands, for pixels with a 4-m spatial resolution (see
http://www.hyvista.com). The Hymap provides a signal to noise
ratio (>500:1) and image quality that is setting the industry
standard and thus provides a reliable validation dataset for use
in this study. Moreover, the sensor operates close to backscatter
providing similarity to the laser scanner which operates
practically at exact backscattering (Kaasalainen et al., 2005).
This sensor was flown over the study site at a time coincident
with the lidar and the acquired data were supplied as a 126-
waveband raster image with DN values converted to radiance.
The HyMap data were geo-registered to British National Grid
co-ordinates with a 4-m spatial resolution using the aircraft
telemetry from the time of data acquisition and a plug-in
routine for ENVI software supplied by the HyVista
Corporation. A subsequent comparison with the lidar data
showed geometric accuracy to be within 1 pixel (i.e. 4-m) in the
x- and y- directions. Here the reflected radiation in waveband
42 (band centre 1.0475 pm, width 0.0188 pm) were used as the
validation data for the lidar intensity values.
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4. DATA PROCESSING AND ANALYSIS

4.1 Data processing

Since comparisons were being made with the HyMap Band 42
data, only the first return intensity values were processed; over
a wooded landscape it is most likely that the first returning
pulse is from the top part of the canopy (leaves or branches),
similar to that of the passive NIR radiation reflected from a
canopy recorded by the HyMap sensor (Gaveau and Hill, 2003).
The point-sample intensity data were interpolated into three sets
of raster images, at 4-m and 1-m spatial resolution using three
interpolation routines; Delaunay Triangulation (DT), Inverse
Distance Weighting (IDW) and Ordinary Kriging (OK) for
direct comparison with the HyMap data. Previous studies have
used the lidar range data for Monks Wood to produce a digital
terrain model (DTM) for the site which was then used to extract
canopy height from the first-return lidar data as a grid-based
digital canopy height model (DCHM). Both the DTM and
DCHM have a 1-m spatial resolution (Patenaude et al., 2004).
These were also available for use in the analyses.

4.2. Preliminary assessment of intensity rasters

A qualitative visual assessment of all the intensity images was
undertaken. A grainy texture is evident in the intensity raster
and this speckle is similar to that seen in radar images and a
function of echo fading. Despite this, similar landscape features
were visible in both the HyMap (Figure 1a) and lidar intensity
data (Figure 1b), and this was most evident in the krigged
intensity data. Particularly evident are the different crop types
and management, the rides between compartments, clearings in
the woodland, as well as areas of shrub. Also strongly evident
in the interpolated lidar intensity data are the differences
between individual flight lines. This demonstrates that lidar
intensity data could be useful for visualisation purposes and
developing an understanding of the area of interest, but that for
more detailed analyses some form of calibration within each
flight line is required prior to interpolation to a raster.

Jih1
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A

Figure 1a. HyMap sensor image of the study site (displayed in
band 42).
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Figure 1b. First return lidar intensity image derived through
ordinary kriging of the study site.

Landscape features such as deciduous and coniferous forest
stands, shrubs, grassland and crops were examined for their
intensity characteristics and compared with corresponding
Hymap reflectances. Generally, intensity values are as expected
(e.g., bare soil has low intensity and shrub a high intensity).
These plots illustrate large variance in lidar intensity from each
landscape feature in relation to the HyMap values.
Additionally, lidar intensity from coniferous forests are high,
such that there is no radiometric separability between this
feature and deciduous forest and shrubs (Figure 2). This was
was not the case for Hymap reflectances illustrating that the
mature forests have a complex returning echo causing a similar
backscatter despite structural and physiological differences
between them. These results illustrate the complexity of factors
that influence the lidar intensity data, further work is required to
fully understand the data prior to its optimal use.

4.3 Stand analysis of intensity values

Per pixel analysis was conducted that compared the intensity
and HyMap data at 4-m spatial resolution for all three
interpolation methods for the five sampled stands in Monks
Wood. The focus on these five stands should provide a range of
NIR values from both the HyMap and lidar sensors for a forest
of this type. Table 1 documents the regression equations
computed for each stand and for each interpolation method,
while Figure 3 illustrates the plots obtained for stand 5, as an
illustrative example. Both the table and plots of Figure 3 show
that correlation coefficients are small (although in the case of
stand 4 significant at p<0.01) and that a large degree of scatter
exists in the relationships between HyMap and lidar intensity
data. This scatter may be a function of pixel mis-alignment
where the geometric correction of the HyMap data was not
absolute and the lack of calibration applied to the intensity data.
Moreover, the intensity values for stands 1 to 3 were from areas
where flightlines over lap and thus interpolated values were
calculated from a double set of intensity data.
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Figure 2. Characteristics (mean and *1 standard deviation) of
lidar intensity and HyMap reflectances for landscape features
(1) stand 4 (Ash dominated); (2) stand 5 (Elm dominated); (3)
coniferous forest; (4) coniferous forest; (5) beech; (6) shrub; (7)
bare soil; (8) crop and (9) grass.
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DT y=0.0013x + 15.736; r* = 0.01
IDW | y=0.001x + 16.169; r* = 0.01
OK y=0.0013x + 15.064; r* = 0.03

|

DT y =0.0001x + 17.845; r* = 0.0001
IDW | y=0.0004x + 16.963; r* = 0.002
OK y=0.0007x + 15.54; ’ =0.012

|

DT y = 0.0005x + 16.424; r* = 0.003
IDW | y=0.003x + 17.729; r* = 0.002
OK y = 0.0004x + 17.245; r* = 0.005

DT y=0.0018x + 13.259; r* = 0.01
IDW | y=0.0017x + 13.808; r*=0.014
OK y=0.0017x + 14.003; r* = 0.032

DT y =0.0024x + 9.7862; r* = 0.09
IDW | y=0.002x + 11.483; r* =0.08
OK y=0.0021x + 10.832; r’ = 0.19

Table 1. Regression equations computed between HyMap data
and lidar intensity data derived using each interpolation method
for each of the five stands.
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Figure 3a. Plot of Hymap NIR data against lidar intensity data
derived using DT for stand 5
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Figure 3b. Plot of Hymap NIR data against lidar intensity data
derived using IDW for stand 5.
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Figure 3c. Plot of Hymap NIR data against lidar intensity data
derived using OK for stand 5.

Further examination of the per pixel stand data focused on the
differences in the plots between HyMap and lidar intensity data
apparent as a function of interpolation method. Figure 4
illustrates the histograms of intensity values derived using each
interpolation method for stand 5 and the three plots between the
three pairs of interpolation methods. It is evident that there are
differences in the lidar intensity values, with Fisher’s Z test
calculations showing that each relationship is significantly
different from the other (p<0.01). This demonstrates the
significance of the selected interpolation technique if lidar
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intensity values are to be interpolated into a raster and used in a
similar way to conventional image analysis. The full
implications of this require further investigation and will be a
function of point support characteristics. Similar findings can
be found in the literature pertaining to the derivation of DSMs
from lidar range values (e.g., Lloyd and Atkinson, 2002).

Count
Count

@
Y= 10008284
5] Feoes PN R =087

Figure 4. Illustrating the differences in lidar intensity values
derived from three interpolation methods (stand 5 data):
Histograms and plots of lidar intensity from OK against lidar
intensity from IDW (e); lidar intensity from OK against lidar
intensity from DT (m) and lidar intensity from IDW against
lidar intensity from DT (A).

4.4. Per parcel analysis of intensity values

To overcome the uncertainty in the per pixel analysis, further
analysis focused on using parcels of pixels sampled from
compartments within Monks Wood and Bevill’s Wood.. Here
plots were drawn for the OK derived lidar intensity values
against HyMap data for 28 broadleaved parcels and 11
coniferous parcels (Figure 5a and b respectively).
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Figure 5a. Plot of HyMap NIR against lidar intensity values for
broadleaved forest.

An initial examination of the plots in Figure 5, revealed
insignificant relationships between HyMap data and lidar
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intensity values. However, on further examination of Figure 5
there is evidence of an effect of different flight lines. Within a
flight line plots exhibit strong relationships between HyMap
data and lidar intensity values. This is illustrated using the
broadleaved compartment data. Within a flight line strong
(significant at 0.01 level; two tailed) relationships exist between
HyMap data and lidar intensity values (Figure 6). This suggests
a real need for calibration of intensity values of different flight
lines of an area of interest, if they are to be used to produce one
raster for subsequent analysis. In particular there is a need to
correct for observation angle (Ahokas, 2006).
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Figure 5b. Plot of HyMap NIR against lidar intensity values for
coniferous forest.
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Figure 6. Plot of HyMap data against lidar intensity values for
28 compartments of broadleaved forest for each flight line.

5. DISCUSSION AND CONCLUSION

This paper reports on analyses into the validity and utility of
lidar intensity values for a woodland environment. A number of
factors influencing lidar intensity values have been explored,
including interpolation methods to derive a two dimensional
surface and the effect of merging flight lines on the resulting
lidar intensity values to be used as an image in direct
comparison with a “conventional” remotely sensed image
(HyMap data). The results show that lidar intensity values
correspond strongly with the HyMap data, however, there is a
real need for calibration of the intensity values on an individual
flight line basis so they can be used readily. The limiting factor
here are a lack of calibration techniques that can be applied to a
lidar dataset of this nature, in particular one that has been
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provided with flight lines merged. Furthermore, the lessons
learned in using the lidar range values via interpolation to a grid
should be heeded when using the intensity values. There is
potential in using lidar intensity values, but there is still much
to do to explain some of the lidar intensity values obtained. One
specific query relates to the intensity from coniferous forest.
Once a full understanding of the lidar intensity values obtained
is achieved, it may be that future lidar campaigns need to
consider the specification for mapping classes of interest via
intensity in addition to the specification for terrain mapping
(Reutebuch et al., 2005).

Two main conclusions can be drawn from this study: (i) lidar
intensity values are broadly representative of the NIR radiation
reflected from the landscape, though there are some features,
such as coniferous forest, that require further analysis to
understand their backscatter (ii) there is a real need for
calibration of intensity data, particularly if flight lines are to be
merged and interpolated.
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ABSTRACT:

Similar datasets (inventory plots, stand maps and lidar data) were available for study sites in the USA and Germany. These datasets
are grouped or hierarchical in that several sample plots are located within a stand and the stands are located within two study sites.
Fixed-effects models and mixed-effects models with a random intercept on the stand level were fit to each dataset. Mean lidar raw
data return height and its interaction term with canopy cover as well as its interaction term with the coniferous proportion were found
to be the most influential predictor variables. The mixed-effects models significantly improved the estimates and especially reduced
the bias which was present for numerous stands in the estimates of the fixed-effects models. This resulted in a slight increase of the
variance within the stands. The RMSE for the German study site was higher (34.7% and 29.7% for fixed- and the mixed-effects model
respectively) than on the US study site (19.2% and 16.8% for fixed- and the mixed-effects model respectively). A mixed-effects model
with random effects on the study site and stand level was fit to the combined dataset. It showed almost the same errors as the local
mixed-effects models (17.6% and 29.8% for the US and the German study site respectively). Hence a single model is sufficient to
make estimates for both datasets. The study shows the potential of mixed-effects models in this context. It illustrates that the common
practise of fitting different models for different strata may be unnecessary.

1 INTRODUCTION around a population mean. This is referred to as random effects.
Mixed models with forestry application were discussed by Lappi
Height and density metrics, derived from lidar (light detection and Bailey (1988). An in-depth description of mixed models is
and ranging) point clouds can be used as predictor variables in given for example by Pinheiro and Bates (2002).
statistical models to estimate forest parameters at the stand or plot
level (Nasset, 2004; Andersen et al., 2005, among others). Such In a mixed model, the variance is split into within and between

models are usually fit using sample plots where both lidar (co- group variance. The coefficients and standard errors for predic-
variates) and ground-truth information (response) are available. ~ tor variables that vary less within than between the groups are
To map the variable of interest, the entire lidar dataset is gridded ~ therefore more accurate. Another advantage of a mixed model,
into tiles having the same size as a sample plot. Then the predic- compared to a fixed-effects model with the grouping level as a
tor variables are computed and the regression models are applied dummy variable, is that predictions can also be made for individ-
to every tile. Compared to plot-based inventories, estimation er- ~ Uals with grouping levels that did not exist in the dataset used to
rors can be significantly decreased for the area of interest (e.g. fit the model (e.g., in our case those stands without sample plots).
a single forest stand), since the number of observations (i.e. the I a forest inventory context, a mixed model provides an addi-
tiles) is usually much higher than the number of sample plots tional advantage. A model can be fit to a large dataset (e.g., to
within a stand. a well inventoried public forest) and subsequently be calibrated

with just a few sample plots for a new forest area (e.g., a small
The predictor variables derived from lidar data are mainly related private forest). (A new model would need to be fit, if a fixed-
to the vegetation height and structure (e.g., height- and density effects model were used.)
metrics, crown cover). The vegetation cover can, under certain
circumstances, also be classified into broadleaf and coniferous Publications regarding the estimation of volume and biomass on
trees. However, information about the site quality or tree species  the plotlevel include these of Nzesset (2002) who created separate

cannot be derived without additional data. Therefore, predictions models for different ages and site qualities and achieved R? be-
for stands with rare site index classes or tree species compositions ~ tWeen 0.80 and 0.93 in a boreal forest and Means et al. (2000) for

might deviate from the mean model, resulting in a bias. Douglas fir stands in the Cascade Mountains (Oregon, USA) who

reported R? between 0.93 and 0.95. In a study by Packalén and
If the grouping structure (i.e., the stand boundaries) is known, the Maltamo (2006) in a Finnish boreal forest, plot volume was as-
deviation from the mean model of plot estimates within a stand signed to tree species by using the k-MSN method. They report
can be utilized to reduce the bias using mixed-effects models a RMSE of roughly 24% for estimates of total volume. Aardt
(mixed models). From the statistical point of view, the group- et al. (2006) segmented homogeneous forest units first and used
ing structure has to be considered since the observations are not the lidar vegetation height distribution and the field data for the
independent. In a mixed model, the effects of the variable that units to calibrate prediction models. They report R? between 0.58
indicates the level of grouping (i.e. the stand-ID) are assumed and 0.79 for their study which was located in Virginia (temperate
to be a random sample of a larger population that vary randomly mixed forests).
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The objective of this research was to develop a single statistical
model for estimates on study sites located in the USA and Ger-
many. Furthermore, we wanted to find out if information about
the stand-level grouping of sample plots can be used to further
improve the regression models. The datasets contain several lev-
els of grouping or random effects: (i) The study sites are two ran-
dom samples of all potentially existing study sites, (ii) the stands
are grouped within the study site and are a random sample of the
stands within each study site. Due to this structure, the resulting
model is referred to as a multi-level or hierarchical model.

2 MATERIAL AND METHODS
2.1 American Dataset

The study site in the USA is part of Capitol State Forest and
is managed by the Washington State Department of Natural Re-
sources. The terrain is moderate with elevations varying from 300
to 425 meters and ground slopes up to 30°. The forest is com-
posed primarily of Douglas-fir (Pseudotsuga menziesii (Mirb.)
Franco; 81%) and western hemlock (Tsuga heterophylla (Raf.)
Sarg.; 13%). Additional species present include western red
cedar (Thuja plicata Donn ex D. Don; 2%) and few deciduous
hardwoods such as red alder (Alnus rubra Bong.; 3%) and maple
(Acer spp.; <1%). The height of dominant trees in the study area
was approximately 50 meters (table 1). As part of a forest man-
agement study (Curtis et al., 2004), the canopy of the 70-year-old
forest stand was partially harvested in 1998, resulting in four dif-
ferent residual canopy density classes.

A total of 98 fixed area field inventory plots were established
over a range of stand conditions in 1999. Plot sizes ranged from
0.02 to 0.2 ha. Measurements acquired at each plot included
species and diameter at breast height (DBH) for all trees greater
than 14.2 cm in diameter. In addition, total height was mea-
sured on a representative selection of trees using a hand-held laser
rangefinder. A detailed description of the plot measurement pro-
tocol can be found in Curtis et al. (2004). Inventory plot locations
were surveyed with a Topcon ITS-1 total station and are accurate
to within 1 m.

The Saab TopEye lidar system mounted on a helicopter was used
to map approximately 5.25 km? of the study area in the spring of
1999 (before foliation). Table 2 summarizes the flight parameters
and instrument settings for the data acquisition. Data for each
return included the pulse number, return number for the pulse (up
to four returns were recorded per pulse), X, Y, elevation, off-nadir
angle and intensity.

2.2 German Dataset

The 49 km? study area is located approximately 60 km north of
Freiburg. Elevations range between 400 and 1050 m above sea
level. The average gradient across the site is approximately 12°
with some slopes of up to 35°. The average forest stand is approx-
imately 1.2 ha in size. Tree heights within the study area range
from 5 to 47 m, with an average height of 23 m. Norway spruce
(Picea abies (L.) Karst.; 65%), silver fir (Abies alba; 17%), beech
(Fagus sylvatica L.; 9%) and Scotts pine (Pinus sylvestris; 6%)
are the most common tree species. The forest is managed using
a group selection system, where the regeneration phase may take
several decades (clearcuts are not common in Germany).

A regular forest enterprize inventory was conducted in the second
half of 2003 in the state forest of the study area, using plots po-
sitioned on the intersections of a 100 x 200 m sample grid. The
horizontal accuracy of the inventory plot locations is estimated to
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be better than 10 m. Forest characteristics were recorded within
sample plots consisting of four concentric circle plots (i.e. they
have the same centre) with radii of 2 m, 3 m, 6 m and 12 m.
Trees with a diameter at breast height (DBH) greater than 7 cm,
10 cm, 15 cm and 30 cm, respectively, were recorded within the
four circle plots. The heights of the two tallest trees per species
were measured in each plot using a Verfex angle measurement in-
strument. The height of the remaining trees within a plot were
estimated using forest stand height curves and the DBH. Single
tree volumes were calculated using DBH and height as param-
eters for taper and volume functions of the Baden-Wiirttemberg
state forest service (Kon-Allan et al., 2004). Plots intersecting
stand or forest borders were excluded for this study. A total of
1061 inventory plots, with an overall area of 48 ha, were used
as terrestrial reference data for the remotely sensed data. Stand
boundaries were digitized from orthophotos in 2003 and were ad-
justed to meet operational purposes during the field work. Ad-
ditional information describing the stands that could be used as
covariates were not available for this study.

Lidar data were acquired in spring 2003 (before foliation) using
the Optech ALTM 1225 airborne laser scanner. Adjacent swaths
overlapped about 50% (table 2). First and last return laser data
were automatically classified into ground and vegetation hits by
the data provider (TopScan).

2.3 Computation of predictor variables

A digital terrain model (DTM) and a digital surface model (DSM)
was computed for both test sites using the software TreesVis
(Weinacker et al., 2004) for the German and Fusion 2.0 (Mc-
Gaughey et al., 2004) for the American study site. An evalua-
tion of the American DTM, presented in Reutebuch et al. (2003),
found an average lidar elevation error of 22 cm. For the German
study site, a DSM was derived from the first (DSME) and the last
return (DSM) ) vegetation returns. Canopy height models (CHM,
CHMg, CHM;) were computed by subtracting the DTM from
the according DSMs. The lidar vegetation height was determined
by calculating the difference between the elevation of the lidar
vegetation data (raw data) and the corresponding DTM raster bin
elevation.

Circular subsets of the same radius as the corresponding sample
plot were created from the lidar raw data. The 0" , 25", 50,
75™ and 100™ percentiles and the mean of the lidar vegetation
heights were calculated for each subset to characterize the vegeta-
tion height distribution. Vegetation density metrics were derived
by dividing the range between the highest and lowest measure-
ment into 10 classes and determining the proportion of measure-
ments within each class. Fusion 2.0 was used for the raw data
manipulation.

Since broadleaf trees in leaf-off condition had only a few vege-
tation returns in the last return data, they do not show up in the
CHM,; . Therefore, a classification of the pixels into those belong-
ing either to coniferous or broadleaf trees was possible by sub-
tracting the CHMj, from the CHMg. The result was normalized
with the CHME. By comparison with orthophotos, a threshold of
0.3 was found to separate coniferous and broadleaf pixels well
(equation 1). It should be noted that Larches (Larix spp.) are a
potential problem for this classification approach, since they are
deciduous conifers. However, few Larches were present in the
study area so we felt the classification approach was applicable.

1
n{ 1

(CHMF; — CHMy,)/CHMF,; < 0.3

(CHMp, — CHML,)/CHMp; > 0.3 D
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Parameter German study site || American study site
Mean Max Mean Max
Trees per ha [ha= 1] 411.10 | 2255.00 309.10 1093.00
Mean heights [m] 23.07 42.56 36.42 51.97
Volume [m® ha™!] 347.10 | 1265.00 || 567.90 | 1167.00

Summary of forest attributes derived from sample plot data for the study sites.

Parameter

Laser pulse frequency
Scan angle

Swath width

Laser pulse density
Flying height

Flying speed

Beam divergence
Vertical accuracy
Horizontal accuracy

Characteristic
German study site | American study site
25,000 Hz 7,000 Hz
+ 20° + 10°
500-600 m 70 m
0.51 m~? 4m~2
900 m AGL 200 m AGL
80 m sec. ™! 25msec.”!
0.25 mrad 2 mrad
0.15 m n.a.
0.45m n.a.

Table 2. Operating parameters of the Lidar sensors (n.a. = not available).

The ith pixel P will have a value of 1 if it is classified as conifer-
ous and 0 if classified as coming from a broadleaf tree.

The proportion of coniferous trees (coniferous proportion = CP)
at a plot, which is assumed to be equal to the proportion of pix-
els classified as coniferous, was calculated as the sum of conif-
erous pixels divided by the overall sum of pixels within a sam-
ple plot. For numerical reasons, this 0...1 distributed variable
was then stretched between -infinity and infinity using the logit-
transformation (log(1%;)). Since the lidar dataset of the US
study site was not separated into first- and last return data, a com-
putation of CP was not possible.

The percentage of canopy cover (CC) on a sample plot was com-
puted as the number of pixels in the CHM (CHME. for the German
data set) greater than 1 m divided by the total number of pixels
within the plot. As for CP, a logit transformation was applied to
this variable.

2.4 Modeling

Modeling consisted of two steps: (i) Select adequate predictor
variables, (ii) fit mixed models by adding random effects. To
select predictor variables, scatter plots and correlations of the re-
sponse variables over the height metrics were analyzed for the
German study site. The mean vegetation height measured by li-
dar data (mean.l) was found to be the most influential predictor
variable. Since the variance increases as the response variable in-
creases (heteroscedasticity), mean.l was also used as a predictor
variable for the variance function. More precisely, a generalized-
least-squares (GLS) regression was used with weights based on
mean.l?® where § was estimated during the fitting of the model
(Pinheiro and Bates, 2002, p. 208).

Since the height metrics vary depending on the canopy structure,
we wanted to know if the model improves as interaction terms
between mean.l and the canopy cover and between mean.l and
the crown shape (expressed as conifer proportion) are considered
(equation 2). We also explored whether or not density metrics
further improved the model. The selected model (fixed-effects
model for the German study site) was then re-fit using data for
the American study site and the coefficients were compared. As
it was not possible to compute the coniferous proportion for the
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US study site, this variable was not included in the fixed effect
model for the US data.

The fixed-effects model can be written as

Yk = Po + Pimean.li + B2CCy + B3C P+

B4CCk - mean.ly + B5C Py, - mean.ly, + €,
k=1,...,n, e ~ N(0,0?°mean.l?’),

@

where yy, is the response variable for the kth sample plot, 3o..05
are the coefficients, €, is an independent error term with a vari-
ance model depending on mean.l and § and n is the number of
sample plots.

In the second step, random effects for the intercept on the stand
level were introduced for the local models (equation 3). Their
results were compared to a global model with random effects for
the intercept on the study site as well as on the stand level. For
the global model, we checked if it was necessary to have a ran-
dom effect for the coefficients. To do this, models with a random
intercept on the study site and the stand level as well as a random
effect for either one of the coefficients (equation 4) were com-
pared with the global model with the random effect only for the
intercept using a F-test.

The following equation is the general form of a local mixed
model

Yik = Bo + bo,; + B1x1 jk + -« + Bm@m, jk + €jk

k‘:l,...,’l’Lj, ijN(OMJ’%),
ek ~ N(0,0%mean.13’)).

3

Here y; is the response variable for the kth sample plot in the
jthstand, 1 jx..@m,jx are the m fixed effects, Bo.. 3, are the co-
efficients thereof and n; is the number of sample plots within a
stand. The stand random effects bo,; are assumed to be indepen-
dent for different j and the within-group errors, €;; are assumed
to be independent of different j and k and to be independent of
the random effects.

If the response variable of the kth sample plot in the jth stand
within the ith study site is denoted as y;;r i=1,2; j=1,...1;
k=1,...,n;, with I; as the number of stands in the ith study site
and bo,;; bo,;; are random effects for the intercept on the study
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site and stand level respectively, an example for the global model
including a random effect on the study site level for the coeffi-
cient of the first fixed effect (b1,;) can be expressed as

Yijk = Bo + bo,i + bo,i; + (81 + b1,s)T1,i56 + ..+

BmTm,ijk + €ijk-

C)

The random effects are, technically speaking, not parameters of
the statistical model. Nevertheless, their values (Best Linear Un-
biased Predictors, BLUPs) can be estimated. Details on the esti-
mation of BLUPs can be found in Pinheiro and Bates (2002).

A leave-one-out cross-validation procedure was used to check for
potential overfitting of the data. A close similarity of the RMSE
and the RMSE of the cross-validation (RMSE.CV) indicates that
the model is not overfitting the data (Andersen et al., 2005). All
statistical analysis were carried out with the software package
R (R-Development-Core-Team, 2006) including the library nlme
(Pinheiro and Bates, 2002) for the fitting of mixed-effects mod-
els.

3 RESULTS
3.1 Selected models

Canopy closure and coniferous proportion as well as their inter-
action with mean.l significantly improved the linear model for the
German study site. The addition of density metrics seemed to en-
hance the model fit significantly but improved the R? less than
1%. They were therefore not included in the model in order to
keep the amount of predictor variables to a minimum. The se-
lected model of the German study site explains about 70% of the
variance and leads to an RMSE of ca. 35%.

The model including the same predictor variables as the model
for the German study site showed better goodness-of-fit measures
(R2 of 0.86 and RMSE of ca. 17%) for the US study site. Never-
theless, it was also tested, if the model improves as other height
metrics (e.g. the median or the 75™ percentile) serve as predic-
tor variables instead of mean.l. But none of the models including
those variables was significantly different from the model includ-
ing mean.l. We concluded that the same predictor variables can
be used for the German and for the US study site. Additional
model attributes and RMSE can be found in tables 3 and 4.

3.2 Mixed effect models

Random effects on the stand level improved the models for both
study sites significantly. In general, it can be observed that the
median residual per stand is closer to zero, while the variance
slightly increases. This also means that the prediction for some
observations gets better, while the opposite is true for others. In
other words, the mixed models lead to a decreased bias with a
trade-off of higher variance. This of course, is most present in
stands where the bias of the fixed effect model was large. How-
ever, the variance within the stands is relatively high, especially
for the German study site. Therefore, the bias will not be elimi-
nated completely (figure 1 and table 5).

For the global model, besides the random effects on the stand
level, only a random effect for the coefficient of the interaction
between the canopy cover and mean.! significantly improved the
model. This suggests, that the other coefficients do not differ
significantly between the study sites. Interestingly, the RMSE
does not increase very much, meaning that this model can be used
for predictions at both study sites.
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The global model can be expressed as

Yijk = Bo + bo,i + bo,ij + Bimean.diji + B2CCiju+
B3CPijk + (Ba + b1,:)CCijk - mean.liju+
ﬁsCPijk . mean.li]-k + €ijk-

(&)

The other models can be written the same way without by ; and
b1,; for the local models with random effects, without b ;, b1 s
and bo,;; for the local models with fixed effects only and without
C'P for the US models.

3.3 Characteristics of the regression models

The slope of mean.l is slightly higher for the US study site than
for the German site. This is also true for the coefficient of canopy
cover. The models will predict higher volumes with an increase
of canopy cover or an increased number of coniferous trees per
plot. The global model produces almost the same predictions for
given mean.l but differs slightly more from the local models given
canopy cover (figures 2 and 3).
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Figure 2. Comparison of predictions of local fixed-effects mod-
els (FE) with the global mixed model (Ger.=Germany). mean.!
alters, CC and CP are fixed at 100%.

4 DISCUSSION

In this study, we compared fixed-effects models with mixed-
effects models containing random effects on the stand level and
on the study site level. The grouping information was used to
calibrate the mixed models on the stand level using the variance
information of sample plots located within a stand. A drawback
of this method is that this information can only be used reliably
for stands that contain several sample plots if the within stand
variance is high as it was the case in this study.

Reasons for bias in some stands, besides rare tree species and
site indices, might be uncommon taper shapes, varying density of
small trees in the understory (i.e. two layers of trees, which prob-
ably does not change mean.l explicitly) or other incidents that
change the canopy structure but are not reflected in the selected
covariates.
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Coefficients FE model (Ger.) || FE model (US) || RE model (Ger.) || RE model (US) Global model

Est. p-val. Est. p-val. Est. p-val. Est. p-val. Est. p-val.
Intercept -10.12 0.42 77.24 0.24 -3.93 0.74 57.47 0.39 || -82.04 0.33
mean.l 15.44 | <0.01 9.15 | <0.01 1498 | <0.01 1048 | <0.01 14.48 | <0.01
ccC -11.86 | <0.01 -50.00 | <0.01 || -13.02 | <0.01 -35.56 0.01 -13.69 | <0.01
CcP 5.45 0.14 3.52 0.24 5.86 0.06
mean.l - CC 1.64 <0.01 5.27 | <0.01 1.74 <0.01 431 | <0.01 2.68 | <0.01
mean.l - CP 0.57 <0.01 0.59 <0.01 0.36 0.04
1) 0.46 0.34 0.58 0.44 0.46

Table 3. Attributes of the fitted models (Est. = Estimate, p-val. = p-value).

German models American models Both
FE model | RE model || FE model | RE model || Global model

RMSE [m® ha™'] 120.33 103.12 108.96 9551 103.00
German study site

RMSE [%] 34.67 29.71 29.76

RMSE.CV [%] 34.90 34.40 34.43
American study site

RMSE [%] 19.19 16.82 17.58

RMSE.CV [%] 19.95 18.49 18.69
Both

RMSE [%] 28.16

RMSE.CV [%] 32.35

R? 0.70 0.78 0.86 0.89 0.81

Table 4. RMSE, RMSE of the cross-validation (RMSE.CV) and R? for the fitted models (FE = fixed effect, RE = random effect).

Stand-ID FE model RE model Global model
SD Bias SD Bias SD Bias
9 117.59 96.24 126.85 95.13 110.91 95.61
8 46.82 49.75 48.97 31.25 50.17 32.24
6 145.39 | 11549 128.37 98.74 127.78 | 96.67
5 90.34 82.60 94.41 75.50 96.20 77.60
4 105.32 86.24 119.01 96.46 120.77 | 99.31
3 117.69 | 102.09 || 123.99 | 100.16 || 123.83 | 98.40
2 50.51 94.66 50.45 40.64 51.27 58.44

Table 5. Standard deviations (SD) of the residuals and bias for the stands on the American study site.
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Figure 1. Residuals of a leave-one-out cross-validation for selected stands at the German study site. Stands with a mean residual > 100

and at least 3 observations were selected for this graph.
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Figure 3. Comparison of predictions of local fixed-effects models
(FE) with the global mixed model (Ger.=Germany). CC varies,
mean.l is fixed at 30 m and CP at 100%.

We assume that differences in the model coefficients for the study
sites can be attributed to variation in the vegetation cover and the
lidar parameters:

1. The US study site is highly productive (high site index) and
is stocked mainly by Douglas-fir, which is one of the fastest
growing tree species in temperate forests. In comparison,
the German study site encompasses a range of productivity
classes, a broader range of elevations and a more diverse mix
of tree species. In addition, the main coniferous tree species
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(Norway spruce) does not accumulate as much volume as
Douglas-fir.

Although both lidar systems produced small footprint data,
return density, footprint size and flying platforms were sig-
nificantly different. This could influence the penetration
rates through the canopy, amount of shadowing, etc.

However, whether vegetation or lidar parameters have a larger
influence in these study results could not be determined. The
same is true for possible interactions between lidar parameters
and vegetation.

Interestingly, the predictor variable canopy cover improved the
model more on the American study site than on the German study
site. This improvement is likely related to the extensive changes
in the canopy structure resulting from the silvicultural treatments
carried out on the American study site. These treatments resulted
in a wider range of canopy densities than was present on the Ger-
man dataset.

The coefficients of the coniferous proportion indicate that the vol-
ume increases with an increasing amount of coniferous trees on
a plot. This is consistent, since mean.! tends to be smaller for
conifer dominated plots compared to plots dominated by decid-
uous species but having the same mean tree height due to the
conifer crown shape (Breidenbach et al., 2007). Another rea-
son for this effect is probably that the amount of usable timber
is higher for most coniferous species, since the ratio of stem to
branch volume is higher for coniferous trees. Therefore, similar
heights correspond to more volume for conifer dominated sample
plots.

The observed errors for the US study site (~ 17%) are compa-
rable to those reported by Nasset (2002), but somewhat higher
than those reported by Means et al. (2000) (73 m® ha~! opposed
to ~ 95 m> ha™"). The errors for the German study site are much
higher which is probably due to the wider range of tree species
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and stand types. Another reason could be that the horizontal accu-
racy of the field plot positions for the German study site is worse
than for the US study site. Aardt et al. (2006), whose study site
is probably more similar to the German site, report smaller abso-
lute RMSE (~ 40-68 m® ha™!) than we observed for the German
site. However, since the range of stand volumes in their data is
significantly smaller than in this study, the relative errors seem to
be larger.

5 CONCLUSIONS AND FUTURE WORK

A mixed-effects model was fit to data from the USA and Ger-
many. The goodness-of-fit metrics indicate, that the model fit
to the combined data is almost as good as models fit to data for
each site, although the stand conditions and lidar properties var-
ied greatly between the study sites. It should be emphasized that
the random effects at the stand level were able to significantly
reduce the bias that was found at the stand level. The relatively
expensive field data were consequently used twofold: (i) To fit
prediction models, (ii) to reduce the bias by calibrating random
effects and utilizing the information that they provide at the stand
level. Therefore the effectiveness of the money spent to collect
field data was increased using mixed models.

The results of this study indicate that other researchers that strat-
ified their data and used different models for each stratum could
potentially enhance their models with random effects on the level
of these strata. An additional benefit would be that the amount of
data for modeling is then larger.

Future work will strive to better understand the bias observed at
the stand level. The stands, represented as polygons, on the Ger-
man site were delineated based on operational considerations.
Hence, small groups of trees were included with adjacent but
different (in terms of species composition and age) stands to
avoid creating small stands. We speculate that stand delineations
that result in more homogeneous conditions within each stand
will lead to lower within-stand variance and larger between-stand
variance which could further improve the models. Furthermore
it seems to be interesting to determine the contribution of the
different lidar acquisition parameters (e.g. return density, foot
print size) to the coefficients of the regression models. The use of
mixed models can also reduce the number of sample plots needed
for new study areas once a basic model exists. This issue will be
discussed in an other study.
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AUTOMATIC RELATIVE ORIENTATION OF TERRESTRIAL LASER SCANS USING
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ABSTRACT:

The relative orientation of independently acquired terrestrial laser scan point clouds is an important task. If good starting values are
available, well-known iterative algorithms exist to determine the required transformation. In this paper, we describe a method to obtain
such starting values fully automatically, which is applicable to scenes containing planar elements. Our method first extracts planar
patches in each scan individually and then assigns patch triples across scans in order to compute the rotation and translation component
of the relative orientation. We assess the performance of our approach using a set of 20 terrestrial scans acquired systematically at
increasing distance. For each scan, we automatically extract the 50 largest planar patches. We show that, although there are 1.15
billion possible patch triple assignments, we are able to compute efficiently a ranked list of possible transformations where the correct
transformation is usually within the first few positions. For our test data and three test runs, it has been among the first 53 positions,
even for scans with little overlap. Thus, instead of 1.15 billion candidate solutions, the score function needs only to evaluate on the
order of 100 candidate solutions, which is an improvement by a factor of 107.

1 INTRODUCTION of this step is not only interesting in terms of improvement of

laser scan software. It also is related to fundamental problems

In terrestrial laser scanning, an important problem is to find such as object recognition (where one of the scans is replaced

the relative orientation of independently acquired datasets, also by a known model) and the problem of the ‘kidnapped robot’ in

called range image registration. This is a very well-known prob- robotics (where the robot has to find its initial pose by determina-

lem dating back to the first investigations on range images. It tion of the relative orientation of its scan data and a known map).
can be divided into two subproblems, coarse registration, which

assumes no previous knowledge about the relative orientation of Establishing correspondences between datasets without any pre-

the two scans, and fine registration, where the assumption is that vious knowledge requires features ‘stronger’ than points. Fea-

an initial orientation is known and the goal is to refine this in tures should be stable with respect to partia] occlusion, and

order to find the most accurate transformation parameters. Fine should carry enough information to recover position and orien-
registration can be achieved using iterative techniques, usually tation (Faugeras and Hebert, 1986). In this paper, we investi-
based on the iterative closest point (ICP) approach. There is ex-  gate a coarse registration technique using correspondences of pla-

tensive literature on this subject. Originally described by Chen nar patches. We chose this feature since planar faces are often
and Medioni (1991) and Besl and McKay (1992), many variants  present in the vicinity of man-made structures. Furthermore, pla-
were proposed in the sequel, differing in the selection, match- nar patches are relatively easy to extract from laser scanner data.
ing, weighting and rejection of correspondences, e.g. (Zhang, We extend our previous work on that topic (Brenner et al., 2007)
1994, Kapoutsis et al., 1999; Greenspan and Godin, 2001; Jost by an improved method to find patch Correspondences,

and Hiigli, 2002; Sharp et al., 2002). An overview is given by
Rusinkiewicz and Levoy (2001) and Gruen and Akca (2005). The
ICP algorithm is nowadays also widely available in commercial
software.

This paper is organized as follows. In section 2, we present the
mathematical background, in section 3 the basic problem and our
approach are stated, and section 4 introduces our test data. Then,
section 5 and 6 introduce and evaluate our solution for the deter-
mination of the rotation and the translation, respectively. Finally,
section 7 draws conclusions and gives an outlook.

Any relative orientation based on the data itself requires two
steps, (i) finding corresponding features in both datasets, and
(ii) determination of the relative orientation which aligns those
features. Iterative schemes like the ICP solve the correspondence
problem by assuming that, applying the known coarse transfor-
mation, any point in the first scene is already close to his coun-
terpart in the second scene. This allows to define corresponding
features solely based on vicinity, with no or only limited interpre-
tation of the scenes. This section is based on the notation used in (Brenner et al.,

2007), briefly repeated here to keep the paper self-contained.
As for the coarse registration, finding the relative orientation of Two scenes (point clouds) S; and Sy are given, each consist-
two overlapping scans without previous knowledge of the trans-  jng of a set of points in 3D space. Any two corresponding points

formation is a hard (and mainly combinatorial) problem. For x1,%x2 € R3 withx; € 81, x2 € So, are related by an Euclidean
practical purposes, it is often solved in software by letting the user (rigid) transformation

define a number of corresponding point pairs manually, which al-
lows to compute the 3D Euclidean transformation. Automation x1 = Rx2 + t, D

2 MATHEMATICAL FORMULATION OF THE
PROBLEM
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where R is a 3 x 3 rotation matrix, and t € R? is the transla-
tion vector. Usually, due to errors, the transformed point of x2,
denoted as x5 (i.e., X5 = Rx2 + t), and its counterpart x; from
S1, do not exactly coincide. Then, the transformation parameters
for R and t can e.g. be found by (least-squares) minimization
of 3" ||x1 — x5]||?. Given three or more point correspondences,
closed form solutions exist to compute R and t (Sanso, 1973;
Horn, 1987).

If no previous information is available, point correspondences
cannot be established easily, since single points do not carry
enough information. One way to solve this problem is to define
descriptors (Johnson and Hebert, 1999). In contrast, we use a fea-
ture based approach which relies on planar patches. We assume
the patches are given by their plane equations

(nh X> - di = (2)
(m;,x) —e; = 3)
(pi,x)—fi = 0 “)

where n;, m;, p; are normal vectors of unit length, d;, e;, f; are
the plane distances from the origin, and for each of the equations,
i = 1 (plane in scene S7) and ¢ = 2 (plane in scene S2) form a
pair.

Three such plane pairs suffice to determine all six degrees of free-
dom of R and t in two steps. First, R can be found in closed-form
by eigenvector analysis (actually part of the solutions in (Sanso,
1973; Horn, 1987)). Then, assume that scene .S has already been
rotated, so that only the translation component t in Eq. 1 has to
be determined. From Eq. 2,

<1’117 x> — dl = 0
<n/2,x—t>—d2 = 0.
Since nj is already rotated, n; = n5 = n, and x can be elimi-

nated to obtain (n, t) = di — da. Doing the same for Eqgs. 3 and
4 and stacking the equations yields

l'lT d1 — dz
ml |[t=| e1—es (3)
pl fi—f2

from which t can be determined.

Note that the determination of the full transformation is done in
two steps, first the rotation, then the translation. While at least
three plane pairs are required to obtain the translation, only two
plane pairs are sufficient to determine the rotation. This will be
exploited below to reduce search space. In fact, a plane normal
vector (of unit length) has two degrees of freedom, so that two
plane pairs fix four degrees of freedom, one more than what is
required to determine R. As a result, given two corresponding
normal vector pairs ni, m; from S; and na, my from Ss, due
to measurement errors, the angle Z(n1, m) and Z(n2, m,) are
usually slightly different. Then, one can choose to determine R
such that either n; and ns or m; and m» align perfectly. Using
the eigenvector solution mentioned above, a preferable rotation
R is found, which distributes the angle error equally to both cor-
responding vectors.

Noting that the determination of the rotation is a time-critical op-
eration, the following alternative can be used, which achieves the
same result without the need for an eigenvector analysis (based on
(Horn, 1987)). Using n; and m;, a Cartesian coordinate frame
{u1,v1, w1} is constructed by

a1 = ni+mg, ug =0/ (6)
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m; — (my,ui)us, vi = vi/||ve|| @)

\%!
W1 u; X vy,

where Eq. 7 uses standard Gram-Schmidt orthonormalization.
Due to Egs. 6 and 7, u; and v span the same plane as n; and
m;. Then, My = [u;viwi], writing us, vi, w1 as column vec-
tors, is an orthogonal matrix by construction. Doing the same for
Ms, one can see that

R = M;M!} ®)

is orthogonal and in fact is the desired rotation matrix (since
Mgng gives the components of n» along the axes {uz7 va, wz}
and M maps this back to the first coordinate frame). Adding n;
and m; in Eq. 6 ensures that the angle error is equally distributed
to both corresponding vectors.

3 FUNDAMENTAL PROBLEMS AND APPROACH OF
THIS PAPER

The foremost problem of coarse registration is the combinatorial
complexity. If p plane patches are extracted in S; and Sz in-
dependently and then all possible transformations are evaluated
based on plane triples (k = 3), as described above, there are

() (3) =

possible combinations. The first two terms are due to picking
three planes (the triple) out of p, while the last factor reflects the
possible permutations when assigning the triple from S; to Ss,
reduced by a factor of two, since only triples of the same chi-
rality need to be considered (i.e., a right-handed normal vector
triple from S; can only match a triple in .S> which is also right-
handed). For p = 50 planes, which we use regularly, this yields
1.15 billion possible combinations which need to be tested.

©))

Noting the positive effect of chirality in Eq. 9 (reduction by
a factor of two), one may wonder if picking more planes
may have a positive effect. If k 4 planes are picked,
the chirality can be computed for any sub-combination of
3 planes picked out of those four. That is, for £ = 4
planes, four ‘chirality numbers’ +1 are obtained.  Any

pick of k& = 4 planes in S; is thus one case in the set
{(+17 +17 +17 +1)’ (+1, +17 +17 _1)7 sy (_17 _17 _17 _1)}
(all of which may occur). Instead of all 4! = 24 permutations

of a plane quadruple picked from S5, only those with the same
four chirality numbers need to be considered. Depending on
the actual sign combination, either 3 (8 cases), 4 (6 cases) or
12 (2 cases) permutations need to be considered, which yields
an expectation of 1.5 cases on average (which is also obtained
from 6!/24). Thus, comparing the cases £ = 3 and k = 4, one
sees that £ = 4 has an advantage only if the number of planes is
relatively small (p < 9), in which case the computational cost
is anyhow so low that one would not consider using the more
complex approach. In summary, increasing k does not reduce the
number of cases (for practical p), even if chirality is considered.

The second important problem is the rating of a solution. Ideally,
a score function would be desirable which attains its maximum
when the correct solution is found. If exhaustive search would
be possible, the best solution would then be obtained by simply
picking the transformation with the highest score. A candidate
for this score function is the overlap of S; with the transformed
Sa, for example based on counting the points in S; with close
neighbors in So. While this works well when the scene contents
of S1 and S- are similar (e.g., scan positions are close together),
it usually fails when they are very different (e.g., scan positions
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far apart, occlusions, tilted scan). In the latter case, the score of
the true transformation is low, and it may well be that a larger
score can be achieved by using a wrong transformation.

Using additional criteria (such as point normals) to make the
score function more selective is possible, however comes at an
additional computational cost. While it is practicable to compute
the score for hundreds of cases, it is usually not feasible to do so
for 1.15 billion cases. Thus, the main idea is to build up a hier-
archy of tests which cuts down search space and has the property
that (i) the most inexpensive tests are applied first, (ii) the more
expensive tests are only applied after a large number of false solu-
tions has been ruled out already, and (iii) the tests, though simple,
do not erroneously rule out the correct solution.

The goal of this paper is not to elaborate on the score function, but
on this test hierarchy. Thus, we do not show that our algorithm
finds and indicates the correct transformation (which requires a
search and a score function which has a maximum at the correct
transformation). Instead, we show that we are able to reduce the
set of solution candidates substantially, while still retaining the
correct solution in this set.

4 THE TEST DATA SET AND INITIAL PROCESSING

We selected an area called ‘Holzmarkt’ in the historic district of
Hannover, Germany, for the evaluation of our algorithms. Twenty
scans were acquired, of which 12 were taken (approximately) up-
right, another 8 with a tilted scan head. Throughout the text, the
scan positions and datasets are denoted by ‘SP0O1’, ‘SP02’, etc.
for the upright and ‘SP03a’, ‘SP05a’, etc. for the tilted scans.
Fig. 1 shows all 12 scan locations in a cadastral map. The scan
positions were chosen systematically along a trajectory with a
spacing of approximately 5 meters. All scans were acquired us-
ing a Riegl LMS-Z360I scanner, which has a single shot measure-
ment accuracy of 12 mm, field of view of 360°x90° and a range
of about 200 m. Reference orientations for the scans were ob-
tained by placing artificial targets in the scene, which were man-
ually identified in the scans. The procedure yields errors in the
range of a few millimeters, thus the reference is considered to
be sufficiently accurate for our tests on coarse registration. We
used the reference orientations to compute an approximate value
for the overlap of scan pairs, ranging from 83.1% for scan pair
SP01-02 down to 2.3% for SPO1-12a, see (Brenner et al., 2007).
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Figure 1: Placement of scan positions along a trajectory, shown
in a cadastral map. Tilted scans are marked with an ‘a’ suffix.

For the extraction of planar patches, we used standard region
growing, working on the regular raster of scan points. Region
growing iterates the two steps of seed region selection and region
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expansion. Seed regions are prioritized according to their local
planarity, which is computed using the residuals of a local best-
fit plane. Once a seed region is selected, scan points along the
region border are added if they lie in the plane (within a thresh-
old of 6 cm), and the plane equation is updated. Fig. 2 shows an
example segmentation.

Figure 2: Planar segmentation of SP01, using random colors for
the segments.

5 DETERMINATION OF THE ROTATION
COMPONENT

5.1 The triple product and pairwise enclosed angles

For our test scene, we exhaustively computed all 1.15 billion
plane triple combinations and the resulting transformations (this
took several hours on a standard PC for each scan pair). Trans-
formations were considered to be correct if the deviation from
the reference is less than 5° in rotation and 1 m in translation.
From table 1, one can see that at most, 0.212%o of the triple
combinations lead to a correct transformation, and this number
even decreases rapidly with increasing distance between the scan
standpoints.

Triple assignments | Triples with | Triples with compatible
leading to correct | compatible angles leading to
transformation angles correct transformation
# %o # i Y00

SP 01-02 244635 0,212 1022507, 42945 42.00
SP 01-03 208970 0,181 1020667, 38947 38,16
SP 01-03a 153111 0,133, 684729 20283 29,62
SP 01-04 147045 0,128, 1091474 19043 17.45
SP 01-05 55116 0,048 698353 9681 13.86
SP 01-05a 41353 0,036, 557906 4955 8,88
SP 01-06 48721 0,042, 949832 8361 8,80
SP 01-06a 47843 0,042 1041477, 8562 822
SP 01-07 14776 0,013, 880668 3034 345
SP 01-08 15576 0,014 791156 2609 3,30
SP 01-08a 11372 0,010 840829 1048 1.25
SP 01-09 6306 0,005, 605209 1125 1.86
SP 01-09a 11545 0,010, 513071 778 1,52
SP 01-10 13372 0,012, 754447 1357 1.80
SP 01-10a 4584 0,004, 438870 596 1.36
SP 01-11 4232 0,004, 758084 593 0.78
SP 01-11a 11160 0,010, 653320 1572 241
SP 01-12 0 0,000 552271 0 0,00
SP 01-12a 0 0,000, 402779, 0 0,00

Table 1: Triple assignments leading to the correct transformation,
angle compatible triple assignments, and angle compatible triple
assignments leading to the correct transformation (for all scan
pairs).

In order to raise this percentage, we used in (Brenner et al., 2007)
the triple product to only consider plane triples above a threshold.
A large triple product is desirable, since it leads to a good matrix
condition number on the left hand side of Eq. 5. However, it
is also problematic, since the appropriate value depends on the
scene contents. If the scene does not contain planes leading to
triple products above the threshold, no candidates are found. In
this case, the threshold has to be lowered, which however quickly
increases the number of false combinations as well.

In order to form a more selective and scene independent criterion,
we investigated the use of the three angles enclosed by the three
normal vectors instead of their triple product. To evaluate how ac-
curate the angles between any two pairs of plane normal vectors
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Figure 3: Histogram and cumulated histogram of the angle dif-
ferences of manually selected plane pairs.

are, we manually identified a small set of corresponding planes
between scans. For any possible plane pair in one scan Sq, we
computed the angle between the plane normal vectors. Knowing
the corresponding vectors in S2, we computed the enclosed angle
as well and derived the difference. In total, 328 pairs were con-
sidered. From Fig. 3, one can see that for more than 90% of the
normal vector pairs from S, the corresponding pairs in S2 form
the same angle within a 1° tolerance. This leads to the conclu-
sion that tight bounds can be imposed on the angles when search-
ing for corresponding plane triples. Table 1 shows that out of the
1.15 billion triple combinations, only between 400,000 and 1 mil-
lion compatible combinations remain. The rate of triple combi-
nations which lead to correct transformations is as high as 42%.
Thus, for SP01-02, by using angle constraints, we can reduce the
amount of search required by a factor of 42%o,/0.212%0 ~ 200.
This is also the average factor over all scans.

5.2 Searching for the correct orientation

As noted in section 2, the rotation is fully determined by two nor-
mal vector pairs, using Eq. 8. Thus, only p over 2 pairs need to
be picked, and (c.f. Eq. 9 for k = 2) a total of p*(p — 1)?/2 plane
pair combinations exist. For p = 50, this yields 1,225 pairs in
each scan, and 3 million combinations. If only vector pairs in-
cluding the same angle (tolerance 1°) are regarded, this reduces
to 140,000 compatible combinations, or 4.8%, on average. From
table 2 one can see that the number of compatible normal vector
pairs is relatively stable. However, if the rotation matrix is com-
puted for each of the compatible combinations and compared to
the (known) reference orientation (allowing a 2° tolerance), one
can see that the number of those pairs leading to a correct orienta-
tion decreases with increasing scan numbers, from 8,034 (5.5%)
down to almost zero. Thus, even scans far apart yield a large num-
ber of compatible normal vector pairs, but the percentage leading
to the correct transformation decreases. Note that there is no need
to test the 3 million cases by exhaustive enumeration. Instead, all
1,225 angles between pairs in S2 can be sorted into angle bins
(we used 1° bins for this purpose). Then, for each plane com-
bination in S7, the subset of candidates in S> can be retrieved
quickly.

In the next step, the goal is to pick a correct orientation from the
approximately 140.000 candidates — or more precisely, to rank
the candidates in such a way that the correct solution is among the
first few proposals. Since the percentage of correct solutions can
be around only 1% (for the cases we wish to be able to succeed),
random picking would imply that we can expect only one correct
solution among (the first) 100 picks.

