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Preface 
 
 
ISPRS Workshop on Laser Scanning and SilviLaser 2007, for which we use acronym LS SL 2007, 
is a continuation of ISPRS Workshops on Laser Scanning, held in Dresden 2003 and in Enschede 
2005, and laser scanning workshops of forestry, held e.g. in Canada and Australia 2002, Umeå 
2003, Freiburg 2004, Blacksburg 2005, Vienna 2006 and Matsuyama 2006. By putting together the 
technology-oriented laser scanning and the forestry-related silvilaser conference series we wanted 
to foster the development of methods and applications in both communities. Thus, the workshop is 
intended to bring together an interdisciplinary group of researchers, system developers, data 
providers, application developers, and end-users of airborne and terrestrial laser scanning on both 
disciplines.  
 
The workshop is organized in co-operation with the Finnish Geodetic Institute (FGI) and Helsinki 
University of Technology (TKK). The workshop actually celebrates 10 years’ research on laser 
scanning at TKK and FGI. The research was initiated in 1997 in co-operation with FM-Kartta Oy 
(today known as Blom Kartta Oy). At that time, Arttu Soininen from Terrasolid Oy has already 
implemented some first tools for ALS. Today, the co-operation with these companies is even 
stronger. Prior to the ALS research in Finland, there were already related research going on: 
laboratory measurements of lidar/laser, 3D video digitizing, waveform-based microwave radar 
development and data analysis and use of profiling radar for forest inventory, and thus the physics 
and background of ALS were already very familiar to the researchers. Today, both the forest 
community and public authorities (e.g. National land survey) are aiming at using laser scanning for 
operative forest inventory and DEM generation in Finland implying that the research has had some 
impacts. 
 
The papers in the proceedings to be distributed at the workshop are peer reviewed by at least two 
(most of them by three) experts in the field. The names of the reviewers are mainly selected from 
the scientific board, which we even had to enlarge due to the need of so many reviews. 
Additionally, the editorial board read the papers. We hope that all our effort improved the quality of 
the papers. 
 
In the LS SL 2007, there is also a collection of keynote presentations. We were very fortunate to 
have prof. Wolfgang Wagner to talk about waveform analysis techniques, software developer Arttu 
Soininen, father of TerraScan and other TerraSolid products, prof. Matti Maltamo giving summary 
of ALS-based experiences and possibilities in forestry, prof. Norbert Pfeifer focussing on 
geometrical aspects of ALS and TLS and Petri Rönnholm talking about integrating LS and 
photogrammetry. The main findings of Wagner, Maltamo, Pfeifer and Rönnholm can also be read 
from the proceedings. 
 
Finally, we want to thank all contributing authors, scientific board, other reviewers, our sponsors, 
the companies in exhibition and local organizing committee. Their support was essential for 
realizing the workshop, which we hope to contribute to science and practice. 
 
 
 
Juha Hyyppä, Petri Rönnholm and Hannu Hyyppä  
Otaniemi 24 August 2007 
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KEY WORDS: Surface matching, co-registration, multiple surfaces, 3D surface, pointcloud, georeferencing.  
 
 
ABSTRACT:  
 
A method for the simultaneous co-registration and georeferencing of multiple 3D pointclouds and associated intensity information is 
proposed. It is a generalization of the 3D surface matching problem. The simultaneous co-registration provides for a strict solution to 
the problem, as opposed to sequential pairwise registration. The problem is formulated as the Least Squares matching of overlapping 
3D surfaces. The parameters of 3D transformations of multiple surfaces are simultaneously estimated, using the Generalized Gauss-
Markoff model, minimizing the sum of squares of the Euclidean distances among the surfaces. An observation equation is written 
for each surface-to-surface correspondence. Each overlapping surface pair contributes a group of observation equations to the design 
matrix. The parameters are introduced into the system as stochastic variables, as a second type of (fictitious) observations. This 
extension allows to control the estimated parameters. Intensity information is introduced into the system in the form of quasisurfaces 
as the third type of observations. Reference points, defining an external (object) coordinate system, which are imaged in additional 
intensity images, or can be located in the pointcloud, serve as the fourth type of observations. They transform the whole block of 
“models” to a unique reference system. Furthermore, the given coordinate values of the control points are treated as observations. 
This gives the fifth type of observations. The total system is solved by applying the Least Squares technique, provided that 
sufficiently good initial values for the transformation parameters are given. This method can be applied to data sets generated from 
aerial as well as terrestrial laser scanning or other pointcloud generating methods.  
 
 

                                                                 
*  Corresponding author. www.photogrammetry.ethz.ch  

1. INTRODUCTION 

The early approach for the multiple pointclouds registration is 
to sequentially apply pairwise registrations until all views are 
combined. Chen and Medioni (1992) propose a method, which 
registers successive views incrementally with enough 
overlapping area. Each next view is registered and merged with 
the topological union of the former pairwise registrations. Later, 
this approach is equipped with a coarse-to-fine mesh hierarchy 
(Turk and Levoy, 1994), and the least median of squares (LMS 
or LMedS) estimator with random sampling (Masuda and 
Yokoya, 1995).  
 
The shortcomings of the incremental solution were recognized 
early. The registration of a view does not change once it has 
been added to the integrated model. However, it is possible that 
a following view brings information that could have improved 
the registration of previously processed views (Bergevin et al., 
1996; Pulli, 1999). Bergevin et al. (1996) propose a solution in 
which every view is sequentially matched with all other 
overlapping views. The procedure is iteratively executed over 
all views. The iteration is stopped when the registration 
converges. For each view a separate transformation is 
calculated, and they are applied simultaneously before the next 
run of iteration. Although it diffuses the registration errors 
evenly among all views, slow convergence is the main 
disadvantage. Benjemaa and Schmitt (1997) accelerate the 
method by applying the new transformation as soon as it is 
calculated (like the Gauss-Seidel method) and employ a multi-
z-buffer technique which provides a 3D space partitioning. 
Pulli’s (1999) solution performs pairwise registrations between 

every overlapping view pairs. Subsequently, these pairwise 
registrations are incrementally treated as constraints in a global 
registration step. However, these constraints do not imply 
functional constraints in the optimization scheme. Rather, it is a 
set of virtual points that uniformly subsample the overlapping 
areas, called as virtual mate. This approach has the capability to 
handle large data sets, since using the virtual mates from 
pairwise alignments does not require loading the entire data set 
into memory. A concrete mate version of this method, in which 
a set of corresponding points themselves rather than the virtual 
points is used as constraint, is proposed for robot navigation (Lu 
and Milios, 1997). The subsequent global registration is 
achieved by employing a sequential estimation procedure.  
 
Alternatively, some works carry out the multiview registration 
task in the sensor coordinate system. In Blais and Levine (1995) 
couples of images are incrementally registered. It is based on 
reversing the range finder calibration process, resulting in a set 
of equations which can be used to directly compute the location 
of a point in a range image corresponding to an arbitrary 
location in the three dimensional space. Another multiview 
registration method based on inverse calibration, developed 
independently, called Iterative Parametric Point (IPP), is given 
in Jokinen (1998). Differently, it simultaneously registers all 
views using the Levenberg-Marquardt non-linear optimization 
technique. Although the reverse calibration method, also called 
point-to-projection technique, provides fast access mechanisms 
for the point correspondence, it is performed on 2.5D range 
maps. It is not suitable for truly 3D applications.  
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Stoddart and Hilton (1996) first find the pairwise 
correspondences between all the overlapping views, and then 
iteratively solve the global registration using a gradient descent 
algorithm. Although this is a two steps procedure, the final 
transformations are simultaneously computed as one system in 
the global registration step. A similar approach, developed 
independently, is given in Eggert et al. (1998). Neugebauer 
(1997) reduces the problem to only a global registration step, 
and simultaneously registers all views using the Levenberg-
Marquardt method. Correspondence search is performed on the 
range maps, which is a 2.5D approach. Williams et al. (1999) 
suggest a further simultaneous solution by including a priori 
covariance matrices for each individual point. The non-linear 
system is solved using the Lagrange multipliers method, or so 
called Gauss-Helmert estimation model.  
 