In order to improve this rate, we computed the rotation matrix for
all compatible combinations. Note that using Eq. 8, this does not
require matrix inversion or eigenvalue analysis, so it is computa-
tionally inexpensive, even for 140.000 candidates. For each can-
didate rotation matrix, we recovered the three rotation angles w,
¢, k. Fig. 4 shows a plot of all rotation candidates, in (w, ¢, <)
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Pair Compatible % Correct %
SP01-02 145202 4,84 8034 5,53
SP01-03 147944 4,93 7497 5,07
SP01-03a 115260 3.84 5566 4.83
SP01-04 164200 547 5852 3,56
SP01-05 145098 4,83 3496 2,41
SP01-05a 121400 4,04 2885 2,38
SP01-06 166238 5,54 4218 2,54
SP01-06a 165922 5,53 4414 2,66
SP01-07 173934 5,80 2513 1,44
SP01-08 167550 5,58 2639 1,58
SP01-08a 168050 5,60 2728 1,62
SP01-09 141868 4,73 1651 1,16
SP01-09a 140498 4,68 926 0,66
SP01-10 157464 5,25 2115 1,34
SP01-10a 113540 3,78 1007 0,89
SP01-11 138768 4,62 929 0,67
SP01-11a 147310 4,91 1642 1,11
SP01-12 105978 3,53 2 0,00
SP01-12a 94758 3,16 148 0,16

Table 2: Angle compatible normal vector pairs, percentage rela-
tive to total number of combinations (3 million), number of cor-
rect rotations computed from the pairs, and percentage relative to
the compatible cases.

space, for the scan pair SPO1-02. For the figure, the rotations
were normalized using the known reference orientation, so that
the correct rotation is at (w, ¢, k) = (0,0, 0). At this point (cen-
ter in Fig. 4), one can see a dense point cloud (according to ta-
ble 2, 5.53% of the points should be located there). In order to
test this, we sorted all candidate rotations (w, ¢, ) into bins (us-
ing a bin size of 2°). After this, the bins are extracted highest
count first. Similar (w, ¢, ) values are merged during this step if
they differ in all angles by less than 2° (this operation is similar
to histogram smoothing considering neighboring cells).

Figure 4: Plot of all rotation candidates for the scan pair SP01-
02, in (w, ¢, k) space. Each orientation is represented by a point.
The correct orientation is at the center of the figure, where the w
and ¢ axes can be seen. The x axis points upward.

As a result of this procedure, we obtain a list of orientations,
sorted in descending order of bin hits. Fig. 5 shows the num-
ber of hits for the 20 bins with highest count, for the scan pair
SP01-02 and SP0O1-09a. In the case SPO1-02, the first bin (8,034
hits) has a much higher count as the second bin (1,752 hits). In
fact, the first bin represents the correct orientation and the bin
count is equal to the value in table 2. This situation is not always
as clear. For example, in the case SP01-09a, the counts are gen-
erally lower and there is no clear peak at the first bin. In this case,
the correct orientation corresponds to the 8th largest bin.

To give a better overview, Fig. 6 shows a plot of the 20 bins with
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Figure 5: Histogram of the first 20 (orientation) bins with largest
bin count for the scan pairs SP01-02 and SP01-09a.

highest count, for all scan combinations. As can be seen, for low
scan numbers, there is a clear peak at bin 1, which is also the
reference orientation. For SPO1-04 and up, the peak gets wider,
but still the correct orientation is at the first bin. The first ex-
ception to this is SP01-07 (which has 51% overlap), where the
correct transformation is in the second bin (count 2,332). Closer
examination reveals that the first bin (similar count of 2,362) rep-
resents a turn by xk=180° around the up- (Z-) axis with respect
to the reference orientation. SP01-09a (29% overlap) is the first
case where the correct orientation is not among the first two bins.
SP01-11 is still worse, but note this pair has only 9.9% overlap.
SPO1-11a has 12.2% overlap and the correct solution is in bin 1.
For SP01-12 and SPO1-12a, the reference orientation was not part
of the first 100 bins, however their overlap is only 4% and 2%,
respectively.

IS

Figure 6: Bins with highest count for all scan combinations.
White corresponds to a count of 3,000 or more, black is 0. The
small rectangles indicate the bin which corresponds to the refer-
ence rotation. For example, the lowest line represents the first
20 bins for scan pair SP01-02 and is the equivalent of Figure 5.
It has a clear peak (white) at the first (leftmost) bin, which also
represents the true rotation (small rectangle).

6 DETERMINATION OF THE TRANSLATION
COMPONENT

The translation is determined according to Eq. 5, using three
plane pairs. Note that it is not necessary to actually rotate Sa,
because Eq. 5 requires only da, e2, fo from Sa, the plane dis-
tances from the origin, which are not affected by rotation. Also,
instead of picking all triple pairs, one can work on the rotation
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candidates one after the other, so that not only the rotation matrix
is known, but also a set of combinations of two plane pairs which
led to this rotation (i.e., a quadruple of plane indexes). For ex-
ample, for SP01-02, the first rotation considered corresponds to
a bin with 8,034 hits, meaning that 8,034 cases of assigned plane
pairs are known already. This compares favorably to the 140,000
compatible (and the 3 million total) pairs.

Both pairs, of S7 and of Sz, need to be extended by a third plane,
picked from the remaining p — 2 planes. For example, for the
mentioned case, this would mean on the order of 8,034-48-48 =
18,510,336 possible picks. However, when imposing angle con-
straints (of 1°) for the angles between the already picked pair and
the newly picked plane, and considering chirality, a much smaller
number remains. In the example, only 188,732 picks are left.

However, we chose a conceptually simpler approach. Instead of
picking a third plane, we simply pick pairs of quadruples from the
bin. Thus, for each pick, we have 4 plane pairs, and solve Eq. 5
for the translation in a least squares manner. Fig. 7 shows the
translations corresponding to 100,000 of such picks, where each
translation vector is represented by a point in 3D space. The cor-
rect translation vector is at the center of the figure, where several
‘linear structures’ intersect. There are many candidates along the
Z axis, indicating a correct lateral position, but a varying height.
Perpendicular to this, there are several linear structures which we
believe are due to the arrangement of the facades in the ‘Holz-
markt’ scene: if one moves the point cloud SP02 further apart
from SPO1, the distance between the right and left building fa-
cades increases and there are two choices for the translation, ei-
ther matching the ‘right’ or the ‘left’ facades.

Figure 7: Plot of all translation candidates for the first orientation
bin of the scan pair SPO1-02. Z axis points upward.

Picking two quadruples from the bin yields 8,034-8,033/2 possi-
ble picks for the example bin (way too many). Instead, we apply
the RANSAC principle at this point (Fischler and Bolles, 1981).
We only pick a subset of m pairs of quadruples. For each pick,
we compute the translation and then count the number of planes
in S7 for which a matching plane in S exists. Planes were con-
sidered to match if their normal vectors agree within 1° and their
distance from the origin agrees within 1 m. Note this compari-
son is computationally inexpensive, since it uses only the plane
parameters, rather than original scan points.

To derive the necessary number of picks m, we picked 10,000
quadruple pairs and determined the percentage of picks which
lead to the correct translation (within 1 m along each axis).
We found that for close scan positions, such as SP01-02, this
is around 20%, decreasing with increasing scan position dis-
tance, for a minimum of 3% (not considering SPO1-12 and SPO1-
12a). Following Fischler and Bolles (1981), if we want to ensure
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SP01-102| 03| 03| 04| 05| 05| 06) 06| 07| 08| 08| 09| 09] 10| 10 11[11]12[12
a a a a a a a al

Runt | 1 1 1| 1| 1] 2| 3] 2| 2|15] 23]11| 5|12 33| 14|12

Run2 | 1| 1| 1] 1| 1] 2| 6| 5|12 4| 20{53| 6|35] 15 13|12

Run3 ) 1] 1] 1] 2] 1] 2| 2 5|12 7] 28[13] 5[27] 13] 21|11

Table 3: Ranking of correct transformations. The value ‘1’ in row
‘Run 1’ and column ‘02’ means that for the scan pair SP01-02,
and the first run, the first transformation returned by the algorithm
also was the correct one.

with probability z to find at least one correct solution among m
picks, where the probability to draw a correct solution is b, then
m = log(1 — z)/log(1 — b). For z = 99%, b = 3%, it follows
that m ~ 150 picks are required.

The number of corresponding plane pairs is also used to rank the
entire transformation (rotation and translation). Table 3 shows
the results obtained for three separate runs of the algorithm. The
rankings indicate at which position in the result list the algorithm
returned a correct transformation (defined by as most 2° off in
rotation and 1 m off in translation, for each axis). As one can see,
for most of the close scan pairs, the algorithm returned the correct
solution in the first place or within the first few ranks. For all runs
except SPO1-12 and SPO1-12a, the solution was ranked among
the first 53. For SPO1-12 (overlap 3.6%) and SPO1-12a (overlap
2.3%), we obtained no solution. However, for those cases, we
were even unable to manually select suitable plane pairs.

7 CONCLUSIONS AND OUTLOOK

In this paper, we addressed the problem of finding good initial
values for the relative orientation of two laser scans when no pre-
vious information is available. Our method is based on the auto-
matic extraction and assignment of planar patches. For a set of
terrestrial laser scans, with 50 extracted planar patches per scan,
we showed that there is a large number of 1.15 billion possible
assignments, however only 0.2%o or less (one in 5000) of them
lead to a correct transformation. Thus, it was our goal to devise
an efficient method which cuts down search space and produces
aranked list of possible transformations, where the correct trans-
formation is among the top entries. The general idea behind this
is to built a hierarchy of tests, where the most elaborate test (the
score function) needs only to be performed for very few cases.

We showed that the relative angles between patch normal vectors
are a good (and scene independent) criterion to eliminate false
assignments. For the determination of the rotation matrix, we
started from the assignment of two patch pairs. Using a cluster-
ing of orientations by way of bins, we obtained a ranking, where
the correct solution is at the top for the majority of scan pairs and
ranked among the first 18 in all cases. As for the translation, we
used a RANSAC based approach, where the sampling consists of
picking two patch pairs, and the consensus set is the total number
of compatible patch pairs. Overall, we obtained an efficient algo-
rithm which computes a ranked list of transformation candidates,
where the correct transformation is at rank one for scans with
a high overlap, and ranked among the first 53 for all scan pairs
with an overlap larger than 3.6%. We conclude that the number
of candidates for which a more elaborate score function needs to
be evaluated is on the order of 100, which is, compared to a total
of 71.15 billion possible cases, a massive reduction by a factor of
10°.

In the future, we plan to test the algorithm on other scenes as well,
and to work on an efficient yet selective score function.
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ABSTRACT:

The Wadden Sea is an almost untouched area with a size of about 7300 km? along the German, Dutch and Danish coast. Because of
tide the area is flooded two times a day, creating a very special and sensitive ecosystem. In order to protect the Wadden Sea up-to-
date Digital Terrain Models (DTM) of high accuracy are needed to detect morphological changes. Lidar is an adequate method to
obtain an accurate DTM. However Lidar is not able to penetrate water regions. Thus, raw Lidar data contain several water points,
which do not belong to the terrain surface, leading to a wrong DTM.

In this paper we present a supervised classification method to detect water regions from Lidar data using a fuzzy logic concept.
Starting with raw data points of one strip, the points are grouped into scan lines. Based on training areas for the classes water and
mudflat the features height, intensity and 2D point density are analysed. The significance level of the assumption that each feature
differs for both classes is determined. Then, individual weights are derived from this significance level for every feature taking into
account systematic feature changes depending on the angle of incidence of each laser pulse. A fuzzy logic classification is used to
distinguish all points into water and mudflat points. Several additional steps are performed in order to refine and improve the
classification result. Two meaningful examples are presented, which show the capability of this supervised fuzzy classification.

1. INTRODUCTION available time windows are rather rare and small. This leads to

much higher costs forcing many customers to order only Lidar

The Wadden Sea is a very special and sensitive ecosystem. Two data. Thus, in the second case, only the Lidar data is assumed to
times a day the area is flooded and falls dry afterwards. The be available. Typically, Lidar data providers deliver irregularly
area reaches from Esbjerg, Denmark to Den Helder, spaced 3D points and intensity values, which correspond to the
Netherlands. Almost 60 % of the 7300 km® is situated in  strength of the backscattered beam echo. Up to now, only a few
Germany. The Wadden Sea represents a unique and protectable approaches using exclusively the intensity of Lidar data for
wildlife habitat. Many plants and animals have developed in  classification were published. Katzenbeisser and Kurz (2004)
accordance to the tidal influence and their future depends on the  emphasized the fact that classification methods used for remote

existance of the Wadden Sea. sensing images need to be adapted to intensity data. They
In order to monitor morphologic changes of the Wadden Sea, pointed out that the intensity has only a useful information
Digital Terrain Models of high accuracy are needed. Lidar  value within open areas where only one echo was detected.
proved to deliver high accurate spatial data of mudflats (e.g.  Hence, other criteria have to be considered in order to filter
Brzank et al., 2005). However, Lidar is not able to penetrate water points from Lidar data.

water. Due to the fact that water still remains in tidal trenches In this paper, we extend the previous approach of Brzank and
and depressions even during low tide, water points are parts of ~ Heipke (2006). First, we summarize important physical
the captured Lidar data. In order to calculate a DTM, which  characteristics of Lidar data and previous approaches, which

describes the mudflat surface accurately, water points have to were carried out to separate water and land points in Lidar data.
be detected and removed, and additional correct height data  Then, a new supervised method is presented for classification of
have to be introduced. Lidar data into water and land points.

Depending on the available data sources different approaches First, the raw data points are grouped into scan lines. Based on
are possible. Two general cases can be distinguished. In the first training areas for the classes water and mudflat the significance
case simultaneous acquisition of Lidar and multispectral image of the difference of the features height, intensity and 2D point
data is assumed. In this case, the images can be used to classify density is calculated. Then, individual weights are calculated
water with standard classification methods. Lecki et al. (2005) using the significance level for these three features, which also
pointed out that high-resolution multispectral imagery and  take into account systematic changes of intensity and 2D point
appropriate automatic classification techniques offer a viable density depending on the angle of incidence. Afterwards, a
tool for stream mapping. Within their analysis, especially water  fuzzy classification is performed. All required parameters are
was classified accurately. Mundt et al. (2006) demonstrated that  obtained from training areas. Finally, the classification result is
the accuracy of classification significantly increases by  revised and improved by applying several tests. To illustrate the
combining images and height data. capability of the algorithm, two examples with different
Considering the rapid change of water-covered region caused  characteristics regarding Lidar scanner system, point density,
by a fast changing water level, Lidar and multispectral data has point distribution etc. are presented. Finally, this paper
to be captured simultaneously. Taking into account that the concludes with a summary and an outlook on further
flight has to be performed during low tide and the weather  development issues.

conditions must be adequate for multispectral data capturing,
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2. STATE OF THE ART

2.1 Physical characteristics of Lidar data within coastal
areas

In order to develop a suitable algorithm, which is capable to
classify Lidar data (raw 3D Lidar points and their intensity
values), the physical characteristics of common Lidar systems
as well as the reflection of water and land areas have to be
considered. Generally, Lidar systems operate in the near
infrared range. Wolfe and Zissis (1989) describe the absorption
of infrared radiation depending on the illuminated surface
material and the wavelength. They point out that the absorption
for water is significantly higher than the absorption for soil.
This leads to the fact that the intensity of water points is
normally lower than the intensity of land points.

Additionally, as a result of the Rayleigh Criteria, calm water
surfaces behave like a mirror. Thus, specular reflection occurs.
Often, a distance measurement can not be accomplished
successfully because the received radiation energy is not
distinguishable from background noise. Hence, the point
density of Lidar data within water areas is normally
significantly lower than within land areas.

2.2 Systematic changes of intensity and point density
depending on the angle of incidence

As pointed out in the previous chapter, intensity and point
density depend on the characteristics of the illuminated area.
The reflectance of water is lower in case of near infrared light
than the reflectance of mudflat. However, also mudflat has quite
a smooth surface yielding in similar specular reflection
behaviour of the laser beam. Thus, intensity and 2D point
density are systematically influenced depending on the angle
between the laser beam and the surface normal.

Figure 1. Specular reflection in case of (left) horizontal and
(right) tilted area

Figure 1 illustrates how the laser beam is deflected depending
on the angle of deflection (o) and the angle of incidence (B), if
specular reflection occurs. Assuming that the area of interest is
horizontal (which can be stated approximately for large parts of
the Wadden Sea) o equals B. In case of tilted regions the surface
orientation has to be taken into account in order to calculate f3.
Practically, the reflectance behaviour of the laser beam hitting
water or mudflat is not exactly equal to specular reflection but
similar. Hence, intensity values of points increase, if f
decreases. Additionally, more points are measured correctly, if
B decreases because the intensity is strong enough to trigger a
correct measurement. In order to obtain accurate classification
results using intensity and point density, the different
reflectance properties of water and mudflat, but also the
systematic changes depending on the angle of incidence, have
to be taken into account.
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2.3 Previous approaches to extract water areas from Lidar
data

Brockmann and Mandlburger (2001) developed a technique to
extract the boundary between land and river water, and applied
it to data from the German river “Oder”. Based on Lidar data,
the planimetric location of the river centre line as well as
bathymetric measurements of the riverbed, the boundary was
obtained within a two-stage approach. First, the height level of
the water area was derived by averaging the Lidar points in the
vicinity of the river centre line. Afterwards, a DTM of all Lidar
points (including also points of the water surface) was
calculated. Then, the 0 m contour line of the difference model
of the Lidar DTM and the water height level was derived. This
contour line is called “preliminary borderline”. Within step two,
the bathymetric points of the preliminary water area were
combined with all Lidar points outside the preliminary water
area. Then, a DTM representing the riverbeds instead of
waterlevel was calculated. Afterwards, the final borderline was
obtained by intersecting this DTM including the riverbeds and
the height level of water area.

Mandlburger (2006) proposed another method based on the
same input data, which also detects the borderline of a river.
First, the Lidar points are transformed into the river-axis
system. Then, segments with a fixed length in flow direction are
created. All points for each segment are used to create a profile
across flow direction. After removing all outliers (vegetation
and water points etc.), bank slopes of both sides are generated
by an adjusted line. Then, one border point for each side is
calculated by intersecting these lines with the prior known
water height. Finally, all border points are transformed back
into project coordinate system and linked.

Brzank and Lohmann (2004) (see also Brzank et al., 2005)
developed another algorithm which separates water regions
from non-water regions based on a DSM calculated from Lidar
data. The main idea is to detect reliable water regions and
expand those using height and intensity values. For that
purpose, local height minima were extracted from the DSM,
which represent potential seed zones of water areas. This step
was followed by a region growing procedure using height and
intensity data of the DSM grid points. In comparison to the
previously mentioned algorithms, no additional information,
such as water height or river axis is necessary. However, results
were not satisfying, because systematic changes of intensity
were not modelled.

2.4 Fuzzy classification concept

In order to classify water points from Lidar data in the Wadden
Sea, the first two concepts described in section 2.3 are not
sufficient. The algorithm of Brockmann and Mandlburger
(2001) as well as Mandlburger (2006) require additional data,
such as water height, approximate position of water and
bathymetric data. However, these data are not available for the
Wadden Sea. Moreover, the algorithms do not use further
available information such as intensity and point distribution.
The method of Brzank and Lohmann (2004) is also not
sufficient, because systematic changes of intensity are not
modelled. Furthermore, the method is not capable of dealing
with different water heights within one water region. This
remarkable effect occurs, because water height changes over
time because of tide. Data of several flight strips are linked
together in order to calculate a DSM. The time difference in
capturing flight strips can lead to different height levels within
one and the same water region.
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Hence, Brzank and Heipke (2006) developed a new algorithm
which focuses on classifying water points in Wadden Sea using
only raw Lidar data. In contrast to previous approaches,
classification is carried out for each flight strip separately in
order to avoid different water heights within one region. The
classification uses a fuzzy logic concept. A membership value
for the class water p;(x) is calculated for every point based on
its feature values and their weights. Six different features are
used: height, intensity, slope, missed points, segment length and
ID point density. While height and intensity are measured
directly for every point, all other features are defined based on
points of the same scan line.

The classification is performed for each scan line using a
hysteresis threshold method. After classification, several
additional routines are performed in order to control and
improve the classification result.

Brzank and Heipke (2006) proved that this method is capable to
classify water regions. The algorithm has many advantages:

- All feature values can be obtained either directly from the
measured point or in connection with other points of the
same scan line.

- The classification is carried out for each scan line
separately, making the classification very fast.

- The classification is done for every flight strip avoiding
height changes due to time differences.

- The classification uses a certain weight for every feature
taking into account the individual benefit of this feature for
the classification.

However some facts are not taken into account:

- Systematic changes of intensity and point density across
the flight direction are not be modelled.

- The needed classification parameters are not derived
from data. The user has to set these values.

- The features missed points, segment length and 1D point
density refer to one scan line, leading to a more noise
depended classification result.

- The features missed points, segment length and 1D point
density are correlated, which is not considered in the
classification process.

3. CLASSIFICATION OF WATER POINTS WITH
SUPERVISED FUZZY LOGIG CONCEPT

Based on the evaluation in chapter 2.4, fuzzy classification
(Brzank and Heipke, 2006) was improved. First, the number of
features was reduced to height, intensity and 2D point density.
The features missed points, segment length and 1D point
density were replaced by the new feature 2D point density.
Thus, for every point the number of Lidar points inside a given
polygon is determined. The centre of the polygon is given by
the point of interest. Then, the number is divided by the size of
the polygon. Furthermore, the feature slope was removed.

In order to tackle systematic changes of intensity and 2D point
density their weights depend on the angle of deflection of the
measured point. This leads to a new formula to calculate the
entire membership value of class water (equation 1).

_ [5HIUH M+ () (i,a)+5, (a)yp(p,a)] (1)
[5H +0,(a)+ 0, ((Z)]

u(h,i, p,a)
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individual height, intensity, 2D point
density and angle of deflection

weight for features height, intensity, 2D
point density

membership value water of features
height, intensity, 2D point density

entire membership of class water

h,i, p,a
SH’ 61(0.), 61)(0.)
pu(h), pi(i,o), pe(p,or)

p(h,i,p,a)

3.1 Determination from

training areas

of classification parameters

In order to classify Lidar data into water and mudflat with the
proposed fuzzy logic concept several classification parameters
are needed. Table 1 shows these parameters and their function.
As pointed out earlier, all parameter are to be derived
automatically from training areas.

classification parameter function

two thresholds to limit the | transforms crisp height value

application range of the | into fuzzy membership value
membership function, | for height (intensity and 2D
(intensity and 2D point | point density)

density)

constant weight for height describes how useful the

feature height is evaluated for
the selected data set

describes how useful the
feature intensity (2D point
density) is evaluated for the
selected point

individual ~ weight  for
intensity (2D point density)

water thresholds - low and
high

classification of  fuzzy
membership value of every
point into class water or
mudflat

Table 1. Classification parameters and their function

First, training areas for the classes water and mudflat are
determined. Typically, prior knowledge is used to define these
areas. Then, all Lidar points inside these areas are extracted.
Afterwards, the mean height and the corresponding standard
deviation for all water and mudflat training areas are calculated.
Due to a systematic dependency of intensity and 2D point
density on their angle of incidence, the mean values and
standard deviations are not significant. Hence, the mean
intensity (2D point density respectively) must be referenced
either with the angle of incidence f or the angle of deflection a.
For reason of simplicity, we use in this paper only o. In order to
calculate a, the flight trajectory must be available. Based on the
actual position of the plane for each scan line a can be
calculated for every point. If § should be used, the difference
between the angle of deflection and the corresponding surface
normal must be determined. For this purpose, the DTM is
needed. Afterwards, the feature values of intensity and 2D point
density of every point can be associated with the corresponding
angle. These value pairs are used to fit a monotonically
decreasing function for both classes. Generally, every function,
which describes the systematic dependency correctly, can be
used. We chose a function with 4 parameters (see equation 2),
which was formerly used as weight function in linear prediction
with robust filtering (Kraus and Pfeifer, 1998).

C
f(r)—(1+(ar)b)+d )
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Figure 2 shows a typical result of function fitting for intensity
of both classes. It can be seen that intensity decreases, if the
angle of deflection increases.

L] T |
= 0 7
w
-
a
E
W 1
| | 1
0
0 25 ] 75 10
angle of deflection [7]
— mudflat —  water

Figure 2. Intensity for both classes as a function of the angle of
deflection a

3.1.1 Determination of membership function and their
corresponding thresholds

In order to transform a crisp feature value into a fuzzy
membership value, a membership function and two thresholds,
which limit the application area of the membership function, are
needed. We define a straight line as membership function. In
case of the feature height the determined mean value of class
mudflat is used as lower threshold with membership value 0,
while the mean value of class water is used as upper threshold
with membership value 1. In case of intensity and 2D point
density, the adjusted functions are used. The individual
threshold low (high) of every point equals the adjusted value of
function mudflat (water) using the certain angle of the point of
interest.
3.1.2  Determination of individual weights

In order to calculate the entire membership value of every point
individual weights have to be determined. We define the weight
to be in the range of 0 up to 1, where 0 means that the feature is
not suited and 1 means that the feature is most useful for
classification. For the feature height, only one constant weight
is determined, because the height values do not depend on the
angle of deflection. In case of intensity and 2D point density an
individual weight depending on the angle at the point of interest
is obtained. In order to calculate the constant weight of the
feature height, all training areas for water are combined and the
mean x and standard deviation s is computed. The training
areas of mudflat are processed in the same way. Then, the
values are used to create the Gaussian distribution of the
probability density (Figure 3).

1 T T T T

0.5 1

probability density

L 1 | L L
0.5 0 0.5 1 ] 2 2L 3
height [m]

0
-1

-— water - mudflat

Figure 3. Probability density function of feature height for
classes water and mudflat
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It can be stated that the higher the overlapping rate of both
distributions the less useful the feature height is to separate
between water and mudflat. Based on this conclusion, the level
of significance for the assumption that both distributions are
different (Hy: Xyaer 7 Xmudfia) 1 calculated using a statistical
test. Equation 3 displays the used test statistics t;. Then, the
corresponding weight is derived from the level of significance
by linear interpolation. For that purpose, two constraints are set.
If the level of significance is 50% the weight amounts to 0. In
case of 100% the weight is 1.

_ Xmudflat — Xwater
2 2
\/s, + S:=
Xmudflat Xwater

For intensity and 2D point density the determination of the
individual weight is very similar. The adjusted values for
mudflat and water are calculated using the estimated features of
equation 2. The residuals of all observations of one class are
used to calculate the standard deviation. Again, both Gaussian
distributions are derived and the level of significance is
determined leading to the individual weight depending on the
angle of deflection of the point of interest.

d

S

t 3)

3.1.3  Determination of water thresholds

After determination of weights the entire membership value of
every training point can be calculated using equation 1. Then,
the mean of all entire membership values of class water and
mudflat as well as the standard deviation are derived. Now, the
two Gaussian distributions of the entire membership value are
created. To find the low and high water thresholds the user
defines two specific ratios (we normally use 1/10 and 10) of
probability density water and probability density mudflat. The
values that match these ratios are used as low and high
thresholds.

threshold low

probabilty density
T

~1 0.5 0 0.5 1

entire membership value water

Figure 4. Determination of water threshold low and high
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Remark: Generally, a membership value can only lie in the
range of 0 to 1. For that reason (see chapter 3.1.1) two
thresholds are used in order to limit the use of the membership
function. In case of classification all points with feature value
below threshold low get a membership value of 0, while all
points with feature value above threshold high get a
membership value of 1. However, in the analysis of training
areas the use of the membership function is not limited leading
to membership values below 0 and above 1. This is necessary in
order to create normal distributions of the entire membership
value water (see Figure 4).

4. EXAMPLES
In order to demonstrate the ability of the algorithm, two

examples are presented in the section. The first example
contains a part of a flight strip of the campaign “Friedrichskoog
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20057, which is situated at the coast of the North Sea next to the
estuary of the river Elbe. The flight was carried out by the
German company Toposys using their Lidar system Falcon II.
The second example is a part of a flight strip of the campaign
“Juist 2004”. The flight was carried out by German company
Topscan using an ALTM2050 from Optech in order to capture
Lidar data of the East Friesian island Juist and its surrounding.

Figure 5. Orthoimage of Lidar campaign “Friedrichskoog 2005”
(left) and Lidar points of a part of a flight strip — intensity
coded (right)

Figure 5 (left) shows an orthoimage (size: 1.5km length, 1.3km
width) of the campaign “Friedrichskoog”. In the image some
tidal trenches filled with water as well as a huge water covered
swale can be seen. Figure 5 (right) displays captured Lidar
points of a part of a flight strip. The points are coded in relation
to their intensity (low intensity — bright colour, high intensity —
dark colour). It can be seen that the intensity values in the
middle of the strip are significantly higher than at the border.
Hence, a systematic dependency of the deflection angle exists.

Figure 6. Orthoimage of Lidar campaign “Juist 2004” (left) and
Lidar points of a part of a flight strip — intensity coded (right)

Figure 6 displays an orthoimage (size: 4km length, 2.6km
width) of campaign “Juist”. There is a huge tidal trench situated
south of the island. Again, intensity values are significantly
smaller for water than for mudflat. However, a systematic
dependency of intensity is not obvious.

Based on the orthoimage a training area for each class was
manually selected. Afterwards, all classification parameter were
derived from automatic analysis of the training areas. Figure 7
and 8 show the dependency of both classes from angle of
deflection for features intensity and point density. The blue
(pink) line marks the average feature value of class water
(mudflat), while cyan (ochre) area indicates the single standard
deviation of all residuals. As was already obvious from Figure
S, intensity of points from campaign “Friedrichskoog” is
systematically influenced by the angle of deflection. Intensity
of water and land differ strongly in case of a small angle of
deflection. The more the angle increases, the more the
intensities for both classes resemble each other. At the border of
the flight strip the intensity of water and land do not differ
significantly. Hence, the intensity weight within the
classification has its maximum for o = 0 and decreases, if a
increases. At the border of the flight strip, intensity is not
considered in the classification. In contrast to the intensity, the
point density only differs marginally between classes water and
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mudflat. The scan pattern has almost no holes for both training
area. Hence, the individual weight of point density is always 0.
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Figure 7. Determination of systematic changes of intensity (up)
and point density (down) depending on the angle of deflection -
Friedrichskoog

The intensity and point density of Lidar points from the
campaign “Juist” only slightly depend on the individual angle
of deflection. However, intensity and point density of both
classes significantly differ from each other for all angle of

deflection. Thus, both features are effective within
classification.
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Figure 8. Determination of systematic changes of intensity (up)
and point density (down) depending on the angle of deflection -
Juist

Based on automatically determined classification parameters,
the classification of both datasets was performed. Afterwards,
classification discrepancies were detected and removed. Finally,
every classification result was smoothed in order to suppress
classification noise. Results are displayed in Figure 9 and 10.
Figure 9 (left) shows the classification result of campaign
“Friedrichskoog”. Based on a visual comparison of the
classification result with the orthoimage it can be stated that the
overall correctness is satisfying. However, some points within
tidal trenches are misclassified due to waves and noisy intensity
values. Most highly noisy misclassified points were supressed
by performing additional checks and smoothing leading to the
result displayed in Figure 9 (right).
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Figure 9. Water (blue) and mudflat (yellow) points after
classification (left), additional checks and smoothing (right) -
Friedrichskoog

The classification result of campaign “Juist” is visibly slightly
better. There are only a few misclassified points due to waves
and intensity noise.

Figure 10. Water and mudflat points after classification (left),
additional checks and smoothing (right) — Juist

In order to evaluate the overall correctness, water and mudflat
areas were manually digitized from aerial images and the
resulting areas were used as reference for the automatically
derived classification. Table 2 lists the results. The correctness
of campaign “Juist” is higher than for “Friedrichskoog”. Two
reasons can be found. On one side, intensity does not differ
significantly for all points while point density is not used for the
classification “Friedrichskoog”. In case of “Juist”, all features
differ significantly. Furthermore, height increases very slowly
at the transition zone from water to mudflat in case of
“Friedrichskoog” making it very difficult to derive correct
results. For campaign “Juist” height changes are larger at the
transition zone leading to a more accurate classification.

Friedrichskoog 2005 Juist 2004
Number of 1.257.518 1.469.405
classified points
Classified water 592.577 517.858
points
Classified land 664.941 951.547
points
Water Land Water Land
Classified water |, ¢, 64.936 | 510339 7.519
points
Classified land 4.127 660.814 5.886 945.661
points
Correctness [%] 89.0 99.4 98.5 99.4

Table 2. Evaluated classification results

5. CONCLUSION AND OUTLOOK

A supervised fuzzy classification approach to separate Lidar
points into the classes water and mudflat is introduced. The
algorithm is based on the original Lidar data and classifies
every flight strip. For the analysis the features height, intensity
and 2D point density are used. The classification is based on the
fuzzy logic concept. All necessary classification parameters are
derived from training areas. Two different examples are
presented to illustrate the capability of this algorithm. They
demonstrate that the classification algorithm is able to deliver
accurate results for different Lidar scanner types.
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Future work will focus on the determination of highly precise
DTMs for the whole investigated areas. Fur this purpose,
bathymetric data has to be included in the calculation in order
to fill areas, which are classified as water.
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ABSTRACT:

Fluxes of carbon dioxide (CO,), water, and energy measured using the eddy covariance method (EC) will vary spatially and
temporally within the catchment area of the EC system, especially if parts of the forest are structurally heterogeneous. This is
important because within site vegetation structural and topographic heterogeneity may tip the balance between an ecosystem being a
net sink or source of CO, within a given year. Further, if wind directions are non-varying, the EC method may possibly either over-
or under-estimate energy and mass fluxes if source locations are not representative of the entire ecosystem. The following study will
use airborne lidar assessments of canopy structure, a simple flux footprint parameterisation, and EC estimates of net ecosystem
productivity (NEP), ecosystem respiration (Re), and gross ecosystem productivity (GEP) to test the hypothesis that vegetation
structural heterogeneity has some influence on CO, fluxes within a mature jack pine forest in Saskatchewan, Canada. The results
found in this study indicate that vegetation structural variability (canopy height, depth, and foliage amount) within the site have
significant influences on the variability in CO, flux estimates of uptake and respiration made using the EC method. However
structural heterogeneity is not more important than meteorological driving mechanisms. The influences of structure may therefore
become more influential in more heterogeneous ecosystems. Variability in vegetation fractional cover (a proxy indicator for foliage
amount) and height, observed from airborne lidar, have the greatest influences on NEP and GEP, where increased fractional cover is
directly related to increased CO, uptake on most days studied.

1. INTRODUCTION greater numbers of leaves results in increased photosynthesis
and CO, uptake as well as decreased warming of the soil
Fluxes of CO,, water vapour, and energy vary spatially and  surface, and possibly, decreased Re (Baldocchi et al. 1997).
temporally due to changes in solar radiation, soil and air Further, within canopy radiation scattering during sunlit (direct
temperature, soil type, the photosynthetic capacity of vegetation  radiation) and cloudy (diffuse radiation) periods will also affect
and foliage density (e.g. Baldocchi et al. 1997; Griffis et al.  the efficiency with which light is used for photosynthesis,
2003) Therefore, it is llkely that Variability in the COl’lditiOl’lS especially When the canopy becomes isotropic (Ba]docchi et al_
required for the transfer of CO, into the ecosystem, via 1997). If water stress is a limitation to vegetation growth, then a
photosynthesis, and fluxes of CO, out of the ecosystem, via  positive feedback may result whereby productivity (and leaf
ecosystem respiration, may be manifested in the vegetation  area) will decrease or remain low, and penetration of radiation
structural and topographic heterogeneity within the ecosystem.  through the canopy will increase causing soils to warm and the
Canopy structural and ground surface topographic variability — possibility of respiration increase (Baldocchi et al. 1997).
are important considerations when examining the annual carbon
balance of forests, especially if these affect the differences Airborne lidar, in combination with a spatially and temporally
between annual net CO, uptake and release. Ecosystem  varying flux footprint model parameterisation and the eddy
respiration (Re) plays an important role in the carbon balance of  covariance method (EC) offer one method for which mass and
many climatically sensitive boreal forests (e.g. Lindroth et al. energy exchanges can be assessed within complex vegetated
1998) because Re may alter the ecosystem from being a sink for  ecosystems. Footprint parameterisations of the upwind
atmospheric CO; to a source. For example, Griffis et al. (2003)  distribution area can be used to examine the sources and sinks
determined that 46% of net ecosystem productivity resulted in  of fluxes such that the relative contributions of elements from
CO, loss through respiration at a mature jack pine site,  different places within the ecosystem diffuse with atmospheric
indicating the importance of ecosystem Re to the carbon  turbulence to the EC measurement system (Schmid, 1994).
balance. At OJP, CO, uptake and respiration processes are often  Particle diffusion is strongly dependent on wind direction, wind
dependent on canopy foliage cover and solar heating of the  velocity, the height of the EC system, atmospheric stability,
ground surface, whereby interception of solar radiation by  roughness length, and land surface heterogeneity (Kljun et al.

* Corresponding author.
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2004). Flux footprints, therefore, plot the shape in x and y
coordinates of the source/sink area as well as the probability
density function (PDF), defined as the probability of the
distribution of flux throughout the site by continuous sampling
of that flux, via relative frequency. Airborne lidar can be used
to determine the relative variability of vegetation structural
characteristics and topography within an individual flux
footprint or source/sink area per unit time. The combination of
source/sink area  defined by the footprint model
parameterisation, flux exchanges measured using the EC
method, and detailed structural and topographic information
from lidar will continue to become important mechanisms for
understanding some of the physical mechanisms associated with
temporal and spatial variability in CO, uptake and respiration
within vegetated environments.

In this study, we use airborne lidar to characterise vegetation
structural heterogeneity within the contours of half-hourly flux
footprint maximum area PDFs (approximately 80% of flux
contribution area) in order to quantify the magnitude of
influence that within-site canopy structural variability has on
CO, uptake and respiration estimated using the EC method. A
simple footprint climatology parameterisation of Kljun et al.
(2004) is applied at a naturally regenerating, mature jack pine
forest in Saskatchewan, Canada.

2. METHODOLOGY
2.1 Study Area

The study site consists of a fairly homogeneous mature jack
pine (Pinus banksiana Lamb.) forest (OJP) located near the
southern edge of the boreal forest in Saskatchewan (520230 E,
5974262 N, zone 13). The site is maintained by Environment
Canada for the Fluxnet-Canada Research Network
(www.fluxnet-canada.ca) and is part of the Boreal Ecosystem
Research and Monitoring Sites (BERMS). BERMS contains
multiple chronosequence, fire, and a fen sites for which flux,
meteorological and mensuration data have been collected
consecutively since 2005 (Table 1).

Plot | Elevation | DBH | Tree Canop | LAI | Stem
# (m) (cm) height | y depth density
(m) (m) (m)

1 494.3 15.9 14.9 6.3 1.36 0.12
2 495.1 14.6 13.6 6.1 1.54 0.08
3 494.1 11.7 13.0 5.9 1.06 0.17
4 492.5 12.9 13.3 5.2 1.26 0.15
5 489.5 17.5 15.7 8.8 1.35 0.09
6 491.9 16.1 14.9 8.1 1.44 0.1
7 487.0 11.8 114 6.2 1.00 0.14
8 492.4 23.6 134 11.2 1.76 0.04

Table 1. Average stand characteristics measured at eight plots.
DBH = diameter at breast height, LAI = Leaf area index.
Corrections for canopy clumping, woody-to-total area ratios
and needle-to-shoot area ratios were used to adjust LAI
according to Chen et al. (2006).

Elevation within the EC catchment area at OJP (1000 m radius)
varies between 482 and 494 m, and cross-site variability in tree
heights range from approximately 13 m and 18 m. Mensuration
data were collected at eight plots during the growing season of
2005, coincident with the airborne lidar survey (Table 1).
Mensuration plots (11.3 m diameter) were set up and
georeferenced using survey-grade (differential, post-processed)
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GPS such that four plots were located within 100 m of the flux
measurement tower, and four plots were located within 500 m
of the tower for spatial representivity. Understory vegetation
consists of alder (4/nus crispa Ait.), reindeer lichen (Cladina
spp.), and bearberry (Arctostaphylos uva-ursi L.). Soils within
the site tend to be sandy and dry with little nitrogen content
(Baldocchi et al. 1997).

2.2 EC Flux Estimates

Three, approximately one to two week periods of flux and
meteorological data were examined during the dry growing
season of 2002. CO, observations were excluded during periods
of rainfall and low wind speed. Average tree height growth
since 1996 was approximately 1 m, therefore growth between
2002 and 2005, when the lidar survey was performed, is
minimal and within the range of error of the lidar system used.
Vegetation growth likely has an insignificant influence on the
results of the analysis.

Above canopy CO, fluxes were measured at approximately 30
m above the ground surface using the eddy covariance method
at 10 Hz and aggregated to 30-minute periods. EC
instrumentation and methodology are discussed in Barr et al.
(2004). In this study, net ecosystem productivity (NEP)
(pmol-m™s™) is directly measured by the EC system where
NEP net ecosystem exchange (-NEE) (umolm'z-s'l).
Therefore, a positive NEP indicates that the ecosystem uses
more CO, for photosynthesis than it releases. Re (umol-m?s™)
is modelled via the relationship between night-time respiration
and soil temperature (Barr et al. 2004). Gross ecosystem
productivity (GEP) (umol-m™-s™), defined as the uptake of CO,
by the ecosystem for photosynthesis, is calculated from NEP
and Re whereby GEP = NEP + Re. It is important to note that
NEP is the most direct estimate of CO, flux measured using the
EC. GEP and Re, on the other hand, are modelled based on soil
temperature relationships and may possibly be over- or under-
estimated. Fluxes have been averaged over coincident 30-
minute periods during daylight conditions. Daytime is defined
as the above-canopy incoming shortwave radiation >0.5 W-m™
to avoid errors in EC measurements, occasional condensation
on radiation sensors, and footprint model parameterisation
during generally stable nocturnal atmospheric conditions.
Uncertainties in measuring carbon fluxes occur because, during
calm and stable conditions, the transfer of carbon dioxide by
non-turbulent exchanges is not detected by the EC system
(Griffis et al. 2003). Further, early morning and late afternoon
periods were not examined due to CO, storage and ‘flushing’ of
CO; out of the ecosystem, not related to canopy structure.

Variability in CO, fluxes caused by meteorological influences
such as soil moisture, soil temperature, air temperature, relative
humidity, incoming photosynthetically active radiation (PAR),
and vapour pressure deficit have been removed using residual
analysis (not shown) (e.g. Chen et al. 2002). Therefore,
influences of vegetation structure on CO, fluxes are examined
after all meteorological driving mechanism influences have
been removed. Average 24-hour energy balance closure for
each day and each period studied was determined using the
Energy Balance Ratio method (Wilson et al. 2002). Average
energy balance closure during the first period of study was
~88% (standard deviation = ~10%), during the second period
was ~83% (standard deviation = ~8%), and during the third
period was ~85% (standard deviation =~14%).
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2.3 Lidar Data Collection and Processing

Lidar data were obtained at OJP using a small-footprint,
discrete pulse return ALTM 3100 (Optech Inc., North York,
Ontario), owned and operated by the Applied Geomatics
Research Group, Nova Scotia on August 12, 2005. Up to four
laser pulse returns were obtained per laser pulse emitted, at a
rate of 71 kHz and at a flying height of 950 m a.g.l. The scan
angle was set at + 19° with 50% overlap of adjacent flight lines.
This enabled penetration of the laser pulses through to the base
of the canopy, whilst also obtaining returns on all sides of
individual tree canopies (Chasmer et al. 2006). Cross-track and
down-track resolutions, with the 50 percent overlap of scans,
are 35 cm (“post spacing”).

Percentile distributions, frequently used to estimate average tree
canopy heights using lidar data (e.g. Magnussen and Boudewyn
1998) were used to approximate average tree heights and base
of live crown height (used to determine live canopy depth,
where depth = canopy height — canopy base height) at the plot
level and also within-footprint probability density function
(PDF) contours using a canopy height model (CHM). Height
and live canopy base height percentile distributions were
calculated on individual laser pulse returns greater than or equal
to 2 m above the ground surface so that laser pulse returns from
the ground surface would not influence and shift the percentiles
downwards. Also, the 2 m threshold was used to receive pulses
from the canopy only, as opposed to stems and understory.
Percentile distributions were also compared at eight individual
plots to determine the most accurate and descriptive percentiles
to use. The 90™ and 8" percentiles were most appropriate for
determining average tree heights and base of live crown height
at the plot level at OJP. Accuracy in predicting tree heights and
base of live crown height were 0.94 and 0.77 (coefficients of
determination) for the 90" (corresponding to canopy height)
and 8" (corresponding to base of live crown height) percentiles,
respectively. Differences between average measured canopy
height, canopy height derived from airborne lidar (L90 = 90
percentile), and average canopy base height, canopy base height
derived from airborne lidar (L8 = 8™ percentile) are shown on a
per plot basis in Table 2. These were then applied to laser pulse
returns within the 30-minute footprint 80% PDF contour lines.

A proxy for plant area index (PAI) has been created from laser
pulse returns within the canopy and the total number of laser
pulse returns, following a simple methodology discussed in
Morsdorf, et al. (2006) for gap fraction and fractional cover.
Gap fraction increases when gaps within the canopy increase,
thereby resulting in increased radiation passing through the
open canopy without intercepting foliage. The inverse of this is
“fractional coverage” or fcover whereby gaps are represented
by a foliage cover of zero, and increased radiation interception
results in increased fractional coverage of foliage. Laser pulses
can exhibit similar properties to solar radiation as they pass
through the canopy. Laser pulses that are returned from within
the canopy have been effectively ‘blocked’ by the canopy from
reaching the ground. Laser pulses that reflect from the ground
surface likely passed through gaps within the canopy.
Therefore, the ratio of the laser pulses returned from within the
canopy to those returned from the ground surface is a
reasonable proxy for the gaps within the canopy and the
fractional coverage of leafy and woody material intercepting
radiation.

To obtain spatial estimates of fcover, laser pulses have been
classified using “canopy” and “non-canopy” pulse returns
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within Terrascan (Terrasolid, Finland) such that all laser pulses
located 1.3 m above ground level were classified as “canopy”
and all pulses located below 1.3 m, including ground were
classified as “low vegetation and ground”, coincident with the
height of the digital camera, and photographs. Vegetation
fractional coverage from lidar has been determined by counting
the total number of “canopy” laser pulse returns and then, by
counting the total number of “low vegetation and ground” laser
pulse returns within corresponding 1 m x 1 m x 30 m columns.
Counts were performed within Surfer (Golden Software Inc.,
Golden, Colorado) and fcover was determined for the entire
area within the EC catchment using the SAS statistical package
(SAS Institute Inc., Cary, North Carolina). fcover is calculated
as:

> Pcanopy

(1]
> (Pcanopy + Pground) j

fcover :(

where Pcanopy is the total frequency of laser pulse returns
within the canopy, and Pground is the total frequency of laser
pulse returns for low vegetation and ground within each 1 m x 1
m x 30 m column (Figure 1) throughout the catchment area of
the EC (approximately 750 m radius). Fcover has been
compared with estimates of gap fraction (1-fcover) and
effective leaf area index (LAle) for 9 of 10 analus rings
determined from digital hemispherical photography (DHP) (r* =
0.68) (Leblanc et al. 2005). This indicates that fcover is a
reasonable estimate of leaf area at this site, when compared
with DHP. In order to correct LAle obtained from DHP, the
needle-to-shoot area ratio, woody-to-total area ratio, and
clumping index from Chen et al. (2006) were used.

Plot | Ave. L90 | Diff. | Ave. canopy | L8 Diff.
# height | (m) (m) base height | (m) (m)
(m) (m)
1 14.9 14.8 | -0.1 6.3 6.1 -0.2
2 13.6 141 | 04 6.1 5.9 -0.2
3 13.0 130 | 0 5.9 6.1 0.2
4 13.3 137 | 04 5.2 53 0.1
5 15.7 147 | -1.0 | 69 7.0 0.1
6 14.9 147 | -02 | 638 6.5 -0.3
7 114 12.0 | 0.6 5.2 6.1 0.9
8 13.4 149 | -15 |52 6.0 0.8

Table 2. Average canopy height and canopy base height
measured on a per tree basis within individual 11.3 m radius
mensuration plots compared with lidar estimated canopy
heights and canopy base height determined using percentile
distributions (L90 and L8, respectively).

The amount of vegetation fractional cover (fcover) is illustrated
at OJP in Figure 1. The site tends to be relatively homogeneous,
with fcover ranging between 0.2 and 0.5. The area immediately
surrounding the EC flux station tends to have the lowest fcover,
on average. Areas to the north and south tend to have large gaps
within the canopy and little foliage cover. Interestingly, low-
lying areas, which often contain alders, tend to correspond with
areas of higher fcover and tree height (not shown) due to the
nitrogen fixing capabilities of alder and increased resources for
jack pine growth (Vogel and Gower, 1998).
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Figure 1. Vegetation fractional cover mapped at 1 m resolution
at OJP. White circles represent field mensuration plot locations,
and the central white circle represents the location of the EC
flux station. All plots were located using survey-grade, post
processed GPS with base and rover within 4 kms of each other
at all times.

2.4 Footprint Parameterisation

The footprint parameterisation used in this study follows that
discussed in Kljun et al. (2004). The parameterisation was
chosen because a) the cross-wind integrated footprint is
considered; b) it incorporates variables that are easy to derive
from measurements obtained from EC; c) it is neither
computationally difficult nor time-intensive; and d) it has been
thoroughly applied and tested using a variety of meteorological
(e.g. varying stability, roughness length, etc.) and technological
(instrument measurement height) applications.

Briefly, the crosswind-integrated footprint (F) as discussed in

detail in Kljun et al. (2004), is scaled based on the along-wind
distance from the receptor (x), the receptor height (z),
roughness length (zp), and the height of the planetary boundary
layer (H). Directionality and origin of the flux is also
determined from wind direction. Particle advection and
diffusion is accounted for in the surface friction velocity (ux),
whereas buoyancy and the formation and size of eddies within
the planetary boundary layer are described as the standard
deviation of the vertical velocity (o,,). These parameters create
the non-dimensional form of the cross-wind integrated footprint
F'+ based on four dimensionless contributions and a function of
the non-dimensional along-wind distance X+ (see Kljun et al.
2004). Dispersion in the y direction (the cross-wind distance
from the centre-line) has been estimated using a Gaussian
function (e.g. Amiro, 1999). Roughness length (zo) at OJP has
been calculated from Choudhury and Monteith, (1998) based on
the height of the canopy, soil surface roughness, LAI, the height
of the understory and zero-plane displacement. Therefore z, for
OJP, using an average measured tree height of 14.16 m is 1.93
m and varies between 1.55 m and 2.23 m for averaged shortest
and tallest trees within measured plots (11.4 and 16.4 m,
respectively). The location of maximum flux varies between
200.2 m and 175.8 m from the flux tower for footprints
containing shorter trees to footprints containing taller trees,
respectively. The 80% origin of the flux area varies between
438 m (short trees) to 384 m (tall trees). Therefore the along
wind distance (and subsequent error in footprint extent) may
vary by as much as 50 m or approximately 10% of the total
footprint (> 80%) in the x direction. However, variable wind
speed and boundary layer height will also alter the length of the
footprint (not shown). Finally, Richardson number (Ri) is used
to determine approximate stability of the atmosphere (Monteith
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and Unsworth, 1990) using air temperature and windspeed at
30-minute periods during relatively unstable conditions when ux«
is >0.2 ms™. Ri can therefore be used to approximate the height
of the planetary boundary layer (H). Measured boundary layer
heights were found to sometimes exceed 1.75 km during the
growing season at OJP. A flux footprint example with
maximum and 80% contour lines is provided in Figure 3
overlaid onto a canopy height model at OJP on June 13, 2002 at
10:00 (LST). The 80% contour (outer) line is used to extract
within footprint canopy structural information for each 30-
minute period throughout the day.

se7s1 —
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4) Tree

1, Height (m)

0220 s sorm swem

Figure 2. 30-minute flux source contour lines at 80% (outer
contour) and maximum (inner contour) total integrated footprint
on June 13, 2002 at 10:00 LST. The footprint has been overlain
onto the lidar CHM at OJP. The arrow represents average wind
direction during the 30-minute period.

3. RESULTS AND DISCUSSION
3.1 Vegetation Structural Influences on CO,

In this study, the maximum part of the footprint is plotted such
that a PDF of CO, flux > 0.001 m™}, and is within 500 m of the
EC system (limited to the upwind areas only). The remaining
parts of the footprint often extend up to and beyond the 1 km
radius of the EC system, especially during stable conditions.
Parts of the footprint that are outside of the 80% PDF tend to
contribute relatively little compared to the maximum source of
flux area. As such, canopy structural variability within the
footprint (e.g. tree height, canopy depth, and fcover), play an
important role on the residual variability in CO, fluxes after
accounting for meteorological influences. Topography also
plays an important role, but is not examined here. Table 3
provides summary results on remaining (residual) variability in
30-minute fluxes due to structural variability after accounting
for meteorological driving mechanisms.