Iterative linear (closed-form) solutions have become very 
attractive. Although they are straightforward to implement, 
their stochastic model is of limited value in comparison to non-
linear optimization techniques. Williams and Bennamoun 
(2001) present a generalization of Arun et al.’s (1987) well 
known pairwise registration method, which uses the Singular 
Value Decomposition (SVD) to compute the optimal 
registration parameters in the presence of point 
correspondences. This method is a closed-form solution for 3D 
similarity transformation between two 3D point sets. Beinat and 
Crosilla (2001) propose the Generalized Procrustes Analysis as 
a solution for the multiple range image registration problem in 
the presence of point correspondence. The Procrustes Analysis 
is another kind of closed-form solution, which was introduced 
by Schoenemann and Carroll (1970). In fact, both of the 
methods use Gauss-Seidel or Jacobi type of iteration 
techniques. Further similar methods are given in Sharp et al. 
(2004) and in Krishnan et al. (2005).  
 
Recently, Al-Manasir and Fraser (2006) propose an alternative 
technique, called image-based registration (IBR), for digital 
camera mounted/integrated terrestrial laserscanner systems, 
based on the photogrammetric image orientation procedure. The 
network of images is first oriented using the bundle block 
adjustment, and then the exterior orientations are transferred to 
the laserscanner stations provided that the camera calibration 
and spatial relationship between the camera and laserscanner 
coordinate systems are known. Since it exclusively uses the 
imagery, registration can be achieved even in the situations 
where there is no overlap between the point clouds. However, 
the method is only applicable for camera mounted laserscanner 
data.  
 
Several review and comparison studies are available in the 
literature (Jokinen and Haggren, 1998; Williams et al., 1999; 
Cunnington and Stoddart, 1999; Campbell and Flynn, 2001).  
 
In a previous work, we proposed an algorithm for the least 
squares matching of overlapping 3D surfaces, called least 
squares 3D surface matching (LS3D). The LS3D method 
estimates the transformation parameters of one or more fully 3D 
search surfaces with respect to a template one, using the 
Generalized Gauss-Markoff model, minimizing the sum of 
squares of the Euclidean distances between the surfaces (Gruen 
and Akca, 2005). The mathematical model is a generalization of 
the Least Squares image matching method, in particular the 
method given by Gruen (1985).  
 
In order to optimize the run-time, a rapid method for searching 
the correspondence is added. It is a space partitioning method, 

called 3D boxing (Akca and Gruen, 2005b). False 
correspondences with respect to outliers and occlusions are 
detected and eliminated using a weighting scheme adapted from 
Robust Estimation methods (Akca and Gruen, 2005c). 
 
When the object surface lacks sufficient geometric information, 
i.e. homogeneity or isotropicity of curvatures, the basic 
algorithm will either fail or find a side minimum. We propose 
an extension of the basic algorithm in which available attribute 
information, e.g. intensity, color, temperature, etc., is used to 
form quasisurfaces in addition to the actual ones. The matching 
is performed by simultaneous use of surface geometry and 
attribute information under a combined estimation model (Akca 
and Gruen, 2005a).  
 
When more than two pointclouds with multiple overlaps exist, 
we adopt a two step solution (Akca and Gruen, 2005b). First, 
pairwise LS3D matchings are run on every overlapping pairs 
and a subset of point correspondences are saved to separate 
files, similar to Lu and Milios’s approach (1997). In the global 
registration step, all these files are passed to a block adjustment 
by independent models procedure (Ackermann et al., 1973), 
which is a well known orientation procedure in 
photogrammetry.  
 
In some applications georeferencing is needed, which is the 
procedure to transform the spatial data from a local system to 
an external object coordinate system. We also provide for an 
integrated solution for this problem.  
 
1.1 Our proposed method 

Terrestrial laser scanning companies (e.g. Z+F, Leica, Riegl) 
commonly use special kind of targets for the registration of 
point clouds. However such a strategy has several deficiencies 
with respect to fieldwork time, personnel, equipment costs, and 
accuracy. In a recent study, Sternberg et al. (2004) reported that 
registration and geodetic measurement parts comprise 10-20% 
of the whole project time. In another study a collapsed 1000-car 
parking garage was documented in order to assess the damage 
and structural soundness of the structure. The scanning took 3 
days, while the conventional survey of the control points 
required 2 days (Greaves, 2005). In a recent project conducted 
by our group at Pinchango Alto (Peru) two persons set the 
targets to the field and measured with Real-Time Kinematic 
GPS in 1½ days.  
 
Not only fieldwork time but also accuracy is another important 
concern. The target-based registration methods cannot exploit 
the full accuracy potential of the data. The geodetic 
measurement naturally introduces some errors, which might 
exceed the internal error of the scanner instrument. In addition, 
the targets must be kept stable during the whole scanning 
campaign. This might be inconvenient with the scanning works 
stretching over more than one day. On the other hand, target-
based registration techniques can provide immediate 
georeferencing to an object coordinate system.  
 
Surface-based registration techniques stand as efficient and 
versatile alternative to the target-based techniques. They simply 
bring the strenuous additional fieldwork of the registration task 
to the computer in the office while optimizing the project cost 
and duration and achieving a better accuracy. However, they do 
not provide the georeferencing option.  
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This work proposes a method which combines the advantageous 
parts of both techniques based on the least squares matching 
framework. The proposed method is a (truly) simultaneous one 
step solution for the matching and georeferencing of multiple 
3D surfaces with their intensity information. The mathematical 
model is a hybrid system which contains different type of 
observations. The proposed method is an algorithmic extension 
of our previous work given in Gruen and Akca (2005). It 
generalizes the 3D surface matching problem in the sense that 
multiple 3D surfaces with their intensity information are 
globally matched and simultaneously georeferenced. Multiple 
primitives, surface information (geometry and intensity) and the 
(reference) point features, are co-registered together.  
 
The paper is structured as follow. The next chapter introduces 
the mathematical model with the execution aspects. The third 
chapter presents the experimental results. 
 

2. MATHEMATICAL MODELLING 

2.1 Least Squares Multiple 3D Surface Matching 

Assume a set of n surfaces of an object: g1(x, y, z) ,…, 
gn(x, y, z). The object is defined in a 3D Cartesian coordinate 
system, whereas the n surfaces are located in arbitrary local 
coordinate systems. The n surfaces are discrete 3D 
approximations of continuous functions of the object surface. 
They are digitized according to a sampling principle.  
 
The surface representation is carried out in a piecewise form, 
individually for each surface. gi (x, y, z) stands for any element 
of the i-th surface in this representation.  
 
There are m mutual spatial overlaps between the surfaces 
gi (x, y, z). Every overlap satisfies a pairwise matching:  
 
 jinjizyxgzyxezyxg jii ≠==−             ,,...,1,,),,(),,(),,(  (1) 
 
where ei (x, y, z) is a true error vector. It is assumed that i-th 
surface’s noise is independent of j-th one.  
 
In order to prevent duplication, Equations (1) are written for 
every possible i-j pair with i<j.  
 
Equations (1) are considered as nonlinear observation equations 
which model the observation vector gi (x, y, z) with functions 
gj (x, y, z). The Least Squares matching of the j-th surface to the 
i-th one is to be satisfied while the i-th surface is also subject to 
a 3D transformation (with respect to a predefined datum). This 
is the 3D analogy of the X-Y constraint version (i.e. grid 
sampling mode) of the multiphoto geometrically constrained 
matching (MPGC) (Gruen and Baltsavias, 1987) where both the 
template and the search image patches are transformed.  
 
Both surfaces are transformed to an object coordinate system 
while minimizing a goal function, which measures the sum of 
the squares of the Euclidean distances between them. The 
geometric relationships are established via 7-parameter 
similarity transformations. They can be replaced by another 
type if needed.  
 
Each surface is associated with a set of 3D similarity 
transformation parameters,  
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where Ri = Ri (ω, φ, κ) is the orthogonal rotation matrix, 
[tx  ty  tz]i

T is the translation vector, mi is the uniform scale 
factor, and (x0, y0, z0)i stand for the initial location of the 
surface.  
 
Because Equations (1) are nonlinear, they are linearized by 
Taylor series expansion.  
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dx, dy and dz are the differentiations of the selected 3D 
transformation model in Equation (2):  
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with apq as the coefficient terms. 
 
Using the notation 
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and substituting Equations (4), Equation (3) results in:  
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 (6) 

 
where apq and bpq are the coefficient terms for the 
differentiation of the transformation equations of the i-th and j-
th surface, respectively. The terms gx, gy and gz are the 
numerical derivatives of the object surface function g(x, y, z). 
They are defined as the elements of the local surface normal 
vectors at the exact surface correspondence locations (Gruen 
and Akca, 2005). The linearized observation Equations (6) are 
written for each element of the i-th surface.  
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Equations (6) result in the following linear systems in 
matrix/vector form 
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Equations (7) consist of m groups of observation equations. 
They can be combined in one sub-system as 
 
 PA       lxe ,−=−  (8) 
 
where A is the design matrix, x is the parameter vector which 
contains n sets of transformation parameters, P = Pll is the a 
priori weight matrix, l = gi

0(x, y, z)−gj
0(x, y, z) is the 

discrepancies vector that consists of the Euclidean distances 
between the corresponding elements of the overlapping 
surfaces. The calculation of the discrepancy vector l and the 
numerical derivative terms gx, gy and gz requires an appropriate 
correspondence search procedure (Akca and Gruen, 2005b).  
 
Provided that m ≥ n is satisfied, the sub-system (of the design 
matrix) consisting of m Equations (7) implicitly contains the 
multiple overlap conditions. The normal equation matrix 
explicitly shows all the spatial relationships by non-zero off-
diagonal elements (see Chapter 2.3.1).  
 
With the statistical expectation operator E{ }, it is assumed that 
 
 12

0
T}E{,0}E{ −σ== llPee      e  (9) 

 
The parameters are introduced into the system as observables 
with the associated weight coefficient matrix Pb as 
 
 bbb PI       lxe ,−=−  (10) 
 
where I is the identity matrix and lb is the (fictitious) 
observation vector. The weight matrix Pb has to be chosen 
appropriately, considering a priori information of the 
parameters.  
 
2.2 The Generalized Model with Intensity Matching and 
Georeferencing  

When some surfaces lack sufficient geometric information, 
their intensity information, if available, is introduced to the 
system. The intensity information is used to form quasisurfaces 
in addition to the actual ones. The formation of quasisurfaces is 
given in Akca and Gruen (2005a). The quasisurfaces are treated 
like actual surfaces in the estimation model. They contribute 
observation equations to the design matrix, joining the system 
by the same set of transformation parameters 
 
 cccc PA       lxe ,−=−  (11) 
 
where ec , Ac and Pc are the true error vector, the design matrix, 
and the associated weight coefficient matrix for the 
quasisurface observations, respectively, and lc is the constant 
vector that contains the Euclidean distances between the 
corresponding quasisurface elements.  
 

Reference points whose coordinates are defined in an external 
(object) coordinate system, which are imaged in additional 
intensity images, or can be located in the pointclouds, serve as 
the fourth type of observations. They are formulated as 3D 
similarity transformations from local pointcloud systems to the 
object coordinate system in linearized matrix form  
 
 dddd PA       lxe ,−=−  (12) 
 
where Ad is the design matrix, Pd is the associated weight 
matrix, and ld is the discrepancies vector which contains the 
coordinate value differences of the reference points between the 
transformed local system and object coordinate system. At least 
7 coordinate elements of 3 control points are needed for 
georeferencing.  
 
Actually, the coordinates of the control points are not error-free 
quantities. In a strict model, they are treated as observations 
with their associated weight matrices as  
 
 eeee PA       lxe ,−=−  (13) 
 
where Ae , x, and Pe are the design matrix, the parameter vector, 
and the associated weight coefficient matrix for the 
observations of the control point coordinates, respectively, and 
le is the discrepancy vector that contains the differences 
between the observed and estimated coordinate values. Here, 
the vector x is extended to include the x-y-z coordinate values 
of the control points in addition to the transformation 
parameters.  
 
Equations (12) eliminate the datum deficiency existing in 
Equations (8). Alternatively, the datum constraints can be 
imposed by fixing the minimal number of parameters in 
Equations (10).  
 
The hybrid system of Equations (8), (10), (11), (12) and (13) is 
of the combined adjustment type that allows simultaneous 
matching of geometry and intensity and additionally 
georeferencing of multiple 3D surfaces. The Least Squares 
solution of the system gives the solution vector as 
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and the variance factor as 
 

 
r

eeedddcccbbb vvvvvvvvvv PPPPP TTTTT
2
0ˆ ++++
=σ  (15) 

 
where r is the system redundancy, v, vb , vc , vd and ve are 
residual vectors for actual surface observations, parameter 
observations, quasisurface observations, reference point 
observations (for georeferencing) and control point coordinate 
observations, respectively.  
 
The solution is iterative. At the end of each iteration all surfaces 
are transformed to their new states using the updated sets of 
transformation parameters, and the design matrices and 
discrepancy vectors are re-evaluated. The iteration stops if each 
element of the alteration vector in Equation (14) falls below a 
certain limit.  
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The estimation model is the Generalized Gauss-Markoff, which 
can accommodate any kind of functional constraint flexibly, 
e.g. concentric scans, certain rotational differences, parallel or 
perpendicular objects in the pointcloud data, etc. 
 
2.3 Execution Aspects  

2.3.1 Matrix Structures  
Figure 1 shows the matrix structures of a hypothetical example 
of a data set with four pointclouds and three control points. For 
the sake of simplicity, the example does not cover the intensity 
matching case.  
 

 (a)        (b) 
Figure 1. (a) The design matrix and (b) the corresponding 
normal equations matrix of a data configuration case (c) with 
four pointclouds and three control points.  
 
The design matrix (Figure 1a) consists of 4 sub-systems. The 
first sub-system includes the observations of surface geometry. 
Each overlapping pointcloud, i.e. g1-g2, g2-g3, g3-g4 and g4-g1, 
gives a group of observation equations. The second sub-system 
represents the fictitious observations of the unknown 
transformation parameters. The third sub-system contains the 
reference point observations for the georeferencing. The last 
sub-system consists of the x-y-z coordinate value observations 
of the control points. The columns stand for 4 sets of 
transformation parameters (28 elements) and the coordinates of 
3 full control points (9 elements).  
 