NEP at OJP is significantly influenced by within site canopy
structural heterogeneity (vegetation height, canopy depth, and
fcover) on 16 of 22 days examined (p<0.1) (Table 3). Further,
the magnitude of influence tends to vary on a daily basis, often
with respect to variations in meteorological driving mechanisms
and likely, resource use. On five days, average structural
variability accounts for 25% of the total variability in NEP, but
does not play a more significant role than meteorological
driving mechanisms on any given day. Meteorological driving
mechanisms account for 74%, 75% and 52% of the variability
in NEP, on average, during the periods studied (June, July, and
August, respectively). Throughout the three periods of study,
structural variability accounts for ~16% of the total variability
in NEP on average during 18 of 22 days or 81% of the time
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period. In most cases, increased biomass associated with
increased tree heights, base of canopy height, and increased
fcover were positively related to increased CO, uptake used for
photosynthesis. However, during three of the days studied, the
opposite was found to be true, especially in June, and one day
in August, when the source was located within upland areas.
This may be related to cooler air temperatures, lower incoming
PAR and reduced carbon uptake on June 11, 2002, and
increased air temperatures and respiration on June 13, and
August 10 2002, leading to a reduction in NEP.

Date Tree Canopy fcover % of total | # of

(2002) Height Depth ) varia- days
@) ) bility in affec

NEP ted

June 10 0.03 0.06 0.07 4 4 of

June 11 -0.41 -0.36 -0.36 -29 6

June 13 -0.05 -0.05 -0.2 -8

June 14 0.08 0.05 0.03 4

July 6 0.11 0.18 0.04 8 5 of

July 7 0.2 0.001 0.45 16 9

July 8 0.06 0.09 0.22 9

July 10 0.021 0.09 0.013 3

July 12 0.7 0.57 0.43 43

Aug. 7 0.26 0.1 0.18 26 7 of

Aug. 8 0.02 0.04 0.16 11 7

Aug. 9 0.09 0.05 0.07 10

Aug. 10 -0.09 -0.06 -0.02 -8

Aug. 11 0.18 0.12 0.09 19

Aug. 12 0.16 0.02 0.35 25

Aug. 13 0.27 0.24 0.1 29

Table 3. Coefficients of determination of the residual of NEP
flux variability for individual canopy structural components, as
well as the percent of the total variability in NEP accounted for
by canopy structure. Negative signs indicate that NEP is
negatively correlated with increases in biomass (e.g. via height,
depth, or fcover) per day studied. Missing days indicate
relationships that were not significant (p<0.1).

In the case of GEP, estimated as the total CO, used for
photosynthesis, it is expected that footprint areas containing
taller trees and increased fcover, as well as greater depth of
canopy will be positively related to increased CO, uptake for
photosynthesis. During 14 of the 22 days studied, structural
variability in vegetation characteristics have a significant
influence on GEP (p<0.1) (Table 4), but also does not have a
greater influence than meteorological driving mechanisms,
which account for 74.5%, 47.5%, and 82% of GEP variability
during the three periods of study (June, July, and August,
respectively). On average, ~12% of the total variability in GEP
is influenced by vegetation structural characteristics. Positive
and significant increases in GEP with increased fcover tend to
correspond during certain days with greater average incoming
photosynthetically active radiation (PAR), especially in July
and to a lesser extent, in August. Canopy height and fcover
have the most significant influence on NEP and GEP flux
variability. Canopy depth, although correlated with vegetation
height, tends to have a lower influence on CO, uptake.

Within footprint average structural heterogeneity has a lower
influence on modelled Re because atmospheric and
hydrological driving mechanisms play more of a key role in
ecosystem respiration (Table 5). Meteorological driving
mechanisms account for more than 80% of the variability in Re.
On 13 of 22 days studied, structure has a significant influence
on Re, and on 10 of these days, structural influences are > 5%
of the total variability in Re. Average structural influences
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throughout the 13 of 22 days studied account for ~9% of the
total variability in Re. It is likely that ground surface
topography also plays an important role in GEP, NEP, and Re,
and will be examined in a future study.

Date Tree Canopy feover % of total | # of

(2002) Height | Depth @) varia- days
(1) ) bility in affect-

GEP ed

June 11 0.28 0.26 0.2 20 1 of6

July 6 0.14 0.10 0.05 7 6 of 9

July 7 0.16 0.0002 0.35 13

July 8 0.23 0.03 0.17 11

July 10 0.02 0.12 0.007 4

July 11 0.008 0.17 0.03 5

July 12 0.7 0.6 0.014 33

Aug. 7 0.24 0.08 0.23 14 70f7

Aug. 8 0.02 0.04 0.15 5

Aug. 9 0.14 0.09 0.11 9

Aug. 10 0.001 0.17 0.06 11

Aug. 11 0.09 0.05 0.16 14

Aug. 12 0.09 0.04 0.28 20

Aug. 13 0.02 0.03 0.11 8

Table 4. Coefficients of determination of the residual GEP flux
variability due to within-footprint variations in canopy structure
after the influence of meteorological driving mechanisms have
been removed. Negative signs indicate that GEP is negatively
correlated with increases in biomass. Missing days indicate
relationships that were not significant within p<0.1.

Date Tree Canopy feover % of total | # of

(2002) Height | Depth ) varia- days
) @) bility in affect-

Re ed

June 10 -0.34 -0.34 -0.025 -13 5 of 6

June 11 -0.15 -0.12 -0.014 -5 days

June 13 0.46 0.42 0.53 25

June 14 -0.12 -0.10 -0.11 -6

June 15 -0.15 0.07 0.003 -4

July 5 -0.35 -0.38 0.08 -13 4 of 9

July 7 -0.11 -0.0008 -0.26 -6 days

July 8 -0.16 -0.19 -0.28 -10

July 13 -0.26 -0.28 -0.29 -13

Aug. 7 -0.38 -0.46 -0.17 -12 4 of 7

Aug. 8 0.001 0.008 0.15 2 days

Aug. 12 -0.31 -0.26 -0.23 -10

Aug. 13 0.07 0.05 -0.13 -3

Table 5. Coefficients of determination of the residual Re flux
variability due to canopy structural variability as well as the
total variability in Re accounted for by canopy structure.
Negative signs indicate that variability in Re is negatively
correlated with canopy structure (e.g. increased Re is associated
with locations with decreased biomass).

3.2 Potential Uncertainties and Future Research

The results from this study corroborate results from other
studies, with respect to canopy structural influences on CO,
fluxes, however, in this study, we have also quantified the
magnitudes of influence that canopy structure has on CO,
fluxes. Despite this, some potential uncertainties may slightly
alter the results of the analysis and could be examined in the
future. We will discuss each of these in turn.

Within footprint canopy height, depth and fcover will likely
depend on the configuration of the lidar survey, especially
where the calculation of fcover depends on a ratio of canopy to
below canopy laser pulse returns. Changing lidar survey
specifications will slightly alter the canopy structural
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characteristics (e.g. Chasmer et al. 2006). Because a ratio is
used, it is likely that lower densities of laser pulse returns will
yield the same results as higher densities, so long as the
probability of distribution of laser pulse returns between the
canopy and the ground surface does not change. Tests on the
influence of changing lidar survey specifications, etc. may be
the focus of future research or a flux footprint sensitivity
analysis.

In this study, we also assume that the canopy is non-varying
throughout the growing season, and therefore ignore periods of
needle flush in June, which will alter the photosynthetic
capacity and uptake of CO, at this site.

The flux footprint parameterisation used in this study, like all
models, is a simplification of the processes that are believed to
be occurring within the EC catchment area. It therefore has
assumptions that may alter the size and accuracy of the location
of the footprint. By using 80% of the footprint probability
density function, we have effectively reduced the error to the
most probable location of the footprint, if wind directions are
not highly variable within the period. Another source of error
may be caused as a result of temporal lag effects of turbulent
transfer of fluxes to the EC system. Further, variability in the
spatial distribution of vegetation heights associated with
roughness length, leaf area, photosynthetic capacity, and
elevation will influence the extent and probability of flux in x
and y directions. Geographic information systems are now able
to include complex layers of data, as well as a variety of
indices, such as topographic wetness index, vegetation indices,
spectral characteristics, and so on. These can be integrated to
form more complete and operational flux footprint
parameterisations for individual sites.

4. CONCLUSIONS

The results of this analysis indicate that CO, fluxes within this
relatively homogeneous ecosystem are frequently related to
differences in vegetation structural heterogeneity within the
site. Variability in structure and fluxes of CO, and H,O
throughout the EC catchment area will also have influences on
spatial and temporal variability in light use efficiency (LUE)
and water use efficiency (WUE) frequently used in ecosystem
and remote sensing-based ecosystem models. CO, fluxes within
heterogeneous forests may have increased dependency on
canopy structure and topography (not examined), and these may
be a deciding factor in whether the annual carbon balance of a
vegetated ecosystem is a net sink or a net source.
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ABSTRACT:

Unlike airborne multi-echo laser scanner systems, full-waveform systems are able to digitize and record the entire backscattered signal
of each laser pulse. It has been demonstrated that decomposing the return waveforms into a mixture of Gaussian components was
suitable. In this paper, we focus on the improvement of peak detection and of raw signal modelling. Refined peak detection greatly
increased the number of detected targets as well as their positional accuracy. Models more complex than the Gaussian model, such
as the Lognormal or generalized Gaussian functions, were introduced and their contribution to waveform processing was studied. In
this way, fitting of asymmetric, peaked or flattened echoes located both in urban and forested areas could be improved. Moreover,
introduction of new echo parameters allowed the extraction of additional information on the target shape. This should make easier the
decorrelation of geometric and radiometric influences on the signal and, as a consequence, the improvement of point cloud classification

algorithms.
1 INTRODUCTION

Airborne laser scanning is an active remote sensing technique
providing range measurements between the laser scanner and the
Earth topography. Well-known direct georeferencing processes
turn such distance measurements into 3D point clouds with high
accuracy and relevancy. Even for small footprints, there may be
several objects of different range within the travel path of the
laser pulse that generate individual backscattered echoes. Conse-
quently, conventional lidar systems measure the first echo of the
incoming signal ("first pulse”) and the last echo ("last pulse”).
Some are able to measure up to six pulses and more advanced
systems also provide signal intensity.

During the last decade, a new generation of airborne laser scan-
ners that are able to digitize and record the entire backscattered
signal of each emitted pulse has appeared. They are called full-
waveform (FW) lidar systems.

Historically, the first FW lidar systems were designed in the 1980s
for bathymetric purposes (Guenther and Mesick, 1988). The first
operational topographic system, developed by the NASA, ap-
peared in 1999. The LVIS sensor (Laser Vegetation Imaging
Sensor) was an improved version of a former satellite system,
SLICER, developed in 1994 (Blair et al., 1999). SLICER was
designed to describe the vertical structure of the canopy over
extensive areas (Harding et al., 2001). LVIS data processing
demonstrated the potential of recording return waveforms to char-
acterize woodland areas and to measure the Earth topography,
even ground beneath the canopy. First algorithms for classifying
ground points by analysing the return waveform were developed
and then resumed for the following system, GLAS, carried by the
ICESAT satellite (2003-2006) (Zwally et al., 2002).

The first airborne commercial full-waveform lidar system has been
operational since 2004 (LiteMapper-5600 lidar system based on
the Riegl LMS-Q560 laser scanner) (Hug et al., 2004) and several
features are now available for cartographic purposes.

Full waveform data hold large potentialities since it may over-
come many drawbacks of classical multi-echo lidar data. More
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control is given to an end user in the interpretation process of
the physical measurement. FW lidar data yield more than a ba-
sic geometric representation of the Earth topography. Instead of
3D point clouds, more detailed and additional information are
provided about the structure of the illuminated surfaces with oft-
line processes. Thus, in addition to single range measurements,
further physical properties of the objects included in the diffrac-
tion cone may be found with a backscattered waveform analy-
sis. For example, in vegetated areas, more 3D points may be
extracted, low vegetation can be separated from ground and both
canopy and ground heights can be measured with higher accuracy
(Dubayah and Blair, 2000).

Many studies have already been carried out to perform full wave-

form lidar data processing and analysis. Return waveform (1D

signal) processing to extract more information than a single range

measurement is the first main step. Non-linear least-squares (NLS)
methods (Hofton et al., 2000, Reitberger et al., 2006) or maxi-

mum likelihood estimation using the Expectation Maximization

(EM) algorithm (Persson et al., 2005) are typically used to fit the

signal to a mixture of Gaussian functions to detect and parametrize
the peaks. It was found in general that small-footprint lidar wave-

forms can be well modelled with a sum of Gaussian pulses (Wag-

ner et al., 2006).

Geometric and radiometric influence of the hit targets have not

been yet decorrelated. Therefore, point cloud segmentation algo-

rithms using peak intensity and width still lead to a certain rate of

misclassification without a good theoretical understanding of the

waveform response for different targets (Ducic et al., 2006).

The aim of this study is to investigate further lidar return wave-

form processing. First, a raw signal modelling is proposed with
Gaussian, Lognormal and generalized Gaussian functions. In-
deed, waveforms can be very similar to an ideal Gaussian func-
tion (Wagner et al., 2006) whereas other laser impulse responses
are slightly asymmetric (Hofton et al., 2000, Jutzi and Stilla,
2006). Consequently, approximating the waveforms using a sum
of Gaussians may not be an accurate representation depending on
the application and the target.
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Figure 1: Amplitude image of the first echoes detected by the embedded real-time system, displayed in the sensor geometry.

A NLS algorithm is then performed with robust initial parameter
estimates to improve usual approaches.

Finally, the contribution of proposed functions is discussed as
well as the potentialities of new echo parameters for both urban
and vegetation area mapping.

2 FULL-WAVEFORM LIDAR DATA

The data acquisition was performed in September 2006 with
the RIEGL LMS-Q560 system over the city of Biberach (Bade
Wutermberg, Germany). The main technical characteristics of
this sensor are presented in (Wagner et al., 2006). The lidar
system operated at a pulse rate of 100 kHz. The flight altitude
was about 500 m and the footprint size was 0.25 m. RIEGL full-
waveform system allows to determine the vertical distribution of
targets within the diffraction cone with a temporal resolution of
around 1 ns. The target resolution of the system is close to 0.6 m
and the spatial resolution (i.e. the distance between two samples)
is 0.3 m. The surveyed area includes both residential, industrial
and dense vegetated areas (figure 1). The point density is about
2.5 pts/m?.

Each return waveform is composed of one or two sequences of
60 samples that is to say an altimetric profile of 18 m (or 36 m).
For each emitted pulse, the emitted signal (60 samples) and the
echoes found by the embedded real-time detection algorithm are
given as well as their amplitude and width (figure 2).

Amplitude

0 T T T T T 1
10 20 30 40 50 6C

Time (bins)

Figure 2: Example of a measured waveform for RIEGL LMS-
Q560 system. Dashed lines indicate the position of the echoes
detected by the system. The background noise is relatively low
within the observed waveforms.

3 WAVEFORM PROCESSING

Waveform processing consists in decomposing the waveform
into a sum of components or echoes, so as to characterise the dif-
ferent targets along the path of the laser beam. It is a parametric
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approach to estimate a mathematical model. The aim of wave-
form processing is therefore to extract as many peaks from the
signal as possible, but also information for each echo. It consists
in two main steps : first, the number of components and initial
values are estimated. Then the parameters are optimized. The
optimization process is well-known and it has been demonstrated
that either the Expectation-Maximization algorithm (Maximum
Likelihood estimates) (Persson et al., 2005) or the Levenberg-
Marquardt algorithm (non-linear least-squares method) (Hofton
et al., 2000, Wagner et al., 2006) give good results. Nevertheless,
optimization relies strongly on initial parameters. They therefore
must be estimated very carefully to avoid erroneous results. In
this study, an improvement of usual peak detection has been first
performed. Then a new waveform modelling has been proposed
with different functions to improve signal fitting.

3.1 Methodology

A full waveform extracted from the RIEGL LMS-Q560 system is
composed of one or two sequences of 60 points uniformly-spaced
{(zi,yi)},—, . n sampled at 1 GHz. We aim at decomposing
each sequence into a sum of components representing the targets
located within the travel path of the laser beam as

y=Ff@) =Y fi@) M

where n is the number of components, f; a given function that
may be a Gaussian, Lognormal or a generalized Gaussian (see
section 3.3).

For each sequence, the background noise is first thresholded.
Then, a basic detection method is used to estimate the number
and the position of the components. Other function parameters
are fixed with constant values. A first fit is computed, using a
non-linear least-squares method. A fine detection using the fitting
result is then performed to find missing peaks (cases of complex
overlapping echoes, see figure 3). If new peaks are detected, a
second fit is processed with the same method.

3.2 Peak detection and initial parameters estimation

The basic detection method is based on the zero crossings of
the first derivative on the thresholded version of the waveform.
The detection algorithm takes into account a minimal number of
samples separating two detected peaks (spatial resolution of the
system). A non-linear least-squares method with the Levenberg-
Marquardt algorithm implemented in the GSL (GNU Scientific
Library) is then used to compute the fit. The quality of the results
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is evaluated by

> = f@)?

where the numerator is the sum of the residual differences be-
tween the observed waveform and the fitting function, NV is the
number of samples and p is the number of parameters of the fit-
ting function.

€=~ @

In case of complex overlapping echoes, zero crossings of the
first derivative are not sufficient to detect all real peaks. Indeed,
a finer peak detection is needed when two overlapping echoes
are so close that a single maximum is found, but three inflexion
points (instead of two for a standard echo) exist. One solution is
to perform a second pulse detection on the thresholded difference
between the observed waveform and the previous fit. If a peak is
detected, a new fit is run with the new component. The resulting
& value is compared to the previous one and this step is repeated
until the £ factor stops decreasing.

Amplitude

Time (bins)

Amplitude

10

20

30
Time (bins)

40 50 6C

Figure 3: Example of complex waveform. The RIEGL system
data is in red colour (continuous line) and the fitted result in blue
(dashed line). Data is first thresholded to the value of 4 before
pulse detection. Top: Fit with only a coarse pulse detection. Bot-
tom: Fit with a fine detection. Two echoes are now found.

3.3 Modelling functions

Each laser output pulse shape is assumed to be Gaussian, with
a specific and calibrated width. The collected pulse is therefore
a convolution between this Gaussian distribution and a “’surface”
function, depending on the hit objects. It has been shown that if
the vertical height distribution of the elements within the diffrac-
tion cone follows a Gaussian law, the reflected waveform can be
approximated by a sum of Gaussians (Zwally et al., 2002). Wag-
ner (Wagner et al., 2006) has shown that more than 98% of the
observed waveforms with the RIEGL system could be fitted with
a sum of Gaussian functions.

Nevertheless, this assumption is not always satisfactory. De-
pending on the lidar system, the transmitted signal is not always
Gaussian but can be slightly distorted (asymmetric, flattened or
peaked). For the LMS-Q560 waveforms, a steeper ascending part
as well as a longer but weaker descending one than the Gaussian
model can be noticed. Moreover, the Gaussian height distribution
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of the targets has only be statistically shown for large-footprint li-
dar systems (Carabajal et al., 1999). For small-footprint systems,
there is no assuming that the height distribution is Gaussian, even
over vegetated areas. Therefore modelling full-waveform lidar
data with a sum of Gaussian functions can be inaccurate. It is
of interest to extend waveform processing capabilities by using
more complex parametric models. It enables to both improve
signal fitting and extract more information from the raw signal.
Standard extensions of Gaussians are Lognormal and generalized
Gaussian functions. The detected peaks can be asymmetric and
modelled with a Lognormal function (see figure 4a). Besides,
some symmetric waveforms are observed to be distorted over
forested areas and over some building roofs. Using the gener-
alized Gaussian model (see figure 4b) can improve signal fitting
for complex waveform shapes.

Gaussian (G), Lognormal (L) and generalized Gaussian (GG)
models have the following analytical expressions (see figure 4

for plots) :
() = ayexp[—LZzm)
fai(x) = ajexp ( 2032 3)
(2 — s) — 11:)2
fuji(z) = ajexp <_(n(z ;TJZ) 1) ) @
J
fagj(xz) = ajexp 7% )

J

The observation of data on the whole survey area shows that
most of the asymmetric peaks are in fact so close overlapping
echoes that the third inflexion point is hardly visible. As a con-
sequence, with the coarse pulse detection, fitting the waveform
with a mixture of Lognormal results in a better quality of fit (i.e.
a lower value of &) than fitting with a sum of Gaussians. How-
ever, improving the peak detection as presented before leads to
the detection of two echoes. Gaussian fitting is then better.

Figure 4: Left: Comparison between Gaussian (continuous line)
and Lognormal (dotted line) functions. Right: The generalized
Gaussian function: =1 = Laplace function (dashed line), a=v2
= Gaussian function (continuous line) and a=2 (dotted line).

The generalized Gaussian model enables to simulate both Gaus-
sian shapes when o = /2, peaked shapes when 1 < o < /2
(v = 1 gives the Laplace function) and flattened shapes when
a > /2 (see figure 4b). Therefore it should improve the quality
of the fit in most of the cases. But with a simple NLS algorithm,
it will also increase the number of fits that do not converge, just
like the Lognormal. It is due to the increasing number of degrees
of freedom of the function and also to the more complex expres-
sion of the gradient (Aiazzi et al., 1999).

The generalized Gaussian is also used to model SAR amplitude
(Moser et al., 2006), image texture or even outliers in image
matching (Hasler et al., 2003). The « parameter is yet very in-
teresting for waveform analysis because it provides another piece
of information about the shapes of the echoes, in addition to their
width, and it could be useful for classification purposes (see sec-
tion 4.3).
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Figure 5: Difference of last pulse altitude between post-processing algorithm and real-time process. Only height differences greater

than 2 m has been displayed.

4 RESULTS AND DISCUSSION
4.1 Point extraction

Lidar waveform post-processing allows to densify the final point
cloud up to 50 % on forested areas (see table 1). The Gaussian fit
was successful for about 99.3% of waveform profiles. A wave-
form was considered to be well fitted if the quality factor £ < 0.5.
It has been observed that £ < 0.1 on urban areas with a single
pulse of Gaussian shape and that £ < 0.5 even for complex tar-
gets consistently fitted.

Analysing the differences between fitted waveforms and the de-

livered point cloud, one can notice that weak and overlapping
echoes are now detected. As expected, the additional points are
located near the tree canopy and in low ground vegetation areas.
Only few points are additionally detected on the ground beneath
the canopy, due to the survey low point density and the small
laser footprint. Finally, more echoes are also detected on artifi-
cial objects in urban areas, because of multiple pulse reflections
at building edges.

The fine peak detection performed after the first two steps (coarse
detection and signal fitting) allows to detect up to 10 % more
points than a unique coarse echo detection. Low intensity echoes
close to strong ones are henceforth extracted (figure 3). The qual-
ity of the fit is therefore improved: figure 6 shows a significant
decreasing of £ median value. The fine peak detection enhances
the stability of NLS method whatever the fitting function. Indeed,
when providing relevant estimates of echo positions as input data,
the fitting procedure finds a solution for almost all return profiles
(99.99 % for the Gaussian, 99.8 % for the the generalized Gaus-
sian and 99.05 % for the Lognormal function).

30000

20000

10000

Numbper or waverorms

0.0

Figure 6: Histogram of £ values for the Gaussian model : coarse
detection (black) and fine detection (grey).

As expected, full-waveform lidar data enables to penetrate
deeper in forested areas. Nevertheless, there is still no assuming
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the last detected pulse is the ground. Figure 5 shows the differ-
ence of last pulse altitude between post-processing algorithm and
real-time method. It illustrates that extracted points are signif-
icantly closer to the ground over vegetated areas (until 10 m).
Moreover, the first pulse detection is also bettered over vege-
tated areas. Statistical results are summarized in table 1 where
the mean difference AHeight between post-processing detected
pulse height and real-time one is always positive for the last pulse
(e.g. +1.58 m for dense vegetation) and always negative for the
first pulse (e.g. —0.42 m).

‘Whole Dense

Area

Area Vegetation
70074
0.004
147218

55
-0.42
1.58

Nb profiles
Non fitted (%)

2027547
0.01
2903976
24
-0.13
0.36

23368
0.008 0.01
46246 120813
51 9
-0.04
0.07

93690 66264
0.02
85520

10

Nb points extracted
Additional points (%)
AHeight first (m)
AHeight last (m)

-0.34
1.36

-0.04
0.05

Table 1: Statistics on point extraction on different test areas. The
figures of non-fitted profiles and difference of height measure-
ment are given for the Gaussian model.

4.2 Comparison between modelling functions

As mentioned in other publications (Reitberger et al., 2006, Wag-
ner et al., 2006), the Gaussian decomposition of lidar waveforms
is a good approximation of the signal (£ < 0.5 for 99.3% of the
processed waveforms).

& > 0.5 means that the Gaussian model is not appropriate for
modelling complex waveform. Such values are particularly ob-
served on forested areas. Even for small £ values, the Gaussian
decomposition can be inaccurate. Indeed, for high and narrow
echoes as well as for weak and large ones, Gaussian fitting could
be improved. Such cases are difficult to quantify.

Modelling raw signals with the Lognormal function does not

improve the waveform fitting for the whole survey area but lo-
cally. ¢ values are globally higher than for the Gaussian model.
Besides, inconsistencies are found for more than 5 % (i.e. £ > 5)
and the NLS algorithm diverges more often than for other func-
tions (1 % compared to 0.01 % for the Gaussian model).
Nevertheless, in very few cases, £ values are lower for the Log-
normal decomposition than for a sum of Gaussians. It shows that
some backscattered echoes are asymmetric. Such cases are ob-
served on streets and some building roofs. Further experiments
have to be carried out to draw more conclusions.
It seems that a high value of £ only means that the lidar wave-
form is not well modelled with Lognormal functions. But it does
not mean that all the waveform echoes are inconsistently mod-
elled. Thus modelling waveforms with a sum of different func-
tions could be appropriate.
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The generalized Gaussian function allows to model flattened,
narrow and high pulses. £ values are lower for such model than
for the Gaussian function. Figure 7 shows the £ histograms of
Gaussian and generalized Gaussian models. The latter improves
the global fitting quality. Still a higher number of inconsistent
fitting results is noticed (about 0.4%). Theoretically the general-
ized Gaussian should always fit at least as well as the Gaussian
function. But in practice, this is due to a minimization problem
in the NLS method.
In the streets (asphalt or pavement), the fitting procedure works
as well as for the Lognormal function. Indeed, the observed
pulses have a high intensity and a low width (o« —5), what can be
well modelled with the Lognormal function. But for asymmetric
echoes, the generalized Gaussian model is not suitable.

40000
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10000+

0.0

Figure 7: Histogram of & values for Gaussian fit (black) and gen-

eralized Gaussian fit (grey) using fine detection.

4.3 Contribution of the generalized Gaussian function

As expected, the generalized Gaussian model improves signal
fitting. Furthermore, a new parameter « is estimated giving in-
formation about the sharpness of the detected echo. The para-
metric description of the targets given by the signal processing
step contains significant information on the roughness, slope and
reflectivity of the target surface. The main issue is that geometric
and radiometric influences are correlated in one single shape. It
seems difficult to decorrelate them with only return intensity and
pulse width estimation.

A close observation of the data gives some hints on an empirical
classification based on a:

a > 1.9 (rare) concerns pulses belonging to building edges
and both to the top of the canopy and below the canopy.
Simulations have to be performed to investigate whether
echoes in forested areas concern low ground vegetation or
bare ground;

1.6 < a < 1.9 is typical of vegetated areas (first echoes
more than the other ones) but also of artificial planar areas
(asphalt streets for example);

1.3 < o < 1.6 (associated to Gaussian shape) is found on
natural ground (beaten-earth floor, grass) and building roofs;

a <1.3 (very rare) concerns tree canopy and building
boundaries.
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Figure 8: Histogram of « values over three homogeneous test ar-
eas (more than 15000 waveforms each) : building roofs (black),

asphalt streets (dark grey) and dense vegetation (grey).

Figure 8 shows the distribution of « values over three test ar-
eas. The three mean values are all close to 1.55, meaning that the
general shape of the backscattered echoes is close to a slightly
flattened Gaussian. Extreme values (< 1.3 and > 1.9) are found
on forested areas where, for small-footprint lidar systems, there is
no assuming the value of the shape parameter. For urban areas, it
can help to segment building and artificial ground areas. Further
work have to be done to perform such classification algorithm,
maybe with the help of both intensity and width pulse values.

The potentialities of the scale parameter o of the generalized
Gaussian model can be shown on terrain areas. On flat areas,
a seems less sensitive to radiometric changes than the two other
ones. For example, intensity and width values are affected by
the presence of zebra-crossings on the streets, of tracks on car
parks, of moisture on natural surfaces, whereas o parameter is
estimated almost constant. It could therefore be useful to clas-
sify geometrically similar areas as shown in figure 9. Although a
values images are very noisy, « could be a discriminative param-
eter if associated to other variables in a supervised classification
framework.

high

Figure 9: Comparison between the amplitude (a), o (b) and width
parameters (c¢) on artificial (tracks on car park, top) and natural

(moisture on tennis courts, bottom) ground areas.
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5 CONCLUSIONS AND FUTURE WORK

The problem of modelling full-waveform lidar data has been in-

vestigated in this paper. It is known that the decomposition of an
observed lidar waveform into its components not only improves
the ranging accuracy of the measurement but also enables the
determination of the heights of various reflecting surfaces within
the laser diffraction cone. The traditional Gaussian fitting gives
in general good results for all kind of areas. Providing the in-
tensity and the width for each echo is however not sufficient for
classification purposes.

We introduced the mixture of Lognormal functions to fit asym-
metric echoes, especially on streets and roofs. Nevertheless, such
model is not suitable for eclectic landscapes. The main limitation
is that return bumps are not always of the same nature: it can be a
mixture of Lognormal, Gaussian and other functions. We finally
introduced the generalized Gaussian model to fit distorted peaks
and still enables to fit Gaussian shapes. The modelling method-
ology is thus improved compared to the Gaussian adjustment. A
practical limitation has however been observed since the fitting
procedure gives inconsistent results for several waveforms due to
optimization problems in the NLS method. But the contribution
of this function is all the more significant since a new parameter
is estimated for each peak, providing new information about its
shape. A first visualization shows its potentialities for classify-
ing extracted point cloud especially in urban areas. Waveform
simulations have to be carried out to understand its global contri-
bution.

Improving peak detection was shown in this paper to be very
successful to extract additional targets in the return waveforms.
However, for classification purposes, it could be more interesting
to fit a wide flattened echo with only one generalized Gaussian
instead of two basic Gaussians: parameter o would provide in-
formation to classify the group of two overlapping echoes that
otherwise would not be available. Depending on the application,
two approaches are conceivable. On the first hand a coarse pulse
detection with a suitable model can be used for classification. On
the other hand, an improved point detection with just a Gaus-
sian model can be performed to describe accurately 3D vegeta-
tion structure.

Both Lognormal and generalized Gaussian functions contribute

to improve lidar waveform modelling but not in the same way.
Consequently, the three functions have to be gathered to take ben-
efit from their specific advantages. Besides, other suitable func-
tions have to be tested in order to best describe the return wave-
form. As the Gaussian fitting is already almost successful all the
time, new modelling functions with different parameters have to
be found. They could provide new information about the peaks
and therefore contribute to lidar point cloud segmentation.
A combination of several suitable functions have therefore to be
performed to assess this solution. A Reversible Jump Monte
Carlo Markov Chain (RIMCMC) method could, for example, be
implemented thanks to its high flexibility. Jumps between models
of different dimensions (the number of parameters) are possible
and consequently each raw signal can be segmented by different
functions.
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ABSTRACT:

Since 2003 the spaceborne laser altimetry system on board of NASAs Ice, Cloud and land Elevation Satellite (ICESat) has acquired
a large world-wide database of full waveform data organized in 15 products. In this research three products are evaluated over The
Netherlands. For this purpose the raw full waveform product, the derived Gaussian decomposition product and the global land evalua-
tion product are compared to laser data from the Dutch national airborne laser altimetry archive AHN. Using the CORINE land cover
2000 database allows us to compare ICESat to AHN elevation profiles with respect to the land cover classes forest, urban, bare land/low
vegetation and water. This comparison shows that a large average height difference of 5.7 m occurs over forest, while much smaller
differences of 1.24 m over urban areas, of 0.43 m over bare land/low vegetation and of 0.07 m over water are found. The reason for
this large difference over forests is that the standard processing of NASA does not take the position of the last Gaussian mode of the
waveform into account. Incorporating results from a full waveform processing procedure allows us to determine improved ICESat
profiles. Comparing the improved profiles shows that the average difference with the AHN profiles over forest is reduced to -0.38
m, while the average differences for the other land cover classes do not exceed -0.75 m. Encountered limitations are discussed in the
conclusions.

1 INTRODUCTION area in leaf-off conditions. There are four levels of detail: raw
point cloud, and interpolated grid data of %%m, 25mx25m
The Ice, Cloud and land Elevation Satellite (ICESat) was launcheand 100mx«100m (Heerd et al., 2000). The raw point cloud is
in January 2003 to observe the cryosphere, the atmosphere amedparated into vegetation points and ground surface points. It has
also to measure land topography profiles and canopy heights (Zvallye noted that the filtering of the entire point cloud concentrated
2002). These objectives are accomplished using the Geoscienespecially on vegetation, building points may therefore remain in
Laser Altimeter System (GLAS) in combination with precise or- the set of ground surface points. All data is in ASCII format files
bit determination (POD) and altitude determination (PAD). Sincewith XYZ coordinates given in the RDNAP coordinate system
2003 ICESat has acquired a huge database of raw and procesq&ijksdriehoeksmeting and Normaal Amsterdams Peil) (RDNAP,
data, organized in the 15 data products GLAOL, ..., GLA15 (Brer2007).
ner et al., 2003). The GLAO1 level 1A product contains the raw
full waveform data. The GLAOS level 2 altimetry product con- In this paper, we first compare elevation profiles derived from
tains the centroid location of the full waveform as a result ofICESat GLA14 data to profiles derived from AHN ground sur-
NASAs waveform fitting method. The GLA14 product is also face data. Second, we will propose and evaluate a method to
a level 2 product, consisting of global elevation data for non po-determine the bare earth elevation on the basis of a combina-
lar land regions. tion of GLA14 data, waveform centroid data of GLAO5 data and
) . o processed full waveform GLAOL data. As most improvement is

The ICESat GLA14 elevation data are obtained by combining th@yxpected for waveforms over complex terrain, comparison results
GLAO1 ICESat full waveform data with the precise position datagre gifferentiated with respect to land cover type. Four classes are
as obtained by the POD/PAD system. The full waveform data argjistinguished: forest, urban, bare land and water. Waveforms are
sampled as relative intensities in 200 bins for sea and 544 or 1008vided into these land cover classes according to the CORINE
bins for land, depending on which of the three lasers is used. A gnd Cover 2000 database (CLC2000, 2006). It will be shown
time stamp pair of each transmitted pulse and consecutively reqow to use the obtained profiles to find individual waveforms

turned pulse (the full waveform) is recorded by the GLAS systeémshowing particular behaviour. This is illustrated in detail in three
and is used to calculate a travel time or range. This range is thegxamples of waveforms over forest.

used to compute the elevation of the area illuminated by the laser

pulse. Moreover, the time stamp of the returned waveform can be

measured at some typical bin positions of the waveform like the 2 STUDY AREA AND DATASET
beginning, the centroid and the end. Consequently, the elevation

will vary according to the variations in the range. The GLA14
elevation product is obtained on the basis of the range as derive?d1 Study area
from the centroid of the waveform. This elevation is therefore

also called the mean elevation (Harding and Carabajal, 2005). The area of study is the Netherlands, bounded approximately by
3°E to 7Y E longitude and0° N to 54° N latitude which contains

The accurate digital elevation model of the Netherlands (AHN)a large variety of land cover types. Figure 1 shows a map of
was acquired between 1996 and 2003 and is based on airbortiee digital elevation model (AHN) of the Netherlands, colored by
laser altimetry, with a point density of at least 1 point perdm height.
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Figure 1. Study area: ICESat ground tracks (magenta) displaye] 1-heg P

with the actual height model of the Netherlands (AHN). The up- L . .
ward arrows indicate ascending tracks and the downward arrowgi9ure 2. Principal of ICESat geolocation and surface elevation
descending tracks. In the bottom right corner two ICESat foot-d&termination.

prints filled with AHN points are shown.

laser back-scatter energy as a function of time, is digitized in
544 consecutive bins at a temporal resolution of 1ns over land
for each footprint (NSIDC, 2005). The land waveform of 15cm

The CORINE Land Cover 2000 database (CLC2000) was initiygrtica| resolution yields an 81.6m height range (544 waveform

ated by the European Environment Agency (EEA) and the Joinging, 15cm/bin) for laser L1 and 150m (1000 bingscm/bin)
Research Centre (JRC). The CLC2000 database originated fropgy |aser |3 (Harding and Carabajal, 2005). GLAS carries three
the year 2000 but was actually obtained during a 3-year periogjigerent laser altimeters, L1, L2 and L3. Laser 1 was turned off

from 1999 to 2001, with a horizontal geolocation accuracy Ofshortly after the Spring 2003 campaign, to be replaced by Laser
25m based on satellite images of Landsat 7 ETM+ with 25m pixeb | 5505 2 operates in both height ranges.

resolution. The CLC2000 data product was obtained from the
Landsat data via a computer-assisted visual interpretation of thg 31

2.2 CORINE Land Cover 2000 database (CLC2000)

tellite i der th ; s of le of 1:100 00 ICESat data overview: Among 15 GLAS data prod-
satellite images, under the requirements or a scale of 1. cts, we investigate the products of GLAO1, GLAO5 and GLA14.

a minimum mapping unit of 25 hectares and a pixel resolutionThe data sets we consider were acquired i :
- ) - quired in the period from 2003-
of 100m (Perdigo and Annovi, 2006). The CLC2000 classifi- 09-25 to 2003-11-18 and are all from release 26. There are six

cation was hierarchical and distinguishes 44 classes at the thir, cks with 6594 waveforms in total (Figure 1). The footprints of

Isvfl’.llg glafsses ?t the fS?CO:d level land |5 classgs a;t the dflrstt tlﬁv ese waveforms are elliptical, its power distribution has a central
etaled information of land cover levels can be found at €y 4y;mym while energy decreases towards the boundary. The

metadata section of the CLC2000 on the European Environmen: : : . )
Agency website (CLC2000, 2006). The total thematic accurac%;zezg];tg)e ellipse is 95m52m on average (Harding and Caraba
s’ '

of the CLC2000 database was almost 95%. The database w:

geo-referenced in the European reference system (Hazeu, 2003I)he GLAOL1 is a raw level 1 product that contains the full wave-

form data. The GLA14 is a level 2 product of land surface eleva-
2.3 ICESAT/GLAS tion. Due to the potential complexities of land returns including
) ) ossibly combined influences of slope, roughness, vegetation and
GLAS uses a laser altimeter to measure the distance between tagtyral features, this level 2 land product was obtained by using
satellite and the earth surface. The instrument time stamps eamand_speciﬁc rande The land-specific range is defined as the
laser pulse emission, and measures the echo pulse waveform frapye| time from the GLAS sensor to the centroid of the received

the surface. GLAS acquires elevation profiles of the entire eartlyayeform signal (see Figure 2) and stored in the GLAO5. This
along tracks that are revisited in a 183-day repeat cycle, with 70m

diameter footprints spaced every 175m. A waveform, recording !land-specific range means not in polar or ocean regions
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latitude, longitude and footprint elevation after all instrumental,
atmospherical and tidal corrections have been applied (Brennék 70m-diameter ICESat footprint contains approximately 700
AHN data points. Therefore it is necessary to compute a mean
AHN elevation for the purpose of comparing elevation profiles of

et al., 2003).

2.3.2 Principal of determination of geolocation and surface
A geolocated surface elevatiofi, is determined as
a sum of a laser altimeter vectat, and a ICESat/GLAS geo-

elevation:

Interpolation of AHN data

AHN and ICESat data. To avoid effects of clusters in the spatial
distribution of the AHN points, the AHN points are first interpo-
lated to a regular grid, prior to the calculation of a mean AHN

centric vector(, with respect to the center of mass of the earthheight. Based on the average point density of the AHN data of
(see Figure 2). The laser altimeter vector includes the GLAS lased.20 point/ni, a grid cell size of 4nx4m is chosen. Figure 4
pointing angle and a rangg, between the GLAS instrument and shows a typical distribution of raw AHN points together with the
the surface as identified by measuring a travel time of a transmitregular grid points.
ted pulse until its return as a waveform. The range is then cal-

5
culated as a half-travel time multiplied with the speed of light. x10 ‘ ‘ ‘ -
The geocentric vector represents the orbit position of the ICESat o, w0 0 - 1 © rawpoints F
satellite with respect to the center of mass of the earth. There- s.oz01} - : . . © Interpolated points
fore the laser spot or geolocation is inferred by the sum of these. ¢ e . o e e * e
two vectors. The surface elevation is obtained by converting the” 500l A . L o, . |
geocentric laser spot position, (o, \) to ellipsoidal height and e @t e, e ° hd A

geodetic latitude and longitudé. (¢4, ).

<0l e

5.92|° ¢ o’ , ® ;.-0'.'0 ‘e ®°° 2
In Figure 2, the land-specific range from GLAS to the ground 17076 17077 17078 17078 17079 17079 1708
surface can be calculated based on different waveform parameters X (m) x 10°

like the waveform centroid or the height of the first or last mode
of the waveform. Using the first mode gives a shorter range and
results in a higher elevation point. The first mode results from"

elevation points of trees, forest or artificial features like buildings.

Using the centroid of the waveform gives an average elevation o  Height difference between GLA14 and interpolated AHN
while the last mode potentially represents the ground surface.

3 METHODOLOGY

Figure 4. Raw AHN ground points (gray) and interpolated grid
oints (blue).

A mean AHN elevation is obtained from interpolating the reg-
ular grid points within an ICESat footprint ellipse. This mean
elevation is then subtracted from the ICESat GLA14 elevation of
that footprint to obtain an AHN-GLA14 height difference. In this

A flowchart of the methodology is shown in Figure 3. For com- study, six ICESat tracks or six elevation profiles are used. Com-

parison between ICESat and AHN, both data sets need to be avajiare Table 1 and Figure 1 for an overview of the ICESat tracks.

able in the same georeferenced coordinate system, for which RDrhe differences over the total of the six tracks are averaged to
NAP is chosen. The GLA14 data are first converted into RDNAPgbtain the final results as shown in Table 2.

coordinates. Next those AHN ground data are extracted whose

horizontal position is within the given GLA14 footprint ellipses. 3.3 Derivation of GLAO1-based elevation data

Because the ICESat footprint has an approximate diameter of 70

meter, the AHN points within the footprint need to be interpo- The georeferenced waveform is decomposed into a maximum
lated to a representative elevation point. For ICESat two profilesf six Gaussian components which allows to derive waveform

are determined, one based on the GLA14 ‘mean’ surface elevgrarameters as amplitude, width and location of each Gaussian

tions only, the other derived from combining the GLA14 eleva-

40

tions with the results of the processing of the GLAO1 waveforms oA
and the centroid of GLAOS. Both profiles are compared to the 551 6 GLAOI Last Mode H
same profile of the corresponding interpolated AHN elevations, / | O AHN
. . 30 F B
leading to the two results to be compared and discussed. waveform start | Waveform
251 : |
AN | | eae | | cLaot 2! | ]
v v — waveform centroid I
. é 15} or | 4
RDNAP ) Georeferecing = GLA14 height point |
Conversion Full Waveforms 2 10l \ Al |
A v v T !
L | 4
Extraction & RDNAP GLA14 Georeferenced > |
Interoolation Elevation Waveforms ob L e |
v v waveform end
5| i
Interpolated | ___________l________ GLAO1-based
AHN i Elevation -10f E
i -15
[ XY
Figure 5. A waveform (black curve) is georeferenced by match-
Result 1 | | Result 2 ing the waveform centroid (horizontal dotted line) to a GLA14

Figure 3. A methodology flowchart.

elevation point (black triangle). The GLAO1-derived elevation is
the centroid of the last peak (red circle).
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Figure 6. Top: Elevation profiles based on ICESat GLA14 data (red line), AHN data (black squared line) and ICESat GLAO1 data
(cyan line). Bottom: height differences between AHN and GLA14 (red) and AHN and GLAOL1 (blue). This profile corresponds to the
red box in Figure 1.

mode (Duong et al., 2006). The first Gaussian refers to the high- e Many ICESat pulses of the 24-10 track along 100km, see
est point in the illuminated footprint which typically corresponds Figure 1, coincide with a cloud layer (our assumption) of at
to a tree top or building roof. The centroid of the complete wave- least 200m height and are therefore not considered reliable.
form corresponds to the average height of the objects in the foot-

print, while the last Gaussian mode is resulting from the lowes Number of ICESat waveforms

elevation in the footprint. Over flat terrain the lowest elevation T zck | Date E U B W | Total | Lost
mostly corresponds to the elevation of the ground surface. As 1 30-00| 721 1581 4561 281 795 81
Dutch topography is in general flat, the last Gaussian or last mode 2 14-10| 89| 316 | 933| 16| 1534| 180
will be used in this research to obtain a ground surface elevation. 5 16-10 | 305 | 88| 777! 36| 1515| 309
In Figure 5, the ICESat GLA14 elevation is represented by g 4 23-10 8| 54 351} 42 584 129
black triangle; the black square represents the mean AHN el- 5 24-10 2 171 361 0| 979 599
evation within the 70m-diameter footprint. For georeferencing 6 10-11] 119 | 157 ] 594 27| 1187 290
the waveform (black curve), the waveform centroid (horizontal Total 595 | 790 | 3472 | 149 | 6594 | 1588

dotted line, black) is matched with the GLA14 elevation point. Table 1. Number of ICESat waveforms used: F (Forest), U (Ur-
Therefore, the last mode is the most suitable representation of thgan), B (Bare land) and W (Water). The column ‘Lost’ gives the
ground elevation in the ICESat data (red circle). Finally the ‘lasthumber of waveforms that were discarded because of e.g. high

mode elevation® of the ground surface is extracted by subtractingoise |evel, large height differences (200m) between the GLA14
the distance between the centroid and the peak of the last modg,q the AHN elevation or missing AHN data.
from the GLA14 elevation.

4.2 Height differences AHN-GLA14 vs AHN-GLAO1

4 RESULTS AND COMPARISON GLA14 — AHN terrain, (m)
Tr. F U B W
4.1 Waveforms used 1 4.68+4.5 | 2.01£3.2 | 0.26+1.4 | —0.66£1.2
2 6.62£2.9 | 1.81+2.5 | 0.79£2.1 0.59+1.4
The waveforms from six ICESat tracks are assigned to different| 3 | 6.76:3.5 | 1.44£3.5| 0.57£1.7 | —0.13£0.9
land cover classes based on the CLC2000 land cover database. 4 | 7.47+5.7 | 0.85t1.5| 0.48:1.1 | 0.21+0.7
On average, 97% of the ICESat measurements to the ground were 5 | 4.52£1.0 | 1.12£1.3 | 0.35+1.2 N/A
successful, whereas in the remaining 3% percent, no datawasag- 6 | 3.89:3.1 | 0.19+2.0 | 0.14£1.8 | —0.35+1.4
quired. One possible reason is the weather (e.g. cloud cover, data Total | 5.66+3.5 | 1.24+2.3 | 0.43+1.5 | —0.07+1.1

acquisition was in September-November). A number of 6594y, 5 Height differences and its standard deviation between
waveforms is used, 595 waveforms are over vegetation, 790 OVEX| 14 and AHN

urban areas, 3472 over bare land and 149 over water (Table 1).
About 20% of the waveforms was removed from analysis due tdn Tables 2 and 3 the average height differences between the AHN
one of the following reasons: elevation profiles and the GLA14 ‘mean elevation’ (Tables 2) and
the GLAO1 ‘ground elevation’ (Tables 3) are given. As expected,
it shows that the average height difference between the ‘mean
e Some noisy waveforms could not be decomposed by th&levation’ and the AHN profiles is maximal over forested areas
Gaussian fitting algorithm. (5.66m). The differences are smaller over urban (1.24m) and bare
land (0.43m) and minimal over water (0.07m). This is further il-
e No AHN points are available within the waveform footprint. lustrated in Figure 6. where a profile of 22.5km is shown along
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GLAO1-derived — AHN terrain, (m) 5 Vegetation: 16-10-2003 (847) —> 249517663:7
Tr F U B W T T T T ,( T T T T
e AHN ground xx Raw waveform
1 —0.75£1.2 | —0.84t3.0 | —0.86+1.4 | —1.81+1.8 2l AHN vegetation ’; ------ Fit waveform ]
2 | —0.29+1.4 | —1.11+£2.3 | —0.48£0.9 | —0.49+0.7 Mean AHN ground | - Gauss. comp.
3 | —0.25+1.5 | —1.73t2.0 | —0.53£1.0 | —1.54+1.4 = |
4 | —0.33:0.7 | —0.58:0.8 | —0.33:0.8 | —0.22£1.0| <% .
5 | —0.18£0.1 | —0.45+0.8 | —0.29+0.5 N/A % »
6 —0.49+1.8 | —1.42+25| —0.58+1.1 | —1.25+1.2 = |
To. | —0.38t1.1 | —1.02£1.9 | —0.51£0.9 | —1.06£1.2
. . . o 10k g IL L SE =
Table 3. Height differences and its standard deviation between (a) !g(‘x "
GLAO1-derived elevation data and AHN ol i i i B i i i i
4.90914.90924.90934.90944.90954.90964.90974.90984.9099 4.91
the ICESat track of October 16, 2003. Clearly, large differences XY (m) % 10°

10-11-2003 (849) —> 271090233:9

of up to 20 m occur in forested areas. The difference between the
waveform centroid, giving the GLA14 ‘mean elevation’ and the

surface elevation as given by the AHN points is larger in case of *r
a wide spread multi-modal waveform. These multi-modal wave- 40|
forms occur in urban and certainly in forested areas. The width of _ 35}
the waveforms is further increased in case the terrain is not flat. € so
_ S o5t
Table 3 shows the differences between the ICESat last mode of
O BT 2

‘ground elevation’ profile and the AHN profile. The average
height difference over forest is significantly reduced from more 151
than five meter to less than half a meter, while the spread in height
difference is reduced by about 70% as well. For the other three gL . i
land cover classes no significant improvement is found. The im- 4-47224~47234-47244-47254-47§f(‘(‘r;‘)7274~47234-4729 4473 4.4731
provement over forest is visualized in Figure 6. The bottom im- 10-11-2003 (850) —> 271090233:10 x 10
age shows that the ICESat ‘ground elevation’ profile (in cyan) is 50 : : T

always closer to the AHN profile than the ICESat ‘mean eleva- ' : h
tion’ profile. It is also visible that the ICESat ‘ground elevation’ a5l
profile is sometimes even lower than the AHN profile. This can
be explained as follows. If the terrain is curved, interpolation of = 4| -
the AHN laser points within the ICESat footprint will result in a

5

mean AHN elevation value higher than the lower terrain points. g 3 |
Meanwhile the height of the peak of the last mode can be po-I
sitioned below the mean AHN elevation, resulting in a negative 0

ST 1

offset. Moreover, building points still remain in the set of the
AHN ground points therefore it also results a height difference in
a negative value.