The normal equations matrix comprises 4 sets of unknown 
transformation parameters and 3 sets of control point 
coordinates. The non-zero 7x7 sub-parts show the spatial 
overlaps among the pointclouds.  
 
2.3.2 Memory Efficiency  
In a typical real-world example, the data set may contain 10-20, 
sometimes more than 100 pointclouds. It is not operable to load 
all pointclouds into the physical memory. This most probably 
exceeds the memory limit of the computer. Our software 
implementation loads at maximum two pointclouds into the 
memory at any instant of (processing) time. All the information, 
e.g. 3D coordinates, correspondences, elements of the 3D 
boxing for the space partitioning, etc. are kept in the files whose 
contents are loaded into memory only when needed.  

3. EXPERIMENTAL RESULTS 

Because of the 125 anniversary of the construction of the 
Gotthard Tunnel (Switzerland), Credit Suisse has decided to 
have an exhibition in Zurich about the life and person of Alfred 
Escher (1819-1882), Swiss politician, promoter of the Gotthard 
Tunnel, railroad entrepreneur, and founder of Credit Suisse as 
well as of ETH Zurich.  
 
In Zurich, there is a monument of Alfred Escher, which is 
located in front of the main railway station and is approximately 
5 meter in high (9.5 meter considering also the basement). The 
goal of the project is the production of ten physical replicas of 
the Escher monument, starting from a 3D computer model.  
 
The digitization was done with a Faro LS880 HE80 laser 
scanner, placed on a cherry picker (Figure 2). Totally 36 scans 
were acquired during two nights of on-site work. The data set 
contains approximately 4.4 million points with an average point 
spacing of 5-10 millimetres.  
 

 
Figure 2. Pointcloud acquisition by laser scanning of the 
Alfread Escher statue on a cherry picker.  
 
The proposed algorithm was used for the co-registration of the 
point clouds. Only the surface geometry and parameter 
observations were used. The example does not include the geo-
referencing and intensity matching extensions.  
 
At the first step, 3-5 tie points per pointcloud were interactively 
measured. Initial approximations were calculated by use of the 
tie point coordinates in a chained 3D similarity transformation. 
The first pointcloud was defined as the datum by fixing its 
parameters to a unit transformation with zero translation and 
rotation elements.  
 
The transformation parameters of the all pointclouds were 
simultaneously calculated with sigma naught = 2.7 mm for the 
accuracy of the surface observations. Any surface 
correspondence whose Euclidean distance exceeds 6 times the 
current sigma naught value was excluded from the design 
matrix. The final iteration of the adjustment used 20,442,040 
surface correspondences. A high noise level in the data slowed 
down the convergence to 16 iterations.  
 
The computation lasted more than 18 hours processing time on 
a laptop computer with Intel dual-core 2.16 GHz CPU and 2 
GB physical memory. The main reason is the file-access 
oriented design of our software implementation. The file access 

g1 

 g2 

g3 

  g4 

(c) 

CP3 

CP1 

CP2
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for reading and writing is within a few milliseconds, while the 
memory access is within some nanoseconds. On the other hand, 
the memory request of the software has never exceeded 300 
MB during the entire calculation.  
 

  
Figure 3. The final 3D model of the Alfred Escher statue. 
 

 
Figure 4. Still incomplete physical replica of the Alfred Escher 
monument (the missing parts are attached later).  

After the co-registration step, all pointclouds were merged, 
filtered for noise reduction, sub-sampled and triangulated for 
surface generation. The 3D modelling operations were carried 
out using Geomagic Studio 9. Note that no editing has been 
made on the final model, except for the cropping of the area of 
interest (Figure 3). An edited version of the 3D model was used 
for the replica production. Ten replicas were produced at a scale 
1:2 (Figure 4).  
 

4. CONCLUSIONS 

A method for the simultaneous co-registration of multiple 3D 
pointclouds is presented. It is capable of georeferencing as well 
as matching of the intensity information when some parts of the 
object surface lack sufficient geometry information. The 
estimation model is the Generalized Gauss-Markoff which 
allows any kind of object space conditions to be formulated as 
functional constraints, e.g. co-centric scans, perpendicular or 
parallel objects in the pointclouds, etc.  
 
A practical experiment shows the capability of the method. A 
successful solution has been achieved. However, the 
computation time is the main burden. A more efficient software 
implementation and a multi-resolution approach during the 
iterations can accelerate the procedure substantially. The future 
work will also include experimentations with the 
georeferencing and intensity matching approaches.  
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ABSTRACT: 
 
Airborne laser scanning (lidar) can be a valuable tool in double-sampling forest survey designs. Lidar-derived forest structure 
metrics are often highly correlated with important forest inventory variables, such as mean stand biomass, and lidar-based synthetic 
regression estimators have the potential to be highly efficient compared to single-stage estimators, which could lead to increased 
precision for inventory estimates.  However, when a limited sample is available to develop the regression model, an estimate based 
solely on the synthetic regression estimator can yield biased results for stands within a forest area where the regression model was 
unrepresentative. A number of modified (approximately) design-unbiased regression estimators have been proposed that serve to 
reduce this model-induced bias while also maintaining the efficient, variance-reducing properties of the synthetic regression 
estimator. In this study, we use a simulation approach to explore the statistical properties of several lidar-based regression estimators 
of mean stand biomass, using lidar and field plot data collected at a study site in a conifer forest in western Washington State, USA.  
 
 

1. INTRODUCTION 

1.1 

1.2 

1.3 

Double-sampling in forest inventory 

The use of covariate information obtained from remote sensing 
in a double-sampling design (e.g. with regression estimators) 
has been a well-established technique in forest survey for 
decades.  A double-sampling design using a combination of 
remote sensing and field data is particularly cost-effective in the 
inventory of large, remote forest areas, where the cost of 
establishing field plots can be considerable, and the number of 
plots established is necessarily limited. In these cases, the use of 
remotely-sensed covariate information collected over a larger 
number of plots can greatly increase the precision and 
reliability of the inventory estimates for a given area. The use 
of aerial photos in forest mensuration, and particularly the use 
of aerial stand volume tables, has been used for many years to 
decrease forest inventory costs (Paine and Kiser, 2003). 
Although accurate forest measurements can be acquired from 
aerial photos through manual interpretation, automated 
extraction of three-dimensional information from stereo 
imagery is complex and error-prone, due to the inherently two-
dimensional format of photographs, as well as shadows, 
layover, and the characteristically irregular shapes and surfaces 
of tree crowns. In addition, tree heights are difficult to measure 
accurately using aerial photographs, unless accurate terrain 
models are already available for the area.  Because of these 
issues, the use of aerial photos for acquisition of detailed forest 
measurements in a double-sampling design has been limited in 
large-scale forest inventory programs in the United States.  
 

Lidar for forest inventory applications 

Airborne laser scanning (lidar) provides data on the full three-
dimensional structure of the forest canopy, at a high resolution, 
and is readily amenable to automated processing and analysis. 
Due to the high demand for lidar-derived terrain information in 
forested areas, high-resolution, discrete-return lidar data is 
becoming increasingly available to forest managers all over the 

world. Therefore, lidar has the potential to be a much more 
cost-effective sampling tool for operational forest inventory 
than aerial photography. In fact, the very strong correlations 
between lidar metrics and plot-level variables suggest that 
parameters such as stand biomass could be estimated with a 
high level of precision over a large area using a relatively small 
number of representative field plots.   
 