25
4.4739 4,474 44741 4474244743 4.47444. 4745 4.4746 4.AT4T 4.4748
XY (m) x 10°
4.3 Waveform examples

The profile in Figure 6 allows to look for specific examples that Figure 7. Three waveforms over forest. Good agreement between

give insight in the differences between the three heights that ar8HN and GLAL4 is obtained for the top panel but insufficient
considered, the ICESat ‘mean elevation’, the ICESat ‘ground elresults were found for the middle and bottom panel.
evation’ and the AHN mean of the ground points. Below three
typical examples are discussed. The first example is an ‘out oknd vegetation characterization on single shot basis. The return
the book’ forest example, in the second case the canopy thickne§§€rgy, which is also recorded by GLAS, is about 20 fJ. This is
is so large that the visible ICESat ground return is ignored by thevell above the threshold of 5fJ (Fricker et al., 2005), under which
decomposition algorithm while in the third example the ICESatthe measurement noise increases. These high noise levels can be
ground return is totally absent due to the high canopy thickness caused by atmospheric forward scattering and degradation of the
laser transmitted power over time. Both effects lead to a decrease
4.3.1 Regular canopy thickness example: Figure 7(a) shows in received energy (and therefore SNR).
a case were taking the ICESat ‘ground elevation’ gives clearly a
better value than the ICESat ‘mean elevation’, when compared.3.2 Higher canopy thickness: (i.) Figure 7(b) shows a raw
to the mean AHN ground elevation. The AHN vegetation pointswaveform (red) with two dominant peaks. It agrees with the AHN
(green) and ground points (black) precisely match to the ICEdata in the sense that it has one peak corresponding to the AHN
Sat raw full waveform (red) and to the fitted waveform (dashedground points and one larger peak corresponding to the dense
black). The peak of the last Gaussian mode at 10m height coregetation points. The last peak is ignored however by our wave-
responds to the average height of the AHN ground points withirform decomposition step due to the high noise level in the wave-
the ICESat 70m footprint. The peak of the second-last Gaussiaform. However, the distance between the lower and the higher
mode corresponds to the average height of the low vegetation aeak of the raw waveform corresponds very well to the vegeta-
10m-15m that is also represented by the AHN points. The firstion height whereas the absolute height may not be correct. Com-
Gaussian peak represents the average height of the canopy. Tpharing Figure 7(b) and Figure 7(a) shows that the noise level is
width of the first Gaussian gives a measure for the canopy depttabout three times higher in the lower example. In this case, the
This example illustrates, that spaceborne full waveform altimereturn waveform energy of 1.58 fJ which is very low compared to
try can be a possible method for extraction of vegetation heighthe threshold of 5 fJ (Fricker et al., 2005).
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4.3.3 High canopy thickness: Figure 7(c) shows a case where explanation for the remaining differences between ICESat ground
the ICESat waveform shows only one mode, and where we neeglevation’ profiles and the AHN ground surface profiles. Neglect-
the AHN data to tell us that in fact this one mode corresponds tang the terrain slope may be another error source that should be
an unpenetratable forest canopy. In this case the ICESat ‘meatorrected for in future. Further research should focus on two di-
elevation’ and the ICESat ‘ground elevation’ are equal, but bottrections: those footprints were the ICESat waveform shape match
higher than the AHN ground point elevation. This shot is a directthe shape of a waveform built up out of AHN points can be used
neighbor (175m) of the shot shown in Figure 7(b). The returnto assess the accuracy of ICESat georeferencing. On the other
energy is 3.40 fJ. This value is also below the 5fJ threshold. hand, analysis of the height difference in the three profiles will
lead us to further examples were current waveform processing
4.3.4 ‘Glowing’ effects: In Figure 8, a series of waveforms still fails and should be improved.
with systematic underestimation of the (surface) height is shown.
Although the Gaussian components of the waveforms could be
reconstructed, all but the first mode are weakly determined. Ap-
parently these erroneous modes demonstrate some kind of ‘glow-
ing‘ effect_ Th|s assumption is Supported by Considering the Or_The authors W0u|d I|ke to thank the National Snow and Ice Data
thophoto of the footprint locations: in most cases the footprintsCenter, Gerard Hazeu from Wagaeningen University - The Nether-
cover flat terrain which should result in one waveform mode only.lands and the European Environment Agency for their guidelines
Possible error sources for this behaviour are foreward scatteringnd data distribution. This projectis funded by the Delft Research
by cloud cover or problems with the signal detection at the GLASCentre Earth.
receiver unit for very low energy returns. In this case, the return
energy ranges between 0.29 fJ to 2.72 fJ. Such waveforms could
be automatically removed by increasing the requirements in the

waveform decomposition step or by imposing a threshold on th@&renner, A. C., Zwally, H. J., Bentley, C. R., Csatho, B. M., Hard-
minimal return energy. ing, D. J., Hofton, M. A., Minster, J. B., Roberts, L. A., Saba, J. L.,
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Sat data. NASA provides height data in the GLA14 product that

are based on the centroid of the returned ICESat waveform. By

considering the position of the last mode in ICESat’s raw return

waveforms a more realistic ground surface profile can be obtained

from the ICESat data that is on average -0.38m below the mean

AHN height, with an average standard deviationtdf.1m.

5 CONCLUSIONS

Study of the three profiles gave us examples where the high for-
est canopy block almost all ICESat laser energy. This gives one
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ABSTRACT:

A simple simulator was developed to test whether airborne laser scanning can be used as a strip sampling tool for forest inventory
purposes. The simulator is based on the existing two stages, grid based laser inventory procedure. A population of trees was created
using an existing forest stand structure generator. Each tree was represented by means of its 3D-crown model derived from airborne
laser scanning measurements and field measured parameters, i.e. total tree height, height of crown base and average crown diameter.
Monte Carlo simulations were run to assess the efficiency of volume estimates obtained from airborne laser scanning and ground
based inventory. The lowest RMSE for the laser based estimates was 5.1 m*ha™' (2.0%) and the highest was 8.4 m*ha™ (3.3%), while
RMSE for the ground based estimates varied between 13.7 m*ha™ (5.4%) and 18.4 m*ha™ (7.2%). The LIDAR based estimation was
on average 6.3 times more efficient in terms of MSE than ground based sampling. The RMSE of the volume estimates increased with
increasing plot size, for a given sampling intensity. The results indicated that forest surveys over large areas carried out using
airborne laser scanning as a strip sampling tool can provide accurate estimates, and can be more effective than traditional systematic
ground plot based inventories.

1. INTRODUCTION truth reference value. Consequently, designing an optimal

inventory system has to rely on some kind of simulation, where

During the past two decades, remote sensing techniques have  different combinations of field and airborne data collection can
proven to meet some of the demand for environmental related be explored.

data at fairly low cost. Among these techniques, small footprint

LIDAR (LIght Detection and Ranging) has become one of the The aim of this study was to develop a prototype of a simple,

most common remotely sensed data sources for analyzing the  small-scale simulator in order to assess the efficiency of laser

canopy structure at the scale of operational forest management  scanning based volume estimates relative to the corresponding

(Wynne, 2006). ground plot based estimates, when airborne laser scanning was
used as a strip sampling tool. This simulator was based on the

Research has shown that proﬁling LIDAR can provide reliable two stages, grld based sampling procedure developed and tested

biomass sampling based estimates at low costs (e.g. Nelson et by Naesset & Bjerknes (2001) and Nzsset (2002, 2004).

al., 2006). The LIDAR based procedure consists of a two stage

sampling scheme. LIDAR transects are taken by flying parallel

fight lines separated by many kilometers over the area in 2. MATERIAL AND METHODS

question. Systematically distributed ground plots or ground

transects are measured along the LIDAR transect. Ground based Forest stand data and combinations of ground measurements of
estimates are regressed against LIDAR measurements, and the single tree parameters and airborne laser data were used to build
resulting regression equation are used for prediction along the 3D crown models for Norway spruce trees. Then, existing forest
LIDAR transects across the entire sampled area (Nelson et al., stand generator software and these models were employed to
2004). obtain a virtual forest as input for the simulations.

In contrast to profiling LIDAR systems which only collects a 2.1 Stand data

narrow line of data on the ground, commercial airborne laser

scanners provide an accurately geolocated cloud of 3- The empirical stand data and single tree parameters were
dimensional observations, which can be related to ground comprised in two datasets.

measurements such as plots of various shapes and sizes.

Scanning LIDAR is today used operationally for stand-based ~ The first dataset (see Bollandsés & Neesset, 2007; Solberg et al.,
“wall-to-wall” inventories of forest stands in Norway (Nesset, 2006) was collected in summer 2003. Twenty circular plots of
2004). For larger regions such as counties or nations, “wall-to- 0.1 ha were collected from a boreal nature reserve located in
wall” inventories are not feasible. However, even scanning south-eastern Norway. The forest was multilayered with a broad
systems can be used in regional forest inventory, considering range of tree sizes and stand ages, and dominated by Norway
the flight lines as part of a strip sampling design by flying  spruce [Picea abies (L.) Karst.] and Scots pine (Pinus silvestris
parallel, equally spaced strips over the study area and collecting L.). The plots were establish in subjectively selected spruce
sample plots only within strips, using for example systematic ~ dominated sites. On each plot, all trees with height (dy;) > 3cm
sampling schemes. Sampling applications are often relevant in ~ were callipered and tree heights were measured on trees
areas with a size where it is not feasible to establish a ground  selected with probability proportional to stem basal area. Mean
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diameter was defined as diameter corresponding to mean stem
basal area (dza) and mean height was defined as the average
basal area weighted (Lorey’s) height (hp).

Both Global Positioning System (GPS) and Global Navigation
Satellite System (GLONASS) were used to determine the
planimetric coordinates (Euref89) of the plot centers. The
average estimated accuracy of the plot coordinates was 10 cm.

For the first dataset, polar coordinates from the plot centre were
registered for all trees with dy, > 3 cm. Total tree height, height
of crown base, crown radius in four cardinal directions, and
average crown diameter were measured on trees selected from
each plot. The final coordinates for all single trees were
computed in Euref89, using plot centre coordinates and plot-
wise polar tree coordinates.

The second dataset (see Naesset, 2004) comprised 60 large plots
located in a productive forest area of approximately 5000 ha in
the municipality of Kredsherad, south-eastern Norway. The
forest composition was dominated by Norway spruce and Scots
pine, while younger stands were dominated by deciduous
species, mainly birch (Betula pubescens Ehrh.). The plot areas
were from 3121 to 4219 m? with an average of 3739 m*. Within
each plot, all trees with diameter at breast height dy;, > 4 cm and
dyn > 10 cm were callipered in young and mature stands,
respectively, using 2 cm diameter classes. Height measurements
were taken from trees selected with probability proportional to
stem basal area at breast height. For each plot, the mean height
corresponding to Lorey’s height was computed from the mean
height of the individual diameter classes, weighted by total plot
basal area for each diameter class.

2.2 Laser data

Laser scanner data were acquired during June 2005 (leaf-on
canopy condition) from the same area as the first dataset, with
an Optech ALTM 3100 sensor operating at 100 kHz laser pulse
repetition rate and 70 Hz scanning frequency. The aircraft was
flown approximately 750 m above ground with an average
speed of 75 ms™. The maximum half scan angle was 10°, and
the corresponding swath width was about 264 m. Pulses
transmitted at scan angles that exceeded 8° were excluded from
the final dataset. The average footprint size was about of 21 cm,
with an average point density of 5.09 m™. First and last echo
were recorded.

2.3 Laser-derived singletree models

Laser data and the ground measurements collected in summer
2003 from 0.1 ha stand plots comprised into the first dataset

were used to obtain crown representation of Norway spruce
trees. Laser pulse hits were related to tree crown projections by

the mean of planimetric coordinates, and then the resulted laser
point clouds were considered as spatial crown models for
Norway spruce trees. Laser pulses with heights below 2 m were
considered as ground points.

The relationships between field and laser measurements were
established for a total of 435 spruce trees. Hence, each of these
trees were represented as unique combinations of diameter (),
height (h), crown height (¢;), crown projection radius (C;), stem
volume (V) (Table 1), and the associated 3D crown models. For
each of these trees, the volume was calculated by the means of
functions for Norway spruce with bark (Vestjordet 1967).
Further in this study, the trees were called “single tree models”.

Metrics Mean S.D. Min Median Max

dpp (cm) 19.8 104 3.2 18.8 51
hm) 158 61 36 16 295
c(m) 34 24 02 31 135
C;(m) 1.3 04 0.6 1.3 2.9

vm®) 038 041 0.003 022 246
? dyy-diameter; h-height; ¢,—crown height; ¢—crown radius;
v-volume; S.D.-standard error

Table 1. Descriptive statistics for individual tree model
parameters °.

2.4 Virtual forest

The program package SILVA 2.2 (Pretzsch et al., 2002) was
used to generate a virtual forest. The stand generator provides a
tree list with associated parameters. For each tree, the following
information was recorded: tree species, diameter at breast
height, total height and height of crown base, crown diameter
and tree coordinates (X, y). To generate the tree lists, the input
parameters were tree species, dgs (cm), Oy, (cm), hy (m), and
N, obtained from ground measurements. Only 13 plots from the
first dataset and 25 plots from the second dataset provided
acceptable combinations of input parameters which could be
used to obtain tree lists by means of SILVA 2.2 (Tab. 2). The
other plots were rejected due to inadvertencies between the test
plot reference data and model calibration of the stand generator.
Totally, a number of 38 tree lists were obtained and each of
them was considered as a possible realization of a forest stand,
given the ground-measured input parameters.

The virtual forest study area was defined in a 2D-local
coordinate system with axes being multiples of 100 m, and the
terrain was assumed to be flat. The frame of study area was
considered to be a two-dimensional array, where each (i, j)
position is a squared area representing a forest stand of 1.0 ha.

Stand parameters

First dataset (0.1 ha plots)

Second dataset (large plots)

OgaS dmxS his Ns | dgaS dnxS hos

dBA p dmax p hL p Np dBA b dmax b hL b Nb

Max 30.1 60.6 289 1040 | 27.6 51
Min 199 39.6 17.7 650 12 17 8.4
Mean 17.2  37.3 17 671 | 17.4 321 149

222 904

36.3 49 23.6 622 | 239 47 20 286
18.7 35 127 10 | 115 13 108 5
21.6 355 144 229 | 126 21.7 106 &2

? dga=basal area mean diameter (cm); d=maximum diameter (cm); h; =basal area weighted mean height (m);
N=stem number per ha; S=Norway spruce; p=Scots pine; b =deciduous trees (assimilated with birch).

Table 2. Summary of stand metrics for 13 selected plots from the first dataset and 25 plots from the second dataset *.
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To create the population, one of the 38 virtual forest stands of
1.0 ha generated by means of SILVA 2.2 was randomly
allocated to each (i, j) array position, and then the stand
coordinates for each tree were translated according to the new
location within the array. The neighborhood effects among
forest stands were ignored. Thus, the spatial structure of each
cell was supposed to be independent of the position in the array.
The study area was defined as a square of 36 km?.

Further, each tree from the tree list was substituted with a
diameter-equivalent single tree model. Because of the relatively
small number of single tree models (i.e. 435 trees) which could
be derived from available dataset, only dy, was used as key. The
rest of the single tree model parameters, i.e. height, crown
height, crown radius, laser pulse heights, and stem volumes,
were then transferred to the corresponding diameter-equivalent
trees from the tree list positioned at (x;, y;) coordinates in the
study area. The matching results often consisted of more than
one single tree model with equal diameters. In this situation,
only one of these tree models was randomly selected to replace
the tree at the position (x;, y;) from the generated forest stand.
For the situations when diameter matching did not occur- which
means that some trees from generated forest stands have
diameters that were not among the diameters of single tree
models, a single tree model with diameter closest to the missing
value, either larger or smaller, was selected instead. Thus, the
study area was re-populated with laser derived tree models, and
the volume of the entire population was calculated as the sum of
individual trees.

For other species than Norway spruce, i.e. Scots pine and birch,
there were no available laser data for building 3D crown
models. For this reason, diameter matching was done regardless
of species, which means that trees of different species could be
matched if they had the same diameter. After diameter
matching, trees from the tree list generated by means of forest
stand generator were replaced with diameter equivalent Norway
spruce single tree models, regardless tree species.

Laser scanning data consist of clouds of laser hits related to tree
crowns. In this study, each laser hit (first echo) has known x, y
and z-coordinates, but in this analysis, the (x;, y;) coordinates of
each laser hit were discarded. It was assumed that laser hits
related to trees inside a grid cell fall inside the same cell where
these trees are located, and that all the hits inside a tree crown
projection belong only to that tree.

2.5 Simulator

The strip sampling simulation was based on the two-stage
procedure described by Nasset & Bjerknes (2001) and Nasset
(2002, 2004) and follows the approach proposed by Gobakken
et al. (2006). In parallel, an estimation of mean volume by
means of ground plot systematic sampling was done, as a kind
of conventional inventory. The sampling units consist of equal
strips containing the same number of grid cells. The total
volume was estimated as the sum of predicted volume for all
grid cells over all strips. Monte Carlo (MC) estimates of
population mean volume and sampling error were derived
running 50 iterations for each sampling scheme. Bias, standard
deviation and RMSE for estimated mean values were used to
assess the sampling estimates against the reference volume of
the predefined population. The systematic samples of laser
scanning strips and ground plots were treated as random
samples. Relative efficiency of regression based estimates
obtained from laser scanning strip sampling against ground
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based systematic plot sampling estimates was assessed for each
sampling scheme.

Computations

Multiple regression analysis was used to establish stratum-
specific relationships between field measurements and laser
derived metrics. Based on previous findings (e.g. Magnussen &
Boudewyn, 1998; Nasset, 1997, 2002, 2004), two independent
variables derived form first laser pulse returns were used for
volume prediction within each grid cell: the percentile
corresponding to the 9" quantile of laser canopy height (heo)
considering the lowest canopy height (>2m), and the canopy
density corresponding to the proportion of the first pulse laser
hits (dy). Canopy density was defined as the proportions of first
pulse laser hits above 2 m to total number of first pulse returns.
To calculate the canopy density, it was necessary to find the
total number of laser hits within each grid cell. Because the last
echoes from initial laser scanning data were not available, it was
assumed that each grid cell had a uniform coverage of laser hits.
Thus, the total number of laser hits within a grid cell could be
linearly extrapolated from the number of hits that fall inside the
crown projection. Laser hits with heights below 2 m were
considered as ground points as well.

The full second order regression model based on these variables
was subject to stepwise variable selection to develop final
models for prediction. Exploratory regression analysis was run
to detect possible deviations from model assumptions. Various
variance stabilizing transformations of the dependent variable
(sample plot volume) were analytically assessed by the means
of the Box-Cox method. Five regression models were finally
proposed: (1) a multiplicative model, (2) a linear model without
transformations, and three different models with transformed
response variable: (3) log(y), (4) sqrt(y), and (5) asin(sqrt(y)).
For the multiplicative model, only two independent variables
(hoo and dy) were used, and consequently this model was not
subject to stepwise selection.

For the other regression models, an empirical approach was
used to obtain regression equations. Before each simulation, a
number of 20 iterations were used to select the final regression
models. First, a stripe sampling scheme was randomly generated
over the study area, and the location of each stripe and
correspondent sample plots were hold fixed. Initial sampling
trials were run, and for each iteration a new population outcome
was generated and sampled. Stepwise regression (py, = 0.05, pou
= 0.10) was used for model selection, and each resulted subset
model was registered. After running all iterations, the most
frequently used model form for each regression model was
selected as final model to be used for prediction during
sampling simulations. Since serious muliticollinearity problems
occurred, best subsets regression models were also derived and
compared to the stepwise regression subsets, in order to select
unbiased regression models.

To estimate the population volume, Monte Carlo experiments
were run to derive laser scanning and ground-based mean
volume estimates. Initial tests showed that cumulated mean
volume estimates over 50 iterations converged towards the
value of MC estimates, while the sampling error decreased
asymptotically. However, the number of iterations should vary
with the study area, sample design, and population variability.

Squared sample plots of 200, 400, and 600 m* were used to
provide ground estimates. Using squared plots significantly
improves the computational performance during simulation.
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Parallel laser strips with widths of 160, 180, and 200 m spaced
at 1500 m were generated. The sampling intensity for different
plot sizes was held almost constant around 0.6% of stripe
sampling area, and the sample size varied with plots size.
Compared to sampling intensities in ongoing research studies,
which typically are less than 0.003% (Gobakken et al., 2006),
the sampling intensity at stand plots level is much higher, but
necessary to reach ground samples large enough to get reliable
regression estimates.

Finally, the MC estimates for both laser strip and ground based
systematic sampling were assessed by the means of a two-tailed
t-test against the population value. Bias, standard deviation, and
RMSE for the MC estimates of mean volume were then used to
assess the sampling designs and regression models. Relative
efficiency of regression based laser scanning estimates against
corresponding ground based estimates was calculated as ratio of
their respective MSE.

4. RESULTS

Except the multiplicative model, final regression equations were
built using stepwise regression. A number of 45 mean volume
estimates and their RMSE values were derived using five
regression models (Table 4). In addition, for each sampling
scheme, an estimate of mean volume and the corresponding
RMSE were derived by ground based systematic plot sampling
(Table 4). The reference value of mean volume per ha was 254
m’, i.e., total population volume of 914,400 m’ divided by the
size of the study area of 3600 ha. The simulated study area
included over 2.7 million trees. The number of iterations used
for each simulation ensured convergence for both regression
and ground plot based estimates. For mean timber volume
estimates, the convergence occurred after ca 40-45 iteration for
sampling schemes using ground plots of 200 m% ca 20-30
iterations for plots of 400 m? and after ca 15-25 iterations for
plots of 600 m” As the number of iterations increased, the
sampling error decreased asymptotically (Figure 1).

The regression models comprised two to five predictor
variables. The most frequently used prediction variable was the
interaction term, followed by squared height percentile and
canopy density. Generally, the R® ranged between 0.79 and
0.96. The bias of mean volume estimates during iterations in
each simulation ranged between -16.6 m*ha™ (6.5%) and 10.2
m’ha” (4.0%) for regression estimates, while the bias of ground
based estimates ranged from -34.1 m’ha’ (13.4%) to
31.8 m*ha™ (12.5%). MC estimates of mean volume derived by
regression ranged between -5.7 m*ha™ (2.2%) and 0.3 m*ha’
(0.1%), and standard error between 5.0 m*ha™ (2.0%) and 7.4
m’ha (2.9%). For plot-based MC estimates, the range of bias
was between -2.6 m*ha” (1.0%) and 3.9 m’ha” (1.5%), with a
standard error between 13.7 m’ha” (5.4%) and 18.4 m’ha’
(7.2%). The lowest RMSE for regression based MC estimates
was 5.1 m*ha” (2.0%) and the highest was 8.4 m*ha™ (3.3%).
RMSE for ground plot MC estimates varied from 13.7 m’ha™
(5.4%) to 18.4 m’ha (7.2%). Among all regression models,
only the multiplicative and linear models gave unbiased
estimates (p > 0.05) under all sampling schemes. Ground based
systematic plot sampling derived estimates provided unbiased
estimates (p >0.05) for all sampling designs. Relative efficiency
of laser based estimates relative to ground plot estimates varied
between 0.11 and 0.28, with an average of 0.16, which indicates
efficiency in average 6.3 times higher for laser scanning strip
sampling method (Table 5).
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Figure 3. Example of sampling error estimation, for
multiplicative regression model and ground plot base estimates
using strip width of 180 m and plot size of 400 m’.

5. DISCUSSION

The major findings of this study indicated that:

1) Laser scanning-based stripe sampling forest inventory can
provide accurate and precise estimates of mean volume for
relatively large forest areas. The LIDAR based estimation was
on average 6.3 times more efficient in terms of MSE than
ground-based sampling.

2) For both inventory methods, the inverse relationship between
plot size and sample size seemed to be the dominant factors that
led to a general increase of RMSE as the plot size increased.

3) For the ground-based systematic plot sampling method, the
plot size was the dominant factor which led the overall trends
for the MC estimates of mean volume. The RMSE of volume
estimates increased by increasing plot size.

However, generalizations cannot be drawn from this study,
since many assumptions were not realistic compared to real-
world applications, i.e. small size of target arca and small
population variability. Another important issue is that all
metrics derived from the population were considered to be
“error free” and the effects of error propagation were neglected.
As possible error sources could be mentioned errors concerning
ground location of trees and ground plots, laser sampling and
field measurements.

Nevertheless, we believe development and application of this
first small-scale simulator has provided useful insight into some
of the challenges we will have to face in the continued work to
develop simulators that can operate on larger model forests
where also spatial correlation and regional trends in the
population value may be accounted for. Furthermore, a forest
stand generator calibrated for Norwegian conditions should be
developed, and there is also a need for building up an empirical
database of laser derived individual tree models for all main tree
species in Scandinavia.
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Strip Plot area Strip (MSE" / MSE")
width Model 200 m? 400 m’ 600 m* width Model  Plot size (m%)
(m) bias S.D RMSE bias S.D RMSE bias S.D RMSE (m) 200 400 600
Laser scanning based estimates (msha'l) 1 0.17 0.14 0.12
1 -08® 55 56 |-0.8® 57 58 [-02" 64 64 2 023 0.18 0.16
2 -22% 6.2 6.6 |-1.3" 64 65 |-0.8" 74 7.4 160 3 0.16 0.15 0.12
160 3 -1.5% 52 54 |-1.6® 57 59 |-09® 65 6.5 4 032 021 0.21
4 -5.5% 5.6 7.8 |-3.6% 6.1 7.1 | -43*% 72 8.4 5 0.16 0.14 0.12
5 -0.6" 55 55 |-1.0" 57 58 |-05 63 6.4 1 0.14 0.13 0.10
1 -0.7" 55 56 |-0.7" 50 51 [-05® 56 5.7 2 021 0.16 0.16
2 -3.0* 62 69 |-04™ 57 58 |-0.8® 7.1 7.1 180 3 0.13 0.14 0.12
180 3 -14™ 53 54 |-13" 5.1 53 |-1.4" 6.0 6.2 4 0.28 0.22 0.21
4 -5.7% 5.6 8.0 |[-3.6%¥ 57 6.7 |-41* 7.0 8.1 5 0.13 0.13 0.10
5 -0.5™ 54 54 |-08® 50 51 |-09™ 55 56 1 0.13 0.12 0.11
1 -02™ 54 54 |-0.1™ 5.1 51 |-02" 6.0 6.0 2 0.18 0.16 0.15
2 -2.5% 57 62 |03° 59 59 |-07% 72 72 200 3 0.13 0.12 0.12
200 3 -0.9® 53 54 |-07% 50 51 [-12" 63 64 4 027 0.19 0.18
4 -5.2% 5.7 7.7 |-32*% 55 64 |-3.1* 7.1 7.7 5 0.13 0.13 0.11
5 0.0 54 54 -0..2nS 5.2 35.2_] -1.0™ 6.0 6.1 % MSE of laser-based estimates
Ground plot based inventory (m’ha") ® MSE of laser-based estimates
160 - -0.7"™ 13.7 13.7 | 3.9™ 149 154 | 1.8® 184 184 Models: 1-multiplicative; 2—log(y);
180 - 20" 148 150 |22™ 141 143 |22 175 176 3—sqrt(y); 4-asin (sqrt(y)); S-linear.
200 - 26™ 145 148 |22™ 145 147 |22™ 182 184 Table 5. Relative efficiency of laser

*significance level: * p < 0.05; not significant: ns > 0.05;

based against ground plot estimates.

Models: 1-multiplicative; 2-log(y); 3—sqrt(y); 4—asin (sqrt(y)); 5-linear.

Table 4. Bias, standard error (S.D) and RMSE of mean volume estimates (m*ha™).
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ABSTRACT:

Building reconstruction from LiDAR data offers promising prospects for rapid generation of large-scale 3D models in an
autonomous manner. Such reconstruction requires knowledge on a variety of parameters that refer to both the point cloud and the
modeled building. The complexity of the reconstruction task has led many researchers to use external information, mostly in the
form of detailed ground plans to localize the buildings and usually assume that buildings consist of only planar parts. These
assumptions limit the reconstruction of complex buildings specifically when curved surfaces exist. We present in this paper a model
that considers the point cloud as the only information source and analyzes the roof shapes. We extend the standard models to support
free-form surfaces and reconstruct their shape. Since many of the buildings are still composed of planar faces, we maintain the planar
based partitioning whenever possible but detect if non-planar surfaces exist and apply free-form surface models there. In such way,
the standard models are extended to support general shape roofs without imposing an artificial model if not needed. In addition to the
extension into non-planar roofs, our reconstruction involves the aggregation of the point set into individual faces, and learning the
building shape from these aggregates. We show the effect of imposing geometric constraints on the reconstruction to generate
realistic models of buildings.

1. INTRODUCTION common to almost all reconstruction models. While planar roof
buildings are still the majority, buildings with general shape can
Three-dimensional reconstruction of buildings becomes a  be found in almost every scene. Using planar-based models for
fundamental part in a growing number of applications. Among ~ general curved or free-from surfaces, will lead to a wrong
the data sources available for such reconstruction, airborne laser ~ partitioning and a failure in the reconstruction process as the
scanning has emerged in recent years as a leading source for common outcome. Therefore, to increase the reliability of the
that purpose (see e.g., Brenner and Haala, 1998; Wang and building detection and modeling process, an extension of the
Schenk, 2000; Brenner, 2000; Voegtle et al. 2005; Rottensteiner ~ reconstruction model to support a general shapes is a desired
2005), particularly due to the direct measurements of the  improvement. Nonetheless, as many of the buildings are still
surface topography both accurately and densely. composed of planar faces, a planar based partitioning is an
appealing concept to maintain whenever possible. An optimal
Reconstruction of buildings from LiDAR data involves their reconstruction model will therefore not only involve finding a
detection in the point cloud, extraction of primitives that  representation for curved surfaces but also deciding when
compose the building shape, and an agglomeration of the planarity fails to hold and a more elaborate model is of need.
primitives into a geometric building structure. The detection
will usually wear the form of object to background separation, To support any form of reconstruction that deviates from the
e.g., via filtering, surface discontinuities analysis, segmentation, ~ planarity assumption, the utility of turning into a curved surface
or with the support of external information, like ground plans ~ description should be weighted. In this paper, we address the
(Vosselman and Dijkman, 2001; Haala et al. 2006). For the problem of identifying curved roof faces when such exist. The
extraction of roof primitives, a segmentation of the data into motivation is limiting such detection only to those cases where
planar faces will be applied in most cases. In Hoffman (2004) non-planarity is needed while avoiding over-parameterization
and Alharthy and Bethel (2004) a gradient based analysis is elsewhere. We then demonstrate the reconstruction of non-
applied as a means to find roof planes. Voegtle et al. (2005) use  Planar roofs structures using data with moderate point density
classified data as an input, where the extraction of the roof (< 1 p/m?). In the following Section we outline the roof face
planes is region growing based with a homogeneity predicate. extraction model and then describe alternative methods for
Rottensteiner (2005) describes a roof delineation algorithm  identifying deviations from planarity by looking into internal
where the classified data is segmented in a similar fashion asin ~ and external characteristics. We then study their applicability to
Voegtle et al. (2005). The boundaries of the detected planes are  the detection of curved segments and show the results of the
determined using the Voronoi diagram and the resulting edges surface reconstruction.
are then grouped together into polyhedral models. The
reconstruction of the roof model that follows, will usually 2. FEATURE EXTRCTION AND MODEL
involve modeling via geometrical representations such as, EVALUATION

boundary representations, parametric models, or CSG trees. . .
As noted, a reconstruction framework that assumes no prior

information from external sources requires, i) the detection of
buildings in the point cloud, ii) segmentation of the roof into
faces and analysis of the results, and iii) geometric adjustment

Despite the large body of research into building reconstruction,
many challenges are still remaining. One such challenge
concerns the general planar roof-face assumption that is
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for the building primitives. Our focus here is on the
segmentation and segment analysis part. An assumption is
made here that buildings have been detected in the point cloud,
and that following the roof face extraction and analysis,
geometric/topological adjustment of the roof faces will take
place.

2.1 Segmentation

Surface segmentation is the core of the primitive extraction
process. It is aimed at identifying planar patches in the roof
structure, which then allows learning about the roof shape and
structure, and reconstructing its shape. The segmentation we
apply here is based on cluster analysis that uses local surface
parameters as attributes. With those attributes, solid surfaces as
roofs tend to cluster as they share slope parameters. Clusters
that share common surface properties constitute "surface
classes" (all points that share similar surface parameters) that
may consist of more than one physical segment. Therefore,
following the "surface class" extraction, physical segments in
object space are extracted by linking points according to
proximity measures. The identified surface segments are
validated via surface fitting, which involves testing whether the
segment is homogeneous and composed of only one actual
plane, and if that is the case, validating that all points in the
cluster belong to the same class. The elemental segments are
then extended, if possible, by adding unsegmented points and
by merging segments that share similar surface properties.
Merging of segments is decided by testing whether neighboring
segments share similar mean (the estimated surface parameters)
and standard deviation. The size of the segments is controlled
by std. thresholds. An upper bound limit o that reflects
physical surface accuracy is set to avoid over-segmentation.
Additionally a lower bound limit, oy, which is set in
accordance with the expected accuracy of the laser points, is
applied to avoid under-segmentation. When a segment is
extended and its std. falls below the minimum threshold, oy, is
used instead.

2.2 Segment Analysis

When planar-surface based models are applied to non-flat
surfaces, the reconstruction is likely to provide fractured
segments (made of small/narrow) or a sporadic set of patches.
From a geometric standpoint, all segments will conform to the
segmentation guiding rules like minimum size and adequate std.
as was defined with the segmentation. Therefore, the decision
whether surface patches form a curved face, should not
necessarily rely on segment accuracy but rather on internal, or
external characteristics.

Internal characteristics — Segments can be considered
potential parts of a curved surface if some shape properties
indicate so and if the segment does not cover a large area within
the building or included within a larger segment (as with
dormers, chimneys, etc.). Shape properties can be linked with
the arrangement of the offsets among the laser points
composing the surface and the adjusted plane. According to
adjustment theory, the observations taken should be statistically
independent (namely, E{s, g}=0  Vi#j), with E the
expectation, and ¢, the random errors). Nonetheless, if a plane
is fitted to a bended surface, offsets from the plane will tend to
cluster and exhibit spatial correlation with offsets of nearby
points sharing sign and magnitude. Figure 1.a shows a side
view of a curved surface with its corresponding laser points, the
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true surface passes among the points with random distribution
of points above and below the surface. Figure 1.b shows the
segmentation results which led to two planes that approximate
the actual surface. As Figure 1.c, shows, the offsets have now
some pattern. While the two detected plans have a std. that is
limited by the segmentation, the residuals do not behave
randomly.

| -_1

L.

Figure 1: residual analysis, a) curved surface, b) segmentation
results, with two planes detected, c) blowup of the left segment
showing the spatial order in the residual distribution

Measures to quantify spatial correlation can be found in the
literature, e.g., via autocorrelation analysis for time series, or
variograms in the two dimensional case. The appealing
variogram concept for segment analysis is costly, however, and
therefore ineffective. Instead, we turn to non-parametric
analysis of the error distribution via a quantitative analysis of
the offsets variation. Generally, when a cluster of points will
share the same residual sign, each point within this cluster will
provide evidence to the non-planarity, and due to the minimum
I, norm of the least-squares plane adjustment, positive and
negative residual regions will be formed across the segment.
Therefore, for the evaluation, our hypothesis is that the residual
distribution can indicate potential curved segment. To translate
this notion into a measure, we analyze the consistency of the
residuals signs around a given point, so that

#{san(p,) =sgn(p,)|p; €N(p,)} .
#{p; eN(p)} i

1)
P =
otherwise

with N the neighborhood around a point p; within the queried
segment and t, a threshold value that defines the ratio above
which a point is considered correlated with its surrounding.
Then, a segment is considered curved if Y % <t with tr a
P

threshold ratio. The evaluation of the residual distribution has a
very clear dependency on N, the neighborhood function toward
which the p; is evaluated. Filin and Pfeifer (2005) evaluate a set
of neighborhood definitions for airborne laser scanning data
and opt toward a slope adaptive neighborhood that adapt to a
local fitted surface. However, as surfaces are given here by the
segmentation, this model has little relevance to the current
problem. For neighborhood definition we consider the
following set of models:

1. Euclidean neighborhood — in which all neighboring points
located within a given radius around a point are defined as
neighbors, see Figure 2.a.
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2. Topological neighborhood — in which the topological
closest points within the maximal planar graph are considered
neighbors. For the graph definition the pointset is triangulated
using the Delaunay criterion; see Figure 2.b.

3. Selective neighbors — to maintain equal contribution in all
direction around the point, a subdivision of the surrounding
area is applied. Four quadrants are defined and the closest
points in each sector are selected, see Figure 2.c. Around the
edges of the segment, where a quadrant partitioning cannot be
performed, this approach is maintained, but instead of
quadrants the two halves covered by points are evaluated, see
Figure 2.d (in narrow segment edge parts this evaluation is not
performed, the information that can be drawn there is
questionable from the outset).

[ ] [ ]
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\¥ °
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d
Figure 2. Neighborhoods a) Euclidean, b) topological, c)
selective along quadrants, d) selective along edge points

External characteristics Contrasting the internal
characteristics evaluation that studies shape properties via laser
points deviation from the surface, the evaluation of external
characteristics concerns deciding which segments should be
joined together into one curved surface and examining the
utility in this. Neighboring planar segments can be grouped
together by fitting a high degree parametric surface (e.g., cubic
surface), and given the two models deciding which model is
preferable. The measure we consider here is the Akaika
Information Criterion (AIC) (Akaike, 1974; Boyer et at. 1994)
that takes both model complexity and modeling accuracy into
consideration, and is advantageous because of its simplicity.
Under the reasonable assumption of normal distribution, the
AIC values can be computed for each model using Equation (7)

@

AIC = 2k+nhZ
n

with k, the number of parameters in the model, n, the number of
points, o, the sum of the square errors. Errors here are the
offsets of each point from the surface.

The evaluation is performed in a pair-wise manner, where for
each pair of neighboring segments the AIC value is tested for
the two individual segments against the merit of using one
polynomial surface. Experimenting with polynomial surfaces of
degrees 2+5 has shown that locally, bi-quadratic surfaces (six
parameters) are sufficient to decide if the two surfaces are part
of a curved surface. The ability to maintain a low-degree
polynomial for the test is due to the local pair-wise evaluation.
We note that such test can also be applied to evaluate internal
characteristics, and refer to it in the following.
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Figure 3: Curved roof datasets, top) a dome like shape, middle)
a cross hip roof with curved end, bottom) a nearly flat roof

Figure 4: Segmentation results, top) the dome structure with
top and isometric view, bottom) the hipped roof

3. RESULTS AND ANALYSIS

For the analysis of the metrics we use three datasets, a synthetic
one with a dome like shape (see Figure 3 top), a hip roof with
one facet having a cone like shape, (see Figure 3 middle), and a
nearly flat roof with no distinct features (Figure 3 bottom), thus
making it more challenging for the analysis. The choice of the
synthetic dataset is driven the possibility to evaluate the
robustness of the proposed methods, particularly to the increase
of noise. Noise level ranging from 5 cm as an optimal case to
30 cm as a more extreme end, are applied to study the effect of
noise on the surface evaluation model. We study the synthetic
and winged roof examples and then analyze the nearly flat roof
where further tests are applied. We point that other than the two
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Noise: 5cm Noise: 10 cm Noise: 20 cm Noise: 30 cm
Method
Curved | Not Curved | Curved | Not Curved Curved Not Curved | Curved | Not Curved
. 90 2 86 3 74 4 1 57
Euclidean
97.8% 2.2% 96.6% 3.4% 96.1% 3.9% 1.7% 98.3%
. 83 9 40 49 6 71 0 58
Topological
90.2% 9.8% 44.9% 55.1% 7.8% 92.2% 0% 100%
. 92 0 88 1 77 0 53 5
Selective
100% 0% 98.9% 1.1% 100% 0% 91.% 8.6%

Table 1. Results of the segment analysis for different noise and neighbourhood methods

real world examples further tests were applied on other building
datasets, both flat and free-forms.

The segmentation results for the first two datasets are given in
Figure 4. In both cases ona=t15cm and a minimal segment
size of 5 points were used as parameters. For the hipped roof,
the two side wings were segmented as planes but the curved
parts (the whole structure in the dome, and the front of the
hipped roof) are broken into parts. Some holes in the point
clouds can be noticed; these are small regions that fell outside
the extent of the segments as they exceeded the accuracy
threshold, but were too small to form an individual segment. In
the overall roof reconstruction scheme, those holes will be
"completed” when neighboring planes will be extended to
intersect one another. In this regard, because of the actual non-
planar shape of the roof, some topological inconsistencies may
arise in the reconstruction. We point that for the dome structure
some variations in the segmentation as a function of the noise
increase can be seen but as they share more or less a similar
structure, they are not presented here.

Figure 5: Residual distribution over the individual segments

As for the hip roof, Figure 5 shows the residual distribution
over the segments, with green points as positive residuals and
red points as negative ones. In all three curved segments a clear
clustering of the errors can be notices while the planar roof
exhibits more or less random variations.

The application of the internal measures as a means to analyze
the shape of the segment is now studied. The results are listed
in Table 1 and illustrated graphically in Figure 6. For the
experiment, noise level of 5, 10, 20, and 30 cm were applied to
the data. For the case of 5 cm noise level all three models
appear to perform well, with the Euclidean evaluation having
only two misses out of 92 segments and the topological
neighborhood giving rise to nine misses from the same amount
of segments. The selective neighborhood scheme offers the best
performance with no misses at all. As the noise level increases,
the dissimilarity in results between the different measures starts
growing. The Euclidean neighborhood system offers slight
decrease in correct detection up to the 20 cm noise level, but
then completely breaks apart at the 30 cm level. This behavior
can be attributed to the noise level that exceeds by a factor of
two the accuracy threshold of the segmentation. The
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topological neighborhood shows a much weaker performance
with more the 50% misses already at the 10 c¢cm level and
breaking apart from then on. Compared to the two others, the
selective scheme appears to have the best performance, with a
negligible miss up to the 20 cm level and five misses at the 30
cm level. This result can be attributed to the emphasis on the
distribution of the evaluated points while maintaining a
proximity criterion to the evaluated point. As Figure 6.b shows
those misclassifications occur with the relatively small and
narrow segments where the collection of a set of well
distributed points is harder.

Noise 10 cm

Selective

Euclidean

Noise 30 cm

Selective

Topological

Figure 6: Classification of segment types (light tone — correct,
dark tone — wrong)

An analysis of the results leads to the realization that one of the
more affecting factors is the size and shape of the evaluated
segments. Usually, with curved structures the resulting
segments will tend to be small in size, and, depending on the
surface geometry, narrow. Therefore, neighborhood models that
try covering a relatively broad region, as the Euclidean model
or the topological one, will exhibit greater sensitivity to the
segment shape and size and as the level of noise increases lose
the dominance of the residual distribution. Compared to them,
the selective method shows, to some degree, less sensitivity as
it weights in both point distribution and proximity in a more
controlled manner.

For the segment characterization on the hipped roof the
classification results based on the neighborhood systems are
listed in Table 2 (for segment numbering see Figure 8).
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Generally, both the Euclidean and the selective models
classified correctly the three curved related segments, with the
topological model misclassifying one of them. The more
interesting result however is the classification of the two wing
segments, where both the Euclidean and selective based models
misclassified one segment. This result is due to the overlap
between two different scans over the roof and a systematic
scanning error that led to two sets of offsets. In term of the local
analysis, it has led both surfaces, under different neighborhood
schemes, to be classified as curved.

Segment Number
Method
0 1 2 3 4
Euclidean Flat Curved | Curved | Curved Curved
Topological Flat Flat Curved Flat Curved
Selective Curved Flat Curved | Curved | Curved

Table 2: Results of the segment analysis for the hipped roof

External evaluation

The external evaluation of the segments' shape operates on a
different level by assessing the utility in joining two
neighboring segments into a one. The connectivity between the
segments is established by identifying border points of each
segment (those points that neighbor not only points with the
same segment ID but such with others). When applying the AIC
measure on the dome structure, the results yield correct
classification for all segmentation under different noise levels.
The successfulness of the AIC measure can be understood by
the direct incorporation of noise level into the information
criterion and to the fact that segments that are originally part of
a curved object tend to show better results when joined.

When turning to the hipped roof that features both planar and
curved part, the model should distinguish between curved parts
that should be linked together and planar parts that should be
kept as such. Table 3 lists the AIC values for the joining of the
roof segments, with Figure 8 showing the resulting connectivity
graph between the detected curved segments.

Segment AIC Values

| 11 | 11 1+ 11 curve
1 0 -3102 -3337 -6439 -1675
3 -1002 -3337 -4338 -2125
0 -3337 -3102 -6439 -1675
4 ! -419 -3102 -3521 -1646
3 ) -1002 -1482 -2484 -2688
4 -419 -1482 -1901 -2256
0 -3337 -1002 -4338 -2125
2 3 -1482 -1002 -2484 -2688
1 4 -3102 -419 -3521 -1646
2 -1482 -419 -1901 -2256

Table 3: AIC values - the best model to be selected is the one
with the smallest AIC value

The results show that applying the AIC measure when
evaluating the utility in joining the three curved segments has
managed identifying them as part of a curved segment but when
joining the flats with either one another or the curved ones, kept
them as they are. We note that the systematic offsets due to the
laser strips overlap have no effect on the results as with the
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internal characteristics evaluation. This can be explained, again,
by the global evaluation of the fitting accuracy and the model
complexity that does not evaluate the individual points but
rather the merit in joining surfaces.

Figure 9: Outline of the segments of the nearly flat roof

Turning to the nearly flat surface, the segmentation results are
shown in Figure 9. Even though the accuracy level was raised
to oma=t25cm the roof was segmented into two separate
segments indicating its actual deviation from planarity. Here,
internal measures are measured by the offset based analysis and
by using the AIC as a means to assess flatness of the individual
segments. Additionally, the external evaluation was performed.
As the offsets distribution in Figure 9 show, the bigger segment
was indeed classified as curved, but the smaller one as flat.
Using the AIC measure to evaluate the two individual segments
(flat vs. curved) identified, again, the big segment as curved but
the other as flat. This can be explained by the segment size and
dimensions that are small and elongated. Contrasting both
internal evaluations, the global AIC measure that linked the two
parts of the nearly flat roof showed higher gain by joining them
into one curved segment. These results indicate that the merit of
using the external evaluation lies not only in the information
measure, but also in having a more global view of the surface
joining utility.

3.2 Global Surface Approximation

Reconstruction of the curved roof shape can be in the form of a
high order polynomial or a free-form surface. We demonstrate
the application of a Non Uniform Rational B-Spline (NURBS)
surface for the reconstruction (Cohen et al., 2001). The results
can be seen in Figure 9. Using NURBS allows a mathematical
representation that can accommodate and accurately describe
surfaces of general shapes, ranging from simple 2D curves to
complex 3D free-form surfaces or solids. In addition to the
compact representation that NURBS geometry offers, NURBS
can be graphically rendered in an efficient and accurate way.
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Figure 10 (top) shows that NURBS surface that was fitted to the
three curved surfaces, following their boundaries as extracted
from the segmentation of the point cloud. Attempting to fit a
high order polynomial to the joining of the three surfaces (that
appear to be having a cone structure) did not yield satisfying
results in terms of appearance and fitting accuracy. The result
in Figure 10 (top) that follows the geometric shape of the roof
face lacks the form of an actual building shape. In Figure
10(bottom) the application of geometric constraints and
leveling the roof boundary is added to form the complete shape
of the roof structure. This structure is composed now of two
planar and one free-form surfaces. Finally, Figure 11 shows the
effect of reconstruction when relying on flat surface based
segmentation. It shows the clear role of free-form surfaces for
building reconstruction, even for gentle deviations from
planarity as the current building offers.

Figure 10: Reconstruction of the curved part and the roof shape
via free-form surface

Figure 11: Reconstructing the nearly flat roof, with an example
(top) of the effect of not using a free-form representation

4. CONCLUSIONS

Detection of curved roofs becomes an important component in
building reconstruction over large areas, where some buildings
are likely to wear such shapes. Such detection should be able
identifying them while still maintaining the planarity of other
roof faces, which still set the majority. In this paper, we
evaluated methods to identify curved surfaces. The results have
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shown that internal measures can be reach correct detection in
most cases under a given neighborhood system. However, the
dependency on the segments shape and laser scanning
properties, like systematic offsets between strips, may lead to
misclassification. In contrast, the external use of AIC criterion
appears more robust to noise and to scanning artifacts, as the
three examples show. The ability to distinguish correctly
between planar surfaces and segments of a fractured curve are
of great value in this regard. We note that other external
measures may prove suitable as well.

Finally, the application of free-form surface coupled with
geometric adjustment of the surface into a building shape has
led to an optimal reconstruction of the building model, one that
composed of three surfaces for the hipped roof, and of one
global surface for the dome and the nearly flat one.
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ABSTRACT:

Terrestrial lidar measurements with the Leica HDS 4500 laserscanner (Imager 5003 from Z+F) were executed in a structurally
highly diverse, at least 200-year-old natural 11-species forest with typical characteristics of an old growth forest in order to assess
the species-specific differences of tree canopy structures growing in a forest stand. Accuracy of the method and completeness of the
canopy measurement is evaluated based on independent height measurements and visual inspection of single tree canopies.

While canopy structure could be captured completely in the lower half of the canopies, the upper parts of the virtual canopies
exhibited partly gaps along the axis of branches. Virtually executed vertical canopy projections could better represent indentations in
the canopy borderline than field measurements — both measurements yielded comparable canopy projection areas (root mean square
error, RMSE = 11.1m?2). Lidar-derived heights of tree canopy base were in better agreement with field measurements than lidar-

derived tree heights.

1. INTRODUCTION

The terms “old-growth forest” and “primeval forest” stand for
undisturbed forests that were able to develop all features
occurring in a forest within the natural life-span of its
constitutive tree varieties, including those unique features that
make the forest ecologically valuable as habitat for rare species
depending on these features. Therefore, the typical
aboveground characteristics of old growth forests comprise
(Zenner 2004, Hunter and White 1997):

large and old trees

dead trees and wood, standing and on the ground
standing, leaning, and fallen trees

e treesin all different ages due to natural regeneration
e high spatial complexity, e.g. several layers of
vegetation

e naturally high tree species diversity

Out of these, spatial complexity of forests is a difficult and not
satisfyingly defined feature that has not yet directly been
measured. While it is recognized that species-specific
differences in tree canopy structure exist (Hagemeier 2002), are
ecophysiologically significant (Fleck et al. 2004), and
contribute to structural complexity (Zenner 2004), they have
not been quantified due to a lack of reliable and complete
structure data of trees growing in competition with other trees
in a forest.

Though terrestrial lidar principally provides an efficient tool to
measure tree canopies in a forest, old-growth forests belong to
the most difficult objects for laser-scanner measurements due to
characteristics associated with structural complexity and size:

1. Inaccessibility of the canopy for the instrument leads
to an unfavourable scanning geometry with all
scanner positions on one side of the scanned object
and in a considerable distance from it.

* Corresponding author.
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Irregularity of the geometrical shapes in old-growth
forests (e.g. noncircular stems covered with moss or
bulges from wound occlusion and hidden by twigs or
epiphytes) limits the utility of semi-automated
registration procedures (e.g. Henning and Radtke
2006) based on geometrical features of the scene,
resulting in an unfavourable registration geometry
with all control points lying on one side of the object.
Occlusions depend on the density of canopy elements
per canopy volume, which is usually high. They make
it difficult to completely capture the structure of the
upper part of the forest canopy.

Instability of the objects due to wind and growth
movements causes additional concerns about
reliability and repeatability of the measurements.

This paper presents multiple laser-scanner measurements of
single trees standing in a dense, species-rich old-growth forest
and evaluates the reliability of these data for further steps in
species-specific structure analysis.

2. MATERIAL AND METHODS
2.1. Study site

All measurements were executed on the 10" of March 2006 in a
mixed broad-leaved forest in the Hainich national park, study
site 3a (51.089° North, 10.523 ° East) of the collaborative
research project Graduiertenkolleg 1086 “The role of
biodiversity for biogeochemical cycles and biotic
interactions in temperate deciduous forests” at the University
of Gottingen (see http://www.forest-diversity.uni-
goettingen.de). Average wind velocity on this sunny day was
11.5 km/h and the main wind direction was west.

The study site is a 65m x 55m fenced section of the natural
forest with 11 different tree species inside the fence: small-
leaved lime (Tilia cordata), large-leaved lime (Tilia
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platyphyllos), common ash (Fraxinus excelsior), Norway maple
(Acer platanoides), European hornbeam (Carpinus betulus),
pedunculate oak (Quercus robur), sycamore maple (Acer
pseudoplatanus), field maple (Acer campestre), European beech
(Fagus sylvatica) European field elm (Ulmus minor), and wild
cherry (Prunus avium) in the order of stem numbers. The total
number of 161 trees comprises 9 standing dead trees and equals
392 trees per ha (trees with diameter at breast height (DBH)
>7cm). Due to natural regeneration there were trees in all
different ages and sizes in the forest: patches of shrub-like
young trees (mainly ash and lime trees), suppressed trees in the
lowest canopy layer, up to approximately 200-year-old large
trees, and large decomposing dead trees lying on the ground.
Tree stems in the fenced area had a maximum DBH of 85cm.
Leaning stems were inclined to up to 39° from vertical, the
average stem inclination was 7°.

2.2 Measurement set-up

The measurements were set up in order to cope with the
mentioned difficulties for terrestrial lidar measurements in an
old-growth forest. 25 scans were performed with a Leica HDS
4500 laser-scanner produced by Zoller + Fréhlich, Germany.
Scanning positions about 1.5m above ground level were chosen
irregularly in order to take advantage of larger canopy gaps and
to increase the measurement density in thickets (Fig. 1). The
HDS 4500 scanner measures distances up to 53.5m (ambiguity
interval) based on the phase-shift of a frequency modulated
laser beam. The laser spot size is 3mm leaving the instrument
and 8.5mm in a distance of 25m. Range measurements in a
distance of 25m have a root mean square error of 9mm on dark
grey surfaces.
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Fig. 1: Horizontal cut through the point-cloud in a height of 2m
above ground-level, showing stem positions (grey spots), valid
scan positions (filled stars), and the positions of elevated targets

providing additional control points for the registration (open
squares).
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The scanning resolution was set to an angle of 0.036° in both,
horizontal and vertical direction and to a total scan angle of
360°, resulting in a point spacing of 15.7mm in a distance of
25m.