The potential of lidar for forest measurement has already been 
well-established in numerous previous studies. In studies 
carried out across a wide variety of different forest types in 
North America, Japan, Europe, and Australia, lidar-derived 
canopy structure metrics have been shown to be highly 
correlated with forest inventory variables. Næsset (1997) 
reported that forest stand volume could be accurately estimated 
in 36 spruce (Picea abies) stands in Norway using a pool of 
various canopy height and canopy cover density metrics. Means 
et al. (2000) reported that a variety of stand inventory 
parameters in a Pacific Northwest forest could be accurately 
estimated using lidar-derived metrics.   
 

Use of lidar in a double-sampling forest inventory 

Although the utility of lidar as a predictive tool has been 
demonstrated in previous studies, the issues that arise in using 
lidar as sampling tool in an operational inventory sampling 
design have received less attention. Parker and Evans (2004) 
presented an approach to using lidar in a double-sampling forest 
inventory design in southern Idaho. In this study, lidar was 
collected along a strip of plots, where every 5th plot was 
measured on the ground. Lidar-derived individual tree-based 
estimates of height and stem density were used to estimate 
DBH, basal area, and volume for all plots. Næsset (2002) 
developed a two-stage lidar-based forest sampling procedure in 
a conifer forest in Norway. This approach used a pool of lidar-
based structural metrics at the plot level, and then used stepwise 
regression techniques to select the best predictive model for the 
inventory variables. This study found that lidar-based stand-
level estimates for all inventory parameters were more precise 
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that those obtained from conventional techniques. Although 
these authors found that stand-level estimates were unbiased in 
most cases (after correcting for the log-transformations), it is 
likely that regression models developed using fewer plots (e.g. 
25-30 plots instead of 35 – 60 plots) will result in biased 
estimates for small stands within the coverage area. The models 
that are developed from lidar tend to draw from a large pool of 
structural metrics, and are often developed using an automated 
variable selection technique (such as stepwise regression), and 
therefore may not be representative of the full range of forest 
conditions within the entire lidar coverage area, potentially 
leading to bias in parameter estimates for the smaller stands in a 
given area.  
 
In most forest surveys, the number of plots available for model 
development is constrained by accessibility and cost. Although 
efforts are sometimes made to obtain a representative sample, 
often the sample can be considered a random sample from the 
population. Although this is certainly a simplification of reality 
– managers often have previous knowledge of stand conditions 
and can use this to increase the sample size in more variable 
stands – for the purposes of this study we will assume that very 
little a priori information is available, beyond stand boundary 
information.  If this sample is used in a double-sampling design 
with regression, the simple synthetic regression estimators for 
small domains, or stands, typically have low variance, but can 
have considerable bias due the use of an unrepresentative 
regression model. Approaches have been developed to reduce 
the bias in estimates for small domains within a double-
sampling design (Särndal and Hidiroglou, 1989).  In particular, 
these authors introduced a modified regression estimator that is 
(approximately) design-unbiased but with increased variance.  
 
In this paper, we will present an investigation of the statistical 
properties of several lidar-based regression estimators for mean 
stand biomass, using simulation to estimate the sampling 
distribution (variance and mean) of these statistics. In 
particular, we will discuss the use of a synthetic regression 
estimator, a modified synthetic regression estimator, a 

dampened regression estimator, and the possible effect of 
transformation bias on mean stand biomass estimates.  
 

2. STUDY AREA 

Capitol Forest study area 2.1 

2.2 

The study area for this project was a conifer forest within 
Capitol State Forest, in western Washington state, USA. This 
forest is composed primarily of Douglas-fir (Pseudotsuga 
mensiezii), western hemlock (Tsuga heterophylla), and western 
redcedar (Thuja plicata). This area is the site for an ongoing 
silvicultural trial resulting in a wide variety of residual stand 
densities and structures, including patch cuts, group selection, 
heavy thinning, light thinning, clearcut, and control (see Figure 
1). The stands used in this study varied in age from 35 to 70 
years. 
  

Field plot data 

The USDA Forest Service and University of Washington have 
established 98 growth plots in each of these stands, as well 
some surrounding younger stands (Figure 1), with plot sizes 
ranging from 0.02 ha to 0.2 ha. 
 
Species and diameter were recorded for each tree with diameter 
greater than 14.2 cm. Total height was measured using a 
handheld laser rangefinder on a representative subset of these 
trees, and regression-based height-diameter models were used 
to estimate height for all unmeasured trees within the plots. In 
addition, very accurate locations for the plots were acquired 
through a closed-traverse survey. More detailed information on 
the plot measurements can be found in Curtis et al (2004).  
Using the measured tree list data, biomass estimates (kg/ha) for 
each plot were generated using the BIOPAK software package 
(Means et al., 1994).  
 
 

 

 
Figure 1. Capitol Forest study area, Washington State, USA. Stand numbers are shown in red, field plots are shown in white. 

 
 

3. LIDAR DATA 

Lidar data were collected over the study area in March, 1999 
with a SAAB TopEye system mounted on a helicopter platform.  
 
The details of the lidar acquisition are provided in Andersen et 
al. (2005). The nominal pulse density was 4 returns/m2, and the  
 

 
footprint diameter was approximately 0.4 m. The contractor 
provided raw lidar point data along with ground returns filtered 
using a proprietary algorithm.  
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4. METHODS 

4.1 

4.2 

4.2.1 Background 

Previous analyses of lidar-based double sampling techniques 
have used cross-validation (Næsset, 2002) and comparison to 
the field plot data used in the second stage of the survey (Parker 
and Evans, 2004) to validate their survey methods. Using a 
leave-one-out cross-validation procedure, Næsset (2002) 
assessed the predictive value of the models developed for three 
different stand types (young, mature(poor site), mature(good 
site)). This was essentially a test of the predictive quality of the 
regression models, as opposed to an assessment of the sampling 
distribution of the regression estimator, since all of the plots 
(except one) were used to develop the regression models. 
Parker and Evans (2004) implemented a traditional double-
sampling design, where only a limited number of the lidar plots 
were measured on the ground. The relatively limited number of 
ground-measured field plots allowed for an assessment of bias, 
but limited their ability to assess the variance of the regression 
estimator.  
 
In this study, we used a simulation approach to analyse the 
sampling distributions of several lidar-based regression 
estimators of mean stand biomass in the Capitol Forest study 
area. For the purposes of this study, we assumed that the 
complete set of 98 plots represented the population, and in each 
iteration of the simulation, 30 plots were randomly sampled 
from this population. Using the R statistical package, at each 
iteration a stepwise regression procedure was used to find the 
(presumed) best fit model relating a suite of lidar-derived, plot-
level metrics (mean height (ht), maximum ht, coefficient of 
variation of heights, 10th percentile ht, 25th percentile ht, 50th 
percentile ht, 75th percentile ht, 90th percentile ht, and 2-
dimensional canopy cover) to the square root of the biomass at 
the plot (R-Development-Core-Team, 2006). Previous analyses 
had indicated that the square-root transformation was 
appropriate in the estimation of biomass (Andersen et al., 
2006). The predictive model that was selected using the sample 
of 30 plots was then used to estimate the biomass for all 98 
plots in the area. Various estimators of stand biomass (sample 
mean, synthetic regression estimator (SY), modified regression 
estimator (MRE), and dampened regression estimator (DRE)) 
were then generated from these predicted plot-level biomass 
values.  This procedure was repeated for 50000 iterations to 
develop the sampling distribution of the various estimators.   
Although all of the plots were available in the model 
development stage of this study, only stands with multiple plots 
were used in the stand-wise analysis, giving a total of six stands 
(Stand 1: 35-yr Douglas-fir, Stand 2: 70-yr Douglas-fir (heavily 
thinned) , Stand 3: 70-yr Douglas-fir (group selection), Stand 4: 
70-yr Douglas-fir (patch-cut), Stand 5: 70-yr Douglas-fir 
(lightly thinned), and Stand 6: 70-yr Douglas-fir (uncut)). The 
variables selected in each iteration were also observed to assess 
the stability of the models. Canopy cover was selected as a 
significant predictor variable in every iteration, while the other 
selected variables tended to vary among the different height-
based metrics (52% of models included 25th percentile ht, 48% 
of models included mean ht, 40% of models included 50th 
percentile ht, etc.). Interestingly, the least-used variable was 
maximum height, possibly due to the generally homogeneous 
nature of the stands used in this study, where height was much 
less variable than density, understory density, etc.   