The multiple scans were transformed into the same co-ordinate
system based on 39 artificial chessboard pattern targets fixed to
tree stems in a height up to 2m above the ground. Twelve
elevated targets in a height between 8m and 10m on tree stems
surrounding the forest stand were added in order to improve the
registration geometry. They were directed towards the centre of
the plot and fixed using a forest ladder of 10m length, which is
equipped for leaning against stem surfaces and for stability on
smooth ground. Geometric registration was performed using
Z+F-LaserControl 6.8 (Zoller + Frohlich, Germany). Single
trees were extracted based on recognizable canopy elements
using Cyclone 5.6.1 software (Leica Geosystems, Switzerland).
Virtual canopy projections were performed on 20 trees viewing
the single tree point-cloud in z-direction and keeping the
actually surveyed part of the canopy in the zenith. Tree height
was extracted of 45 single tree point-clouds as the vertical
distance between the highest point and stem base (visually
selected point at the bottom edge of the stem). A point
representing canopy base was selected on 60 trees as the lowest
point of the insertion area of the lowest main branch to the
stem.

2.3 Forest Inventory data

8-point canopy projections were performed in January 2006
using a sighting tube equipped with a 45° mirror and cross-hairs
to ensure vertical view of specified canopy elements from the
ground (Johansson 1985). Eight points along the border of the
canopy where chosen in order to approximate the canopy
projection with a polygon and markers were set on the ground
at each polygon corner point. Distance and direction of each
point from the stem base were measured with a compass and a
meter tape.

Height measurements in the stand were performed with the
Vertex sonic clinometer and transponder (Haglof, Sweden),
aiming first to the stem at breast height (transponder height
1.30m a.g.l.) and then to the base and top of the canopy. Base of
canopy was defined as the origin of the lowest main branch.
Main branches were defined as branches with at least 10% of
the cross-sectional area of the stem at this position.

3. RESULTS
3.1 Registration and Segmentation

Three scans were excluded from the evaluation due to target
positions with offsets of more than 5¢cm in comparison to the
grid of target positions represented by the other scans. The
maximum positional deviation of control points in the
remaining 22 scans was 2.1cm.

The extraction of single tree canopies based on visual
recognition of canopy elements was safely possible for all
branches with diameters of 4cm or more, but also smaller
branches were wusually well distinguishable due to the
possibility to look at the point-cloud from many different
viewpoints. Though the knowledge of species-specific tree
habit accelerated the process of visual segmentation, this
knowledge was not essential to distinguish tree canopies from
each other.

Branches of adjacent tree canopies were visibly apart with gaps
of more than 20cm between them. Gaps between canopies
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could in less than 10% of all cases not safely be distinguished
from the gaps between measured points on a branch. For these
cases it was necessary to separate the tree point-clouds by an
equidistant plane to those branches of the trees that could safely
be identified. It cannot be excluded that this had a smoothing
effect on the irregular form of the canopy surface due to

wrongly assigned points filling indentations of a neighbouring
canopy. The result of this segmentation may be inspected in
Fig. 2, 3, and 4. The point-clouds had up to 2 million points per
tree. Point densities along branches were lower in the
uppermost part of the canopy, but branches could still be
identified.

Fig. 2: Single tree point clouds of pedunculate oak #1 (south and east view), sycamore maple #2 (south and east), and common ash

#3 (south view)

Fig.3: Single tree point clouds of European hornbeam #5 (south and east view) and small-leaved lime #12 (south and east view).
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Fig. 4: Single tree point clouds of common ash #3 (east view), European beech #2 (south and east view), and field maple #15 (south

and east view).

3.2 Virtual canopy projections

The 8-point canopy projections of 3 trees could not be
evaluated due to obvious deviations from the virtual canopy
projections. The area of 8-point canopy projections of 17
more trees ranged from 9m?2 to 112m2 (mean = 47m2). The
area of virtual canopy projections was well correlated with
this measurement, yielding an r2 of 0.90 and a root mean
square error of 11.1m2.

It was obvious from the measurement procedure that virtual
canopy projections may capture indentations of the projected
canopy surface line much better due to the higher number of
polygon corner points, which were between 100 and 150.

Fig. 5: Canopy projections of common ash #3: Contour lines
of the 8-point canopy projection (thick line), the virtual
canopy projection (inner thin line), and convex hull of the
virtual canopy projection (outer thin line).

Both sorts of canopy projection were therefore compared to
the area of their 2-dimensional convex hull (Fig.5): While 8-
point-canopy projections were practically identical to their
convex hull with an average area of 97% of their convex hull
area (range: 87% - 100%), virtual canopy projections had on
average 69% of the area that their convex hull would have
(range: 56% to 79%). Virtual canopy projections were, thus,
better suited for the representation of indentation-rich canopy
shapes. While all virtual canopy projections represented a
significant amount of canopy indentations, 53% of the 8-
point projections did not.

The correlation of the 8-point-canopy projection area with
the convex hull area of virtual canopy projections was even
better than in the direct comparison of both projections
(r2=0.95, RMSE=11.1m?).

3.3 Height of canopy base and tree height

Vertex measurements and lidar-measurements of height of
canopy base were well correlated (r2=0.99), with a root mean
square error of 0.52m, the mean height of canopy base being
9.18m.

The correlation of both measurement methods for absolute
tree height was with an r2 of 0.82 a bit weaker, RMSE being
2.41m and average tree height was 24.88m.

4. DISCUSSION

The segmentation of point clouds representing dense forest
canopies into sub-clouds for each tree was visually not
possible without a certain amount of insecurity at the canopy
contact zones that lead to partly smoothed canopy surfaces.
The indentation-rich, irregular canopy surface of trees is on
the other hand mostly well represented in its visual
appearance (compare Figs. 2, 3, and 4).
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Fig. 7: Height measurements of top of the tree (open squares,
n=45) and canopy base (black dots, n=60) as measured with
the Vertex instrument (x-axis) and by terrestrial lidar (y-
axis).

The low ratio of virtual canopy projection area to their
convex hull area shows that this feature of tree canopies is
well represented in lidar-measured point-clouds, while it
cannot be captured by 8-point canopy projections.

Since 8-point canopy projections are a cheap and frequently
used method to characterize forest composition, it needs to be
specified that the arbitrary choice of corner points with the
goal to approximate the projected canopy surface line with
straight lines is essential for the accuracy of the method: The
alternative use of the outermost points of the canopy
projection would in many cases result in the convex hull
area, which overestimates canopy cover up to 79% when
compared with lidar data.

The slighter overestimation (23%) that was found comparing
8-point projections and virtual canopy projections may rather
be explained by canopy indentations not represented than by
branches that were not scanned due to occlusions or wrong
segmentation, since the general shape of projected canopies
was similar between both methods (compare Fig. 5) and
completely missed branches would have been visible as gaps
between canopies in the segmentation process. This
interpretation is also supported by the better correlation of 8-
point projection areas with the convex hull areas than with
virtual canopy projections themselves.

A big practical advantage of virtual canopy projections is the
possibility to view canopy contact zones from all necessary
viewpoints before decisions on point-cloud segmentation are
taken. This possibility does not exist when measuring
projections with a vertical sighting tube which may have
contributed to the deviation between both methods.

The agreement between Vertex measurement and lidar
measured tree heights was much better for height of canopy
base than for total tree height. This may have several causes:
First, the canopy base is easily visible for both, the laser-
scanner as well as the operator of the Vertex instrument.
Second, canopy base and stem base are more probably in the
same horizontal distance to the operator than the top of the
tree would be. Though stems may be inclined a few degrees,
same horizontal distance is a presupposition for correct
measurement with the Vertex instrument. The highest point
of the tree not necessarily has to be on the elongation of the
stem axis. Third, branches in the uppermost part of the
canopies had lower densities of lidar-measured points than
below the canopy. It may, therefore, be that the tree top and
its neighbouring points directly beneath have not been
detected in some cases, though this is not likely in the visual
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representations. Since both measurement methods may have
contributed to these errors, it is difficult to judge the accuracy
of tree height measurements without independent
measurements. The data do show a reasonable agreement
where the error sources for both methods are less severe, i.e.,
for measurements of height of canopy base.

5. CONCLUSIONS

(1) Not yet developed automated segmentation procedures
for tree canopies in a forest will likely have the same
problems as the visual segmentation of trees in a point-cloud
with the consequence of partly smoothed canopy surfaces,
unless the point density is even higher than in this example.
(2) Terrestrial lidar measurements provide a tool to validate
the performance of canopy projection methods. The arbitrary
choice of border points of canopy projections leads to more
accurate results than using the outermost points. (3) The
validation of lidar-derived tree height measurements in a
forest is not possible based on Vertex measurements, since
these depend too much on visibility limitations.

6. REFERENCES

Fleck, S., Schmidt, M., Késtner, B., Faltin, W., and
Tenhunen, J. D., 2004. Impacts of canopy internal gradients
on carbon and water exchange of beech trees. In: Matzner, E.
(Eds.),Temperate Forest Ecosystems response to Changing
Environment: Watershed Studies in Germany, Springer,
Heidelberg, pp. 99-126.

Hagemeier, M. 2002. Funktionale Kronenarchitektur
mitteleuropéischer Baumarten am Beispiel von Hangebirke,
Waldkiefer, Traubeneiche, Hainbuche, Winterlinde und
Rotbuche. Ph.D. Thesis University of Goettingen. 154 pages.

Henning, J. G. and Radtke, P. J., 2006. Ground-based laser
imaging for assessing three-dimensional forest canopy
structure. Photogrammetric Engineering and Remote Sensing
72 (12), 1349-1358.

Hunter, M. L. and White, A. S., 1997. Ecological thresholds
and the definition of old-growth forest stands. Natural Areas
Journal 17 (4), 292-296.

Johansson, T., 1985. Estimating Canopy Density by the
Vertical Tube Method. Forest Ecology and Management 11
(1-2), 139-144.

Zenner, E. K., 2004. Does old-growth condition imply high
live-tree structural complexity? Forest Ecology and
Management 195 (1-2), 243-258.

ACKNOWLEDGEMENTS

We thank all doctoral students of Graduiertenkolleg 1086,
especially Tobias Gebauer and Karl Maximilian Daenner, for
basic contributions in the investigated forest stand and Heinz
Coners for practical support of lidar measurements in the
forest. This research was funded by the German Federal
Ministry of Economics and Technology in the framework of
the 3D-Canopy Analyzer project.



ISPRS Workshop on Laser Scanning 2007 and SilviLaser 2007, Espoo, September 12-14, 2007, Finland

ADAPTIVE FILTERING OF AERIAL LASER SCANNING DATA

Gianfranco Forlani?, Carla Nardinocchi®'

* Dept. of Civil Engineering, Parma University, Italy
® Dept. ITS, University Roma La Sapienza, Rome, Italy

Commission III, WG 3

KEY WORDS: LIDAR, Classification, Algorithms, DEM/DTM, Automation

ABSTRACT

Filtering non-terrain points from raw laser scanning data is the most important goal to improve productivity in DTM generation.
Filtering algorithms are built on assumptions about what discriminates terrain points from points on other objects (e.g. buildings and
vegetation). In most cases, a single measure is used to accept or reject points. In this paper a three-stage raw data classification
algorithm is presented. After a preliminary interpolation to a grid, a region growing based on height differences is applied. Segments
from the region growing are classified as terrain, building or vegetation, based on their geometric and topological description.
Terrain grid cells are conditionally low-pass filtered, to remove low vegetation. A piece-wise approximation of the terrain surface is
computed, built from the grid cells classified as terrain. Finally, raw data are accepted as terrain within a given distance from the
surface. Results obtained on a ISPRS filter test data set are shown to illustrate the effectiveness of the procedure.

1. INTRODUCTION

Airborne laser scanning is today the most effective data
acquisition technology for the production of high resolution,
high quality DTMs (Digital Terrain Models). The only
competing technique might be aerial photogrammetry with
direct camera orientation by GPS/INS (Inertial Navigation
Systems) and DTM generation by digital image correlation;
with aerial digital cameras the automation of the workflow
should not be far from that of the laser scanner. Nevertheless,
the preference for the laser scanner is clear and unlikely to be
reversed. Because of its characteristics (first and last pulse,
penetration rate in forested areas, narrow field angles,
independence on shadows and object texture), laser scanning is
indeed better suited and more versatile than photogrammetry
for DTM production in urban areas as well as in forested areas.
Penetration of pulses under the canopy provides a key
advantage over photogrammetry, since it gives the filtering
algorithms a chance to succeed in getting rid of spots on
vegetation while retaining terrain hits.

Due to the scanning mechanism and aircraft movement, laser
spots are scattered on terrain, vegetation, buildings and on
whatever target that, hit by a pulse, reflects back enough energy
to be detected. The result is a point cloud that must be filtered
according to the survey purpose to get rid of unwanted echos:
vegetation and buildings in DTM generation, vegetation in 3D
city models, both the terrain and the buildings in tree counting
and modeling.

To reduce production costs and processing time, filtering is
performed automatically; in addition to visual inspection of the
results for quality control, manual editing is still necessary,
depending on the reliability of the filtering algorithms and on
the complexity of the site.

2. PREVIOUS WORK

Many filtering algorithms have been proposed in the last
decade; witnessing the difficulty of the task, none performs

equally well on any kind of landscape, because assumptions on
terrain characteristics or the threshold values used do not
always match reality.

A first group of algorithms looks for the lowest point in a
neighborhood and label it as a terrain point. This is achieved
mostly by applying morphological filters (Kilian et al., 1996;
Vosselman, 2000; Sithole, 2001) where the structuring element
is based e.g. on height difference or slope. Wack and Wimmer
(2002) use grid data in a hierarchical scheme where non-object
points are detected by using a Laplacian of Gaussian.

A second group fits an interpolating surface to the data and
accept individual points measuring their distance to the surface.
For instance, using linear prediction Kraus and Pfeifer (1998)
iteratively get rid of points above the interpolating surface, so
that it gets closer and closer to the lowest data points;
Axelsson’s (2000) algorithm works the other way around, i.e. a
minimal set of (lowest) terrain points is progressively densified
in a TIN structure by slope thresholding; Brovelli (2002)
analyses the residuals from spline interpolation to detect objects
contours.

A third group aim first to segment the data based on one or
more criteria and then try to classify them: Filin (2002) clusters
points in feature space, based on curvature and height
difference, classifying low and high vegetation, smooth and
planar surfaces; the neighbourhood used in feature evaluation is
adaptively adjusted to the slope (Filin and Pfeifer, 2006);
Roggero (2002) clusters points based on connectivity and a
principal component analysis using geometric descriptors;
Nardinocchi et al. (2003) segment data in regions bordered by
discontinuities, retrieve their geometric and topological
relationships and apply a rule-based scheme to classify the
segments.

Recently proposed algorithms stress the need of segmentation
and of context information to improve filter robustness: Sithole
and Vosselman (2005) aim to separate objects (natural or man-
made) from the terrain by extracting regions raised above their
surroundings and classify them using geometric and topological
relationships. Toévari and Pfeifer (2005) group points in

! Currently visiting professor at Delft University of Technology, Dept. of Earth Observation and Space Systems
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segments based on consistency of normal vectors, distance to
the fitting plane and distance from seed point; robust filtering of
the surface is then applied, where the same weights are applied
to group of points, rather than to single points.

In this paper a strategy for the classification and filtering of raw
laser scanning data is presented. The main building blocks of
the strategy (namely, data segmentation by region growing and
region classification) have already been presented respectively
in (Nardinocchi and Forlani, 2001) and (Nardinocchi et al,
2003). In (Forlani et al, 2006) the capability of the method in
building detection was demonstrated, in the context of building
reconstruction from laser data. In the following, Section 3
presents the main features of the strategy; Section 4 reviews the
segmentation and the classification, pointing to the changes
now introduced to earlier versions and showing the
improvements. Section 5 presents the raw data filtering, that
was just sketched in the previous papers. Finally, Section 6
reports on the results. Examples and results refer to site 5 of the
ISPRS laser scanning test dataset (Sithole and Vosselman,
2003).

3. OUTLINE OF THE METHOD

The classification strategy comprises three-stages (see Figure
1). In the first one, raw data are interpolated to a grid, taking the
lowest elevation in the cell as grid value.

In the second stage, grid data are segmented by a region
growing algorithm with adaptive threshold. The geometric
characteristics and the topological relationships among the
segments are reconstructed and, based on a set of rules, the
segments are classified as outliers, vegetation, building or
terrain. Although each cell was assigned to a class, the raw data
it contains must still be classified individually.

In the third and last stage of the procedure, the whole set of raw
data is examined. For the former, consistency is measured with
respect to the elevations of the neighbouring terrain cells. For
the latter, a piecewise approximation of the terrain with a
continuous surface is estimated using data from cells classified
as terrain; consistency is measured thresholding the distance
from the surface.

Raw Lidar Data
Re-sampling to a grid

L L
v v
Adaptive region growing | Slope-based Segmentation
segmentation - Gradient Orientation
L Segmentation

Geometrical and N l Knowledge base ‘4__

topological relationships L

"1 Grid Data Classification ‘
A4 A4 A 4

l High Vegetation ‘ l Building ‘ l Terrain ‘
1 Il
! !
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lg----

| Point-based filtering of low

vegetation and noise

Surface Interpolation Cells classified as terrain ‘

Figure 1. Components and main relationships of the framework for
LIDAR data filtering. Solid lines refer to processing of grid
data; dashed lines to processing of raw data

Point-based filtering of
high vegetation

Aggregation of raw data in segments enables a richer
description of geometric properties and the establishment of
topologic relationships. This makes it possible reasoning about
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their relationships and provides the contextual information
essential to increases the probability of correct classification of
single data point in the final stage. This is not to claim that the
method is error free, but rather that a segment-based approach
(as in feature-based matching) is more robust that just relying
on point-to-point comparison in a local neighborhood (as in
signal-based matching). Effective filtering cannot be separated
by some sort of object recognition and identifying terrain
patches or trees should not be seen as different from detecting
buildings.

The final stage relies completely on the correctness of the
classification of the cells labeled as terrain, since the overall
approximation of the terrain is obtained only from cells
classified as terrain. Some classification errors can be tolerated:
small patches of low vegetation labeled as terrain are filtered
out; buildings labeled as terrain, on the contrary, will not.

On the other hand, the further a cell is from the nearest terrain
region (or the less the terrain cells), the smaller the probability
that the approximating surface will truly follow the terrain and
so actually will help to correctly discriminate the point class.
Data interpolation, segmentation and classification have to find
the best compromise between correct labeling of the terrain
regions and the attempt to extend them as much as possible, in
order to penetrate into the high vegetation areas and to reduce
the number of small patches of terrain that, if completely
surrounded by vegetation, would be much more difficult to
classify reliably.

4. DATA INTERPOLATION, SEGMENTATION AND
CLASSIFICATION

In the following paragraphs the three stages of the strategy are
reviewed, highlighting the changes introduced with respect to
earlier versions and the improvements obtained. Attention is
also paid to using First and Last pulse and how positive and
negative outliers are dealt with.

The behaviour of the procedure is exemplified on the Site 5
dataset of the ISPRS Laserscanning test which offers a great
variety of environments, with step edges in the terrain, slopes
with different orientation, high vegetation on a steep hillside
and a built up area with vegetation with a relatively low density
of raw data.

4.1 Grid Data Interpolation

Grid cells are assigned the elevation of the lowest raw point in
the cell (see Figure 2). The larger the grid size, the more likely
this prevents the noise (such as cars, low trees and so on) to
affect the aggregation process. On the other hand, increasing it

Figure 2. (a) Raw data Points; (b) Grid data Points

too much will affect the extraction of detailed information
(slope, aspect, ...) from the grid, which may hamper the
effectiveness of further steps. The best grid size should be
between one or two times the raw data point spacing.
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Empty grid cells are treated as no data, unless all 8-neighbours
are non-empty: in this case, the cell value is set to the median of
the 8-neighbours.

Figure 3 shows the TIN representation of the raw data (left) and
of the grid data (right) in a smooth forest area. It is apparent
that, due to the high penetration rate, in such cases the grid
representation already constitutes a good, although noisy,
approximation of the terrain.

Figure 3. TIN of the raw data e TIN of the grid data on a wooded area.

4.2 Grid Data Segmentation

The region growing is the first step in data segmentation.

From a seed pixel, every of the 8-connected neighbours with a
height difference from the central pixel less than a threshold is
enclosed in the region and becomes in turn a seed point for that
region. The process goes on, until no points are added (i.e. the
region border will feature a discontinuity larger than the
threshold).

Although the result may depend on the cell size and the
threshold, the region growing separates most of the high
vegetation and of the buildings from the terrain: buildings raise
above the terrain by well defined discontinuities (edges), larger
than the threshold; laser spots on high vegetation get spread
over many very small regions.

Unless some terrain patches are completely bordered by dense
vegetation or, in case of bare earth, by a slope so steep that the
threshold is exceeded, the whole terrain may end up all in a
single region. This is because, from the seed point, the
algorithm looks for a smooth path across all the 8-neighbours:
therefore, even if in some area the terrain is steeper than the
threshold would allow, the region growing may include it by
“sneaking through” along a smoother path.

In the original implementation neither the choice of the seed
points nor the threshold for the region growing were tied to the
morphological features of the grid data. The threshold was set
to 0.5 m (i.e. about two times the height error of the data),
independently of cell size and terrain slope. The drawback was
that, in steep roofs or in steep terrain, several narrow regions
may be created, affecting the success rate of building and
terrain identification. Figure 4 illustrates the problem that arose
with a fixed threshold on a very steep roof.

(b)
Figure 4. Steep roof segmentation. (a) Gradient orientation image; (b)
region growing with fixed threshold: the roof is fragmented in several
regions; (c) region growing with slope adaptive threshold: the house is
included in one single region bordered by discontinuities.
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For a given roof slope, the larger the cell size or the lower the
point density, the likelier was a fragmented segmentation.

The same may happen with very steep terrain although, as
already pointed out, in such cases the aggregation may come
from a smoother adjacent terrain area.

Indeed, the region growing threshold should be coupled to the
grid cell size and should also take into account evidence of
surface continuity in the neighborhood. Several changes have
been made to the original implementation of the method to
address this problem. The region growing algorithm is now
steered by both the gradient orientation of the grid heights and
the slope. The seed pixels of the region growing algorithm are
chosen from regions larger than 30 m’ with homogeneous
gradient orientation while the threshold value is adaptively
adjusted to the slope of the region. Morevor, the process starts
from the regions with the lowest threshold value.

In large regions with homogeneous gradient orientation the
computation of the threshold will not be affected by vegetation.

space is divided in 8 partitions.
The threshold value T for the segmentation based on height
differences is computed, in each region obtained from the
gradient orientation segmentation, as:

T =min(T,, ,max(T,, ,s A+2,/s°cr, +0}))

where: Toux = 2A; Toin = 0.5 m s = the 75 percentile of the

slope distribution; A = cell size in m; op, and Gy are
respectively the planimetric and height accuracy of laser data in
m. With this modification the primary segmentation of the grid
data becomes in fact a (bounded) slope based segmentation.
Figure 5 shows the gradient orientation (cell size = 2m). Large
areas with the same colour correspond to regions having the
same aspect (orientation intervals are 45° large). Data holes and
flat areas are rapresented in white. Figure 6 shows the color
coded threshold values T for the same dataset.

The seed points for the region growing based on height
difference are taken from segments of the gradient orientation
segmentation larger than 50 m”, from the lower threshold values
on. The 0.5 m fixed threshold value is applied to the remaining
regions: in this way, areas with vegetation, that exhibit different
gradient orientation, or very small patches with the same
orientation, get separated in small regions.

Figure 7 shows the most significant segments with different
colors. The red spots are very small regions (less than 3 pixels)
that will be labeled as outliers or vegetation if several small
regions are contiguous. Notice that segments from the region
growing may encompass several regions with different gradient
orientation or with different slopes.
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4.3 Data Classification

Geometric characteristics of the regions and their topological
relationships are computed and stored in a knowledge base. A
rule-based scheme is applied to classify the regions: the
outcome of the process labels each region as vegetation,
building, terrain, outlier or unclassified (the last item tipically
being 1+3% of the area size). Actually, each class may have
sub-classes (e.g. courtyard as part of terrain); among
unclassified regions, narrow regions are defined as those
slender in shape. Points on high rise chimneys, towers, power
line poles, etc may be classified as outliers or buildings,
depending on shape, point density and cell size. Currently, no
rules discriminate bridges, that are therefore included in the
terrain.

Colour
T (dm)

<5 5-7 7-9 | 9-11 | 11-14 | 14-16 | 16-20

Figure 6. Color plot of the threshold values for the region growing

Figufe 7. The most significant regions of the grid data segmentation by
the adaptive threshold

The current set of rules has been drawn from simple models of
characteristics and relationships between terrain, building and
vegetation. The complexity of the task means that robustness of
the rule set cannot be taken for granted and that more rules
might have to be invoked in new scenarios. Most
misclassification errors occur with trees labeled as buildings,
buildings as terrain and terrain as buildings. The worst
misclassification error is a building included in the terrain,
because it will not be corrected in the next stage; on the
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contrary, terrain pixels erroneously labeled as building might be
recovered in the last stage. Figure 8 shows the result of grid
data classification.

4.4 Using First and Last Pulse

Almost every laser scanner today provides first and last (F&L)
pulse returns; the pattern of their difference is of great help in
identifying vegetation. This is very important to improve both
data classification as well raw data filtering: the percentage of
grid points in a region where F&L pulse elevations differ is
used to help the identification of terrain; raw data filtering (in
terrain as well as non-terrain areas) can be robustified by this
information (see Section 5).

building; orange: narrow regions; grey: unclassified.

In the previous implementation of the strategy, cells with
different height in the F&L pulses were classified as vegetation
before applying the region growing and were not passed to the
region growing. This led to more fragmentation of the terrain;
now a terrain region penetrates much further into areas with
high vegetation, because the (lowest) last pulse of the cell may
have an acceptable height difference to nearby terrain cells
(whether the pulse indeed hit the terrain or rather the
vegetation, is to be clarified, of course).

Grid data under high vegetation are more noisy than those on
bare Earth; together with F&L information, this can be used in
the final filtering of raw data.

4.5 Outliers

Outliers in laser data are either “negative” (i.e. points below the
surface, mostly due to multi-path) or “positive” (i.e. points
above the surface, such as hits on birds, power cables, etc). The
segmentation makes the classification insensitive to single cells
with positive or negative outliers in two ways: if the outlier is
the only point in the cell, it will be put in a 1-pixel region and
classified as outlier. If there are several points in the cell, some
outliers some not, the positive outliers will be recognized in the
final filtering stage, because they are higher than the
neighbourhood, whatever the class the cell was assigned. With
negative outliers, the pixel has been labeled as outlier from the
grid classification; other points of the cell may be assigned to
terrain or vegetation, depending on the distance from the
approximating surface.

Even in case several contiguous cells contain outliers, it is very
unlikely that they end grouped in a region, because this would
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happen only if they have similar gradient orientation or very
small height differences.

5. EXTRACTING TERRAIN POINTS FROM RAW
DATA

The output of the grid classification can be divided in two
classes: terrain and non-terrain pixels (i.e. pixels classified as
building, vegetation, outliers and pixels in unclassified regions).
Each raw data in a grid cell is now examined to label it as
terrain or as non-terrain point, comparing its distance from a
reference surface with a threshold #s depending on terrain slope
and sensor error tolerance in horizontal and elevation.

The reference surface is computed from the local neighborhood
for the former class, from a global approximation of the terrain
for the latter. The reason for differentiating between the two
classes is to allow more flexibility and fine-tuning for the
terrain cells.

Some of or all the raw data points of a cell classified as terrain
may in fact be low vegetation or noise. To check against this
possibility, a reference value h.s is computed from the
neighborhood using a conditional averaging filter. Let m, be the
mean of the neighbouring terrain cells, h, the elevation of the
current cell and t = 0.5 m a threshold value for low vegetation:

hrcf = m,
hrcf = hc

if (hy>m, +1t)
else

Cells unclassified or classified as non-terrain may nevertheless
contain raw data points that are in fact terrain points.
Comparing the elevation of the raw data with the predicted
elevation from a surface approximating the terrain, a decision
will be made on the point class. To this aim, the most reliable
information available (i.e. the raw data labeled as terrain points)
is used to compute the approximating surface. The acceptance
threshold is computed for each cell as a function of the slope of
the surface.

Currently, the approximating surface is computed using bilinear
splines with relatively short spacing (3+4 times larger than the
cell size); this may change in the future, to cope in a better way
with discontinuities (see below).

Points in cells classified as building do not need filtering; a
consistency check of the classification is performed, though: no
point in such regions should fall in the acceptance band. If
terrain points were erroneously identified as building, they
might now be recognized as terrain, if close enough to the
interpolating surface.

6. RESULTS ON ISPRS SITE 5

Figure 9 shows the behaviour of the raw data filtering in the
forested hillside of Sample51 (ISPRS Site5). The cross-section
(a) shows the reference data: terrain (pink) and vegetation (light
blue). In (b) the red points are input to the spline, while the
predicted value of the terrain in all cells classified as vegetation
or in unclassified regions is shown in green. The approximation
of the terrain is good and the ensuing raw data classification is
correct. On the other hand, if the terrain shows step edges, as in
the quarry in Sample53, the interpolation function tipically
undershoots at the bottom and overshoots at the top (see figure
10 (a)). This smoothing of sharp edges leads to rejection of true
terrain points.
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(2)

(b)

Figure 9. Cross-section of a forested area on an hill side; (a)
Reference data: terrain: pink; vegetation or buildings: light
blue. (b) Terrain surface approximation: spline input: red; spline
prediction: green.
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Figure 10. Cross-section of terrain with step edges; (a)
Reference data: terrain: pink; vegetation: light blue. (b) Terrain
surface approximation: input: red; spline prediction: green.
(c) Filtering: accepted terrain points (pink), rejected points
(light blue).

Figure 11 shows a cross-section in an area with buildings and
vegetation (Sample54) with the same color coding as Figure 10.

(2)

(b)

(c)

Figure 11. Cross section of an area with buildings and
vegetation. (a) Reference data: terrain: pink; vegetation or
buildings: light blue. (b) Terrain surface approximation: spline
input: red; spline prediction: green; (c) Filtering: accepted
terrain points (pink), rejected points (light blue).
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Table 1 shows the overall results for the Samples available at
Site 5; performance and correctess of the cell classification are
measured respectively by the percentage of true terrain points
with respect to the total number of terrain points in the Sample
and by the percentage of misclassified points with respect to the
number of cells labelled as terrain. Filtering errors are given
according to the Laserscanning Test definitions.

Terrain grid Raw data filtering
classification errors
TP: Terrain  |#TrueTP in |#FalseTP in | Typel | Type Il
Points; TG wrt TG wrt #TG
TG: Grid cells |#True TP in | cells (%)
class. Terrain |Sample (%)
Sample 51 85.1 6.4 8.3 8.6
Sample 52 80.8 2.2 8.5 9.6
Sample 53 77.8 1.0 10.7 14.3
Sample 54 85.5 7.5 44 12.0

Table 1. Correctness of grid classification and terrain filtering
for Site 5 Samples

Correctness of the terrain grid classification is normally high,
taking into account that if a cell contains more than one
TrueTP, the others were counted as errors. Classification errors
on the grid are higher with high vegetation and buildings
(Sample 51 and Sample 54) but filtering improved the results
by more than 10% in both cases. With rough terrain, both types
of filtering performed less effectively, especially the spline
interpolation.

As far as raw data classification is concerned, Type I errors are
good and better than most Test participants, Type Il are among
the largest.

7. CONCLUSIONS AND PERSPECTIVES

A strategy for classification and filtering of raw LIDAR data
has been presented. The core of the procedure, i.e. the
classification of data segments based on their geometric and
topological relationships looks sound enough. On the ISPRS
Laser Test Site 5, grid data classification led to the reliable
identification of a percentage of true terrain points varying
around 80%. Based on that information, a good approximation
of the terrain surface can be computed. Terrain raw data close
enough to the surface are also recognized as terrain, improving
the percentage of success by up to 10%.

Problems arise with step edges in the terrain, because of over-
and undershoot of the spline functions: alternative interpolation
techniques will be tested soon (in this respect, our last stage
needs a pre-filtered input as REIN (Kobler et al., 2007).

New approaches to rule definition in the grid classification are
also being tried: an attempt is currently underway to automate
the search for patterns in the data, using classification trees
(Sutton, 2005) such as the AdaBoost algorithm.
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LIDAR-DERIVED SITE INDEX IN THE U.S. PACIFIC NORTHWEST -
CHALLENGES AND OPPORTUNITIES
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ABSTRACT:

Site Index (SI), a key inventory parameter, is traditionally estimated by using costly and laborious field assessments of tree height
and age. The increasing availability of reliable information on stand initiation timing and extent of planted, even-aged stands
maintained in digital databases suggests that information on the height of dominant trees suffices for assessing SI. Light Detection
and Ranging (LiDAR) is a technology proven capable of providing reliable estimates of tree height even at the individual-tree level.
A rigorous evaluation of LiDAR-enabled SI estimation performed on coniferous stands of the coastal U.S. Pacific Northwest
indicates that where stand structure and topographic conditions support a high-fidelity assessment of ground elevation, accurate
(R* = 0.88) estimates of SI should be anticipated. In more challenging conditions the accuracy of the estimates lessens substantially.
A limited evaluation of spatial SI predictions indicates that the distribution of the index might not always conform to the

expectations commonly held by forest managers and planners.

1. INTRODUCTION

Site index (SI) is the most commonly used indicator of site
productivity (Hagglund, 1981), forms the basis for many forest
management activities (Zeide and Zakrzewski, 1993), and it is
an integral component of forest inventory systems (Hanson et
al.,, 2002). It is calculated as a function of the height of
dominant trees at some reference age, usually in even-aged
stands (Monserud, 1984; MacFarlane et al., 2000). The
formulation of the function can differ between species or eco-
regions. Assessment of SI is typically performed at selected
locations within the forest where estimates of tree height and
age are obtained via standard forest field mensuration
techniques. To avoid bias in SI estimates, it is essential that
trees participating into its calculation, sometimes referred to as
site trees, meet certain selection criteria (Nigh and Love, 1999),
including dominant status, absence of injuries or growth
suppression, and a preferred range of age.

Obtaining reliable estimates of individual tree height and age is
a laborious and costly process often inhibited by visibility
constrains, wood density that does not allow tree trunk boring
to determine age, etc. Because of these limitations, SI estimates
have traditionally been restricted to locations hosting inventory
plots, and spatial predictions of SI have been rare. Recent
efforts to assess the spatial distribution of SI have relied on
relating multiple environmental variables in a geographic
information system via regression tree analysis, geostatistics,
and multiple regression (Iverson et al., 1997; Gustafson et al.,
2003; McKenney and Pedlar, 2003). There has been speculation
(Louw and Scholes, 2002), however, that the multiple-variable
approach will be gradually replaced by superior, in terms of
predictions accuracy, physiologically based simulation models
such as 3-PG (Landsberg and Waring, 1997) or PROMOD
(Battaglia et al., 1999). A recent implementation of the 3-PG
spatial model in Oregon, USA, that used monthly averaged
climatic data, estimates of soil attributes, and Forest Inventory
and Analysis (FIA) data from thousands of plots in national
forests to produce SI maps of Douglas-fir (Pseudotsuga
menziesii (Mirb.) Franco) showed promising results (R*= 0.55),
despite issues related to plot size, density and georeference
precision (Swenson et al., 2005). The coarse resolution of the
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3-PG model’s prediction (1 km?) in Oregon, or of comparable
multivariate models implemented elsewhere, limits their utility
to forest planning and decision making at the strategic level
only. The often substantial SI variability within a stand or
tactical management units remains unknown.

The parsimonious parameterization of standard SI models
indicates that where even-aged is the preferred or common
forest stand structure and stand age is known, information on
the height of dominant trees is sufficient for obtaining local
estimates on forest productivity and SI. Because spatial
predictions of tree height and other forest inventory parameters
are restricted by financial and logistical constraints (St-Onge et
al., 2004), forest managers and inventory specialists have long
been regarding remote sensing as perhaps the only feasible
alternative to field measurements for obtaining spatial
predictions that meet established accuracy standards over entire
management units (Turner et al., 2004). Remote-sensing-
derived estimates of tree height are typically obtained via the
classic parallax method. Applied either on stereopairs of analog
aerial photographs (Worley and Landis, 1954) or more recently
(and more efficiently) on digital high-resolution imagery
(Korpela, 2004) the method was found to produce unbiased tree
height estimates only where a precise the ground-level
elevation could be assessed correctly at, or near, the base of
trees, a prerequisite rarely met in closed-forest canopies (St-
Onge et al., 2004).

Unlike aerial photography and other forms of optical remote
sensing, Light Detection and Ranging (LiDAR), sometimes
referred as airborne laser scanning (ALS), is capable of
penetrating the forest canopy, and hence is well suited to
describing the vertical structure of forests. Owing to the
capacity of small footprint laser pulses emitted from the
airborne scanning instrument to propagate through small
canopy openings and echo at ground level, LiDAR is also
capable of assessing ground elevation (Kraus and Pfeifer,
1998). Small-footprint scanning data comprise a set of points,
sometimes known as ‘returns’, accurately and precisely
georeferenced in three dimensions (Baltsavias, 1999).
Assuming adequate return density (> 4 points / m?), processing
of the point cloud data allows individual trees to be detected
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(Brandtberg et al., 2003), and digital models of the vegetation
canopy surface (CSM) and (bare-) ground surface (GSM) to be
generated (Hodgson et al., 2003; Clark et al., 2004). Estimates
of height for individual trees are obtained by subtracting from
the CSM value, at selected locations believed to represent tree
crown apexes, the corresponding, in two-dimensions, GSM
value. Variants of this approached have yielded height
estimates for individual trees that rivaled the accuracy of those
acquired in the field (Hyyppd, 2000; Persson et al., 2002;
Andersen et al., 2006).

Because the estimates of tree height depend on the fidelity of
the LiDAR-derived forest canopy and bare-ground models,
vegetation and topographical conditions that promote
uncertainty, and perhaps bias, in model values became sources
of error in tree height estimation. Choices of parameter values
and assumptions embedded into the algorithms used in
generating the models can also contribute uncertainty or bias
(Kobler et al., 2007). Canopy models derived from LiDAR data
tend to underestimate the true vegetation surface. The negative
bias has been attributed to the laser pulse not always hitting the
tree apex (Nasset and Qkland, 2002) and having to penetrate
the canopy surface before reflecting the first significant return
(Hill et al., 2002). GSMs are generated under the assumption
that enough pulses penetrate thoroughly through the stand
profile to enable an accurate assessment of bare-ground
elevation. Ackermann (1999) reported that 20 to 40 percent of
pulses may reach the ground under dense forest canopies.
Reutebuch et al. (2003) found that even in dense coniferous
stands the density of ground returns enabled construction of a
GSM with root-mean-square-error (RMSE) of only 0.31 m.
Other studies have reported though that in increasingly complex
vegetation, multiple-scattering reflection or absorption of the
energy carried by a pulse reduces the number of ground returns
or causes returns from understory vegetation or tree trunks to be
erroneously labeled as representing the ground (Harding et al.,
2001; Raber et al., 2002, Hodgson et al., 2003). In forest stands
with complex profiles, GSM overestimation of at least 1.5 m is
common (Hodgson et al., 2003; Clark et al., 2004) and bias
should be expected to increase further with even moderate
slopes (Kobler et al., 2007).

Although many studies have investigated the fidelity of
LiDAR-derived estimates of tree height (Nesset, 1997;
Popescu et al.,, 2002; Maltamo et al., 2004), very few were
performed in dense forests or in terrain characterized by steep
slopes (Clark et al., 2004). The paucity of studies were laser
scanning is used for estimating tree heights in forests that are
both dense and situated on steep slopes is likely due to the fact
that, in such conditions, it is logistically and financially
exceedingly difficult to obtain reliable field measurements of
tree height necessary for evaluating the height estimates derived
from LiDAR data. The challenge is further intensified where
precise height estimates are needed over an area, a prerequisite
for assessing inventory parameters with spatial support such as
SI, instead of only at selected locations. The objectives of this
study that address these challenges were a. to evaluate the
fidelity of LiDAR-derived estimates of SI, and b. to investigate
potential patterns in the spatial distribution of Site Index in the
structurally complex temperate rainforest growing on the steep
terrain of the coastal U.S. Pacific Northwest. The evaluation is
based on rigorously calibrated field data obtained by using
survey-grade equipment on plots established specifically for
this study.
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2. METHODS
2.1. Study area

The 9500-ha study area is on the coastal mountains of Lincoln
County, in the State of Oregon, USA (Figure 1), and centered
approximately at 44° 32°N, 123° 39°W. More than 90 percent of
the area is temperate rainforest, with mean annual precipitation
of 2005 mm. Forty seven percent of the forests are privately
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Figure 1. Study area

owned and under very intensive, timber-oriented management.
1550 ha are owned by the State of Oregon and 3850 ha are part
of the Siuslaw National Forest where management has been
limited to occasional non commercial thinnings, very few of
which occurred after 1984. Prevalent species in the study area
include Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco),
bigleaf maple (Acer macrophyllum Purgh), and red alder (Alnus
rubra Bong.), with the hardwoods dominating buffer zones
around the drainage network. Elevation ranges from 66 to
1123 m above sea level and terrain is characterized by steep
slopes. Over the forest area the mean slope is 61 percent, and
the 75™ slope percentile is 84.

2.2. Field data

Forty five fixed-area plots of 15-m radius were established in
the study area in summer 2005 stratified across classes of cover
type (conifers, hardwoods, and mixed), tree size, and stand
density. A three-member, veteran FIA crew visited each plot
tallying all trees with diameter at breast height (DBH)
exceeding 12.7 cm or of dominant or co-dominant status
regardless of DBH. For each tree, the species and DBH was
recorded, and the projection of its crown to the ground was
delineated using distance and azimuth measurements from the
tree base (Figure 2). Continuous feedback from the remaining
crew members was used to guide a person operating a
clinometer to on-ground locations that defined the shape of the
crown being delineated. Estimates of tree height obtained via an
electronic clinometer / distance finder were assigned a
precision-class code reflecting the crew’s confidence on the
estimate. Two dominant trees in each plot were bored to
determine age. Sketch maps depicting the presence, type, and
height of understory vegetation were also produced.
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Figure 2. Field-delineated crowns of a plot and corresponding
tree bases. The dashed line represents the plot boundary.

Management archives and stand maps from the Siuslaw
National Forest and management plans or operation records
kindly contributed by local tree farms were examined to
determine the age of stands in nearly 75 percent of the forest
land. After excluding all plots in uneven-aged or young (< 20
years) stands or where records suggested past stand
improvement activities (fertilization, etc.), a set of 21 plots, all
dominated by Douglas-fir, was selected and used in this study.
The age of dominant trees ranged among the selected plots
from 27 to 74 years. Plots comprising older and larger trees
were in publicly owned stands.

The large percentage of height estimates assigned a low
precision code in close-canopy stands confirmed skepticism
that, in such conditions, traditional field mensuration
techniques could not support the study’s tree height precision
requirements. To mitigate these limitations, an alternative, far
more complex, approach was devised. It entailed a detailed
survey of the bare ground and calibration of the tree crown
apexes in each plot.

2.2.1. Plot registration and ground survey. For each plot a
minimum of two locations was precisely referenced using a
Real Time Kinematic (RTK) global positioning system
instrument at leaf-off conditions. The instrument was set to
record only when the expected, internally calculated, three-
dimensional precision was better than 5 cm. Because the
operation of the RTK instrument is limited to areas free from
overstory vegetation, in 12 of the plots the closest two locations
successfully recorded with the RTK were in canopy openings
well outside the plot boundary. For those plots, transects
connecting reference locations to corresponding plot centers
were established and surveyed with a total station. For the
remaining 9 plots, unobstructed, under canopy, lines of sight
between the RTK reference locations and the plot centers
supported direct plot georeferencing via the total station.
Additional RTK reference locations and transects installed for 4
of the 12 plots revealed that the location error of the plot center
ranged from 5.3 to 11.6 cm (mean 8.4 cm). Considering the
difficult terrain and poor visibility conditions, the error level
was deemed acceptable. With the total station positioned and
oriented on the plot center, terrain inflection points were
flagged over the plot area and a 5-m buffer around it. The flag
density was higher in portions of the plots exhibiting variations
in micro-topography. Across plots the density of flagged points
had an average of 0.31 per square meter. Using Delaunay
triangulation, the coordinates of flagged locations recorded with
the total station were processed to generate a Triangulated
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Irregular Network (TIN) for each plot, and the TINs were then
converted to 1-m rasters via cubic convolution. Five 10-m wide
corridors transcending the boundaries of stands with contrasting
stem densities and structure were also surveyed in late summer
2006, but with smaller point density. Canopy and ground
models for the corridors were generated following the
methodology used for the regular plots.

2.2.2. Calibration of tree apexes. Tree-apex calibration was
performed by using 14 additional plots of custom size and
shape installed either in short (< 3 m) vegetation or along the
edge of Douglas-fir stands exposed by recent clearcuts. The
leader stems of the trees were surveyed during windless days
with the total station from three reference positions in the
clearcut area previously surveyed with the RTK instrument.
The methodology used is similar to the one detailed by
Andersen et al. (2006). Trees with apex measurement RMSE
exceeding 7.5 cm were eliminated from further consideration.
A comparison of the coordinates of the surveyed apexes to the
coordinates of co-located (within 1 m in two dimensions)
highest LiDAR returns for 120 trees of various sizes and ages
revealed an elevation bias of -0.58 m (Figure 3). The calibration
procedure was repeated at leaf-off conditions with nearly
identical results.
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Figure 3. Histogram of discrepancies between surveyed and
LiDAR-derived tree apex location at leaf-on conditions

2.2.3. Estimation of tree-height. To determine the heights of
dominant and co-dominant trees in each plot, the field-
delineated crowns were first overlaid with the return cloud. The
elevation of the highest return within a crown was recorded and
subsequently adjusted to account for the bias mentioned above.
The calibrated tree height was then computed as the difference
between the calibrated elevation of the highest return and the
value of the GSM at the base of the tree. Calibrated heights for
a total of 313 trees were computed.

2.3. LiDAR data

Laser scanning data were acquired at leaf-on conditions in July
2005 and leaf-off conditions in February 2006 using an aircraft-
mounted Optech 3100 system from an average height of
1000 m above ground level. The LiDAR instrument operated
on a 71 kHz laser repetition rate, captured a 20° scan width (10°
from nadir) with adjacent flight line overlap of 50 percent, and
yielded an average density of 9.81 returns per square meter for
the leaf~on mission and 8.70 returns per square meter for the
leaf-off mission. For both missions the spot spacing was 32 cm



IAPRS Volume XXXVI, Part 3 / W52, 2007

with laser footprint diameter of 33 cm. Compared to horizontal,
impermeable surfaces surveyed with the RTK, the laser returns
sustained an RMSE of 2.6 cm during the leaf-on mission and
3.1 cm during the leaf-off mission. The scanning data delivered
by the vendor had been processed with proprietary software to
eliminate path reflectance points and to identify ground returns.
The latter was enabled by an implementation of the adaptive
TIN model (Axelsson, 2000). The raw (pre-filtered) data set for
both missions was also obtained.

2.3.1. Canopy and ground models: For each plot, a 1-m
canopy model was constructed by querying the returns cloud to
determine the highest returns within the two-dimensional area
occupied by each cell. Owing to the high return density and
short pulse spacing, discontinuities in the canopy models were
rare for both acquisitions and were observed only along the
edge between adjacent crowns in plots with small canopy
openings. GSMs were developed using the filtered returns
classified as representing the ground via ordinary Kriging
(Goovaerts, 1997) with a minimum of six nearest neighbors.
Both canopy and ground surface models were co-registered to
the GSMs generated from the survey data.

2.3.2. Tree identification and assessment. Individual trees
were identified via the local maxima method (Wulder et al.,
2000) using the LiDAR-derived canopy over the plot areas.
After the elevation of GSM-identified tree apexes was bias-
adjusted, the height of corresponding trees was computed as the
difference between the tree apex elevation and the value of the
co-located cell in the LiDAR-derived ground model. The local
maxima method identified 294 trees. It was determined by
visual examination of stem maps, delineated crowns, and the
identified tree apexes that the tree list contained 26 errors of
omission and 7 errors of commission.

2.4. Plot Site Index

The SI estimation for each plot followed the standard FIA
protocol for Douglas-fir-dominated forest conditions. The
protocol uses Equation 1, known as the King’s (1966) formula,
to compute estimates of SI for the five largest (in terms of
DBH) or five tallest Sl-eligible trees present within a 0.2 ac
(809 m?) area. The plot SI is then computed as the mean of the
five estimates.

7.92236 1.97693 )
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3.2808 * A 9.5404 5.5818 73382,
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3.2808
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where  SI=King’s SI in meters at reference age of 50 years

A = breast-height age
H = tree height in meters

Using classes of mean annual increment as reference, Equation
1 can be translated into a family of SI curves (Figure 4),
commonly used to classify site productivity, instead of the
actual SI values.

To investigate whether or to what extent tree selection affects
the plot estimate, three SI versions were computed. The first
(SIp) was based on the trees with the largest, field-measured
DBH. The second (SI};) was based on the tallest trees identified
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in the field survey. The last version (SI;) employed the tallest
trees whose height was derived from the laser data. All versions
used the stand age retrieved from the management records,
adjusted for 6 years, the average time required for a tree to
reach breast height from seed.

70

SI(m)

30

50 80 110 140 170

Tree age at breast height

Figure 4. Douglas-fir Site Index classes for the coastal U.S.
Pacific Northwest

2.4.1. Spatial predictions of Sl. Investigations on the spatial
continuity of SI focused on six areas, approximately 1 Km?
each, where the stands present met the age and structure criteria
for assessing SI. Given that reliable ground information, and
therefore tree height, was available only for a single transect
surveyed in each of these areas, the spatial investigations of SI
were only exploratory in nature and employed omni- and
directional variograms, along with an evaluation of potential
trends (first-order spatial autocorrelation) in the predictions.
The fidelity of SI maps produced was evaluated by visual, on-
ground assessments performed while cruising the stands in the
six focus areas.

3. Results

Tree age assessed by boring selected trunks was across plots,
on average, 1.9 years (standard deviation 0.9) lower than the
age expected from the stand history records. In the absence of
cases showing the age determined by boring to exceed the age
dictated by the records, and given that age underestimation for
bigger trees where missed growth rings or failure to penetrate
the trunk to its center is more common that in younger trees,
there was no reason to doubt the accuracy of the stand age
retrieved from management records.

Interesting insights into the interaction of dense coniferous
vegetation and the laser pulses are obtained by subtracting the
surveyed from the LiDAR-derived GSMs. For 10 of the 21
plots no macro-scale differences were observed between the
surveyed ground surfaces and those computed from the leaf-on
laser data. The paired discrepancies in cell values formed
leptokurtic Gaussian distributions with means that ranged from
-0.28 to -1.04 m. Nine of these 10 plots had little or no
understory vegetation and the overstory had either been thinned
in the past or contained regular canopy openings due to age
progression. The 10™ plot (Figure 5b) had a very dense
overstory but was located on mild (51 percent) slope. For
another five plots, the discrepancies between surveyed and
derived surface elevation were larger, up to -2.19 m, and the
distribution of paired cell value differences was wider than in
the previous group. In three of the five plots the distribution
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was bimodal. All five plots had dense multi-layer understory
vegetation with overstory exhibiting occasional openings. For
the remaining six plots large scale discrepancies were observed
between the surveyed and LiDAR-derived surfaces. The
distribution of cell value differences had Gaussian form with
means ranging from -4.97 to -11.02 m (Figure 5a). The plots in
this group were either located on very steep slopes or had
dense, completely closed canopies. Substituting the leaf-on
laser data with the leaf-off version caused a slight reduction in
the discrepancies between the surveyed and derived ground
surfaces for the first two groups of plots with the mean
differences in the first group now ranging from -0.18 to -0.84 m
and in the second from -0.46 to -1.58 m. No improvement in
ground-surface discrepancies was observed for the third group.
The third was also the only group of plots where returns located
above the surveyed ground were eliminated during data
preprocessing, an observation pertaining to both acquisitions.

20 30 40 50 60 70 80 90

Elevation (m), relative to the one at the beginning of transect
10

T T T T T T
28 35 0 7 14 21 28 35

Distance (m) along transect

21

a. b.

Figure 5. Plot profiles of 1 m depth depicting laser returns
either maintained (dots) or filtered out (hollow circles) during
data preprocessing, and surveyed (solid lines) and LiDAR-
derived (dashed lines) ground surfaces.

In the process of overlaying the field-delineated tree crowns
with the return cloud to evaluate the fidelity of individual tree
identification procedure a pattern emerged that involved the
relative location of tree apexes and bases. It was determined
that for the majority of trees, the projection of the tree apex to
the ground was downhill from the tree base, an indication that
the trees were leaning systematically away from the slope. By
considering that a tree was leaning if the horizontal distance
between its apex and base exceeded 0.5 m, it was determined
that 165 trees (53 percent) were leaning away from the slope,
50 trees (16 percent) were leaning in parallel to the contour
lines, and 41 trees (13 percent) towards the slope. For the
remaining 18 percent of the trees no appreciable leaning was
observed. The intensity of the leaning was found to be
positively correlated to slope and tree height, and negatively
correlated to canopy closure, but the correlation was weak, with
coefficients 0f 0.19, 0.16, and -0.17, respectively.

140

The option of selecting the trees with the largest DBH instead
of the tallest ones was found to have little effect on the plot SI
estimate. A t-test of the paired differences between SI values
computed using the two alternatives methods for tree selection
failed to reject the hypothesis that the SI estimates were equal
(p > 0.5). Substituting, however, either one of the alternative
field-data-assessed SI estimates in the test with their LiDAR-
derived equivalent, rendered the test significant (p<0.001).
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Figure 6. Plot Site Index values computed using the tallest trees
surveyed in the field and their LiDAR-derived equivalent.
Symbols indicate plot membership in classes of fidelity for the
ground surface extracted from the laser data.

The causality behind the t-test findings becomes evident when
examining the information in Figure 6, which compares the
field calibrated and LiDAR-derived plot SI. Index values
shown by circles in Figure 6 represent plots where the LIDAR-
derived ground surfaces approximate the surveyed surfaces
fairly well. In all but one of these plots, the predicted values
exceeded the calibrated values, an indication that the tree height
underestimation caused by the slight overestimation in ground
elevation is somewhat overcompensated for by the trees leaning
away from the slope. The values shown by crosses correspond
to plots where the overestimation of ground elevation via
LiDAR far exceeds the height overestimation due to leaning
and results in index underestimation. With two exceptions,
index values represented by triangles correspond to plots where
elevation overestimation is somewhat balanced by tree height
overestimation due to leaning. Note that 6 of the 11 plots in the
last two groups (shown within a square in Figure 6) would be
assigned an SI class of Il when assessed via LIDAR and an SI
class of | by using the calibrated field data. For the other 15
plots, the SI class assignment would not be affected by the
method used to predict the index.

Regressions of the field-calibrated SI on the predicted values
produced a low overall R value of 0.42. The R’> values
pertaining to separate regressions computed using only the plot
in each of the groups depicted in Figure 6 were substantially
higher though, and for the group of plots established in medium
density stands on moderate slopes, conditions that support
assessment of ground elevation free from gross errors, it
reached 0.88. Areas with conditions similar to those prevalent
in the latter group of plot became the focus of investigations
that evaluated the fidelity of spatial predictions of SI.



IAPRS Volume XXXVI, Part 3 / W52, 2007

SI values predicted at 27-m intervals, the spacing equivalent to
the size of field plots, were used to calculate omni- and
directional variograms for each of the six, approximately 1km?
areas where stand characteristics allowed computation of high-
fidelity GSMs. A variogram quantifies how the values of a
spatially distributed phenomenon change with distance.
Typically, the value dissimilarity (semivariance) increases with
distance until an asymptote (sill) is reached. The distance at
which the sill is reached is known as the range of the
variogram. Although there were notable differences in their
form, all SI variograms computed for the six areas failed to
reach a sill, thereby indicating the presence of low-order spatial
autocorrelation(s), sometimes referred to as trend, affecting the
predictions of SI. Of the many topographical covariates that
were examined as a potential trend source (aspect, elevation,
slope, wetness index, local ground curvature), only two were
found to be significant at a = 0.05; the distance to streams,
which explained an average 9 percent of the SI variance across
the six areas, and a composite variate computed as the natural
logarithm of the slope cost distance away from streams, which
explained 19 percent of the SI variance. Surprisingly enough,
the percentage of SI variance explained increased to an average
31, almost a third of the total, when the variate was modified to
be the natural logarithm of the absolute slope cost distance
computed at 50 m from streams across contour lines.
Variograms of the residuals of SI predictions (i.e. with the
influence of the trend on the predicted SI values removed)
regressed on the modified variate values did reach a sill, an
indication that the remaining 69 percent of the SI variability is
likely caused by genetic differences among the trees, soil
characteristics, and variability in microclimate.

Management SI (st.dev) Mean Height Age (at breast SI Cell
Unit (m) (m) of SI Trees height) Count

A 43.6 (2.66) 40.0 43 325

B 44.6 (3.48) 24.7 23 366

C 43.8 (3.43) 27.9 27 231

D 44.0 (2.51) 40.8 44 411

Figure 7. Top: Perspective view of the return cloud for a 1-km?
area used in the evaluation of SI. Middle: Perspective view of
SI predictions. Lighter tones indicate higher index values. The
thick lines delineate management units; the thin lines represent
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the drainage network. Bottom: Descriptive statistics of SI
predictions for each management unit.

Although only a third of the variability in the SI has been
accounted by spatial variates, the absence of discontinuities
across management unit boundaries (Figure 7) suggests that at a
coarser scale, LiDAR-enabled assessment of SI yields robust
results. In the area depicted in Figure 7, the mean predicted
value for SI is practically the same for all four management
units despite the stand age differences. The higher variability in
the predicted values for units B and C is likely due to the slope
of the SI curves being much steeper at smaller reference tree
ages (Figure 4) than at older ages. A set amount of height
variability for a group of adjacent younger trees would produce
a higher SI variance than for a group of older trees.

4. Discussion

Evidence from the surveys of ground surface in this study and
the analyses of laser data profiles in dense, coniferous canopies
appear to contradict the commonly held belief that, given a high
pulse density per unit area, enough pulses would penetrate the
vegetation profile to allow detection of the forest floor. There
appears to be a limit in canopy density, albeit difficult to
quantify and likely different among forest cover types, beyond
which the percentage of pulses that manage to penetrate the
upper canopy layers exhibit substantially higher levels of path
reflectance compared to the pulses penetrating less dense
canopies. The implication of this phenomenon is that the
already small amount of returns that are indeed reflected by the
ground surface, are perceived as originating from much below.
In such conditions, the density of legitimate ground returns is
too small over extended areas to support the detection of
ground surface.

Steep terrain introduces additional difficulties in ground
detection. The algorithms used for the assessment of bare-
ground utilize, sometimes directly, sometimes implicitly via
simulation, slope thresholds to eliminate above ground returns.
In 100 percent slopes or higher, the search radii associated with
the slope thresholds that are used by the algorithms to quantify
the spatial relationships between adjacent returns become so
large that, inevitably, cause legitimate, above ground returns to
be eliminated. Employing a more advanced algorithm for scan
data filtering and ground assessment might have improved
slightly the fidelity of tree height estimates and ultimately of
the SI estimates but only for the plots located on milder slopes
and with non-continuous canopies.

To minimize acquisition costs while maintaining high return
density coverage, LIDAR instruments capable of increasingly
higher pulse rates have been developed. Personal
communication with LiDAR data vendors in the western U.S.
has revealed that the 15-fold increase in pulse rates over the last
few years has not been accompanied by an even near increase
in the power the instrument outputs. Simply put, modern
instruments emit more but weaker pulses. Studies that have
successfully retrieved the ground surface in tropical (Clark et
al., 2004) or in dense, coniferous forests (Reutebuch et al.,
2003) have used pulse rates much lower than the one used in
this study. Unless the per-pulse energy could be increased, in
laser data acquisitions where unbiased retrieval of the ground
surface is of essence, lower pulse rates might warrant
consideration.

The decent correspondence (R* of 0.88) between field-
calibrated and LiDAR-assessed SI in nearly half of the plots
used in this study suggests, that in ecosystems and biomes with
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topography and vegetation complexity less challenging than
those in the coastal U.S. Pacific Northwest, high-fidelity index
estimates should be expected. If the assumptions about absence
of gross ground surface errors in the areas where spatial
evaluations were attempted were valid, then useful information
can be gleaned from such data at the spatial domain as well.
The finding, for example, that a lag of 50 m from streams added
to a spatial variate improves the percentage of variance in
spatial SI predictions explained by that variate, challenges
common beliefs held by local forest managers. Regulations
limiting harvesting or other management operations to only
outside 15 to 45 m buffers around streams and creeks are
thought anecdotally to exclude from timber production the
portion of the land with the highest growth capacity. This study
hints that this in not the case. Perhaps excessive soil moisture
near the drainage network early in the growing season may
actually shift the most productive land at some distance uphill.
The limited influence topography is found to exert on the
values of the index could relate to the limited range of index
classes present within the study area and the relatively small
extent of the six areas evaluated. Upcoming LiDAR
acquisitions over Douglas-fir stands growing on shallow soils
and higher elevation might enable a more precise quantification
of topography’s influence on SI.

The applicability of the methodology used in the study to
predict SI is limited to stands with even-aged, usually planted
overstory and where detailed stand initiation and management
records are available. It is also limited to species that maintain
substantial, and hence LiDAR-discernible, height growth until
older age classes. The study also indicates that because of
substantial local variability in the height of dominant trees even
within short distances, it is important that SI estimates be based
on an adequate sample of trees.

5. Conclusion

The ability of LiDAR to penetrate stand profiles renders it a
useful technology for quantifying the vertical dimension of
forests and for assessing key inventory parameters such as SI.
As this study has demonstrated, however, in dense forests with
continuous, closed canopies growing on steep terrain, laser
pulses often fail to penetrate the stands and to adequately
sample the ground. Substantial errors in the assessment of
ground elevation propagate through the computation of tree
height and introduce bias in the predicted SI values. Additional,
albeit smaller, bias is introduced by the underestimation of tree
apex elevation and tree leaning. A better understanding of the
mechanisms governing the interaction of laser pulses and dense
vegetation could help predict the conditions where tree height
and SI estimates might exhibit bias or increased levels of
uncertainty. Extending the study area to include forest lands
with lower SI index classes may allow detection and
quantification of topographical gradients influencing the values
of the index.
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ABSTRACT:

The objective of this study is to test the feasibility of nation-wide medium footprint airborne laser scanning (ALS) data for
derivation of forest parameters. The comparison of canopy closure as one important parameter for many forest functions derived
from ALS data and aerial photo interpretation was conducted. The present study was carried out in the framework of the Swiss
National Forest Inventory (NFI). Three study areas of different size, topographic and forest characteristics were selected. In a first
step, canopy height models (CHM) were obtained by subtracting the interpolated terrain altitudes of LiDAR (Light Detection And
Ranging) DTM from the interpolated canopy altitudes (LiDAR DSM). Then a binary forest layer with CHM larger or equal 3 m was
calculated according to the Swiss NFI forest definition. The Distinction between deciduous and coniferous forest (degree of
composition) was performed using the surface cover classes (broadleaved tree, coniferous tree, larch) of the aerial photo
interpretation of the NFI for 7,696 sample plots. In a second step, canopy closure derived from the aerial photo interpretation was
compared to canopy closure calculated from binary CHM. The study reveals that the canopy closure is underestimated in the binary
CHM from LiDAR data and highlights significant differences between coniferous and deciduous predominated forest plots and
significant differences between compared canopy closure from winter and summer data. The study shows limitations of canopy
closure derived from national LiDAR data but also stresses its practical relevance for many protective functions of forests in alpine
conditions.

1. INTRODUCTION fulfilled for an appropriate estimation of these parameters. Due
to the fact that parts of tree crowns are shadowed, it is obvious
The present study focuses on a comparison of national medium that not all important forest parameters can be derived from
footprint LiDAR data with aerial photo interpretation for aerial photographs. Especially in dense forest stands and in
deriving standard forest parameters as required by the Swiss mountainous regions the shapes of trees are varying with the
National Forest Inventory. geometrical position on the stereo images (St-Onge et al. 2004).
Forests, as part of the landscape, represent an important natural Because seeing the ground is of critical importance, good
resource for mankind and other living organisms. Exact results can only be obtained in open forest covers.
information on forest extent, structure and composition is Recent progress in three dimensional remote sensing mainly
needed for environmental, monitoring or protection tasks includes digital stereophotogrammetry, radar interferometry and
(CIPRA, 2001; ALPMON work package 1, 1997). Especially ~ LiDAR (Hyyppi et al. 2000; Lefsky et al. 2001; Naesset 2002).
alpine forests play a key role in the protection against natural Meanwhile, several LIDAR systems are available on the market
hazards such as rock fall and avalanches. Furthermore, spatial (e.g. Baltsavias, 1999; Heurich et al., 2003; Hyyppi et al.,
extent of terrestrial ecosystems such as forests and their 2000), enabling the derivation of DSMs and DTMs from such
composition are a central issue in the discussion of carbon sinks data as well. Some studies suggest the use of DSM data to
and sources at national and continental level (Turner et al, detect changes in the forest stands (Schardt et al., 2002; Naesset
1995). & Gobakken, 2005). A number of studies reveal the successful
However, estimation of forest parameters for large territories use of LiDAR-based techniques to estimate tree and stand
(e.g. for national forest inventories) is either expensive if done attributes such as tree height, crown diameter, basal area and
in the field or imprecise when accomplished through automated stem volume (Naesset, 1997, Persson 2002; Morsdorf et. al
stereophotogrammetry (Lefsky et al., 2001; St.-Onge et al., 2004). Combining some of these attributes can be useful to
2004; Maltamo et al., 2004). Moreover, obtaining tree heights evaluate forest stand parameters, e.g. the percentage of canopy
through measuring is often not feasible in dense and cover (Ritchie et al., 1993).
impenetrable forest stands (St-Onge and Achaichia, 2001). However, some studies also show an underestimation of tree
Especially the mapping of forests and the derivation of forest and canopy height, a result also found by scanning LiDAR
parameters is challenging when undertaken in alpine  studies (e.g. Magnussen et al. 1999; Means et al. 2000; Gaveau
environments due to the specific terrain conditions (Hollaus et & Hill 2003). Estimations of the mean tree height are sensitive
al., 2000). ACCOTdiIlg to Wang et al. (2004), the costs of forest to forest structure and Shape of the canopy (Nelson 1997;
sampling can be reduced substantially by estimating forest and Schardt et al. 2002). Often a narrow tree apex is missed by
tree parameters directly from aerial photographs. The LiDAR hits or the top of a small tree is covered by branches of
measurement of tree heights is one of the tasks that need to be a tall tree. However, for large monitoring programs or national
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forest inventories there is a growing need to develop new
remote sensing techniques that allow deriving quantitative
forest parameters more directly.

The objective of this study is to compare national medium
footprint LiDAR data with aerial photo interpretation as applied
in the Swiss National Forest Inventory (NFI) for the derivation
of the degree of composition and canopy closure. Canopy
closure is one of the most important parameters to determine
the protective functions of forest in alpine conditions, in
particular against avalanches (Meyer-Grass and Schneebeli,
1992). To ensure that the results are of practical relevance, only
data and methods which are already applied and serve as
operational applications are used (national LiDAR data and
stereo image interpretation of NFI sample plots).

2. MATERIAL AND METHODS

2.1 Study area

Switzerland is divided into 26 cantons. For this study three
cantons with different topographic and forest characteristics are
used as test sites. An overview is given in figure 1.

The first study area is located in the northern part of
Switzerland (approx. 47°23° N and 8°2° E, 350-900 m a.s.l.)
and covers the area of the canton Aargau (AG) with approx.
14,000 km?”. The highly fragmented landscape is characterized
by a smooth terrain, forests, agricultural and urban areas. The
forest covers 35 % of the area (4,930 km®) according to the
second NFI (Brassel and Brandli, 1999). The forest consists of
mixed deciduous trees (Fagus sylvatica as dominant tree
species) and coniferous trees (Picea abies as dominant tree
species).

The second study area is located in the pre-alpine zone of
central Switzerland (approx. 47°1° N and 9°4’ E, 400-3600 m
a.s.l.) and covers the area of the canton Glarus (GL) with
approx. 7,000 km?. The tree line in the area is around 1750-
1800 m a.s.l. The landscape is characterized by steep slopes
with the exception of the main valley and its plane, forests,
pastures, few agricultural areas and settlements. The forest
covers 29 % of the area (2,050 km?®) (Brassel and Brindli,
1999). The forest is characterized by mixed deciduous trees
(Fagus sylvatica as dominant tree species) in the lower parts
and coniferous trees (Picea abies as dominant tree species) in
the upper parts.

Aargau
~  Glarus
oz
4
Tessin
0 50 km
[—

Figure 1. Overview of the three test sites: Cantons Aargau,
Glarus and Tessin.
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The third study area is located in the southern part of
Switzerland (approx. 46°11° N and 9°1° E, 200-3400 m a.s.l.).
It covers the area of the canton Tessin (TI) with approx. 28,100
km? whereas 49.4 % (13,900 km?) are forests (Brassel and
Brindli, 1999). The landscape is mainly characterized by
complex terrain with steep slopes, many valleys and forests
(figure 2). The tree line in the area is around 2100-2150 m a.s.l.
The forest consists of mixed deciduous trees (Castanea sativa
as dominant tree species) and coniferous trees (Picea abies as
dominant tree species).

45%

0O Aargau

35% - @ Glarus

| Tessin

30% +—

25%

20%

15%

10%

il

0°-1° 1°5° 5°-15°

0%

16°-25° 25°-35° 35°-45° 45°-90°

Figure 2. Distribution of the deciduous forest area in relation to
the terrain slope for cantons Aargau (left), Glarus (middle) and
Tessin (right). For test site Aargau most of the deciduous forest
area is located in relatively flat topography, contrary to Tessin
and Glarus where most of the forest area is located in steeper
terrain.

2.2 National Forest Inventory Data (NFI)

In the Swiss NFI continuous parameters are assessed by aerial
photo interpretation at each sample plot belonging to a regular
500 m grid. 25 raster points are distributed regularly (distance
10 m) on the sample plot. For each raster point height and
surface cover information is gained and a forest boundary line
is measured. The layout of a sample plot is illustrated in
figure 3.

~ o

| — - 3
M/m ot

Figure 3. Design of the 50 x 50 m sample plot area with 25
raster points and a forest boundary line. Canopy closure is
obtained by calculating the number of points falling on trees
with a minimum height of 3 m (black points) within the forest
boundary line in relation to the total number of raster points
within the forest boundary line.
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Each sample plot comprises an interpretation area of 50 x 50 m.
The discrimination of forest and non-forest areas is one of the
most important attributes resulting from aerial photo
interpretation. This requires a non-ambiguous and reproducible
forest definition. Summarised the following aspects are crucial:
(1) the width of the stocked part of the interpretation area has to
measure at least 25 m, (2) the crown coverage of the stocked
part of the interpretation area has to be larger or equal 20 %, (3)
the stocking has to have a dominant stand height of 3 m.

Stereo-measured variables were gathered on the aerial imagery
at each of the 25 raster points within each sample plot. The
analogue true colour photos were taken between 1998 and 2005
covering all of Switzerland at a scale of ~1:30,000 and where
scanned at a resolution of 14 pum. The digitised photos have a
ground resolution of ~0.45 m and a RMS error after aerial
triangulation of < 1 m. A photo interpreter assigned each raster
point to one of eleven thematic surface cover classes
(broadleaved tree, coniferous tree, larch, shrub, grass
vegetation, rock, bare soil, paved surface, construction object,
water, glacier) using a 3D stereo softcopy station (Socet Set
5.0, BAE Systems).

In addition to surface cover, canopy height information was
attributed to each raster point based on the difference between
the surface elevation measured by the interpreter and the
interpolated (Socet Set 5.0, BAE Systems) terrain elevation
from an existing terrain model (25 m grid) provided by
swisstopo (Swiss Federal Office of Topography). Finally, in
cases with a forest border, a forest boundary line is digitised in
addition to the raster points.

2.3 Airborne laser scanner data

National LiDAR data was acquired between 2001 and 2004 by
swisstopo, the leaves partly off (figure 4). The project was
realised with different companies so very little metadata are
available. No detailed information on instruments or platforms
is available. Average flight height above ground was between
1000 m and 1500 m. The footprint on ground varies between
0.8 m and 1.2 m. From the raw data, both a DTM and DSM are
generated (as raw irregularly distributed points) The average
density of the DSM data is 0.5 points / m® and the height
accuracy (1 sigma) 0.5 m for open areas and 1.5 m for
vegetation and buildings (Artuso et al. 2003). The DTM has an
average point density of 0.5 points / m* and height accuracy (1
sigma) of 0.5 m (Artuso et al. 2003).

Figure 4. LiIDAR data acquisition time of the three test sites.
White areas were flown between November and March (leaves-
off) and black areas during the vegetation season between April

and October (mostly leaves-on).
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2.4 Interpolation: DTM and DSM

The interpolation is based on the initial triangulation of all raw
data points into a TIN. Depending on the expected point density
of 0.5 points/m? a conservative grid size of 2.5 m has been
chosen. The interpolation of raw data revealed that the
measured point density varies more than expected. Initial
results show, that
20 % of the test area in the canton Tessin has less than 0.4
points/m®.

2.5 Canopy height model (CHM)

The Canopy height model (CHM) was obtained by subtracting
the interpolated terrain altitudes from the interpolated canopy
altitudes. Because only first and last pulse data is available, no
further processing of pulse information was possible.

2.6 Derivation of forest parameters

According to the NFI forest definition the CHM was
reclassified to a binary layer, where values >= 3 m are assigned
to forest (1) and values < 3 m to non-forest (0). The sample plot
area (50 x 50 m) was reduced to the actual forest area on the
sample plot, if a forest boundary line was digitised in the aerial
photo interpretation (see figure 5).

":

¢ h:.r

Figure 5. Binary CHM and the reduced sample plot area, with a
forest boundary line and 25 raster points of the aerial photo
interpretation.

As first forest parameter, the degree of composition was
determined. The surface cover classes of the aerial photo
interpretation were used to distinguish between plots dominated
by deciduous trees and plots dominated by coniferous trees
(degree of composition). Plots with more than 90 % of
broadleaved tree raster points are assigned to the class
'deciduous forest' and plots with less than 10 % of broadleaved
tree to the class 'coniferous forest'. Mixed plots where not used
further in this study.

As second forest parameter, canopy closure was calculated as
the sum of pixels of the binary CHM in the corresponding
sample plot area. Canopy closure from aerial photo
interpretation is obtained by calculating the number of points
falling on trees with a minimum height of 3 m within the forest
boundary line in relation to the total number of raster points
(see figure 3).



IAPRS Volume XXXVI, Part 3 / W52, 2007

3. RESULTS

3.1 Degree of composition

In total, in all three test sites 7,696 sample plots were classified
into four classes of degree of composition using the raster
points of the aerial photo interpretation (Table 1).

Fraction of deciduous trees Number of plots

on forest plots AG GL Tl
(n=1,998) (n=701) (n=4,997)
Coniferous Plots (< 10%) 151 228 1565
Mixed Plots 10-50% 429 145 355
Mixed Plots 50-90% 673 165 486
Deciduous Plots (> 90%) 745 163 2591

Table 1. Degree of composition for the three test sites.

Table 1 shows that Aargau is characterised by mixed forests
(55 %) and followed by deciduous forests (37 %) whereas
Tessin is characterised by either predominant coniferous plots
or predominant deciduous plots (83 %). In Aargau only 8 % are
dominant coniferous forest plots. In Glarus most of the forest
plots are mixed forest (44 %) followed by coniferous (33 %). In
the following results only predominant coniferous and
deciduous forest plots (n=5,443) are taken into account.

3.2 Canopy closure

The focus of this study lies on canopy closure obtained by
means of aerial image interpretation and data derived from
LiDAR.

3.2.1 Canopy closure obtained from aerial
interpretation

Table 2 shows that canopy closure obtained from aerial photo
interpretation is high in all test sites. Three quarters of the plots
have a canopy closure between 75 % and 100 %. Deciduous
plots are generally denser than coniferous plots. Only 0.7 % of
deciduous plots and 6.8 % of coniferous plots are less dense
than 30 %.

photo

Canopy closure from aerial photo interpretation

Number of Number of

deciduous forest plots coniferous forest plots

gﬁ)"s‘fﬂe’ AG  GL TI AG  GL TI

% n=745 n=163 n=2,591 n=151 n=228 n=1,565

<30 7 19 15 109
30-50 10 4 78 31 239
50-75 44 17 284 12 65 429
75-100 684 141 2210 127 117 788

Table 2. Canopy closure as obtained by aerial photo
interpretation. Deciduous forest plots are denser than
coniferous forest plots. Three quarter of the plots is denser
than 75 %.

Mean, median and standard deviation of canopy closure for
both deciduous and coniferous forest plots are given in table 3.
For deciduous trees the mean canopy closure varies between
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89.7 % (TI) and 93 % (AG). Coniferous forest plots are less
dense and vary between 70.8 % (TI) and 88.1 % (AG).

Canopy closure from aerial photo interpretation (%)

deciduous forest plots coniferous forest plots

AG GL TI AG GL Tl
n=745 n=163 n=2,591 n=151 n=228 n=1,565
Mean 93.0 90.2 89.7 88.1 71.2 70.8
Median 100.0 96.0 96.0 100.0 76.0 76.0
Std 13.9 15.0 15.7 23.1 23.7 23.6

Table 3. Mean canopy closure from aerial photo interpretation
on deciduous forest plots and forest coniferous plot
respectively.

3.2.2 Canopy closure obtained from LiDAR (binary CHM)
Table 4 shows the canopy closure obtained from LiDAR data
and table 5 summarizes the canopy closure for deciduous and
coniferous forest plots. For deciduous trees the mean canopy
closure varies between 50.9 % (GL) and 62.7 % (AG). In
contrary to aerial photo interpretation, coniferous forest plots
obtained from LiDAR are denser than deciduous forest plots —
with the exception of Tessin. They vary between 53.7 % (GL)
and 67.1 % (AG).

Canopy closure from LiDAR (CHM)

Number of Number of

deciduous forest plots coniferous forest plots

gﬁ;‘s‘;‘g AG  GL TI AG GL TI
% n=745 n=163 n=2591 n=151 n=228 n=1,565

<30 59 40 132 21 43 312

30-50 139 37 344 16 56 355

50-75 301 53 1153 32 77 546

75-100 246 33 962 82 52 352

Table 4. Canopy closure from LiDAR (binary CHM).
Deciduous forest plots are denser than coniferous forest plots.
Only 30 % of the plots are denser than 75 %.

Canopy closure from LiDAR (%)

deciduous forest plots coniferous forest plots

AG GL Tl AG GL Tl

n=745 n=163 n=2,591 n=151 n=228 n=1565
Mean 62.7 50.9 66.2 67.1 53.7 53.8
Median  66.3 53.0 69.5 78.0 53.1 55.5
Std 21.0 26.9 18.6 28.7 24.6 24.1

Table 5. Mean canopy closure from CHM from LiDAR on
deciduous plots and coniferous plot respectively

3.2.3 Aerial photo interpretation versus LiDAR

Overall, canopy closure is underestimated in all three test sites
by the LiDAR CHM in comparison to the aerial photo
interpretation. For the statistical analysis the plots were grouped
into plots predominated by coniferous trees or deciduous trees
respectively. Then a Kolomogorov-Smirnov-Test (alpha=0.05)
as implemented in SAS's UNIVARIATE procedure was applied
on the dataset. This test revealed that the plot wise calculated
differences in canopy closure measurements from the aerial
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photo interpretation and the LiDAR measurement are not
normally distributed. Therefore a non-parametric test, the

Wilcoxon two-sample test as implemented in SAS's
NPARIWAY Procedure (SAS, 2000), was chosen to account
for significant differences. A significant difference

(alpha=0.05) between the calculated differences in canopy
closure measurements for coniferous forest plots and deciduous
forest plots (p<0.0001) was found. Finally, table 6 reveals that
this underestimation is higher at deciduous than at coniferous
plots.

Difference of canopy closure (%)

deciduous forest plots coniferous forest plots

Mean 25.7 174
Median 24.0 15.0
Std 16.9 19.2

Table 6. Mean differences of canopy closure from CHM and
aerial photo interpretation on predominated deciduous plots and
predominated coniferous plot respectively

3.2.4 LiDAR data acquisition: leaves-off versus leaves-on
For this analysis the plots were grouped into plots
predominated by coniferous trees or deciduous trees and the
flight date (in vegetation season yes or no). Again the
calculated differences are not normally distributed. Therefore,
the Wilcoxon two-sample Test was chosen, to account for
significant differences of the canopy closure measure for the
two datasets. A significant difference (alpha=0.05) between the
flight dates in both cases, coniferous forest plots (p=0.0007)
and deciduous forest plots (p=0.0316) was found.

4. DISCUSSION AND CONCLUSION

ALS data covering large country wide areas is becoming more
and more popular and is available for many countries.
However, these data sets suffer from some limitations: First, in
most cases these data are medium to large footprint ALS and do
not meet the requirements for single tree detection and accurate
derivations of relevant forest parameters as performed in many
case studies. Second, although the acquisition time is not
focused on single specific questions the data has to serve for
different purposes.

The present study reveals that large area application of national
LiDAR data for derivation of canopy closure as one important
forest parameter is challenging since time of data acquisition
varies. Therefore the accuracy of the obtained parameters is
only partly satisfactory. Especially in predominated deciduous
forest plots the differences of canopy closure obtained by aerial
photo interpretation and LiDAR measurements are high.
Therefore, the obtained information on canopy closure is
reliable, since most protective functions of alpine forests are
limited to coniferous forests (lower underestimation than for
deciduous forests) in higher regions. Nevertheless, the
influence of data acquisition time remains evident, in deciduous
and in coniferous cases.

For a further quality assessment there is a strong need for more
information on exact date of acquisition for each single LiDAR
measurement. Summarized metadata for organizational units,
like map sheets, are not appropriate. Furthermore, since both
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forest parameters strongly depend on the quality of the CHMs a
more extensive quality check of the CHMs has to be performed.
Further reference data (e.g. tree heights) will be obtained using
stereo photogrammetry and field measurements.

To summarize, the need to develop new remote sensing
techniques for large NFIs is evident. The use of nation wide
available LiDAR data is obvious, but further studies are needed
to obtain more information on quality and characteristics of the
data for forest specific questions.
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ABSTRACT:

Canopy height distributions were created from small-footprint airborne laser scanner data for mature coniferous forest in two forest
areas in Norway. In total, 82 and 70 georeferenced field sample plots and 39 and 38 forest stands were measured in the two areas,
respectively. The average sampling densities were 1.2 m™> and 0.9 m™ Height percentiles, mean and maximum height values,
coefficients of variation of the heights, and canopy density at different height intervals above the ground were computed from the
laser-derived canopy height distributions from the first return data. The laser point clouds were thinned to approximately 1 point per
4m? (0.25 m?), 1 point per 8 m? (0.13 m?), and 1 point per 16 m* (0.06 m™?). The mean difference and the standard deviation for the
differences between laser-derived metrics derived from the original full density laser data and thinned data for the two areas were
estimated and compared. For all comparisons, the maximum value of the canopy height distributions differed significantly between
the full density laser datasets and the thinned data. The effects of different laser point densities on stand predictions of three
biophysical properties of interest were also tested. The average standard deviation for mean tree height, stand basal area, and stand
volume predicted at stand level showed only a minor increase by decreasing point density.

1. INTRODUCTION RMSE for tree height and stem volume estimation increased

when the point density was redused from 2.5 to 0.004 m™.

For economical reasons, optimal specification of fieldwork, Many of the variables extracted from the laser point clouds are

sensor, and flight parameters for laser data acquisition is  highly correlated. In addition, if some of these potential laser

important in practical forest inventory. A number of parameters  metrics are more sensitive to point density, then it would be

for specifying airborne laser data acquisition have to be decided best to select, as independent variables, those laser measures

upon prior to survey, and they may influence on important that are least affected by point density.

properties such as the theoretical number of points per unit area,

the ability to derive forest structural information, and survey The objectives of this study were to assess the effects of

costs. different laser point densities on laser-derived metrics and to
assess how laser point density may affect stand predictions of

In an area-based approach, i.e., individual forest stands are the three biophysical properties of interest, i.e., mean tree height,

basic units of the inventories, a large number of explanatory basal area, and volume. Four different levels of laser point

laser variables are extracted from the laser points and used to densities were assessed. The results were evaluated using an

predict forest biophysical properties. A sampling density of  independent validation dataset.

about one laser point per square metre has shown promising

results (Nesset, 2002b; Nasset, 2004b). The effects of point 2. MATERIAL AND METHODS

density have been assessed in a number of studies (e.g.

Holmgren, 2004; Magnusson, 2006; Maltamo et al., 2006; 2.1 Study area

Thomas et al., 2006). A study in Sweden indicated that the

errors of predicted mean tree helght’ basal area, and stem Two forest areas in southeast NOrWay were selected for this

volume did not differ much when the point density was changed ~ study: a forest area in the municipality of Valer (59°30°N,

from 0.1 to 4.3 m'z (Holmgren, 2004) Holmgren used a 10°55’E, 70-120 m a.S.l.) of about 1000 ha, and a forest area in

footprint diameter of 1.8 m and the large footprint size resulted ~ the municipality of Kredsherad (60°10°N 9°35’E, 130-660 m

in overlap between adjacent footprints on the ground. as.l) with size 6500 ha. The St}ldy sites  in Véler. and
Oversampling may therefore have infulenced on the results. Ina ~ Krodsherad are hereafter denoted as sites A and B, respectively.
Finnish study, where the point densities were 12.7, 6.3, 1.3, 0.6, The main tree species in the areas were Norway spruce (Picea

and 0.13 m™ and the footprint diameter was 40 cm, no effects of ~ abies (L.) Karst.) and Scots pine (Pinus sylvestris L.). Further
point density on stem volume prediction were found (Maltamo details can be found in Naesset (2002b) and (Naesset, 2004b).

et al., 2006). Howewer, the basic dataset in the Finnish study

was limited to 32 sample plots with size 0.09 ha. In contrast to ~ The present study was based on two different field datasets
the studies mentioned above, Magnusson (2006) found that the from each area: sample plots and forest stands. The sample

* Corresponding author
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plots were used to assess the effects of different laser point
densities on laser-derived metrics and to develop regression
models for the three biophysical properties of interest. The
forest stands were used to assess the influence of laser point
density on the stand predictions for the three biophysical
properties.

2.2 Sample plots

In total, 82 sample plots in site A and 70 in site B were
distributed systematically in the mature forest across the entire
study areas according to regular grids. The areas of the sample
plots were 200 and 232.9 m” in sites A and B, respectively. The
measurements were carried out during the summers 1999
(Neesset, 2002b) and 2001 (Neesset, 2004b). On each plot, all
trees with dy, >10 cm were callipered. The dy;, was recorded in
2 cm classes. Basal area (G) was computed as the basal area per
hectare of the callipered trees. The heights of sample trees were
measured by a Vertex hypsometer. Mean height of each plot
was computed as Lorey’s mean height (hy), i.e., mean height
weighted by basal area. Volume of each tree was computed by
means of volume equations of individual trees (Brantseg, 1967;
Braastad, 1966; Vestjordet, 1967), with height and diameter as
predictor variables. Total plot volume (V) was computed as the
sum of the individual tree volumes.

Finally, to synchronize the hy, G, and V values to the date the
laser data were acquired the individual plot values were
prorated by means of growth functions (Blingsmo, 1984;
Braastad, 1975; Braastad, 1980; Delbeck, 1965). The prorated

values were used as ground-truth. A summary of the ground-
truth sample plots data is displayed in Table 1.

Differential Global Positioning System (GPS) and Global
Navigation Satellite System (GLONASS) were used to
determine the position of the centre of each sample plot. The
computed plot coordinates had an expected average accuracy of
approximately 0.3 m.

2.3 Stand inventory

In site A, 39 stands were selected subjectively in order to
represent different combinations of site quality classes and tree
species mixtures. Field data were collected during summer 1998
(Nasset, 2002a). The average stand size was 1.7 ha. Each stand
was inventoried by intensive sample of plots within each stand.
The average number of plots per stand was 20. In site B, 38
large test plots located in subjectively selected stands were
used. Ground reference data for the test plots were collected
during summer 2001. Each plot was initially supposed to be a
quadrat with an approximate size of 61x 61 m, but the actual
size varied somewhat. On each of these plots, all trees with size
greater than the specified limits were callipered. The large test
plots are hereafter denoted stands. The stand data values were
synchronized to the date the laser data were acquired by
prorating by up to 1.5 years. The prorated values were used as
ground-truth. A summary of the ground-truth stand data is
displayed in Table 1.

Sample plots Stands

Characteristic Range Mean Range Mean
Site A (200 m?, n=82) (n=39)
hy (m) 120 - 260 18.5 136 - 229 17.9
G (m*ha™) 75 - 506 242 126 - 38.8 24.9
V (m*ha™") 532 - 6327 219.2 90.8 - 4109 216.9
Tree species distribution

Spruce (%) 0 - 100 54 4 - 94 53

Pine (%) 0 - 100 41 0 - 92 38

Deciduous species (%) 0 - 27 5 1 - 22 9
Site B (232.9 m?, n=70) (n=38)
hy (m) 99 - 260 18.1 122 - 244 17.9
G (m*ha™) 56 - 570 28.1 120 - 37.7 25.4
V (m*ha™) 296 - 674.8 251.2 83.0 - 3789 2245
Tree species distribution

Spruce (%) 0 - 100 38 1 - 100 50

Pine (%) 0 - 100 58 0 - 98 41

Deciduous species (%) 0 - 29 4 0 - 40 9

*h =Lorey's mean height, G=basal area, V=volume.

Table 1. Summary of field inventory of sample plots and stands *.

2.4 Laser scanner data

A Piper PA31-310 aircraft carried the ALTM 1210 laser
scanning system (Optech, Canada). The laser scanner data
were acquired 8 and 9 June 1999 for site A (cf. Neasset,
2002b; Nasset and Bjerknes, 2001) and in the period
between 23 July and 1 August 2001 for site B (cf. Naesset,
2004b). A summary of the laser scanner data is presented in
Table 2.
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All the first return laser points were spatially registered to the
DTM derived from the last return echoes according to their
coordinates. The relative height of each point was computed
as the difference between the height of the return and the
interpolated terrain surface height. Only these first returns
were used for further analysis. Points that hit outside the
plots and stands were excluded from further analysis.
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2.5 Reduction of laser point density

In order to investigate the effects of laser point densities on
the laser-derived metrics and on the predicted biophysical
stand properties, the point clouds were thinned. The point
clouds were thinned from about 1.2 m™ and 0.9 m? for site A
and B, respectively, to approximately 1 point per 4, 8, and 16

m? (0.25, 0.13, and 0.06 m?) by randomly selecting one
point within grid cells with the respective sizes (4, 8, and 16
m?). This thinning method was employed to insure a fairly
regular distribution of the retained points. A similar approach
has also been used in other studies (e.g. Magnusson, 2006).

Number No. of transmitted pulses (m’z) No. of canopy hits (m’z) a Mean rate of
of obs. Range Mean Range Mean penetration (%)
Site A
Sample plots 82 0.73 - 1.62 033 - 1.34 0.80 28
Stands 39 1.04 - 1.41 0.60 - 1.33 0.88 26
Site B
Sample plots 70 0.40 - 200 1.03 024 - 1.62 0.80 23
Stands 38 0.50 - 1.71 0.89 031 - 1.62 0.70 22

* Canopy hits: laser points with a height value of >2 m.

Table 2. Summary of characteristics of first return laser scanner data for sample plots and stands.

2.6 Computations

For each sample plot and stand inventoried in field, height
distributions were created for those laser points that were
considered to belong to the tree canopy, i.e., points with a
height value of >2 m. Percentiles for the canopy height for
10% (hyp), 50% (hsg), and 90% (hgy) were computed. In
addition, also the maximum (h,,) and mean values (Nycan)
and the coefficient of variation (h.,) of the canopy height
distributions were computed. Furthermore, several measures
of canopy density were derived. The range between the
lowest laser canopy height (>2 m) and the 95% percentile for
the canopy height distribution was divided into 10 fractions
of equal length. Canopy densities were computed as the
proportions of laser hits above fraction #0 (>2 m), 1, ..., 9 to
total number of points. The densities for fraction #1 (d;), #5
(ds), and #9 (dy) were selected for further studies.

To assess how different laser point densities influenced on
the laser-derived metrics, differences between corresponding
metrics derived for the different alternatives were computed
for each sample plot. The standard deviations of the
differences were also computed to assess the stability of the
respective metrics. Separate comparisons between laser
scanner data with different point densities were made.

To assess the accuracy of laser-based predictions of mean
tree height, basal area, and volume based on different laser
point densities, we followed the two-step procedure proposed
by Nasset & Bjerknes (2001) and Nesset (2002b) by (1)
relating the three biophysical properties of interest to the
laser data of the sample plots in the two sites using regression
analysis, and by (2) applying the estimated regression models
to predict corresponding values of the test stands. In addition,
the differences between predicted values of the biophysical
stand properties and ground-truth values were computed. The
standard deviations of the differences were also calculated.

In the regression analysis, multiplicative models were
estimated as linear regressions in the logarithmic variables.
Stepwise selection was performed to select variables to be
included in these models. No predictor variable was left in
the models with a partial F statistic with a significance level
greater than 0.05. The standard least-squares method was
used (Anon., 1989).
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Separate predictions were made for the two sites and the
different laser point densities. In the prediction, each stand
was divided into grid cells. Laser canopy height distributions
were created for each cell and the biophysical properties
were predicted at cell level using the estimated equations and
the derived laser metrics. Finally, predicted values at stand
level were computed as mean values of the individual cell
predictions. The mean differences between predicted
biophysical stand properties and ground-truth and
corresponding estimates of the standard deviations of the
differences were derived.

3. RESULTS
3.1 Laser-derived metrics

Height percentiles

None of the mean differences for the percentiles (h;o, hso,
hgo) between the full density data and the thinned data in site
A and only one in site B were found to be statistically
significant. In both sites and for all comparisons the standard
deviations for the differences of the percentiles between the
full density data and the thinned data increased by decreasing
point densities, i.e., from 0.25 m? to 0.06 m™>. In general, the
standard deviations were smallest in site A (Table 3).

Height maximum, mean, and variability

For all comparisons, the maximum values of the canopy
height distributions (hy,,,) differed significantly between the
full density laser data and the thinned data. The differences
increased with decreasing point density for all comparisons.
The h,,,x values were always highest for the full density data.

Only one of the comparisons of the differences for the mean
height values (Npeq,) between the full density laser data and
the thinned data were found to be statistically significant.

The variability of the canopy height distributions expressed
by the coefficient of wvariation (h,) did not differ
significantly in any of the comparisons between the laser
point intensities.

For both h.y, Npmean, and h,, the standard deviations of the
differences increased with decreasing laser point density for
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all the comparisons. The standard deviations of the
differences were smaller in site B compared to site A.

Canopy density
For both sites, the differences of canopy densities (d;, ds, and
dy) between the full density laser data and the thinned data

were found to be statistically significant in four of the
comparisons. In all of the comparisons the standard
deviations for the differences of the canopy densities
between the full density data and the thinned data increased
by decreasing point densities, i.e., from 0.25 to 0.06 m™.

Metrics® 0.25 points m? 0.13 points m? 0.06 points m?
Mean D S.D. Mean D S.D. Mean D S.D.

Site A

hio (m) 0.15 ns 1.14 -0.06 ns 1.68 0.34 ns 2.80
hso (m) -0.13 ns 0.81 -0.31 ns 1.29 -0.24 ns 1.94
hoo (m) -0.10 ns 0.77 -0.06 ns 1.21 0.10 ns 1.73
Niax (M) -0.96  HFk* 1.12 -1.66  k** 1.27 -2.53 ok 1.88
(m) -0.04 ns 0.50 -0.20 ns 0.87 0.00 ns 1.46
he, (m) 0.35 ns 342 1.88 ns 6.37 0.88 ns 11.41
d; (%) -1.89  ** 491 -1.97 ns 6.78 -1.46 ns 10.80
ds (%) -2.53  kkx 5.11 -2.86 ¥ 6.54 -0.76 ns 11.59
dy (%) 0.22 ns 4.03 0.66 ns 4.51 436 *F* 6.85
Site B

hyo (m) -0.06 ns 1.00 -0.08 ns 1.78 020 ns 2.35
hso (m) -0.34  ** 0.78 -0.15 ns 1.19 -0.27 ns 1.78
hgo (m) -0.18 ns 0.55 -0.28 ns 1.10 -0.24 ns 1.62
Nimax (M) -0.93  k*x 0.90 -1.30  kx* 1.23 -2.06  FE* 1.61
(m) -0.18 * 0.48 -0.22 ns 0.80 -0.22 ns 1.37
he, (m) 0.88 ns 341 1.26 ns 5.52 1.01 ns 10.72
d; (%) -2.51  HFkE 3.83 -2.74 6.59 0.06 ns 10.33
ds (%) -2.99  kEE 4.46 -248 * 6.47 -1.60 ns 12.57
dy (%) 0.08 ns 4.54 0.09 ns 6.21 124 ns 8.89

* Level of significance: ns = not significant (>0.05). *< 0.05; **< 0.01; ***< 0.001.

b hyo, hso, and hgy = percentiles of the laser canopy heights for 10%, 50%, and 90%; h,,x = maximum laser canopy height; hyc., =
arithmetic mean of laser canopy heights; h,, = coefficient of variation of laser canopy heights; d;, ds, and dy = canopy densities
corresponding to the proportions of laser hits above fraction # 1, 5, and 9, respectively, to total number of returns (see text).

Table 3. Differences (D) between laser-derived metrics of different point densities and standard deviation for the differences (S.D.)
based on data from site A (200 m?) and from site B (232.9 m?) sample plots *.

3.2 Regression models

To assess effects of laser point density on the estimated
regression models used in the two-stage inventory, stepwise
regression analysis based on the 82 and 70 field training
plots, for sites A and B respectively, was carried out to create
relationships between the three biophysical properties of
interest (h, G, and V) and the laser-derived metrics. The
regression analysis was carried out using all points, 0.25,
0.13, and 0.06 m™, respectively. Separate models were
estimated for the two sites. When all laser points were used,
the selected log-log regression models explained 62-87% and
80-92% of the variability inherent in the log-transformed
responses for the two sites.

However, when the lowest point density was used, the model
fit was poor. In the model for basal area (G), only 45% and
73% of the variability were explained by the models for sites
A and B, respectively. The selected models, R?, and RMSE
when using all points in sites A and B are presented in Table
4. The selected models were slightly different for the other
point densities. The models contained from one to three
explanatory variables.
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Response

variable® Expl. variables® R> RMSE K
Site A

lnhL lnhlo, lnhgo 0.87 0.07 1.6
InG Inhgg, Ind; 062 0.25 1.5
InV Inhppean, Ind; 0.71 0.27 1.9
Site B

Inhg Inhgg 093  0.06 1.0
InG Inhppean, Ind, 0.80  0.20 2.2
InV Inhcan, Ind;, Inhgg 0.90 0.20 6.9

* hy=Lorey's mean height (m), G=basal area (m’ha),
V=volume (m’ha™).

°h,o and hgo=percentiles of the laser canopy heights for 10%
and 90% (m); hpc., =arithmetic mean of first return laser
heights (m); d; and ds =canopy density corresponding to the
proportion of laser hits above fraction # 1 and 5, respectively,
to total number of first returns (see text).

Table 4. Selected models for biophysical properties (response
variables) from stepwise multiple regression analysis using
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metrics derived using all points on the plots in site A and B
as explanatory variables.

All the models selected to be the “best” ones for G and all the
models except one for V were based on laser-derived
variables related to canopy height and variables related to
canopy density. The models for h; were mainly based on
canopy height variables. For all the 24 models developed,
i.e,, all possible combinations of point density (four
densities) and sites (sites A and B) for each of the three
variables (hy, G, and V), at maximum three explanatory
variables were selected. Multicollinearity issues were
addressed by calculating and monitoring the size of the
condition number (k). None of the selected models had a
condition number greater than 6.9, indicating that there was
no serious collinearity inherent in the selected models
(Weisberg, 1985). All the models developed using the plots
in site B accounted for a larger proportion of the variability

inherent in the log-transformed responses compared to the
models developed using the plots in site A.

3.3 Stand level predictions

The mean and the standard deviations for the differences
between predicted mean height (hy), basal area (G), and
volume (V) and ground-truth values for the 39 and 38 stands
in sites A and B respectively, are presented in table 5. The
mean difference between the full density data and the thinned
data varied between densities. However, no clear pattern was
found.

The standard deviations for the differences increased in all
except five cases when the point density decreased. Two of
these five exceptions were for h; and two were for V. The
standard deviations of hy did only increase to a minor extent
when the point density decreased. The standard deviations
for the differences were smallest in site B compared to site A
in all except two cases.

Response variable® 1.2 points m™ 0.25 points m™ 0.13 points m™ 0.06 points m™
MeanD S.D. Mean D  S.D. Mean D  S.D. Mean D  S.D.

Site A

hy (m) -0.03 0.97 -0.01 0.96 -0.05 1.07 -0.06 1.15

G (m* ha™) -0.30 2.67 -0.08 2.73 0.01 3.37 -0.93 3.59

V (m® ha) 278 30.11 3.02  29.70 3.09 37.30 -6.01  39.10

Site B

hy (m) -0.35 0.55 -0.33 0.61 -0.06 0.85 -0.35 0.72

G (m* ha™) 1.74 3.19 1.78 2.99 1.68 3.05 0.93 3.58

V (m® ha™) 8.94 27.80 724  26.52 1241  28.19 234  38.23

Table 5. Mean differences (D) and standard deviation for the differences (S.D.) between laser-derived and observed Lorey’s mean
height (h;), basal area (G), and volume (V) in sites A and B when using all points (1.2 m?), 0.25 m™, 0.13 m™, and 0.06 m™.

4. DISCUSSION

The major findings of this study indicate that:

1) The maximum values of the canopy height distributions
(hmax) differed significantly between the full density laser
data and the thinned data. The differences increased with
decreasing point density. In most cases the variability of hy,,
was larger than for the intermediate and upper height
percentiles (hso, hgo). A higher variability associated with
hmax has also been found in other studies (Nasset, 2004a;
Nesset and Gobakken, 2005). Since h,,,, is seriously affected
by point density it should be avoided in practical
applications.

2) The standard deviations for the differences for all the
derived laser metrics increased by decreasing laser point
density, i.e., from 0.25 m?t0 0.06 m™.

3) For other variables than hy,,, no clear pattern of the mean
differences between the laser metrics derived from full
density data and the thinned data could be found.

4) Even if one of the prediction models only explained a
quite low proportion of the variability (45%), the effects of
reducing point density on the predicted mean height (hp),
basal area (G), and volume (V) at stand level were quite
small.
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When the laser point density was reduced by thinning to
imitate data acquisitions with lower point densities, a random
selection of points was carried out. A random selection of
points within grid cells of size 4, 8, and 16 m® was carried
out in order to maintain a fairly regular spatial distribution of
the retained points. However, the modelled ground surface
was all the time the same. Keeping the DTM constant might
influence the results, although other studies indicate that this
effect probably is small. Goodwin et al. (2006) indicated that
the predicted surface closely matched the field measured
even when a point density of 0.18 m™ was used. Magnusson
(2006) found the RMSE of the terrain model to be quite low
and unbiased up to a thinning level of 0.01 m™.

To conclude, the results of this study may indicate that the
average point density used for the area-based operational
forest stand inventory in Scandinavia utilizing airborne laser
could be reduced from the current point density of around 1
m™ to 0.06 m™ without seriously reducing the quality of the
inventory results. The effects of varying the point density
reported here should, however, be verified on different forest
types and in other regions than those considered here.
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ABSTRACT:

Authorities operating in the field of coastal management require reliable area-wide height information for their responsibilities
regarding to the safety of the coastal area. In this context the lidar technique replaces more and more traditional methods, such as
terrestrial surveying, and is now the most important source for the generation of digital terrain models (DTM) in this zone. However,
coastal vegetation interferes with the laser beam, resulting in a height offset for the lidar points depending on different vegetation
types occurring in this region and their phenology. Various filter algorithms were developed for lidar data in vegetated areas, which
are able to minimize this offset. But in very dense vegetation and hilly terrain these algorithms often fail resulting in certain
residuals. In a previous approach the height offset was estimated based on grid data. In this algorithm the offset was linked to
suitable features in the remote sensing data. A segment based supervised classification was performed using these features to
partition the lidar data into different accuracy intervals. A major problem of this method arises from the fact that the accuracy
intervals do not correspond to distinct and easily separable clusters in the feature space. Considering a single vegetation type the
height offset exhibits a rather continuous characteristic. In a new approach this issue is tackled by modelling the offset with respect
to the features using continuous functions. Additionally, feature extraction and classification are performed on raw data, in order to
maintain the significance of the features by avoiding transformation artefacts and to increase the accuracy of the classification. On
the basis of test data a comparison between the two methods is conducted to emphasize the problems and their solutions.