Estimators of mean stand biomass 

Single-stage estimator  
 The single stage estimator of mean stand biomass is the 
arithmetic mean of plot-level biomass measurements from a 
given stand, or the sample mean. This estimator is unbiased, but 
can have a high variance, depending upon the number of plots 
sampled and the variability of a given stand. Following Särndal 
and Hidiroglou (1989), U denotes the population of plots U= 
{1,…,k,…,N} that is divided into D domains (or stands),  U1,… 
Ud ,…UD.  If the biomass for a given plot is denoted as yk, Ud 
are the plots in U that fall in stand d, and Nd is the size of Ud , 
then we want to estimate the mean stand biomass  

∑
∈

=
dUk

dkd Nyt /      (1) 

If s denotes a sample of size n that is drawn randomly from U 
with inclusion probabilities πk, then sd denotes the part of U that 
falls in stand d. The estimated mean biomass for stand d is then 
given by: ∑=

ds
dkd nyt /ˆ .  The sampling distributions for the 

single-stage estimate of mean stand biomass for each stand is 
show in Figure 2.  
 
4.2.2 Lidar-based two-stage regression estimators  
The use of auxiliary covariate information obtained over a 
larger number of plots, or in this case, every element within the 
population, has the potential to greatly increase the efficiency 
of an estimator. For example, a vector of lidar-based metrics 
generated at the plot level can be used to increase the precision 
of estimates of mean stand biomass.  In the case of double-
sampling with regression, and again following Särndal and 
Hidiroglou (1989), a linear regression model is used to relate 
the variables of interest, y, to x, a vector of correlated variables. 
If the coefficients of the population linear model of y on x can 

be denoted as B, then the estimated coefficients are B̂. The 
predicted values are , and the  are the 
residuals. The so-called synthetic regression estimator (SY) of 
the mean stand biomass is then given by: .  In 

cases where the regression model is not representative of the 
entire population, the synthetic regression estimator can yield 
estimates for small areas that are significantly biased. In order 
to reduce this bias, Särndal (1981, 1984) developed the 
(approximately) design-unbiased estimator: 

Bxy kk
ˆˆ ′= kkk yye ˆ−=

∑=
dU

dkdSY Nyt /ˆˆ

 

d

k
U s

kk

dRE N

ey
t d d

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=
∑ ∑ π/ˆ

ˆ   (2) 

 
This estimator consists of the synthetic regression estimator (the 
left term in the numerator) and an adjustment term (right term 
in the numerator) that will correct for bias due to use of an 
unrepresentative model. However, the variance of the design-
unbiased estimator is typically higher than the synthetic 
estimator, because the adjustment term is, in effect, inflated by 
the expansion factor πk.   Hidiroglou and Särndal (1985) went 
on to develop a modified design-unbiased estimator: 

d

U d

s
kk

dk

dRE N

N

e
Ny
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d

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
+

=

∑
∑

ˆ

/
ˆ

ˆ

π

   (3) 
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where . As Särndal and Hidiroglou (1989) point out, 

this estimator tends to have smaller variance than the 
unmodified version because the ratio term will give heavier 
weight to the adjustment term in cases where the model fit in a 
particular domain is poor. Unlike the unmodified version, the 
modified estimator has the additional property that, in the case 
of simple random sampling, it is consistent as the size of the 
sample approaches the size of the population, or  when 

. However, these authors also note that in cases where 
the sample size for a domain is particularly small (e.g. n

∑=
ds

kdN π/1ˆ

dd tt =ˆ

dd Us =

d < 5), 
and the model fit is therefore particularly poor in this domain, 
the modified regression estimator can yield unacceptable results 
due to the heavy weight given to the adjustment term (for 
example, negative estimates in cases where the residuals are 
overwhelmingly negative).  Särndal and Hidiroglou (1989) 
therefore suggest using a dampened version of the modified 
regression estimator:  

( )
d

k
s

k
U

H

ddk

dRE N

eNNy
t dd

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=
∑∑

−
π//ˆˆ

ˆ

1

  (4) 

where: 

dd

dd

NNifh

NNifH

<=

≥=
ˆ

ˆ0  

Previous studies have found that using h = 2 provided a 
reasonable level of dampening.  This has the effect of inverting 
the ratio term when a sample is disproportionally undersampled, 
giving less weight to the correction term.  
 
4.3 Transformation bias 

Typically in a double-sampling framework it is desirable to 
obtain estimates in the units of the original data. However, 
simply applying the reverse-transformation of the square-root, 
or logarithmic, transformation, can result in biased estimates 
(Næsset, 2002). In the case of the square-root transformation, it 
has been shown that adding the residual variance (σ2) to the 
predicted values can correct for much of this bias (Miller, 
1984).   
 

5. RESULTS AND DISCUSSION 

The summary statistics (mean, variance) of the simulated 
sampling distributions for each estimator, and for each stand, 
are shown in Table 1. It should be noted that the mean 
coefficient of determination (R2) values for the 50000 
regression models for sqrt(biomass) was 0.88, and the standard 

deviation of the R2 values was 0.04. The simulated sampling 
distributions for the various estimators, and the true mean stand 
biomass values, are shown in Figures  2-5. The possible 
influence of transformation bias in converting back to original 
data units (tons/ha for biomass) is shown in Table 2.  
 
In general, the variance of the single stage estimator is quite 
high, especially in highly heterogeneous stands (e.g. 3, 4, and 6) 
(Figure 2). In contrast, in homogeneous stands (e.g. 1 and 2) the 
sampling error is quite low and even small samples can 
precisely characterize the population parameter. However, it 
should be noted that the single-stage mean stand biomass 
estimates shown here are based only on cases where at least one 
plot was available in the sample from a given stand, and 
therefore underestimates the variance of the single-stage 
estimator, especially in stands with few plots, such as Stand 1 
(which was likely unsampled in many of the iterations). As 
expected, in general the application of the synthetic regression 
estimator dramatically reduces the variance of the estimator, 
especially in the more heterogeneous stands (Figure 3). For 
example, in stand 4, the variance decreased from 3494.8 to 
192.7, and in stand 6, the variance decreased from 4569.6 to 
892.2. However, as expected, the synthetic estimator’s 
complete reliance on the sometimes ill-fitting regression model 
led to significant bias for most of the stands (Table 1). This is 
particularly striking in the case of stand 3, where use of the 
synthetic estimator led to an 82% reduction in the variance but 
also introduced a significant 5% bias. Application of the 
modified design unbiased regression estimator served to 
dramatically reduce this bias in almost all stands (Figure 4). 
However, the price of this reduction in bias was a consistent 
increase in the variance. In general, the variance was still well 
below that of the single stage estimator. For example, in stand 
3, the bias was reduced to 0.5 %, while the variance was 
reduced to 65% of the variance of the single stage estimator. 
The form of the dampened estimator appears to moderate both 
the bias-inducing influence of the synthetic regression term and 
the variance-inflating effect of the adjustment term (Figure 5).  
The application of these modified regression estimators may be 
particularly useful in situations where unbiased estimates are 
desired for smaller stands within a lidar coverage area.  
 
The results indicate that applying the reverse square-root 
transformation to recover the original data units does generally 
lead to a slight negative bias, as we would expect from the 
explanation in Miller (1984) (Table 2). In all but one stand, 
application of the bias correction as proposed by Miller (1984) 
does remove a portion, but not all, of this bias. 

 
 Stand 
 1 2 3 4 5 6 
Population mean stand biomass 583.9 311.3 625.7 562.6 620.9 668.2 
Single-stage estimator  583.9 

(149.8) 
311.2 
(648.6) 

625.7 
(894.8) 

562.8 
(3494.8) 

620.7 
(418.5) 

667.6 
(4569.6) 

Synthetic regression estimator 
(SY) 

575.0 
(965.7) 

334.5 
(592.3) 

594.4 
(162.8) 

561.9 
(192.7) 

628.5 
(222.2) 

692.3 
(892.2) 

Modified design unbiased 
regression estimator (MRE) 

580.3 
(755.5) 

315.6 
(680.9) 

622.3 
(315.9) 

561.4 
(759.5) 

622.3 
(340.8) 

671.4 
(2240.1) 

Dampened design unbiased 
regression estimator (DRE) 

578.6 
(760.2) 

321.1 
(650.0) 

616.4 
(298.8) 

561.3 
(458.3) 

623.8 
(249.8) 

677.1 
(1636.9) 

 
Table 1. Statistical properties of (square-root transformed) mean stand biomass estimators (mean (above) and variance (below) of 
simulated sampling distribution). The stand biomass for the population is shown in the top row.  
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Figure 2. Simulated sampling distributions for the single-stage estimator for mean stand biomass. Vertical red line indicates the true 
mean stand biomass within the population.  
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Figure 3. Simulated sampling distributions for the synthetic regression estimator for mean stand biomass. Vertical red line indicates 
the true mean stand biomass within the population.  
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Figure 4. Simulated sampling distributions for the modified design-unbiased regression estimator for mean stand biomass. Vertical 
red line indicates the true mean stand biomass within the population.  
 

12

ISPRS Workshop on Laser Scanning 2007 and SilviLaser 2007, Espoo, September 12-14, 2007, Finland

12



 

Stand 1

SQRT(Biomass)

D
en

si
ty

0 200 400 600 800 1000

0.
00

0
0.

01
0

0.
02

0

Stand 2

SQRT(Biomass)

D
en

si
ty

0 200 400 600 800 1000

0.
00

0
0.

01
0

Stand 3

SQRT(Biomass)

D
en

si
ty

0 200 400 600 800 1000

0.
00

0
0.

01
5

Stand 4

SQRT(Biomass)

D
en

si
ty

0 200 400 600 800 1000

0.
00

0
0.

01
5

Stand 5

SQRT(Biomass)

D
en

si
ty

0 200 400 600 800 1000
0.

00
0

0.
01

5

Stand 6

SQRT(Biomass)

D
en

si
ty

0 200 400 600 800 1000

0.
00

0
0.

00
6

 
Figure 5. Simulated sampling distributions for the dampened design-unbiased regression estimator for mean stand biomass. Vertical 
red line indicates the true mean stand biomass within the population
 
 Stand 
 1 2  3 4 5 6 
Population 
mean 

341 100 399 335 388 465 

Estimate w/o  
bias correction 

336 104 380 316 389 460 

Estimate with  
bias correction 

340 107 384 320 392 463 

 
Table 2. Effect of applying reverse square-root 
transformation  to recover original data biomass units 
(tons/ha).     
 

6. CONCLUSIONS 

This investigation confirm the results of previous studies that 
use of lidar-based regression estimators can significantly 
increase the precision of estimates for important forest 
inventory variables, such as mean stand biomass. These 
results also indicate that use of simple synthetic regression 
estimators can lead to biased stand-level estimates. The 
application of a modified regression estimator can reduce the 
bias at the stand level and will incorporate both the variance-
reducing properties of the synthetic regression term and the 
bias-reducing properties of the correction term.  
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ABSTRACT: 
Terrestrial laser scanners provide a three-dimensional sampled representation (i.e. point cloud) of the surfaces of objects. They have 
great potential to improve the measurement and representation of remote and widespread objects for applications such as engineering 
metrology, cultural heritage recording and forestry, among others. Prior to performing measurement tasks such as these, proper error 
modelling and estimation is essential in order to remove the inherent systematic effects such as range finder offset, collimation axis 
error, etc.. A rigorous, point-based self-calibration method has been demonstrated to be effective, but it is very labour-intensive since 
it requires manual measurement of a large number of signalised targets. In this paper, we propose a planar-feature-based “on-site” 
self-calibration method that can reduce the manual labour needed in the point-based method. After outlining the principles and 
mathematical models of the proposed method, the subject of model identification is addressed. Tests with simulated datasets reveal 
that the residual patterns from the plane-based method are markedly different from those of the point-based method. The ramification 
of this outcome is that systematic error identification, an important process for new instrumentation such as terrestrial laser scanners, 
is not straightforward. In addition, the tests of the proposed method with real terrestrial laser scanner datasets are presented and 
analysed.  
 
 

1. INTRODUCTION 

Terrestrial laser scanners (TLSs) have emerged as new 
measurement instruments for surveying, photogrammetry and 
computer vision for their fast data acquisition time to measure a 
three-dimensional point cloud of objects in a matter of minutes. 
Consequently, the scientific and practical interest in developing 
calibration procedures to remove systematic errors inherent in 
terrestrial laser scanner datasets has expanded.  
 
In photogrammetry, “on-site” or “on-the-job” calibration 
methods are often used as an alternative to laboratory 
calibration (Luhmann et al., 2007). This is particularly relevant 
when the temporal stability of the camera used is in doubt. This 
procedure is performed by imaging portable frames or targets 
positioned beside the object(s) of interest. Exterior orientation, 
object space points and camera calibration parameters are 
estimated simultaneously. In this paper, we propose an on-site 
calibration method for terrestrial laser scanners using planar 
features in the point cloud. 
 
Much work has been done on point-based TLS calibration by 
exploiting their similarities with theodolites or total stations, 
(e.g. Lichti and Franke, 2005; Lichti and Licht, 2006; Lichti, 
2007; Reshetyuk, 2006). Amiri Parian and Grün (2005) 
developed a point-based calibration method by based on a 
panoramic camera model for the Z+F Imager 5003. Gielsdorf et 
al. (2004), however, proposed error models and a calibration 
method using planar targets for their own low-cost laser scanner.  
 
Though the point-based methods are rigorous and have been 
shown to be effective, their principal drawback is the need to 

manually measure a large number of targets. The use of planar 
features is therefore favoured as their extraction from point 
clouds can be highly automated, though it is recognised that 
signalised target extraction and measurement could also be 
automated to a large extent. An on-site calibration method has 
been pursued due to the apparent instability of the calibration 
parameters (as reported in Lichti, 2007) of the instrument under 
investigation, the FARO 880 laser scanner. The idea is that 
calibration can be performed on-site using planar features that 
exist on many industrial and heritage recording sites, for 
example, with minimal manual labour.  
 
After outlining the principles and mathematical models of the 
proposed method, the subject of model identification is 
addressed. Tests with simulated datasets are undertaken to 
explore the difference in the residual patterns from the plane-
based and point-based methods. In addition, the precision of the 
proposed method with terrestrial laser scanner datasets is 
presented and analysed. 
 