1. INTRODUCTION

Digital terrain models (DTM) of high accuracy are vital
geographic information sources for various applications in
coastal areas. For example, reliable height information is
necessary for the calculation of flood risk scenarios, change
detection of morphological objects and hydrographic numeric ~ Figure 1. a) lidar DSM, b) lidar DTM

modelling. In former times traditional methods, such as

terrestrial surveying, were used to acquire the data. However, in In preliminary studies the dependencies between the height
coastal areas with dense vegetation and frequently flooded offset of the lidar points and vegetation attributes (type, density
terrain such measurement campaigns are very costly and time  and height) were investigated. In a next step the influencing
consuming as well as difficult to perform. Therefore, lidar factors had to be connected to features extractable from the
technique is more and more used to collect the required amount available remote sensing data. These features were used for a
of 3D points for the generation of the models. The advantage of supervised classification of the lidar data into different accuracy
this contactless remote sensing method leads on the other hand intervals.

to an information loss about the measured objects (e.g., type In this paper, a new approach for the estimation of the height
and material). A serious problem for the generation of accurate ~ offset in the lidar data depending on the vegetation type is
DTM from lidar data is the influence of vegetation. The laser ~ presented. While the previous classification algorithm was
beam is not always able to fully penetrate the different layers of ~ based on lidar data interpolated to a grid, now features are
dense vegetation. Some echoes are produced by a mixed signal extracted directly from the 3D lidar raw data, in order to
from vegetation as well as the ground and others are generated  increase their significance with regard to the height offset.
entirely in the canopy. This results in a positive height offset, Another major problem of the former method arises from the
because the laser beam is reflected before hitting the bare aspect that the accuracy intervals, which represent the desired
ground. In order to derive a DTM of high accuracy, these classes, do not correspond to distinguishable clusters in the
elevated points have to be eliminated from the dataset. Many feature space. The features describing the height offset show a
filter algorithms were developed to remove such points. rather continuous appearance. Thus, in this paper a relation
However, if there are only a few ground points, for example between features and the height offset is established by
caused by dense vegetation, or points within low vegetation not continuous functions using reference data. Subsequently, the
significantly higher than the surrounding terrain present in the offset of each laser point can be determined on the basis of its
analysed area, the filter methods usually fail. Figure 1 related features and the connecting functions.

visualizes a region in the dunes on the East Frisian Island

“Langeoog” with standings of Japanese Rose, Beech Gras, 2. STATUS OF RESEARCH

Creeping Willow and Sea Buckthorn. The digital surface model

(DSM) derived from unfiltered lidar data is illustrated on the ~ In order to investigate the influence of different vegetation
left side (a) and the second picture (b) shows the DTM. types on the accuracy of lidar measurements, understanding of
Obviously, after the filtering process some height variations  the physical principles is essential that govern the interaction
caused by vegetation still remain in the dataset. These between the laser beam and different illuminated targets. Based
considerations motivate efforts to determine the height offset of O the radar equation Jelalian (1992) described the fundamental

the lidar points depending on the vegetation type on the basis of ~ Telations between the emitter, the reflecting object and the
different features. receiver applied to the lidar technique. Sensor and target
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dependent parameters are separated and an object dependent
cross section is defined. Additionally, Wagner et al. (2006)
pointed out the dependencies between the spatial variations of
the cross section and the amplitude as well as the width of the
reflected echoes. Pfeifer at al. (2004) considered the influence
of different parameters such as flying altitude, footprint size,
echo detection and selection method as well as pulse width on
the laser measurement in vegetated areas.

In addition, ground truth measurements can be used in
comparison to the lidar data to estimate the height offset caused
by the vegetation. In this manner Oude Elberink and
Crombaghs (2004) found a systematic upwards shift of up to
15cm for low vegetated areas (creeping red fescue). Pfeifer et
al. (2004) investigated the influence of long dense grass
(+7.3cm), young forest (+9.4cm) and old willow forest
(+11.6cm) on the accuracy of lidar data. In (Gopfert and
Heipke, 2006) a positive offset for different coastal vegetation,
such as Beach Grass (+19,3cm) and Sea Buckthorn (+18,4cm),
was observed, too.

In the approaches described above the investigation of
vegetation parameters influencing the lidar accuracy was
limited to certain vegetation types. However, in the research of
Hopkinson et al. (2004) the following relationship between the
standard deviation of pre-processed laser heights (the ground
elevation was subtracted from the first and last pulse
measurement) and height of low vegetation in general (<1,3m)
was given:

vegetation height = 2.7 * standard deviation.

The RMSE of the predicted vegetation heights was determined
to be 15cm. Pfeifer et al. (2004) and Gorte et al. (2005)
described the variation of the laser heights with texture
parameters and showed their potential for correction of the
height shift caused by low vegetation. Gopfert and Heipke
(2006) linked vegetation attributes to features, such as echo
intensity, in order to classify the lidar data into different
accuracy intervals.

Many filter algorithms were developed to separate terrain and
off-terrain points using geometric criteria exclusively, such as
slope or height differences in a defined neighbourhood. Some
methods are based on single lidar points, for example Axelsson
(2000). Other approaches (e.g., Sithole and Vosselman, 2005),
group the points to segments, which are classified afterwards. In
contrast radiometric features of the lidar points are not very
often included in standard filtering processes, if we distinguish
between filtering and classification of objects. For example, in
(Moffiet et al., 2005) the capabilities of the different returns
(ground and vegetation, first, last, and single pulse) as well as
the returned intensity were investigated to classify diverse tree
types. Tévari and Vogtle (2004) used the intensity values
among other features, in order to discriminate buildings,
vegetation, and terrain. In different studies a combination of
height and multispectral data was proposed in order to detect
and classify vegetation types. For instance, Mundt et al. (2006)
explored the potential of this combination for mapping
sagebrush distribution.

3. DATA

The research and tests are based on data of two flight missions.
A detailed description of the reference and lidar data can be
found in (Gopfert and Heipke, 2006). The first flight covering
the East Frisian island Juist was conducted by the company
TopScan with an ALTM 2050 scanner from Optech in March
2004. At a flying altitude of 1000m the system provided an
average point density of 2 points/m?. Unfiltered last pulse data
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with intensity values, CIR-Orthophotos, ground and vegetation
points were delivered. Simultaneously, 696 reference points
with ground and vegetation heights, situated within a mixed
habitat of rose and willow, were surveyed using tachymetry and
GPS.

The data for the second measurement campaign were collected
by the company Milan-Flug GmbH on the East Frisian island
Langeoog in April 2005. The used LMS Q560 system of the
company Riegl operating at an altitude of 600m realised an
average point density of 2.9 points/m* and illuminated a
footprint of 0,3m diameter. Raw data with up to three echoes
per emitted pulse as well as the related intensity values, RGB-
Orthophotos, ground and vegetation points were acquired.
Supported by biologists several control areas of different
vegetation types were surveyed. The results of this paper focus
on coastal shrubberies including five test sites with Japanese
rose and creeping willow.

Finally, a biotope mapping performed on aerial photos taken in
2002 and 2003 with a HRSC-AX and a DMC camera was used
for the distinction of different predominant vegetation types.

4. METHODS

On the basis of previous research (Gopfert and Heipke, 2006)
this paper introduces a new method to determine the height shift
of lidar points in areas with typical coastal vegetation, where
due to dense plant population no or only a few ground points
exist and therefore standard filter algorithms usually fail.
Initially, section 4.1 explains briefly the characteristics of
vegetation with respect to the lidar measurement and the
connection between vegetation attributes and features generated
from the remote sensing data. In section 4.2 the feature
extraction method based on irregularly spaced lidar points is
introduced. The next section gives a short overview about our
previous classification algorithm emphasising its restrictions.
Finally, in section 4.4 a new method for the estimation of the
height offset in the lidar data caused by the vegetation is
described.

4.1 Vegetation attributes and features

The interaction of the laser beam with complex objects, such as
vegetation of different height and density, is difficult to model.
In the corresponding literature this aspect is mathematically
described as a convolution of the emitted signal with the cross
section of the extended object. Every layer of the vegetation
contributes to the signal received by the sensor. Low vegetation
within the range resolution of the scanner system often
generates a mixed echo with reflection from the ground.
Therefore, the centre of gravity of this echo is situated above
the terrain and an upwards shift is observed in the lidar data. In
higher vegetation several distinctive echoes per laser pulse can
occur. For the derivation of the DTM usually the last echo is
used. However, also the last echo can be caused by a mixed
reflection or within very dense plant population entirely created
by vegetation layers. Thus, at locations of higher vegetation the
last pulse data may also be biased upwards.

In order to assess the influence of vegetation attributes on the
quality of the lidar height information, ground truth
measurements were used in previous studies. For the purpose of
comparison a DTM of the lidar data was generated and the
heights were interpolated using the x- and y-coordinates of the
terrestrial control points. In addition to the effect of the
vegetation type on the lidar accuracy, the correlation between
the height differences at the reference points and vegetation
height and density were investigated. The vegetation density
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was quantified by the analysis of the coverage rate of the plants
in fish eye photos taken from the ground to the zenith.

In the next step the evaluated dependencies between the height
shift and the vegetation attributes had to be related to the
observables of the available remote sensing data. The
significance of attributes as well as features depends strongly
on the vegetation type. Therefore, without any context
information a classification of vegetation types has to be
performed in addition. In order to keep all features in the
current remote sensing data exclusively for the distinction of
accuracy levels with regard to the vegetation height and
density, the separation of the vegetation types was realised
using a biotope mapping.

The intensity value given with the data might be derived from
the measurements in different manners by the providers.
However, in any case it is a function of the signal amplitude,
which is responsible for the main part of the spatial variation of
the cross section (see Wagner et al.,, 2006). Reflectivity,
directivity, and the effective area of the reflecting surface of an
object are combined in the concept of the so-called cross
section . Therefore, the amplitude of the echoes as well as the
intensity values of the lidar points are related to the
characteristics of the object, such as plant structure, and
consequently to the vegetation density. In the basic case of
normal incidence with uniform intensity, flat bare ground yields
to a homogeneous cross section (coinciding with the circular
beam footprint) as well as a narrow pulse width and high
amplitude, while a mixed target consisting of terrain and low
vegetation expands the pulse width and attenuates the
amplitude. Considering coastal shrubberies in the leaf-off
period, the higher the echo in the vegetation the thinner are the
branches, which contribute to the cross section. Therefore, the
amplitude as well as the intensity values decreases theoretically
for elevated lidar points.

Due to in general higher reflectivity, bare ground in the
investigation area appears brighter than shrubberies during the
leaf-off time in the channels of multispectral data. Hence, the
darker the pixel, the larger the proportion of vegetation and
therefore the plant density is. Additionally, for evergreen plant
population or measurement campaigns during the leaf-on period
vegetation indices (e.g., the Normalized Difference Vegetation
Index (NDVI)) are means to quantify the vegetation density,
because a strong correlation between the leaf area index (LAI),
describing the vegetation structure, and the NDVI exists
(Pandya, 2004).

Higher vegetation areas cause larger variations in the height of
the lidar points. Thus, the standard deviations as well as the
contrast in the height data are correlated with vegetation height.
Multiple echoes per laser beam can be separated by the system
if the vegetation height is larger than the range resolution of the
scanner. For pulsed scanner the range resolution corresponds to
the half pulse length (e.g., LMS Q560 - 4ns = 0,6m). Another
premise for several echoes is a certain minimum vegetation
density in the related height, which can generate a reflection
strong enough to be detected by the photo diodes and the
implemented signal processing software. In general, the
occurrence of multiple echoes indicates larger vegetation height
and density.

4.2 Feature extraction using raw data

The previous approach relied on transformation of the arbitrary
distributed raw data to a regular spaced grid (3d to 2.5d
mapping) in order to use conventional image segmentation and
classification techniques. Disadvantages of the procedure are
interpolation and smoothing artefacts reducing the significance
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of the features related to the height offset in the lidar data.
Additionally, the neighbourhood defined by the segments is not
appropriate to the feature extraction especially for pixel near the
borderline. Therefore, in this paper the features are determined
using methods applied directly on 3D raw lidar data. A
comparison is performed to evaluate the changes of the
correlation between the different features, derived from grid and
raw data, and the height shift caused by vegetation.

The raw data of the investigation area provided by the Milan
Flug GmbH contains up to three echoes per laser pulse. The
points were stored with Xx,y,z-coordinates together with
intensity values in chronological order of their time stamps
corresponding to the scan pattern. The different echoes are not
assigned to a certain laser pulse, thus a separation into first, last
and other pulses is performed based on geometric criteria.
Afterwards, a file for the feature extraction is prepared, which
only consists of last pulse data with the following attributes:
coordinates, intensity values, number of associated returns and
vertical differences between the last and related echoes. For the
data of the first flight mission including only last echoes (Juist
2004) the separation step is omitted and the attributes related to
multiple returns are not considered.

For feature extraction the n-nearest neighbours of each laser
point are considered. The feature values for the intensity can be
assigned directly from the examined point or the mean value in
the neighbourhood is used alternatively, if a smoothing of noise
effects is desired. Two additional features are calculated using
the distribution of multiple echoes in the vicinity of the
considered point: the ratio of laser pulses with several returns to
all pulses and the average height difference between first and
last echo in the defined neighbourhood. In order to analyse the
variation of the height in the neighbourhood of the current laser
point, the standard deviation and the contrast derived from a co-
occurrence matrix are calculated. The influence of the terrain
slope on the height variations is reduced by an adjusted plane
fitted in the lidar points of the neighbourhood. The standard
deviations of the point heights with respect to the plane are
stored acting as features. The height values related to the plane
are also used to determine the co-occurrence matrix. In Haralick
(1979) the textural features were established based on grid data
and Pfeifer et al. (2004) suggested their application to
irregularly distributed points. The range of the height
differences in the neighbourhood of the investigated point is
divided into regularly spaced intervals. The number of these
bins corresponds to the size of the square co-occurrence
matrices. For each pair of points in the area of interest the
horizontal distance is determined defining those pairs, which
relate to a certain co-occurrence matrix. Afterwards, the height
differences of the point pairs are calculated and assigned to the
defined intervals. Like in (Pfeifer et al., 2004) all directions are
considered, because in areas with natural vegetation, such as
shrubberies, the direction dependency of the height variation
should be marginal. The contrast is determined from the
matrices using the following equation:

i*(h,.)>
Contrastziz(l (R ) 1
N
i Number of counts in the matrix cell related to the height
interval
hgr  Related height interval
N Number of all point pairs contributing to the values

of a certain matrix depending on their horizontal
distance
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The features can be determined for lidar as well as for control
points using the adjacent lidar points. For the purpose of
comparison the features from the segments of the previous
approach are assigned to the single points using their horizontal
coordinates.

4.3 Previous classification approach

In the previous approach a supervised classification is
performed based on different data sources (multispectral image,
lidar data, biotope mapping), in order to divide the lidar data
into different levels of accuracy depending on the predominant
vegetation. For the classification a segment based algorithm
was chosen in order to consider the local neighbourhood of the
laser pulse and to calculate mean values and standard deviation
as well as other texture parameters. Initially, the height and
intensity values of the unfiltered lidar data are transformed to
regular grids for a combined image classification with
multispectral data. Unfiltered data are used, in order to preserve
texture information stemming from the vegetation. The
segmentation for the tests in this paper is performed using a
watershed transformation applied to the low pass filtered lidar
intensity image. Starting from the local grey value minima as
seed points (corresponds to areas of low lidar accuracy), a
flooding of the surface depending on the grey values is
simulated. This procedure continues as long as water of
different sources is only separated by the watershed lines.
Afterwards, these lines are assigned to an adjacent segment
using the minimum grey value difference between the segment
and the line pixel. The significance of the features for the
different accuracy intervals depends mainly on the vegetation
type. Thus, the extension of the segments and, consequently,
the area of the following classification are limited to one
predominant vegetation type using the borderlines of the
biotope mapping. Training areas are generated by slicing the
height offset of the control points. For that purpose a difference
model is calculated and transformed into an image, so that the
grey values correspond to the height discrepancies. This image
is segmented into different accuracy levels. These segments are
used as training areas for supervised classification.

In the last step the feature vectors derived for the training areas
and the segmentation are used to classify the lidar height data
into different accuracy levels. In this paper a Minimum
Distance Classifier (Euclidian distance) is applied to assign the
current segment. For this method the features are normalised to
the same overall value considering the distribution of the
feature values, in order to weight the features equally.

4.4 New prediction algorithm

Studies indicated that the regular spaced accuracy intervals
related to the classes do not correspond to separable clusters in
the feature space. Considering one vegetation type the height
offset and the related features show a rather continuous
characteristic. Theoretically, lidar echoes can stem from
reflection at any level of vegetation and hence every value in
the range of the height offset for the current vegetation type is
possible. Therefore, a standard classification is not the most
suitable method to estimate the shift in the lidar data caused by
vegetation. Hence, in the new approach the connection between
the features and the height offset is realised by continuous
functions. Initially, the parameters of the functions have to be
determined using the reference data. For the unfiltered lidar
data a DSM is calculated and the heights at the control points
are interpolated. The height offset is determined based on
comparison of the lidar and the reference height for every point.
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Afterwards, the features for the control points are calculated
depending on the adjacent lidar points (section 4.2). In order to
eliminate outliers and attenuate the noise of the features a
median filtering is performed. Subsequently, the parameters of
the functions, which connect every chosen feature to the height
offset, are estimated by least square adjustment. Polynomial
functions of different order and exponential functions are
implemented. For instance, if the lidar intensity values increase,
the height offsets decrease implying the use of monotonic
functions. Additionally, for high intensity values the height
offset converges to zero. Therefore, in this case exponential
functions are suitable to represent such dependency, while
polynomials of higher order tend to oscillate between the
interpolation points. For every single lidar point the height shift
can be calculated based on its features and the estimated
functions. Every feature and the related function generate an
estimate of the shift. The final height shift of the current lidar
point is computed by a weighted average of these single shifts.
The weights are derived from the standard deviation of the
points with respect to the fitted function for each feature
(Equation 2) or from the correlation of the feature and the
height shift (Equation 3).

AH. AH.. _AH,
AH . = o, o, On (2)
f o'+ +..+0)
_C *AH, +c,*AH, +...+¢c, *AH,
AH .= € +Cy+.otC, (€)

AH; Final height shift derived from all features

AH,...AH, Height shift derived from single features

61...0y Standard deviation of the points regarding to the
fitted function for single features

Cy...Cp Correlation of the features and the height shift

The features correspond to the height offsets only for the
vegetation type in the reference area, which is used to calculate
the function’s parameters. Therefore, the estimation of the
height shift is conducted for the lidar points situated within the
same kind of vegetation, which is realised using a biotope map.

5. RESULTS
5.1 Vegetation attributes and features

For all studied vegetation types in the coastal zone we observed
a general upwards shift of the lidar DTM ranging from 10cm to
23cm for several control areas. The largest height shift was
detected for beach grass (+19cm), sand couch grass (+20cm)
and the mixed area sea buckthorn/willow (+23cm). Without
considering the biotope type vegetation height and density did
not show strong dependencies with respect to the height offset.
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Figure 2. Average height shift plotted over vegetation heights
for creeping willow (Langeoog, Riegl scanner)
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However, a high correlation for height as well as density was
determined observing exclusively one kind of vegetation.
Hence, the knowledge of the vegetation type is crucial for the
applicability of the other attributes. An example for the
dependencies of the height shift and vegetation heights within
an area of creeping willow is given in Figure 2.

The vegetation attributes are connected to features extracted
from the remote sensing data (lidar and multispectral data),
which are used to estimate the height shift of the lidar data in
vegetated areas. For example, Figure 3 visualises the relations
between the intensity of the lidar echoes and the height shift for
an area covered with Japanese rose and creeping willow
mapped by the ALTM 2050 scanner. A strong dependency and
a continuous characteristic of the feature and the related offset
are obvious. Maximal two clusters could be separated in the
diagram. Intensity values lower than 60 indicate elevated
targets, while for higher values mixed or ground echoes are
expected.

Height Shift (m)

Intensity

Figure 3. Dependencies between the height shift and the lidar
intensity values (Juist 2004 TopScan)

5.2 Feature extraction using raw data

In order to increase the significance of the features the
extraction is conducted using raw lidar data. Figure 4 depicts on
the left side a part of a RGB-Image of the island Langeoog and
on the right side the related density of multiple echoes extracted
from the point cloud.

compared. Obviously, the dependency of this feature to the
height offset increases for all investigated reference areas using
the raw data.

5.3 Previous classification approach

The previous and the new method are applied to a data set from
the ALTM 2050 scanner covering the East Frisian island Juist
in 2004. Figure 5 shows the terrestrial measured control points
of the reference area, which is situated within a mixed habitat of
rose and willow in the dunes. From the southern part of the
points (green) the training areas are generated, which are used
to learn the features for the classification. According to
intensity values and height contrast the segments, created by the
watershed transformation, are classified to five accuracy
intervals using the minimum Euclidian distance.

Figure 5. Control points of the test area on the island Juist
(background: CIR-Orthophoto)

With the northern part of the reference points (blue) the
classification result is checked. Table 2 visualises the related
accuracy. The correctness for the different classes varies in the
range of 54 — 75%. However, the proportion of the adjacent
classes is quite high. These errors are caused by the arbitrarily
chosen borders of the accuracy intervals. As shown before, the
features and the related height offset have a rather continuous
characteristic, which is not suitable to be modelled in clusters.
Another reason for the errors is that the borderlines of the
control areas and of the segments, which are classified in the
aggregate, do not match.

Proportion of

class with Class 1 Class 2 Class 3 Class 4 Class 5
respect to the <20cm <50cm | <100cm | <150cm | >150cm
training area
Train Area 1 65,3 27,0 1,4 - -
Train Area 2 32,7 56,9 18,7 2,01 0,3
Train Area 3 2,0 11,7 54,3 22,1 0,2
Train Area 4 - 4,0 22,0 54,0 24,5
Train Area 5 - 0,3 3,5 20,6 75,0

Figure 4. Left: RGB-photo of an area of the island Langeoog;
Right: Density of multiple echoes (higher density is visualised
with darker colour)

Correlation between Height
(iﬁger:f 2%2;;?; Contrast and Height Shift

Segments Raw Data
Rose +Willow (2004) 0.45 0.51
Rose + Sea Buckthorn (2005) 0.36 0,55
Rosel (2005) 0.38 0.48
Willow1 (2005) 0.46 0.72
Willow?2 (2005) 0.65 0.69

Table 1. Correlation between the height shift and the height
contrast extracted from the segments and raw data

In Table 1 the correlation of the offset to the height contrast
extracted from raw and grid data (values for segments) is

Table 2. Classification result

5.4 New prediction algorithm

In the new approach the control points are used to connect the
height offset to the extracted features with continuous functions.
In this test a second order polynomial is chosen both for the
intensity and the height contrast. These features are weighted
by their standard deviation with respect to the fitted functions.
For the parameter estimation again the southern part of the
control points is used as training area and the height offset of
the northern points is calculated based on the features from the
adjacent lidar data. The diagram in Figure 6 visualises a high
correlation between the estimated height shift and the offset
determined by the comparison of lidar and reference heights.
This method shows potential for the estimation of the height
offset in different coastal vegetation, because the continuous
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characteristic of the accuracy in these vegetated areas is taken
into account. But the algorithm depends strongly on the
significance of the features.
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Figure 6. True height offset vs. estimated height offset

However, first tests using the lidar data acquired by the LMS
Q560 system indicate that the correlation of the features and the
height shift is not strong enough for some vegetation types, in
order to fit robust functions. Therefore, the applicability of the
features for the method has to be checked before.

6. CONCLUSION AND OUTLOOK

Starting from theoretical considerations about the interaction of
the laser beam with different layers of vegetation, this paper
compares two methods for the estimation of the height shift in
the lidar data caused by coastal vegetation. Features, such as
lidar intensity and height contrast, are connected to vegetation
attributes, which influence the accuracy of lidar measurement.
In a previous approach these features are used to classify the
lidar data into different accuracy intervals. However, the
characteristic of the accuracy of lidar data belonging to one
vegetation type does not correspond to distinct and easily
separable clusters in the feature space. Therefore, a new method
is developed, which connects the feature to the height shift with
continuous functions. The shift of a single lidar point can be
easily calculated using its features and the parameters of the
functions. However, this approach depends strongly on the
significance of the extracted features, which is basically
influenced by the scanner type and the echo detection
algorithm. For future work upcoming scanning devices, which
are able to record the full waveform, can provide new
meaningful features. For instance, the pulse width can be a
quality criterion by itself. It describes the uncertainty of the
target surface and the range measurement for the related echo.
Another idea combines the extracted feature with geometric
criteria of filtering methods, in order to eliminate vegetation
points and to generate a DTM for the vegetated coastal zone.
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ABSTRACT:

3D modeling and visualization of real world scenes is an important topic of research with applications in many areas such as virtual museums, game
and entertainment, architecture description and restoration, virtual reality, archaeology, many industrial applications and last but not least important
tourist applications. 3D modeling and visualization are the creation of a computer representation of real world environments that merges together data
coming from one or more sensors. The representation of the geometric and texture information of a real scene is a very challenging task due to the
acquisition of large-scale data, complexity of the geometry and difficulties to cope with reflectance properties of the objects and variations in the
lighting in the scene. Two approaches, depending on the type of sensor (terrestrial laser scanner or digital cameras), are typically used to face the 3D
reconstruction problem. Laser scanners provide 3D metric information in real time through an array of coordinates: range images. Digital cameras are
used to acquire high-resolution images of the scenes. These images are 2D arrays of reflected light from objects but do not contain any explicit metric
information. Further processing is necessary, to calibrate cameras and compute 3D models. This paper aims to demonstrate how active and passive
sensors can be registered and combined through a hybrid approach to compute 3D models of complex scenes with photo-realistic quality. Particularly,
the proposed approach tries to deal with two different images: a high-resolution image acquired with a digital camera and a range image obtained
from a laser scanner model using collinearity condition. Our goal is to devise and implement a robust, automatic, and accurate hybrid-technique for
registration of both sensors for efficient modeling (geometry) and rendering (radiometry) of complex environments. To this end, we have developed a
novel application for laser scanning which allow us to test the approach developed over experimental results.

1. INTRODUCTION: A REVIEW by a rigid transformation and a camera model, also referred to
as the camera’s extrinsic and intrinsic parameters. This rigid
body transformation takes 3D points from object space to 2D
points in the camera’s reference frame, and the camera model
describes how these are projected onto the image plane. The
camera calibration problem is solved by matching features in
the 3D model with features in the image. These features are
usually points, lines or special designed objects that are placed
in the scene. The matching process can be automatic or user
driven, and the number of feature pairs required depend on
whether we are solving for the intrinsic, extrinsic or both
parameters sets. In the context of image registration for 3D

3D reconstruction of complex scenes is a very challenging task
due to the variety of possible scenes to scan and difficulties to
work with real data. Passive and active techniques used in 3D
reconstruction have their limitations and, separately, none of
these techniques can solve all the problems inherent to the
modeling of real environments. To reinforce this need, next
table (Table 1) illustrates a comparison based on the most
important features with relation to laser scanner and digital
camera.

Laser Scanner

Digital Camera

J Inaccurate lines and joints

T Accurate lines and joints

4 Poor colour information

TGood colour information

T Prompt and accurate metric
information

J Hard-working and slow
metric information

T Excellent technique for the
description of complex and
irregular surfaces

J Time-consuming
technique for the
description of complex and
irregular surfaces

J High-cost technique

T Low-cost technique

4 The 3D model is an entity
disorganized and without
topology

TThe 3D model is an
entity organized and with
topology

T Light is not required to work

J Light is required to work

register

Table 1: Comparison of features: laser vs. camera.

both sensors.

Up to now, several approaches have been developed trying to
This problem of
registration is closely related to the problem of camera
calibration, which finds a mapping between the 3D world
(object space) and a 2D image. This mapping is characterized

image-to-model
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modeling using dense laser scanner data, several approaches
have been developed: (Rocchini et. al., 1999) develop a new
approach for mapping and blending textures on 3D geometries.
The system starts from a 3D mesh which represents a real
object and texture detail acquired via a common photographic
process. Both datasets are integrated based on initial rough
registration. However, this approach requires manual
interaction and is applied to small objects; (Lensch et. al., 2001)
develop an image registration approach based on silhouette
matching, where the contour of a rendered version of the object
is matched against the silhouette of the object in the image. No
user intervention is required, but their method is limited to cases
where a single image completely captures the object; in other
range of methods applied to large distances, dealing with
outdoor scenes and based on locating invariant image features,
(McAllister et. al., 1999) suggest correlating edges common to
the color image and the range map’s intensity component.
However, care must be taken to place the camera’s nodal point
at the same physical location as the laser’s center of rotation,
and to rotate both devices about this point. This homographic
relationship simplifies the registration to the camera’s three
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rotations relative to the laser; (Elstrom, 1998) presents a novel
stereo-based method for registering color and range images
acquired from externally uncalibrated sensors. The multi-sensor
alignment problem is solved by processing invariant features
such as corner, edges or contours which are extracted from the
raw data. The benefit of a feature-based approach is that it
abstracts the data and thus simplifies the search for the
registration parameters. Often, however, feature extraction leads
to the loss of some information; (Stamos and Allen, 2001)
present a semi-automatic method for image to model
registration of urban scenes, where 3D lines are extracted from
the point clouds of buildings and matched against edges
extracted from the images. The method involves the utilization
of parallelism and orthogonality constraints that naturally exist
in urban environments. Therefore, their algorithm only operates
in scenes which contain linear features with strong geometric
constraints. Also a number of thresholds have to be manually be
set by the user in order to customize the segmentation; (Ikeuchi
et. al., 2003) in their Great Buddha work, use reflectance edges
obtained form the 3D points and match them against edges in
the image to obtain the camera position. They align edges
extracted from reflectance images with those in color images so
that the 3D position error of those edges is minimized by
iterative calculation. Nevertheless, this approach has been
focused on small and simple objects; (Allen et. al., 2003)
present a novel method for 2D to 3D texture mapping using
shadows as cues. They pose registration of 2D images with the
3D model as an optimization problem that uses knowledge of
the Sun’s position to estimate shadows in a scene, and use the
shadows produced as a cue to refine the registration parameters.
However, they still have some limitations related to view
planning and real-time model creation and visualization. More
recently, (Aguilera and Lahoz, 2006) exploit the power of a
single image-based modeling method to obtain an automatic co-
registration of laser scanner and uncalibrated digital camera.
Particularly, the problem of image registration is solved
automatically through 2D and 3D points correspondences which
are matched based on a search of spatial invariants: two
distances and one angle. However, several input considerations
such as especial targets, vanishing points and geometric
constraints have to be taken into account; (Al-Manasir and
Fraser, 2006) develop a strategy using a coded target placed on
the object, which are registered by a calibrated digital camera,
rigidly attached to the laser scanner. An automatic process is
applied to solve the spatial position and orientation of the
camera within the laser scanner coordinate system. The
identified coded targets are used to apply a 3D similarity
transformation. However, this approach needs a camera
attached camera to laser scanner and placed some code target
on the object; (Alshawabkeh et. al., 2006) propose a robust
algorithm line detection within the high-resolution image, based
on the mathematical properties of the mean which is invariant
to arbitrary rotations and translation of surface. This
segmentation is applied into 3D model, and can look for
different types of edges. Finally, it uses the edge resulting to
apply a matching between 2D and 3D datasheets.

The method that we have developed (Figure 1) exhibits
significant improvements in flexibility, accuracy, and
completeness over the approaches remarked above. Particularly,
some relevant tasks have been automated; new strategies and
algorithms integrating robust estimators have been adapted in
each step guarantying more reliability and accuracy;
considering that both sensors have been registered, a hybrid
modeling process has been developed which allow us to
complete and improve geometric and radiometric properties of
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the laser model. Finally, a novel laser scanning tool has been
developed in order to test experimental results.

[High Resolution| [3D Scan}—
Image | a
Orientation

Reprojection «—— by User

Image Enchacement [Range Image|
)

Resize Resize

|High-Res Image| |Range Image|

Férstner Operator
Matching
DLT + RANSAC

Re-projection

Camera Orientation
v

Improve and Complete
Laser model

Geometry
Radiometry

Figure 1. Full pipeline process.

The paper presents the following structure and organization:
after this review, Section 2 develops the matching of both
images: range and high-resolution. Section 3 explains in detail
the co-registration approach developed for both sensors. Section
4 describes a hybrid modeling approach to improve and
complete the laser model. Section 5 shows some experimental
results using our own novel application of laser scanning. A
final section is devoted to outline some conclusions and future
works.

2. MATCHING RANGE AND HIGH-RESOLUTION
IMAGES

Automated identification of image correspondences is a solved
problem in aerial photogrammetry, since image geometry is
more standard and relative camera rotations are small.
However, in close range applications, each acquisition has its
own image geometry, depending on the image scene, the
baseline cannot be kept always constant and the rotations
around the camera axis are significant. Moreover, more
problems arise if we try to match two different types of images
such as range and high resolution images. Therefore, the
algorithm must be as robust as possible and extracted features
should be invariant under different transformations to be re-
detectable and useful in automatic procedures.

The matching strategy developed presents a robust and
hierarchical approach with the aim of extracting and matching
features (interest points) between high-resolution and range
images. Firstly, an image pre-processing was applied based on
some radiometric equalization and contrast enhancement.
Particularly, a blue channel filter is applied in order to eliminate
sky influence on high resolution image. With relation to range
image, one problem is the “air’ or holes due to an insufficient
density of points, so a bilinear interpolation is applied to reduce
its influences. At last, both images are resized interactively
based on some user information. The goal of the resizing is to
apply a planar affine transformation to the range image to fit as
well as possible to the high-resolution image. The resized
images will be used in the matching process. Secondly, an
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interest point detector method based on Forstner operator
(Forstner and Gllch, 1987) has been applied. Many interest
point detectors exist in the literature but only a few satisfy
accuracy requirements. Through Forstner operator, the
detection and localization stages are separated, into the
selection of windows, in which features are known to reside and
feature location within the selected windows. The windows of
interest are computed with a gradient operator (1) and the
normal matrix.

g:x = g:x+1.yig:x—1,y (l)

g y = g x‘y+1_g X,y-1
The point of interest is determined as weighted centre of gravity
of all points inside the window. Further statistics performed
locally allow estimating automatically the thresholds for the
classification, like trace of inverse matrix (Q) or form of the
confidence ellipse. The algorithm requires a complicate
implementation and is generally slower compared to other
detectors.

Once interest points have been extracted, a hierarchical
matching strategy based on ABM (Area Based Matching) and
LSM (Least Square Matching) has been applied. At first, the
cross-correlation coefficient is used to get a first approximation
(2). Around the predicted position a search box is defined and
scanned for searching the position which has the higher cross-

correlation value. This position is considered a first
approximation of the correct point to be matched.
= Our 2)
OonoR

where p is the cross-correlation coefficient, opr is the
covariance between the windows of high-resolution and range
image; oy, is the high-resolution image deviation and o is range
image deviation.

Then, the approximation found with cross-correlation is refined
using LSM algorithm (Griin, 1985), which provides precise and
sub-pixel location of the matching elements. The cross-
correlation process uses a small window around each point in
the high-resolution image and tries to correlate it against all
points that are inside a search area in the range image. The
search area is given considering the resize of both images. The
final number of possible matches depends on the threshold
parameters of the LSM and on the disparity between the two
images pairs; usually it is around 40% of the extracted points.

3. CO-REGISTRATION OF SENSORS

Due to the unguided matching process, the found matched pairs
might contain outliers. Therefore, a filtering of false
correspondences must be performed. Taking into account the
authors’ experience testing some robust approaches (Aguilera
et. al., 2004), several assumptions can be confirmed:

Least squares adjustments are not robust estimation
techniques as wrong observations (like false interest
points) can lead to completely wrong results and might
even prevent convergence of the adjustment.

The classical approach to detect blunders in the
observations based on the reliability theory or data-
snooping technique, developed by (Baarda, 1968) could
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not solve some critical problems. Moreover, the blunder
detection technique has a solid theoretical formulation but
it is based on some hypothesis which can lead to
unsuccessful results if not satisfied.

When a large number of observations are available, robust
estimators such as RANSAC or M-estimators can perform
more efficiently to check for possible outliers. In robust
estimations, gross errors are defined as observations which
do not fit to the stochastic model used for the parameters
estimation.

Taking into account the assumptions remarked upon above, a
twofold approach for co-registration of both sensors has been
developed:

I. An estimation step which allows us to obtain a first
approximation of co-registration parameters based on Direct
Linear Transformation (DLT) (Abdel-Aziz and Karara, 1971)
combined with RANSAC (RANdom SAmpling Consensus)
(Fischler and Bolles, 1981). As a result, the most important
wrong matched interest points are rejected.

1. A computation step, which applies a re-weighted least square
adjustment supported by modified Danish M-estimator
(Domingo, 2000). A re-projection strategy based on collinearity
condition and supported by Danish M-estimator allows us to
refine the DLT solution and thus to compute accurate and
reliable co-registration parameters.

In a first step, DLT is applied to solve camera orientation using
pixel and terrain coordinates. Terrain coordinates are obtained
from laser scanner file which relations every pixel of range
image with its 3D point projection. This algorithm is used due
to be a very well developed algorithm in computer vision, and it
can obtain a first result without iterations. This process is
upgraded with RANSAC in order to get a reliable camera
position.

RANSAC computes several registrations based on a minimal
subset of correspondences selected randomly. For each of these
“random registrations”, the technique searches for all
supporting correspondences (correspondences with a DLT error
below a given threshold). All correspondences are then used to
compute a new camera registration. The process is repeated and
the estimation that has the larger set of points and the minimum
error is selected as the final registration. The algorithm needs
three parameters: the maximum error (in pixels) to consider a
correspondence pair as supporting a given registration (10
pixels); the subset of points used in each trial for the first
evaluation (11 points); the number of trials (20-30). To estimate
this last parameter, we need to know the number of outliers in
the data. In our case, we do not know the percentage of outliers
in the initial data; furthermore, it will depend on the type of
image (the error will increase in poorly textured images where
matching algorithms performance is worse). In order to provide
more automatism and efficiency, adaptative thresholds have
been introduced (Hartley&Zisserman, 2000).

In a second step, a final computation of the co-registration
parameters has been obtained based on a re-projection strategy
of range image into high-resolution image. An iterative process
using collinearity-based approach has been applied to refine the
DLT solution allowing us to improve the co-registration of both
sensors. Particularly, a set of 2D range image points have been
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re-projected over the image based on colinearity condition
principles and the approximated camera parameters provided by
DLT step. Small discrepancies remain between the projected
range points and the original extracted high-resolution image
points. The 2D coordinates of the extracted points and the re-
projected corresponding range image points constitute the input
to compute a new registration. This iterative process continues
until the Euclidean distance between the re-projected points and
the original interest points gets to a minimum (threshold
distance). The general idea is that at each iteration the distance
between the two datasets is reduced, allowing a better
computation of registration parameters. To ensure the
convergence of the algorithm and the improvement of the initial
camera model estimation, the registration error of each
correspondence is computed and recorded. In each new
iteration, only matching pairs for which the registration error
decreases are updated, and the other are kept unchanged.

Particularly, the method consists of minimizing the Euclidean
distance between the re-projected points and the original
interest points. Nevertheless, the presence of accidental and
“light” gross errors in observations will make that each interest
point does not have the same degree of participation in the
adjustment. In this way, a re-weighted least square adjustment
supported by modified Danish estimator (3) is applied. The
numeric solution for this adjustment follows an iterative re-
weighted approach, in which the iteration starts with some
initial values for the weights of observations and a conventional
least square adjustment. In the following iterations, new
weights are calculated for each observation based on the
residuals obtained in the previous iteration, and a least square
adjustment with these new weights is repeated.

2

W(V):e( V%) (3)
where w represents the weight function and v the residual
vector.

The iterative process continues until the convergence is
achieved (usually 3 to 10 iterations). After the computation of
co-registration, a full model for the digital camera with relation
to laser scanner is available and ready to be exploited. One of
the most important advantages of modified Danish estimator
regarding to RANSAC is its continuous approach without total
loss of observations, providing more accuracy and reliability in
the result.

4. AHYBRID MODELING APPROACH

The idea developed in this section, is based on the use of
registered high-resolution image not only to texture mapping
but also to complete and improve 3D laser model geometry.

4.1 Geometry.

For some modeling applications, like building reconstruction,
where the object is mainly described with straight lines, laser
scanner technology does not provide a final solution.

The goal of surface modeling can be stated as follows: given a
set of sample points Pi assumed to lie on or near an unknown
surface S, create a surface model S’ approximating S. A surface
modeling procedure based only in laser scanner dataset cannot
exactly guarantee the recovery of S, since principal straight
lines of the building are not provided by laser scanner.
Sometimes additional information of the surface (e.g.
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breaklines) can be available and thus the output result S’ is
more likely to be topologically correct and converges to the
original surface S. A perfect scan system should be dense in
detail area and sparse in featureless parts and performs
automatically. But usually the measured points are unorganized
and often noisy; moreover the surface can be arbitrary, with
unknown topological type and with sharp features.

The approach presented in this section does not extract directly
3D information from a high-resolution image; it uses features
detected in the high-resolution image to complete and improve
segmentation in laser model. The process considers the laser
model completely triangulated, and not the point’s cloud, to
make easier the detection and matching of 3D edges.

The co-registration of both sensors allows us to compute
correspondences between 2D straight lines belonging to high-
resolution image and 3D edges belonging to laser model. The
final step of the correction process consists in the alignment of
the laser model edges.

A first approximation to laser model has been obtained based
on Delaunay triangulation, especially through an incremental
strategy (Bourke, 1989). Furthermore, in order to make easier
the process, laser model is filtered in order to isolate the main
3D edges. Topological information, as well as normal of
triangles are used to isolate these features. As a result, two
different types of 3D edges are isolated: final edges, those that
constitute the surface perimeter and breaklines edges, those
whose normal variation is greater than a predefined threshold
(30-400).

Afterwards, a robust straight line extraction is performed over
the high-resolution image. Particularly, a combination of Canny
(1986) and Burns (1986) operators is used to obtain accurate
lines. Furthermore, a clustering of these segments based on the
analysis of slope and orthogonal distance allow us to obtain the
principal lines.

The hybrid modeling method that we propose should infer the
correct geometry, topology and features based on the co-
registration of both sensors. In this sense, the features extracted
on the high-resolution image can provide geometric constraints
as well as breaklines to model the object.

At this point, an iterative process starts in which the 3D edges
isolated over the laser model start to be corrected based on the
straight lines extracted over the high-resolution image. For each
extracted segment in the high-resolution image, the algorithm
selects the 3D edge points that are projected to the line defined
by the segment (the orthogonal distance and the slope variation
are used to validate the 3D edges candidates).

Finally, an algorithm corrects the 3D coordinates of points close
to straight lines in the laser model. This is done in two steps.
First, the parameterised equation of the 3D line is computed,
and then 3D coordinates are modified so that the final points
will lie in the computed line. The algorithm is applied
iteratively with adaptative thresholds to correct as many edge
points as possible. The algorithm stops when no correction is
computed or when a user-defined number of iterations are
reached.

4.2 Texture.

The visualization of a 3D model is often the only product of
interest for the external world and remains the only possible
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contact with the model. Therefore, a realistic and accurate
visualization is often required.

Through a texture mapping technique, our registered high-
resolution image is mapped onto the 3D laser model in order to
achieve photo-realistic virtual models. Knowing the parameters
of interior and exterior orientation of the image, for each
triangular face of the 3D laser model the corresponding image
coordinates are calculated. This approach is performed based on
the Anchor Points method developed by (Krauss, 1993). This
method has three main steps:

(i) Firstly, laser model image-coordinates are computed through
camera model and collinearity condition.

(if) Next, a correspondence between each face of the laser
model with each face of the high-resolution image is
established.

(iii) Finally, a projection of the photographic texture between
the face of the high-resolution image and its homologous in
laser model is performed. In this sense, each triangular face
receives a specific transformation model well known as affine
transformation.

On the other hand, after the registration procedure, a full model
for camera is available. Using this information, each 3D
coordinate in the range image can be re-projected into the
intensity high-resolution image according to the camera model.
Since both images are directly registered, it is possible to
establish an association between pixels in range and high-
resolution images, and compute a new range image based on the
high-resolution colour values. The final image is useful to
evaluate the quality of the registration in an easy fast way. It
can also be used directly to map texture on the 3D models,
giving a much more realistic impression than for a model only
textured with the range image. The 3D coordinates when
projected in the high-resolution image, will not correspond
normally to an integer pixel value. To avoid distortion in the
colors, a bilinear interpolation is used to compute the resulting
RGB value for the re-projected image. Furthermore, due to the
different images resolution, the interpolation is used to compute
the “extra” 3D positions.

Finally, regarding visualization, the VRML (Virtual Reality
Modeling Language) format was the standard chosen to provide
an interactive visualization of the results guaranteeing
flexibility and scalability in the visualization at the same time,
so different 3D laser models can be incorporated and managed
easily. In this way, an automatic transformation of the
reconstructed laser 3D model into a topological structure
(points, lines and surfaces) sorted hierarchically in a nodes
network was performed, allowing three different levels of
visualization: wireframe, shaded and textured. Materials
defined by their colours and radiometric properties
(opaqueness, transparency, diffusion, reflection and emission)
and high-resolution textures, are mapped through a uniform and
continuous renderization supported internally by VRML. At
last, in order to increase the level of realism and completeness
of the scene, several basic primitives combined with spherical
panoramas can be added.

5. EXPERIMENTAL RESULTS

In order to determine the accuracy, limitations and advantages
of the hybrid approach proposed, a series of experiments are
tested using our own tool developed.

5.1 The medieval wall of Avila

The medieval wall of Avila represents a fundamental reference
point to the Spanish Cultural Heritage. Alfonso VI ordered the
construction of this fortification after his conquest of Avila in
1090. Apparently, he used Moorish prisoners to build the wall.

5.1.1 Problem and goal. Two different sensors and images are
used to put in practice the approach developed. Particularly, a
time of flight laser scanner, Trimble GX200, is used to obtain
range image, while a conventional digital camera, Nikon D70 is
used to obtain high-resolution images.

The workspace is situated in the north of the medieval wall, in a
popular place known as “Arco del Carmen”. The principal
problems with this experiment are related with its irregular
patterns, battlements, which causes a lot of problems in
matching phase, as well as its low density scan (about 300.000
points).

5.1.2 Methodology and results. The input data are constituted
by a high-resolution image (3008 x2000 pixels) and a resized
range image obtained from laser scanner point cloud and
collinearity condition (Figure 2).

High res.image | Range image

Figure 2. Input data: high-resolution and range image.

The Forstner detector (Figure 3) and a twofold matching
strategy are applied to relate both images. A matching kernel of
35x35 pixels is used at first. The final deviation of the matching
is 0.71 pixels.

Figure 3. Forstner detector applied to medieval wall.

Afterwards, a robust registration of both sensors is performed.
In a first step, DLT and RANSAC are combined to obtain a first
approximation of camera parameters (Table 2). Then, in a
second step, a re-projection strategy supported by Danish robust
estimator is applied iteratively (Table 3).

Sensor registration estimation: DLT + RANSAC

External Parameters
(Unit: radians, metres)

Axis: -1.16377 | X:1.195 oa:0.163 ox: 0.70
Tilt: -1.0355 Y:-1.382 or: 0.0178 oy: 1.10
Swing: -0.3572 | Z:-0.107 os: 0.0037 G2: 0.52
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Table 2: Twofold registration process: estimation

Sensor registration computation:
estimator (7" iteration)

Collinearity + Danish

External Parameters
(Unit: radians, metres)

Axis: -1.1824 X: 1.607 oa:0.0153 | ox:0.19
Tilt: -1.0521 Y: -2.035 o7 0.0238 oy: 0.14
Swing: -0.1687 Z:-0.204 cs: 0.0022 02 0.13

Table 3: Twofold registration process: computation

Finally, once a complete camera model has been computed, an
automatic high-resolution texture mapping is applied (Figure 4).

Figure 4. Mapping high-resolution textures.

5.2 The romanesque church of San Pedro

This romanesque church was founded on the XII century.
The main facade is considered to have important examples of
architectural sculpture, even though somewhat damaged.

5.2.1 Problem and goal. Two different sensors and images are
used to put in practice the approach developed. Particularly, a
time of flight laser scanner, Trimble GS200, is used to obtain
range image, while a conventional digital camera, Canon
1XUS400 is used to obtain high-resolution images.

The workspace is the main fagade of the church. In this case,
the scan density is high (over 1.5 millions of points), which
allows obtain of range-image with enough texture to apply the
matching process.

5.2.2 Methodology and results. The input data are constituted
by a high-resolution image (2272 x 1704 pixels) and a resized
range image obtained from laser scanner point cloud and
collinearity condition (Figure 5).

High res. image Range image

Figure 5. Input data: high-resolution and range image.

The Forstner detector and a twofold matching strategy are
applied to relate both images (Figure 6). A matching kernel of
35x35 pixels is used at first. The final deviation of the matching
is 0.51 pixels.

Figure 6. Twofold matching strategy

Afterwards, a robust registration of both sensors is performed.
In a first step, DLT and RANSAC are combined to obtain a first
approximation of camera parameters (Table 4). Then, in a
second step, a re-projection strategy supported by Danish robust
estimator is applied iteratively (Table 5).

Sensor registration computation: DLT + RANSAC

External Parameters
(Unit: radians, metres)

AXis: -1.429903 X: 8.048 oa: 0.0150 ox: 0.4433
Tilt: 0.09558 Y: -2.615 o7 0.0226 ov: 0.1928
Swing: 0.009088 | Z:0.277 os: 0.0055 c2: 0.6027

Table 4. Twofold registration process: estimation

Sensor registration computation:
estimator (4" iteration)

Collinearity + Danish

External Parameters
(Unit: radians, metres)

Axis: -1.451542 X: 8.456 ca:0.0073 ox: 0.2143
Tilt: 0.098474 Y:-2.377 or: 0.0111 oy: 0.0981
Swing: 0.013599 | Z:0.585 os: 0.0025 o2: 0.2956
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Table 5. Twofold registration process: computation

Finally, a hybrid modeling process has been developed in order
to complete and improve laser model. Regarding geometry,
several structural lines related to mesh model (breaklines and
final edges) have been corrected based on the co-registration
(Figure 7).

Edge (laser model)

Corrected edge (co-registration)

]
t
Nt l] [ /{//:"'/%
e g

il = |

Figure 7. Hybrid modeling process in San Pedro Church.

The time effort required in both experimental results was
irrelevant, only user interaction was required for providing an
initial approximation of camera pose.
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6. CONCLUSIONS AND FUTURE PERSPECTIVES

The presented paper has investigated and developed the
automatic co-registration of two sensors: terrestrial laser
scanner and high-resolution digital camera, as well as the
hybrid modeling approach derived from this fusion. A
consistent and reliable full process pipeline has been developed
and presented. It was demonstrated with different practical
examples tested through our own software.

With relation to the most relevant aspects of the proposed
approach, we could remark on:

Automation in the matching of both images has been
achieved.

No need for previous calibration.

A robust registration of both sensors is obtained using
RANSAC and Danish estimator.

An alternative to improve and complete laser models
is presented.

As for the most critical aspects, this approach has the following
limitations:

User interaction is required to provide a first
approximation of the area of interest.

High resolution scans is advisable to obtain fine
texture and thus good quality in matching process.

We feel that we have attacked one of the most difficult
problems in the laserscanning success. Nevertheless, several
improvements could be considered in the next future. Focusing
on geometry, the research could be extended to provide the
improvement of complex geometries such as arcs and quadrics.
Aiming on radiometry, also algorithms that allow handling the
problem of occlusions, illumination properties and transition
between junctions, could be developed.
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ABSTRACT:

LiDAR technology emits narrow beams of laser lighat are able to exploit gaps in the forest canapg detect sub-canopy
surfaces. In this study, we explore the potentiahioborne LIDAR to quantify understorey vegetatioaver in a dense and
structurally diverse conifer forest on Vancouveans, British Columbia, Canada. The cover of unibeey vegetation, defined
below an arbitrary height threshold of 4 m, wasrded in the field both horizontally and verticadliy 12 plots for comparison with
LiDAR data. Results showed significant relationshijetween field and LiDAR-based estimates of uridesg vegetation cover at
both the plot (30 x 30 m are&, 0.87) and sub-plot scale (15 x 15 m areas,4 per plot, 7= 0.68) p < 0.05). In addition, the
variability (coefficient of variation) of undersey vegetation cover estimated in the field and WitDAR data was found to be
significantly correlated £+0.88,p < 0.001). Overall, this work suggests that small-footplifPAR is sensitive to large changes in
understorey vegetation cover which can benefitfhegstry applications at the landscape scale sa@xamining stand regeneration

success.

1. INTRODUCTION

Information about the forest understorey is crltima both
ecological and forest management issues. Undeystore
vegetation provides food and habitat to a wide eavigfauna
(Fox & Fox 1984), whilst in multi-aged and mixedesges
stands, developing an understanding of regenerationess
is important for ongoing stand management followiag
disturbance (Kozlowski 2002). Likewise the spatial
distribution and structure of understorey vegetatie.g.
quantity, height, and cover) is critical to fire haeiour
models which are difficult to parameterise overefted
landscapes (Keane et al. 2001). For foresters,raiecand
timely information on the understorey can also helghe
assessment of nutrient retention and cycling (Ya8&0),
stand regeneration (Lormier et al. 1994), and ®seci
diversity (Gentry & Dobson 1987).

Conventionally, the approach to collecting inforioaton the
understorey has involved a range of field-basetrigces.
These generally require detailed, spatially dengsld f
measurements (< 1 ha) (McLaughlin 1978; Scheller &
Mladenoff 2002) so that the high spatial variapildften
present in the understorey can be captured anelctlegical
processes which occur at fine scales can be uondersFor
example, the distribution and composition of untigey
vegetation has been shown to vary at fine spataes due
to microtopography ife. pits and mounds), gaps in the
overstorey vegetation, disturbances such as hargeahd
nutrient availability (Beatty 1984; Bengtson et &006;
Miller et al. 2002). As a result, field-based assasnts of the
understorey are likely to be an expensive, diffi@id time
consuming task.

Light Detection And Ranging (LIDAR) however, hasebe
recognised as a tool that might be suitable to tifyasub-
canopy vegetation structure over large geograplacais.
Earlier studies, for example, have shown that LiDA&n
characterise fuel bed roughness (Seielstad & QQ€63),
discriminate understorey discrete LiDAR returns nfro
overstorey returns within a mixed conifer and deoits two-
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tiered forest (Riafio et al. 2003), and estimate Ltbeey’s

mean height of suppressed understorey trees inealforest
using regression models (Maltamo et al. 2005). Heurt
Mutlu et al. (2007) used the number of LiDAR hitithin 0.5

m vertical bins from 0 to 2 m (2.5 x 2.5 m areasjnmalised
by the total number of LIDAR hits, to improve thecaracy
of a surface wildfire fuel classification, whichsalinvolved
multispectral passive optical data.

The focus of this work is to determine whether spbat
estimates of understorey cover are possible wihgonifer
forest. To characterise the different types of usideey
structure contained within a multi-use conifer &irea
number of sites (12 in total) were examined. ThecHj
objectives were to: (1) assess whether understmregr can
be quantified within 30 x 30 m and 15 x 15 m areamg
first return LIDAR data, and (2) determine whethbe
variability in understorey cover measured in theldfiwas
correlated to LiDAR estimates.

2. MATERIALSAND METHODS

2.1. Fieldsite

The study area is Clayoquot Sound on Vancouvendsla
British Columbia (480’ 35" N, 12537’ 21" W). The area is
classified as a Coastal Western Hemlock (CWH) zbased

on the biogeoclimatic ecosystem classification (BE@tem
(Meidinger & Pojar 1996). Although the Vancouvelatsl
Range is adjacent to the study area, the topography
subdued and dominated by Pleistocene glacial despagth

an annual precipitation of 3306 mm and mean daily
minimum, average and maximum temperatures of 54, 9
and 12.8C, respectively (Environment Canada 2006).

Clayoquot Sound is a multi-use forested area anotlides
both recently harvested Crown land, as well as redfiust

and second growth forest in Pacific Rim NationakkPa
Western hemlocKTsuga heterophylla) is the dominant or
codominant tree species throughout. Western Redceda
(Thuja plicata), Amabilis fir (Abies amabilis), Yellow-Cedar
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(Chamaecyparis nootkatensis), Sitka Spruce FRicea
sitchensis), Douglas-fir Pseudotsuga menziesii  var.
mensiesii), and Red Alder Alnus rubra) also occur within
this forest region. Common understorey speciesudel
Salal Gaultheria shallon), Salmonberry Rubus spectabilis),
Thimbleberry Rubus parviflorus), Red Huckleberry
(Vaccinium parvifolium), Evergreen Huckleberryéccinum
ovatum), Blueberries Yaccinium spp.), and Devil's club
(Oplopanax horridus). Several of these understorey species
are important economically (for the floral indugtrprovide
food for local communities, and include culturalfyportant
medicinal plants (Clayoquot Sound Scientific Pdrg95).

2.2 LiDAR characteristics

Airborne LiDAR data were acquired in July 2005 bgria
Remote Sensing (Sidney, British Columbia, Canada)gua
TRSI Mark Il discrete return sensor attached toxedf wing
platform. The sensor was configured to record st last
returns with a pulse repetition frequency of 50 kplatform
altitude of 800 m, maximum off-nadir view angle 28
degrees, wavelength of 1064 nm, and a fixed beam
divergence angle of 0.5 mrad. The average pulseirgpa
equalled one laser pulse return per 1% Ground and non-
ground returns were classified using TerraScanréEetid,
Finland).

2.2.  Field estimates of understorey cover

Understorey cover was measured at 12 sites witBirias of
2.5 x 2.5 m quadrats (n = 144) which collectivetyered an
area of 30 x 30 m. At each of the quadrat locations
understorey cover was visually estimated in 4 Heigh
intervals: 0.5to 1, 1 to 2, 2 to 3, and 3 to 4 lmowe ground
surface. A height pole was used as an aid and estgnates
were taken horizontally within 20% intervals.

A single integrated estimate of vertically projette
understorey coverUC) for each 2.5 x 2.5 m quadrat was
then calculated using Equation 1. Given that:

UC =1— g CFoas @

where: G refers to the G-function, the projection of leaf
area into a given view direction (Ross 1981),

S is the mean distance light will travel through

understorey material (corresponding to the vertical
height intervals used to estimate understorey
cover), and

Fita is the foliage area index for each understorey
sample location.

The calculation of vertically projected cover asssm
homogenous volume of vegetation material and vapehd

on the leaf angles. Given the understorey is coegbasf
mixed species and variable leaf angle distributiensalue
between the two more extreme leaf angle distrimstio
(planophile and erectophile) (Ross 1981; Ross & stak
1989) of 0.5 was used, which corresponds to a rando
foliage angle distribution. Since the field measure
understorey cover is related to the understorey gap
probability (Pgs) by the equation:
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P

gap,i

=1-UG @

where: i = to the sub-quadrat cover measurement obtained at
individual sample locations using the modified
height pole €g. i = 1 for understorey cover
estimated between 0.5 and 1 m above the ground).

We can also express Eq. 1 in terms of foliage deeaity for
each understorey measurement as follows:

F =-In(P,,;)/Gs ©)

ap i

and subsequently, derive the total foliage areaxrat each
quadrat area by:

Fou = éz F 4
i=1

Subsequently, understorey cover values were catvénto
mean estimates at the plot scale (30 x 30 m areh¥ab plot
scale (15 x 15 m areas) for comparison with LiDAdRad

2.3.  Understorey vegetation cover comparison

Using coordinates recorded from a differential Gepgic
Position SystemdGPS) (horizontal positional errors were
approximately 1 to 5 m), LIDAR first return data nee
extracted for each plot. Returns > 0.5 a8d4.0 m above
ground surface were considered to be from undengtor
vegetation. Understorey cover was calculated dt tha plot
scale (30 x 30 m area) and sub plot scale (15 m ¥seas),
as the number of understorey returns divided by tdtal
number of returns recorded 4.0 m. These values were then
compared to field-based estimates. Additionally,e th
variability of understorey cover recorded at eaitk w/as
computed in both datasets by computing the coefficof
variation (CoV) of the 4 sub-plot cover values ded at each
site (15 x 15 m area, n = 4).

3. RESULTS

Strong positive relationships are shown betweel fand
LiDAR-based estimates of understorey covpr<( 0.001)
(Figure 1). The estimates of understorey cover lvewevere
shown to be better correlated at the plot scalepaved to
the sub plot scale, which showed a weaker relatipne <
0.05). Note one plot recorded no hits below 0.5 m ard w
excluded from analysis.
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Figure 1. Relationship between field and LIDAR estimates
of understorey cover: (a) plot scale (30 x 30 nasyend (b)
sub-plot scale (15 x 15 m areadyote: outliers with an
insufficient number of first returns were removed<(3).

Analysis of the variability in field and LIDAR estiates of
understorey cover, within individual plots, wascashown to
be positively correlatedo(< 0.001) (Figure 2). This suggests
that LIDAR is sensitive to changes in understor@yec
within 15 x 15 m areas.
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Figure 2. Field and LiDAR estimates of understorey cover
variability within plots. Note: the CoV for each plot was
calculated using four 15 x 15 m estimates of undezy
cover per plot. Outliers with an insufficient numbs first
returns were removed (n < 3).

4.  DISCUSSION

The results presented in this paper provide aglmsinto the
capacity of airborne LiDAR to estimate both plotvde
understorey cover as well as cover at smaller @pstales.
Importantly, this work has shown a strong correlati
between field and LIDAR estimates of understoreyeccat
the plot scale, with plots covering a wide rangecofier
values from 0 to 100% cover. When each plot was the
subdivided into 4, the relationship weakened butaieed
significant. This suggests the relationships at $hé plot
level might have been influenced by the number i@IAR
returns and the spatial registration of field afidAR data.

A limitation of this approach is that occlusiondbgh the
overstorey and understorey vegetation layers widuce the
number of first returns detected from ground andeustorey
surfaces. As a consequence, in areas with a demspy a
larger mapping unit will be needed to capture dicaht

number of returns to derive understorey cover. g of the
12 plots, for example, understorey cover could bet
computed within a 30 x 30 m area as no LiDAR fieturns
were detected below 0.5 m (above ground surface).

Another important result is the relationship betwééDAR
and field predicted understorey cover variation.isTh
relationship is surprisingly strong, providing some
confidence that regardless of the overall standlition, the
amount of variation in the LiDAR non-ground hitdde 4 m

is related to understorey cover variation. Addidbwork is
needed however, to fully explore this relationstigg.
sensitivity to scale).

Further, it should be mentioned that the spatialtjpm of the
ground plots becomes increasing important when ctimgp
sub plot cover statistics at smaller spatial scaBsce the
dGPS positional data for this study was recordeceuddnse
forest canopies, which is known to affect the spatcuracy
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(Neesset & Jonmeister 2002), our analysis was cestrito
scales that exceeded the horizontal positionalrerrdhe
measurement of understorey vegetation charactarigfithin
5 x 5 m however, may well be the smallest feasibig to
compare with LIDAR observations (assuming similddAR
pulse densities of around 1 pulse péf.m

5. CONCLUSION

We encourage more research into LiDAR’s abilityrtap the
understorey and believe that LIDAR can provide #iable
tool for mapping large differences in understoreyes €.g.
~20% intervals), and its spatial pattern, at thedszape
scale. Stronger relationships were found at theseoapatial
scale (30 x 30 m), possibly in response to a langenber of
understorey hits being available to characterise th
understorey.
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ABSTRACT:

The paper presents a new segmentation algorithm, to be applied to terrestrial lasers scans of urban environments. The algorithm
works directly in a range image. This is the fundamental laser scan data structure as a laser recording can be regarded as a 2-
dimensional grid of range measurements. The horizontal and vertical axes of the grid denote the horizontal and vertical angles at
which the scanner emits the laser beam, receives the reflections, and measures the distance (the range) between the instrument and
the reflecting surface at those angles.

The presented algorithm estimates for each measurement (pixel) in the range image three parameters of the 3D plane that contains
the pixel: two angles (horizontal and vertical) and the distance between the plane and the origin. The estimates are based on the scan
angles (the horizontal and vertical angles at which the laser beam was emitted from the scanner) and the image gradients, i.e. the
rate of change in the distance that is observed between adjacent measurements. Since the three estimated parameters characterize a
plane in 3D space, regions of adjacent pixels with similar parameter values are likely to be part of the same plane. Such pixels are
grouped into segments by a region-growing image segmentation step, which takes the three parameters into account simultaneously.

The overall algorithm uses two complementary strategies to deal with the measurement noise affecting the gradients, during the
gradient calculation and the region growing steps respectively.

1. INTRODUCTION phase scanners, and to several kilometres for time-of-flight
scanners, with spatial accuracies in the cm-range (Staiger,
Range image segmentation has a long tradition in the 2007). These changes pose new requirements to
computer vision research community. For example, Hoover segmentation algorithms.
et al. (1996) already set up a framework for experimental
comparison of range image segmentation algorithm results, The common perception of terrestrial laser scanning is that it
flowed up by Xiang et al (2000). At the time, range images results in a 3-dimensional point cloud, i.e. a collection of
were produced by photogrammetric interpretation of stereo (x,,z) coordinates, corresponding to locations in the scene
imagery, by structured light techniques, or by early laser were the laser beam was reflected by a surface. Additionally,
equipment, such as the Perceptron laser ranger. Commonly, most laser scanners record the intensity of the reflected beam
those data were recorded in well-controlled conditions. as it is recorded by the instrument. Some types of laser
Nevertheless, they tended to be noisy and have low point equipment record a colour image of the scene, more or less at
densities. They described relatively simple close-range the same time and from approximately the same position as
scenes, to be used in industrial applications and in robot the laser scan. This image can be used to “colour” the point
vision experiments. cloud, i.e. to assign (R,G,B) values to the (x,y,z) points of the
laser scan. Many authors have reported on point cloud
Recent advancements in terrestrial laser scanning cause a segmentation algorithms, amongst whom Rabbani (2006),
renewed interest in segmentation of range data. Terrestrial who starts off with a Hough transform using (6,¢,0)
laser scanners are being used in a multitude of applications, parameterization (see section 2). He also gives an overview
for example in 3D model reconstruction of complex outdoor of previous methods, stating that these either resample the
scenes in urban environments. Nowadays scanners are able to data in a 2D or 3D grid, or build a topology on the point
record datasets with millions of points, and with recording cloud using triangulation.

speeds of several hundreds of thousands of points per second.
The distance range has been increased to approx. 100 m for
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Figure 1. Upper: range image, lower: intensity image. The data were recorded by a FARO 880 phase scanner. Image size is approx.
8100 x 2200 pixels, covering 360° horizontally and 100° vertically. This corresponds to 1/5" of the scanner’s maximum resolution.

As an alternative to the 3D point-cloud notion, and better in
accordance with scanner operation, a laser recording can be
regarded as a 2-dimensional grid of range measurements. The
horizontal and vertical axes of the grid denote the horizontal
and vertical angles (let these be called « and f respectively)
at which the scanner emits the laser beam, receives the
reflections, and measures the distance (the range) R between
the instrument and the reflecting surface at those angles. The
angles « and f are sampled at regular intervals Ao and Af
(the angular resolutions). Therefore, laser scanning results in
a 2D (often termed “2.5D”) range image R [inig], with
a=i Aaand B=igAp. (Figure 1).

Figure 1 also shows the intensity image, which is recorded
simultaneously with the range image. (The remainder of this
paper only concerns range measurements and does not
consider intensity or (R, G,B)-information.)

Pulli (1993) already described range image segmentation
with some similarity to the method presented here, working
with normal vectors and 3-feature image segmentation.

2. PLANES IN RANGE IMAGES

()

/

by \

Figure 2. A line in 2D containing point (x,y), and
its normal vertor

We will first establish a relation between the equation of a
plane in 3D Cartesian coordinates, and the representation of
that plane in a range image with 2d spherical image
coordinates. The situation resembles the equation of a line /
in 2D passing through a point (x, y), as it is often used in
Hough transforms:

p=xcos @ +ysin 6, 1)

where @ is the direction of the normal vector of the line and
pis the distance between the line and the origin. With
varying @ (and therefore p) this yields all lines passing
though a given point (x, y) (Figure 2). The point (x,y) may
have been measured by a laser scanner at scanning angle
a and range (distance from the scanner) R.

In analogy, Figure 3 shows that a parametric form of a plane
in 3D, containing a point (x,y,z) is given by
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p=xcosfcosp+ysinfcosp+zsing. 2

We will use this equation to establish the distance p between
a plane and the origin of the Cartesian coordiate syste, after
having estimated the two angles € and ¢, denoting the
orientation of the plane from the range image gradients. This
will be done for every pixel in the range image. The resulting
three “image features” will then be submitted to a three-band
image segmentation algorithm.

3

~p’ =xcos @+ysin @

,é:p’cos ¢+zsin ¢
= x cos fcos ¢+ ysin @cos ¢+ zsin ¢

y

Figure 3. A plane in 3D containing point (x,y,z) and the
normal vector to the plane.

Assuming that a certain pixel belongs to a plane P we want
to compute the orientation angles € and ¢ of the normal
vector of P, 6 being the angle between the x-axis and the
projection of the normal vector in the xy-plane, and ¢ being
the angle between the normal vector and the xy-plane. We
will do this by computing the difference angles A and A¢
between the normal vector and the scan angle, which is given
by the coordinates « and f of the range image. This is

illustrated in Figure 6, which shows the following
relationship between scan angle and normal vector
orientation:

=0 -A0

p=F-Ap. 3

3. RANGE IMAGE GRADIENTS

The computation of the difference angles A@ and A¢g between
the normal vector of a plane and the scan angle is based on
the gradients of the range image. The horizontal gradient is
the change in the image (range) value that is observed when
going one pixel to the right; the vertical gradient is the
observed change when going one pixel up. Since the image
coordinates are related to the scan angles o and g, the
gradients can be considered estimates of the partial
differences of the range with respect to the horizontal and
vertical components of the scan angle, AR/Aa and AR/Ap,
respectively, with Ao and Af denoting the angular resolution
of the scanner in the horizontal and vertical directions.

To obtain the corresponding spatial resolution (the
perpendicular distance between to neighbouring points), the
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angular resolution has to be multiplied by the range R [i,.ig]
itself.  Finally, the arctangents of AR/(RxAa)and
AR/(RxAp) yield the required difference angles. The
procedure is illustrated for the vertical angle ¢ in Figure 4.

A¢ =atan (AR/ 6)

Figure 4. Computing difference angles from
range image gradients

Unfortunately, laser scanner measurements are not entirely
accurate. In a range image R[], both the range
measurement R , as well as the scan angles « and S, contain
noise, which may severely affect the range image gradients
and propagate into the derived estimates of difference angles
and plane orientations.

Gradients are computed using convolution filtering with so-
called gradient kernels. Examples are Sobel filters (Mather
1999). The noise problem is addressed firstly by using larger
filtering kernels, having an smoothing effect, for the gradient
computations. In the current example (see Figure 1) we used
5 x 5 kernels,

-2 0 2 1
2 3 0 3 2
3 4 0 4 3
2 2 0 3 2
-1 -1 0 2 1
and
1 2 3 2 1
2 3 4 3 2
O 0 0 0 o0

2 3 4 3 2
102 3 2 -

for horizontal and vertical gradients respectively.

A second countermeasure against laser measurement noise is
applied during the segmentation step; see Section 4.

The last step in the feature extraction phase is the
determination of the third parameter p, the distance between
the plane containing the pixel at image coordinate [7,.i5] and
the origin, using the plane equation

p=xcosfcosp+ysindcosp+zsing 4)



ISPRS Workshop on Laser Scanning 2007 and SilviLaser 2007, Espoo, September 12-14, 2007, Finland

This equation contains for each range image pixel the 3D
coordinate (x,y,z) of the point where the laser beam was
reflected. It can be computed from the range image as:

X = Rliqig] cos(i,Acr) cos(igAp)
Y = Rligig sin(i,Aa) cos(izAp)
z =sin(igAp) . &)
It is very important to note that a large plane, such as the
fagade of the building at the left in Figure 1, contains a large
variety in range measurements, as the different colors
indicate. However, after the above-described
transformations, even such large plane should become rather
homogeneous in the plane parameters 6, ¢ and p. This can be
seen in Figure 6, which displays colour coded images of
these three parameters.

Figure 5. Images of plane parameters 6, ¢ and p.

Figure 6. Relationship between scan angle and normal vector orientation

4. IMAGE SEGMENTATION

The purpose of image segmentation is to subdivide an image
into adjacent groups of pixels, called segments, which
(hopefully) coincide with meaningful objects in the scene.
Image segmentation algorithms can be roughly subdivided into
region based methods, where pixels within each segment obey
some homogeneity criterion, and edge based methods, looking
explicitly for boundaries between segments. Within the region
based methods popular approaches are region growing (starting
from seed pixels, pixels are added to regions as long as
homogeneity is sufficiently maintained) and region merging (of
adjacent regions that are similar enough).

The image segmentation algorithm used in this study is a region
merging method (Gorte, 1999). It was designed for multi-
spectral image segmentation, taking three image bands into
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account simultaneously. It is a quadtree-based method that
works bottom-up: merging pixels (quadtree leaves) into
segments, and adjacent segments into larger segments while
maintaining for each segment a mean feature vector, and as
long as two criteria are satisfied:

a) the Euclidian distance between feature vectors of
adjacent segments should not exceed a threshold
b) the elements of the variance-covariance matrix within

a segment after merging should not exceed a

threshold.
It has been previously shown that as the second threshold value
the squared of the first one can be used, so only one value has
to be specified. However, to prevent ‘order dependency’, the
algorithm performs best when applied iteratively with a number
of threshold values in a steadily increasing sequence (each
iteration being recursive as previously stated). Therefore, the
algorithm needs, in addition to the final threshold value, the
number of iterations to be performed (usually 3 or 4).
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Instead of using three bands of a multi-spectral image, we will
now submit the three plane parameters images of Figure 5 to the
segmentation algorithm. It will create segments of adjacent
pixels that have similar values for 8, ¢ and p, and therefore are
likely to belong to the same plane in the scene — the word
‘similar’ indicating that the values may still be contaminated by
noise. The amount of noise expected within a single plane
determines the threshold value.

Figure 7 shows the result of segmentation. Segments are
displayed in arbitrary colours, just to distinguish them from
each other. It should be noted, however, that each segment has
its “mean feature vector”, containing average values for the
plane parameters 6, ¢ and p. Also the size of each segments (the
number of pixels) is known, and the pixels within very small
segments can be considered not part of any plane, and can
easily be removed from the result in a post-processing step, or
assigned to a larger neighbour if required (Figure 8).

5. CONCLUSION AND OUTLOOK

The paper presents a new segmentation algorithm that
subdivides a range image created by terrestrial laser scanning
into segments that correspond to planar surfaces. Because it
works in the 2.5D image domain, rather than in the 3D point
cloud domain, the algorithm is quite straightforward and can be
implement very efficiently in a suitable image processing

environment: it only requires standard processing steps:
convolution, image calculation and multi-spectral
segmentation.

Working in the original range image data, as delivered by the
scanner, the algorithm cannot be applied to point clouds that are
created by co-registering multiple scans. A future research topic
may be, however, the usefulness of the segmentation method
for extracting segments to be used in a feature (or object) based
registration process.

a7
(

FF@ iy
RRCE-N

A major obstacle in any segmentation effort is posed by
measurement noise. It is clear that the effect of noise can be
much better quantified, for example by regarding the
specifications of the manufacturer (distinguishing between
noise in angle and range measurements) and by taking the
dependence of noise on the range into account.
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ABSTRACT:

Several approaches for automatic registration of terrestrial LIDAR data exist. However, they normally can not be compared to each
other because of a lack of reference data. This is especially true for applications in urban areas. One dataset available for this purpose is
a set of eight LIDAR scans from Agia Sanmarina, a Byzantine church in Greece, which has been made available by the ISPRS working

group V/3 on terrestrial laser scanning.

We have tested our plane based approach for automatic registration on this particular dataset: The point clouds are first split into a
regular raster, then for each raster cell, the dominant plane is robustly estimated and denoted as surface element. Coarse registration
is carried out via grouping the surface elements to large planes and a generate-and-test strategy to find transformation parameters that
maximize the inlier count. Pairwise fine registration is accomplished using a variant of the ICP (iterative closest point) algorithm that
is based on matching surface elements instead of 3D points. In addition to this, the theoretical framework for a simultaneous fine

registration of multiple datasets is presented in this paper.
1 INTRODUCTION

The registration of terrestrial LIDAR data is a topic that is cur-
rently under discussion within the laser scanning community.
Several approaches based on different assumptions have been
proposed recently, but there is not yet an overall conclusion which
method could be regarded as the best one. Recently published
work includes, but is not limited to, (Akca, 2003, Dold and Bren-
ner, 2006, Ripperda and Brenner, 2005, Rabbani and van den
Heuvel, 2005, Wendt, 2004) and other publications cited later.

In general, registration of point clouds from LIDAR systems can
be divided in two steps. The first step is the coarse registration
where no information about the particular setup of the scan po-
sitions is known. The task here is to determine a set of initial
transformation parameters that bring (typically) two datasets into
a common geometric reference frame.

Then the fine registration follows as the second step. Here,
it can already be assumed that the datasets are aligned sufficiently,
i.e. within the convergence radius of the method. Fine regis-
tration refines the initial transformation parameters into an op-
timal parameter set, usually by minimizing the squared sum of
the residuals of some error term.

Although a number of approaches exist for registration, this is
not true for datasets as each group works on their own data. This
is probably caused by a lack of suitable standard datasets. For
the specific case of LIDAR data from urban areas, there is cur-
rently only a single dataset available from ISPRS Commission V.
Despite the publications from the originating group (Bae, 2006),
there have not yet been other known attempts to process the data.

In this paper, we will apply the plane based registration strategy
from (von Hansen, 2006) to the Agia Sanmarina LIDAR dataset
in order to determine its suitability. This method only contains the
coarse registration step. We have already extended the approach
by a fine registration based on the surface elements (von Hansen,
2007b) for the case of two datasets. Since the Agia Sanmarina
data consists of eight datasets in a ring shaped topology, pair-
wise fine registration inevitably leads to contradictions. There-
fore, we have extended the pairwise fine registration to a bundle
adjustment style registration for multiple datasets.
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This paper is organized as follows: The generation of surface el-
ements, the coarse registration method and the pairwise fine reg-
istration will be briefly summarized in section 2. In section 3, the
bundle adjustment based on surface elements will be formulated.
Section 4 will shortly introduce the Agia Sanmarina dataset and
show the results obtained on it. The paper will conclude with
some remarks regarding both the dataset and the tested methods.

2 PREVIOUS WORK

This section will briefly summarize the work this paper is based
on. The original idea for the replacement of the point cloud by
surface elements and the coarse registration based thereupon has
been taken from (von Hansen, 2006). The pairwise fine registra-
tion is taken from (von Hansen, 2007b).

2.1 Surface elements

The raw data acquired by a LIDAR system is a huge set of (some-
times millions of) 3D points. The disadvantage of this representa-
tion is that the points are not related to each other. Sometimes, the
neighborhood of points is known from the scan geometry so that
region growing can be used to extract object surfaces from the
data (Dold and Brenner, 2004). In the generic case, the neigh-
borhood information is not available so that the data must be pro-
cessed as true point data.

One possibility to bring structure into the data are surface ele-
ments, i.e. local plane patches that approximate the object sur-
faces. They are generated by a two step process. First, the point
cloud is divided into a regular 3D raster of a given raster size. The
raster size should be chosen such that an object surface is spread
among several of the 3D cells, leading to an over-segmentation of
the scene. In the second step, a single plane is robustly estimated
from all points of a raster cell via a RANSAC scheme. This plane
called the surface element and shall be a replacement for all the
points in the cell. This way, the millions of raw 3D points are
replaced by — depending on the raster size — a few hundred or
thousand small planes.
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2.2 Coarse registration

For the coarse registration, the surface elements are first grouped
to larger planes based on neighborhood in the 3D raster and co-
planarity. This way, each planar object surface is represented by
one plane.

If plane based coarse registration would be tackled in a conven-
tional way, the algorithms would be extremely slow due to a com-
binatorial explosion as three matching planes must be found in
order to compute all six parameters of a rigid transform with-
out scale (Dold and Brenner, 2004). The barycenter of a pair of
matching planes can be used to compute the translation so that
only two matches are required for the unknown rotation (He et
al., 2005). (von Hansen, 2006) goes even further by assuming
parallel zenith directions of two scan positions, thereby allow-
ing to recover the transformation parameters from a single pair
of matching planes only. A pre-rotation carried out separately
for each dataset as shown in (von Hansen, 2007a) makes this ap-
proach suitable for generic sensor setups that include arbitrary
rotations.

In this particular case, a complete search can be used to find the
correct parameters: For each possible match, the transformation
parameters are computed and a high number of inliers, planes
matching for a given transformation, determines the correct trans-
formation. This technique is fast for a small number of planes —
up to a few hundred on modern hardware — but it should be noted
that more elaborate search techniques have been proposed as well
(He et al., 2005, Liu and Hirzinger, 2005).

2.3 Pairwise fine registration

The fine registration based on surface elements uses a variant of
the well known ICP (iterative closest point) algorithm (Besl and
McKay, 1992). This consists of two alternating steps that are
repeated until convergence.

The first step transforms the data using initial transformation pa-
rameters — those returned by the coarse registration for the first
run and the updated parameters for all consecutive runs. Then,
matching pairs of surface elements are found on a nearest neigh-
bor basis.

In the second step, the transformation parameters are updated by
a least squares adjustment minimizing the residuals between the
matching surface elements. For the mathematical model for the
pairwise registration one dataset is kept fixed while the other
is transformed. The bundle adjustment presented in section 3
extends this approach to a more general formulation.

Convergence can be determined by observing the pair matches.
If they remain unchanged, then a stable solution has been found.
However, sometimes the iteration procedure is cycling through
a number of solutions because each set of matches leads to a
slightly different parameter set that in turn leads to a set of slightly
different matches. In this case, some attenuation must be intro-
duced. This had be done by changing the matching of surface el-
ements in the first step. Instead of starting from scratch for each
iteration, only those matches whose distance is above a certain
threshold are reassigned to new partners.

3 BUNDLE ADJUSTMENT

Introduction This is an extension of the pairwise fine registra-
tion method shown in (von Hansen, 2007b). Opposed to the pre-
vious formulation where one dataset was kept fixed, the method
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Figure 1. Agia Sanmarina and the Cyrax laser scanner. (By cour-
tesy of ISPRS WG V/3)

as presented here can deal with multiple datasets in a free net-
work. On the other hand, no ICP iterations are used, but a fixed
set of input matches taken from the output of the pairwise regis-
tration.

This method will be called bundle adjustment here in reference
to the idea of photogrammetric bundle adjustment even though
LIDAR point clouds do not represent bundles in the strict sense.

Input data As input, the bundle adjustment relies on the output
of a pairwise registration, requiring both the initial transformation
parameters and the list of matching surface elements.

The first step is to determine initial transformation parameters for
all datasets in a common reference frame. One dataset is used as
starting point and, based on known relative registrations between
datasets, all other datasets are subsequently added. Each of the
n datasets is now given as a tuple
S»L':(Ri,ti,'Pi), 1=1...n (1)
where R,; is the rotation matrix, t; the translation vector and
‘P; the set of surface elements. A surface element
pEP=(nx) (@3
is given by normal vector n and barycenter x that uniquely define
a plane using the Hesse normal form

n'x—d=0 (3)
In addition there exists a set of matching surface elements
M ={(pi,p;),pi € Pi,p; € Ps} “)

Vector notation for differential rotations For simplification,
the datasets are transformed via the initial transformation param-
eters prior to the least squares adjustment. We will assume in the
remainder, that these pre-transformations have been carried out
implicitly. Therefore, one can assume the identity matrix as ini-
tial rotation (Ry = I) and the null vector as initial translation
(to = 0). The matrix for the differential rotation around angles
a, (3 and ~y is defined as

1 = B
R= Y 1 -« ) |a|a|ﬁ|v|’7‘ <1 (5)
-8
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One can easily verify that

r=(a,3,7)"

holds. This provides an easier way to write rotations for small
angles using only vectors. Also, similar to t, the initial rotation r
is a null vector (ro = 0).

Rx=rxx+x,

(6

Matching constraints In the remainder, indices 1 and 2 will
be used to denote two input datasets. Each match m; € M
of two surface elements will lead to three constraints. As all
datasets are treated similarly, this easily extends to any number
of input datasets. Each surface element (n, x) is transformed via
the (unknown) parameters r, t to its ideal position (n’, x’):

’

n:=rxn-+n, x':zr><x+x—|—t

Q)

For an ideal solution a pair of transformed surface elements must
be coplanar

/T

n; n, — 1=0 (8)
n)'xb=d, =n} x; & n}" (x5 —x1)=0 (9
ny x; =dy =nb'xb < ng(x'g —x1)=0 (10)

i.e. the normal vectors are parallel (Eq. 8) and each barycenter
lies on the corresponding plane (Eqgs. 9/10). Using Eq. 7, Eqs. 8
to 10 transform to the conditions

C, = rlTrg . anng — rlTng . anrg + [r1,n1,n2] +
[ro,n2,m]+n{ny—1=0 )
Cy= r{rz-nixs—rXs-njrs+[r;,ng,x)+
[r1,n1,t2] —r{r1-n{x; +rx1njr+
[r1,t1,01] + [r2, X2, 1] + n{ x2 + 10 t2 —
anxl - antl =0 (12)
C3 = rQTrQ . n;xQ — r;xz . n;rg + [r2,no, t2] —

T T T T

Iy Ty Ny X1 + Iy X1 - Np T1 + [P2, X1, N2] +
T T

[r2,t1,n2] + Ny X2 + Ny to + [r1, N2, X1 —

ngx;—ngt; =0 (13)
where [a, b, ¢ denotes the triple product (a x b)"c. Note that
most terms cancel out because r; = t; = 0. This longer form of
the constraints is only needed for proper linearization of the least
squares adjustment.

Constraints and derivatives Eqs. 11 to 13 are an implicit rep-
resentation of the conditions and can be used for least squares ad-
justment using the Gauss-Helmert model (McGlone et al., 2004).
For this model, we require the equations of the constraints and the
derivatives with respect to parameters and measurements. The
constraints are directly available by removing all terms contain-
ing r; or t; because they have the null vector as initial values:

Clzn;rl'n—l:() (14)
Co=n{(xa—x1)=0 (15)
Cs=mn, (x2—x1) =0 (16)

Note that the constraints are similar to Eqgs. 8—10, which is obvi-
ous as the initial values assume that both datasets already are at
their optimal position. The derivatives are

dCi = (n1x ng)Tdrl + (n2 X n1)TdI‘2
+ny dn; +n{ dn, (17)
dCz = (m; X xz)Tdm —n{ dt;
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Position #elements  #planes
East 1250 50
Northeast 1917 79
North 1361 56
Northwest 4161 112
West 2339 75
Southwest 2547 82
South 1529 63
Southeast 2729 72

Table 1. Number of surface elements and large planes for each
dataset.

+ (x2 % nl)Tdrg + nIdtz

+ (x2 — Xl)Tdnl — n?dxl + nIde (18)
(n2 x xl)Tdrl — n;dtl

+ (x1 X ng)Tdrg + n;dtg

+ (x2 —x1)  dnz — ng dx; + nj dxs (19)

dCs =

Least squares adjustment Eqs. 14 to 19 can be used in a
Gauss-Helmert model to solve for all unknown parameters r;
and t;. The measurements are the plane parameters n;; and x;;
of the surface elements.

It should be noted that the equation system defined the way shown
here will be singular with a rank defect of 6. This is due to an
overall rigid transformation (rotation, translation) that could be
performed without changing the constraints. For this reason, the
bundle adjustment as shown here is a free adjustment. In order to
solve the equation system, one can compute the pseudo inverse
using the singular value decomposition and the explicit knowl-
edge of the rank defect.

4 EXPERIMENTS

4.1 Dataset

The purpose of this work is to test the surface element based
registration approach on a standard dataset containing buildings.
We have chosen the Agia Sanmarina data which is published by
ISPRS working group V/3 on terrestrial laser scanning (ISPRS
WG V/3, 2004). Agia Sanmarina is a Byzantine church near
Kalamata in Greece and is approx. 10 x 20 x 15m? in size. The
scanner used was a Cyrax Cyra 2500. Both the church and the
laser scanner are shown in Fig. 1.

There are eight datasets positioned around the church in
45° steps. Each dataset contains between 500 and 800 thou-
sand 3D points. The opening angle of the scanner is rather small,
so that the church fills most of the field of view. The object itself
has many small and often highly structured surfaces which make
it rather difficult for a plane based approach. Furthermore, it is
difficult to find sufficient overlapping areas because the scanner
has been positioned directly in front of one of the facades half of
the time.

4.2 Generation of surface elements

The generation of the surface elements is straightforward and
quite fast because the number of points is low compared to other
laser scanners. Difficulties arose with the highly structured fa-
cades of the church because they are composed from many indi-
vidual but small planes. The raster size of the 3D grid therefore
had to be chosen rather small in order to get enough surface ele-
ments per object plane. On the other hand, the low point density
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Figure 2. Coarse registration result for Northeast (green) and
North (purple) positions.

Figure 3. Fine registration result for Northeast (green) and North
(purple) positions.

on the church — the nominal sampling interval is given as 1 cm
at 10 m distance — did not allow too small surface elements. The
best compromise was a raster size of 0.5 m. The number of gener-
ated surface elements ranges roughly from 1200 to 4200 depend-
ing on scene complexity (see Tab. 1). Examples of the surface
elements can be seen in Fig. 2 as the little square structures.

4.3 Coarse registration

The first step is the generation of large planes from the surface
elements. Tab. 1 lists their number which ranges from 50 to 112.
Too small planes below five surface elements have been dropped
in order to eliminate noise. The coarse registration required care-
ful choice of the algorithm’s thresholds so that all eight neighbor-
ing positions could be processed successfully.

Basically it can be reported that the plane based automatic coarse
registration works for the Agia Sanmarina dataset. The main rea-
son for the success is that two neighboring positions contain a
common facade completely so that there is a chance for the algo-
rithm to generate correct transformation parameters. Difficulties
arose because correct parameters are only accepted if they are
supported by a number of other planes matches and besides the
common facade, almost no other features overlap.

Another possible source for errors is the tilted sensor as the coarse
registration algorithm assumes parallel zenith directions. Even
though this influence is visible in the coarse registration result
(see Fig. 2) it did not prevent the extraction of a valid solution.
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o/ B/° v/° x/m y/m __ z/m
Northeast | -6.4924  -1.1389 429209 | -2.2892 15.6731 -0.3365
Southeast | 3.7317  -1.1302  -28.8213 0.6569 -12.2696 0.1418
South 8.1701  -4.2542  -67.5171 | -13.4374 -21.9461 -1.7592
Southwest | 1.4909 -10.1123 -114.2456 | -32.1951 -23.1324 -3.0601
West -0.2914  -5.3232  -166.7708 | -43.9244  -6.4330 -4.0994
Northwest | -1.7984  -9.5814  155.9213 | -49.6421 9.6286 -5.2051
North 0.0711 -13.0660 91.4302 | -20.8192  18.4335 -1.8945

Table 2. Resulting transformation parameters after bundle adjust-
ment. They have been transformed such that the parameters for
the East position are the identity transform (r = t = 0).

| Aa/®  AB/°  Av/° | Az/m  Ay/m  Az/m
Northeast 0.24 -0.17 0.13 0.09 0.06 0.06
Southeast -0.72 -0.55 -0.19 -0.10 -0.09 0.23
South -0.30 -0.86 -0.46 -0.25 -0.14 0.12
Southwest -0.31 -0.32 -0.37 -0.23 0.00 -0.06
West -0.08 -0.36 -0.21 -0.14 0.04 -0.20
Northwest 0.14 -0.57 -0.04 -0.04 0.04 -0.31
North 0.07 -0.05 0.08 -0.14 0.00 0.03

Table 3. Differences to reference values taken from the results for
the GP-ICPR method from (Bae, 2006).

Fig. 2 shows a coarse registration result for the Northeast and
North positions. It can be observed that the North data (purple)
is tilted a bit in one direction with respect to the other dataset.
This is due to the tilted setup of the laser scanner that has not
been accounted for by the registration algorithm. What can also
be seen is the limited amount of overlapping areas between the
positions which is typical for Agia Sanmarina data. There are
hardly any purple planes pointing to other directions than North
only. On the other hand, there are many green planes pointing
North and East as this dataset had been taken from a corner of
the church. However, matching object regions are close enough
to each other so that a fine registration is possible.

4.4 Fine registration

The pairwise fine registration uses the initial transformation pa-
rameters output by the coarse registration and is carried out on
the surface elements from which the large planes were com-
posed. Even though a valid solution could be found rather easily,
it turned out extremely difficult to find a set of thresholds that
would work on all neighboring datasets.

Often, the plane based ICP gradually converged to a wrong solu-
tion. The reason is that the plane based adjustment step requires
three independent planes to fix the translation. While this had not
been a problem for other datasets tested previously, Agia Sanma-
rina data typically contains only one big facade. Often there is
only little information on the orthogonal walls because the scan-
ner had been positioned in front of the facade. The ground plane
also is of bad quality since it is rough and does not display a suit-
able overlap.

An example for the fine registration is shown in Fig. 3. Match-
ing parts now overlap quite well. Despite the difficulties with the
convergence the fine registration also can be regarded as success-
ful. As some manual intervention was needed for good choice
of the thresholds, this step should be considered semi-automatic.
However, it should be noted that only two out of the eight posi-
tion pairs posed a problem and that the initial aim was to find a
global set of thresholds.

Pairwise registration only leads to the propagation of errors.
If the loop can be closed such as possible for Agia Sanmarina
data, these errors become obvious. An example is shown in
Fig. 4 (top). Especially at the top of the middle tower, the ac-
cumulated errors can be seen as a slight shift and rotation. Nev-
ertheless, the overall quality of the fine registration seems to be
quite well.
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Figure 4. Top: Residual of the loop closing for consecutive fine
registrations between Southeast (green) and East (purple) posi-
tions. Bottom: The same two positions after bundle adjustment.

4.5 Bundle adjustment

An improvement has been sought via a bundle adjustment of
all datasets. The resulting transformation parameters are shown
in Tab. 2. Similar to (Bae, 2006), an overall transformation had
been carried out such that the East position has an identity trans-
form as its parameters. As can be seen from Fig. 4 (bottom), the
two positions are now registered with smaller residuals. There is
a noticeable change in color because to a small remaining shift
most of the surface elements from the East facade (purple) are
slightly in front of those from the Southeast facade (green).

Tab. 3 shows the difference in the registration parameters ob-
tained via the surface elements and those given in (Bae, 2006)
that will be regarded as reference. Please note that the coordinate
system used for our work is different from that of the reference
data. Here, the z-axis is pointing upwards and the rotation angles
are defined in a slightly different way. For comparison, the refer-
ence parameters had been transformed into our coordinate frame
so that valid differences can be obtained.

(Bae, 2006) reports angular residuals that range from 0.0003°
t0 0.5°. Most of the time the residuals are less than 0.01° — we see

182

that the plane based method is roughly ten times worse. For the
translation the situation is similar as the reference has residuals
in the order of about 1 cm whereas we found about 10 cm.

5 CONCLUSIONS

In this paper, an automatic registration method for terrestrial LI-
DAR data has been applied to the Agia Sanmarina test data sup-
plied by ISPRS WG V/3. Three different steps have been tested,
coarse registration, fine registration and a refined solution that
uses all datasets simultaneously.

All steps were able to generate a solution on the test data. Es-
pecially the coarse registration can be considered as successful
as it quite easily returned usable initial solutions. The pairwise
fine registration, however, required quite a lot attention to the se-
lection of proper thresholds so that a correct solution could be
obtained for all neighboring pairs.

The bundle adjustment was able to improve the results from the
fine registration, but could not achieve a satisfying result as the
accuracy is about a factor of ten worse than the ICP-based refer-
ence solution. A probable cause could be the rather coarse surface
elements that might be less accurate than their planar appearance
suggests.

On the other hand, the data is not optimal for plane based ap-
proaches because the scene consists of one convex object covered
with a lot of small structures. The approach should work better if
more objects with larger planar surfaces are available.

We can conclude that registration based on surface elements is
especially successful for coarse registration. Pairwise fine reg-
istration as well as a bundle adjustment style registration of an
arbitrary number of datasets are possible as well, but the result-
ing accuracy is limited.
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ABSTRACT:

An understorey model is created for an area of broadleaf, deciduous woodland in eastern England using airborne LiDAR data from
winter 2003 (leaf-off conditions) and summer 2005 (leaf-on). The woodland is ancient, semi-natural broadleaf and has a
heterogeneous structure, with a mostly closed canopy overstorey and a patchy understorey layer beneath. In places, particularly in
the centre of the study area, the top canopy is not mature, but is open and scrubby. The trees of the top canopy (i.e. dominants)
together with trees and shrubs that occur in open areas (i.e. sub-dominants) can be sampled directly in leaf-on first return airborne
LiDAR data, whereas trees and shrubs that occur hidden as understorey (i.e. suppressed) require a more sophisticated approach to
map using airborne LiDAR data. This study makes use of the fact that in temperate deciduous woodland the understorey layer
typically leafs out two weeks before the overstorey. Capturing winter (leaf-off) airborne LiDAR data during this time slot maximises
the ability to map the understorey layer. Thus, leaf-on first return data were used to define the top canopy for overstorey trees and
leaf-off last return data were used to model the understorey layer beneath. Field data from five stands were used to identify crown
depth in relation to tree height for the six species of dominant trees in the study area. Thresholds were identified per tree species for
crown depth as a percentage of canopy height, and the understorey layer was modelled where leaf-off last return data occurred
below the relevant threshold. A minimum height of 1 m was applied to define woody understorey. Critical to this process were a
Digital Terrain Model (extracted from the leaf-off last return LIiDAR data) to normalise the first and last return LiDAR data to
canopy height, and a digital tree species map (derived from the classification of time series airborne multi-spectral data) to guide the
application of canopy depth thresholds per species.

1. INTRODUCTION height, biomass, canopy closure, and LAI have been derived
using discrete-return small footprint LiDAR data (Magnussen
The vertical structure of woodlands or forest plays an important and Boudewyn, 1998, Nasset, 2002, Neesset and @kland 2002).
role in determining microclimatic conditions (including  This typically involves regression-based methods in which
radiation levels at the forest floor), the availability of niche percentiles of the distribution of canopy height measurements
space, habitat quality, the distribution of fuels and subsequent  from LiDAR are used to predict forest characteristics within a
fire behaviour (Brokaw and Lent, 1999, MacArthur and  spatial sampling frame based on empirical relationships. Where
MacArthur, 1961, Pyne et al., 1996). Forests and woodlands  the density of laser returns is greater than 5-10 per m? then
can have simple, single-storey canopies or more complicated individual tree based approaches have been used (Persson et al.,
multi-storey canopies. In forests where there is a heterogeneous 2002), giving more direct measures of tree height, timber
vertical structure, dominant trees form the overstorey canopy, volume and stem number (Maltamo et al., 2004a). These studies
whilst sub-dominant trees have free access to light but do not tend to be focussed either on single layered forests or on the
occupy the upper canopy, and suppressed trees have no direct dominant tree layer if forests are multi-layered, thus deriving
access to light and grow underneath a relatively continuous  variables for dominant trees only (Maltamo et al., 2005). Such
cover of branches and foliage from adjacent dominant or sub-  measures will not fully characterise the structure of forests with
dominant trees. The understorey can be composed of seedlings  significant vertical heterogeneity. For example, Maltamo et al.
and saplings of overstorey trees which persist as suppressed  (2004b) showed that for a mixed-species woodland of spruce,
juveniles until a suitable canopy gap opens, and shade tolerant  pine and birch in Finland it was possible to detect over 80% of
species of trees or shrubs which complete their life-cycles in an dominant trees but only 40% of all trees in LIDAR data with
environment of lower light intensity and higher humidity than approximately 10 hits per m? As a result, they found that
in the overstorey. Information on the understorey layer of predictions of timber volume and stem density were
woodland can be essential for the accurate modelling of carbon underestimated by 24% and 62% respectively, although this
stocks and sequestration (Patenaude et al., 2003) and of bird could be improved by predicting suppressed trees using
habitat availability and quality (Broughton et al., 2006). theoretical distribution functions (Maltamo et al., 2004a).

There are numerous case studies involving the application of  The larger footprint, waveform recording LIDAR systems have
airborne LiDAR data for detailed spatial modelling of forest  an obvious advantage for characterising and quantifying forest
structure (see Lim et al., 2003 for a review) and some  vertical structure. For example, systems such as SLICER and
techniques have become operational for forest inventory (see VIS have been demonstrated successfully for estimating stand
Nasset, 2004). At the stand level, measures such as mean tree height, mean stem diameter, basal area, and total biomass

height and diameter, timber volume, stem number, crown  (Means et al., 1999, Drake et al., 2002, Lefsky et al., 2002), and
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characterising the canopy height profile (Lefsky et al., 1999,
Harding et al., 2001, Parker et al., 2001). However, there have
been attempts to characterise forest vertical structure using
small footprint discrete return LiDAR data, as it is recognised
that the distribution of LIDAR returns over forests and
woodland relates to the vertical structure of the tree canopy.
Thus, Zimble et al. (2003) characterised woodland as either
single or multi-storey by the analysis of LiDAR-derived tree
height variance in 30 m grid cells, whilst Riafio et al. (2003)
performed cluster analysis of LiDAR tree canopy returns to
discriminate overstorey and understorey proportions in 10 m
grid cells. Maltamo et al. (2005) developed a histogram
thresholding method to designate the distribution of LiDAR
canopy height returns as uni- or multi-modal and thus the
canopy as single or multi-layered. They constructed regression
models for the logarithmic number and Lorey’s mean height of
understorey trees, using independent variables derived from the
LiDAR distributions. However, a common problem reported in
these studies is that where the dominant trees form a dense and
closed canopy it is not possible to identify understorey by
analysing only one return of LiDAR data.

Where the overstorey is deciduous, what is required is LIDAR
data from leaf-on and leaf-off conditions; using the leaf-on data
to model the overstorey and leaf-off data to identify the
understorey. To-date only two papers have touched on this.
Hirata et al. (2003) showed, by a visual assessment, that the
amount of information on both the ground and the understorey
layers was significantly higher in leaf-off LiDAR data for
temperate deciduous forests in Japan. Imai et al. (2006)
examined LiDAR data from three dates across a growing
season, also for temperate deciduous forests in Japan, and
produced a canopy height model from leaf-on conditions and a
canopy height difference model across all three dates. They
then applied height thresholds of 0-1m, 1-5m, 5-10m and > 10m
to both models to separate ten classes that distinguished what
they called high tree canopy (evergreen and deciduous, with or
without a shrub layer), sub-high tree canopy (again separating
evergreen and deciduous, with or without a shrub layer), shrub
layer (evergreen and deciduous) and ground layer.

The work reported in this paper makes use of dual return
LiDAR data acquired in leaf-on and leaf-off conditions for a
broadleaf deciduous woodland in the UK. Field data are used to
identify the relationship between tree height and crown depth
for overstorey tree species and this information is applied to the
LiDAR data, using the leaf-on first return data to define the top
canopy for overstorey trees, and leaf-off last return data to
identify a discontinuous layer of suppressed trees or shrubs
below the overstorey canopy. This is based on the identification
of thresholds for crown depth as a percentage of canopy height
per tree species. Critical to this understorey modelling process
therefore, is a tree species map, which here is derived from the
classification of time series airborne multi-spectral data.

2. MATERIALS AND METHODS
2.1 Field site

The study area is Monks Wood National Nature Reserve in
Cambridgeshire, eastern England (52° 24’ N, 0° 14’ W). This is
an ancient woodland of broadleaved deciduous species, which
covers 157 hectares. Within this boundary are two cleared
areas, totalling 6 ha, which are maintained by grazing. These
two fields are not considered to be part of the spatial coverage

of Monks Wood in all following descriptions and statistical
analyses. However, all other open areas within the boundary of
Monks Wood, such as canopy gaps and paths, are included. The
total area of Monks Wood is thus considered here to be 151 ha.

Monks Wood is extremely heterogeneous in terms of the woody
species making up the tree canopy and understorey, their
relative proportions in any area, canopy closure and density,
tree height and stem density (Hill and Thomson, 2005). The
overstorey tree species of Monks Wood are common ash
(Fraxinus excelsior), English oak (Quercus robur), field maple
(Acer campestre), silver birch (Betula pendula), aspen (Populus
tremula) and small-leaved elm (Ulmus carpinifolia). Ash is the
most common and widespread species, occurring mostly as
coppice stems but regenerating naturally wherever the canopy is
opened (Massey and Welch, 1993). Oak, maple and birch occur
less frequently, the latter regenerating from seeds in canopy
gaps. Aspen and elm form occasional clusters on the wetter
soils, although the elm population declined significantly in the
1970s due to an outbreak of Dutch elm disease. The former elm
stands have been left to regenerate naturally and today tend to
be rather scrubby in nature. The dominant woody species
making up the understorey and fringes of Monks Wood are
hawthorn (Crataegus monogyna), common hazel (Corylus
avellana), blackthorn (Prunus spinosa), dogwood (Cornus
sanguinea) and common privet (Ligustrum vulgare). Hazel,
along with ash, was coppiced until 1995. Hazel now occurs
mixed with hawthorn and blackthorn throughout Monks Wood
(Massey and Welch 1993). Also to be found in the understorey,
especially in more open areas, are elder (Sambucus nigra),
buckthorn (Rhamnus catharticus), grey willow (Salix cinerea),
goat willow (S. caprea), downy birch (B. pubescens), crab
apple (Malus sylvestris) and bramble (Rubus fruticosus).

2.2 Field data

The field data used in this study were collected in July 2000.
Five contrasting stands were surveyed (see Table 1 in
Patenaude et al., 2003). The stands ranged in size between 0.84
ha and 3.69 ha, and covered the range of species composition
and structure present within Monks Wood (Tables 1 and 2).
Each stand was divided into a grid of 10 equal areas (8 in stand
5), and in each of these grid cells a 20x20m sample plot was
located randomly. For each of the 4