2. PLANE-BASED CALIBRATION 

2.1 Observation equation  

The spherical co-ordinate observations of the ith object space 
point in the jth scanner space are range, ρij, horizontal direction, 
θij, and elevation (vertical) angle, αij, which are parameterised 
in terms of scanner space Cartesian co-ordinates (xij, yij, zij) as 
follows: 
 

ρ∆+++=ρ 2
ij

2
ij

2
ijij zyx        (1) 
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The spherical observation correction terms are given by Lichti 
(2007) as follows: 
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where the sensor-driven additional parameters (APs) for 
terrestrial laser scanners for range, horizontal direction and 
elevation angle components of the observations are expressed 
as A, B and C, respectively. The term U1 in Eq. 4 represents 
half the finest modulating wavelength, which is approximately 
equal to 0.6m. The term U2 in Eq. 4 equals one-half the median 
unit length, which is approximately 4.8m. These terms need to 
be included since the FARO 880 scanner measures range on the 
basis of the phase-difference method. The aim of a plane-based 
calibration procedure is to accurately estimate these proposed 
additional parameters with low correlation among the exterior 
orientation and plane parameters and other APs. 
 
The problem underlying terrestrial laser scanner calibration is 
that of model identification. Some systematic error sources, 
such as those common to total stations, are expected to be 
observed in the residuals from a registration-only least-squares 
adjustment. Investigation of these residual patterns has 
permitted us to develop a systematic error model for laser 
scanners. 
 
The models can be categorised to two groups: the physical and 
empirical additional parameters. The physical interpretation of 
latter is not necessarily apparent, although their systematic 
trends may be observed in the residuals of a highly redundant 
and geometrically strong, minimally constrained least-squares 
adjustment. Detailed description of all the additional parameters 
and their residual plots can be found in Lichti and Licht (2006), 
Lichti and Franke (2005) and Lichti (2007).  
 
2.2 Formulation of the proposed plane-based calibration  

The proposed plane-based self-calibration method utilises the 
combined least-squares method that minimises the distance 
between points and their corresponding planes with a constraint 
condition. The exterior orientation, plane and the additional 

parameters presented in Eqs. 4-6 can be simultaneously 
estimated. Since the observations and parameters of the point-
on-plane condition equation are not separable and each 
condition includes more than one observation, the combined (or 
Gauss-Helmert) adjustment model is used. 
 
Let x±Ru be the parameter vector and l±Rn be the observation 
vector, where u and n are the number of parameters and 
observations, respectively. Let ( ),ijkf x l be the distance 

function between the ith point in the jth scanner space (pij) and 
the kth plane target in the object space whose normal vector and 
orthogonal distance from the origin are nk=(ak, bk, ck) and dk, 
respectively.  The distance function is given as 
 
 ( ) ( ), 0

j

T T
ijk k j ij kf d= + − =x l n M p Tr                        (7) 

 
where Mj and Trj are the rotation and translation parameters 
between the object and jth scanner spaces, respectively. In other 
words, this is the condition function for the registration between 
multiple point clouds and one fixed scan, i.e. the object space.  
Then the linearised equation for the Gauss-Helmert model is 
given by 
 

 0 0d + + =A x Bv w                             (8) 

 
where m is the total number of point observations, A±Rm � u and 
B±Rm � n are the Jacobians of ( ),ijkf x l  with respect to x and l, 

respectively, v is the residual vector, w0 is the misclosure vector 
and dx is the vector of corrections to the approximate parameter 
values. In its current form, the adjustment is minimally 
constrained since the inner constraint equations for plane 
parameters are still under development. 
 
Note that u equals the sum of ue, uap and up where ue is the 
number of the transformation parameters, uap is the number of 
the additional parameters and up is the number of plane 
parameters, respectively. The unit length constraint on the 
direction cosines for each plane is given as  
 
 ( ), , , 1 0T

k k k k k k kg a b c d = − =n n                          (9) 

 
and the linearised constraint equation can be given as 
 
 

c c cd + =A p w v         (10) 

 
where Ac±Rc � up is the Jacobian of gk(ak, bk, ck, dk) with respect 
to the kth plane target, dp is the vector of corrections to the 
approximate plane parameter values and c is the number of 
constraints. The cost function to be minimised with respect to 
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where P and Pc are the weight matrices for point observations 
and the constraint for the plane parameters, respectively, and k 
and kc are the Lagrange multiplier vectors. Minimisation of the 
cost function leads to the following system of normal equations  
 
 d + =N x w 0           (12) 
 
where  
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2.3 Nonlinear least-squares 

The Newton-Raphson solution method can be successfully 
utilised for point-based calibration (Amiri Parian and Grün, 
2005; Lichti, 2007). In the case of plane-based calibration, the 
inclusion of the point-on-plane condition equations renders the 
cost function highly nonlinear and thus a nonlinear least-
squares method is required in order for the solution to converge 
rapidly to a global minimum (Shewchuk, 1994; Golub and Van 
Loan, 1989; Teunissen, 1990). 
 
The normal equations for the proposed method with the Gauss-
Helmert model from Eq. 12 can be expressed as 
 

           
2

2 0d
ϕ ϕ∂ ∂+ =

∂ ∂
x

x x
.                  (15)                 

 
When the cost function is either linear or can be linearised, 
the solution of Eq. 15 is given by 
 

 
12

2d
ϕ ϕ

−
 ∂ ∂= −  ∂ ∂ 

x
x x

,               (16) 

which is a special case of the gradient-decent method 
(Shewchuk, 1994). In the case of the minimisation of nonlinear 
cost functions, the gradient of the cost function given in Eq. 10 
may not be the optimal direction for searching the solution. 
Therefore, the conjugate gradient method proposes to search a 

solution in a direction calculated from
x∂
ϕ∂− using Gram-

Schmidt orthogonalisation (Shewchuk, 1994). Details of the 
conjugate gradient method and its implementation can be found 
in Shewchuk (1994) and Golub and Van Loan (1989). 

 
2.4 Outlier detection  

The reliability matrix, standardised residuals and variance 
component estimation (Baarda, 1968; Schaffrin, 1997; Cothren, 
2005) are utilised for outlier detection in the proposed plane-
based calibration method.  For the linearised Gauss-Helmert 
model equations given (Eq. 12), the reliability matrix R is given 
by 
 
       ( )1 1 1 1T

n
− − − −= −R P B P I A N A P          (17) 

 
where P is the weight matrix, 1 T−=P B P B , and In is the 
identity matrix with rank of n. The ith standardised residual ri is 
calculated from its corresponding a priori observation precision, 
σl, the ith component of the residual vector, vi, and ith diagonal 
element of R, Rii, as 
 

   
iil

i
i

R

v
r

i
σ

= .         (18) 

Assuming that a priori variance factor is known is conducted 
under the standard null hypothesis that the standardised residual 
follows a zero-mean, unit variance Gaussian density function 
(Schaffrin, 1997; Cothren 2005). 
 

3. EXPERIMENTS 

The subject of the self-calibration experiments described herein 
is the FARO 880 TLS. Two sets of experiments are described in 
the following sub-sections. The first used simulated data in 
order to learn how the various systematic errors manifest 
themselves in the residuals and to investigate the accuracy of 
AP estimation. The second use real data in which the results are 
compared to those from point-based calibration. 
 
3.1 Model identification using residual patterns 

Eight simulated point clouds of a room (dimensions 4.0m x 
10m x 10m) were generated from two different scanner 
locations (4 orthogonal scans were captured at each position). 
The distance between two scanners was 8m and the height of 
the scanner was set to 2m. Six 1.5m x 1.5m planar targets on 
were simulated to lie in the centre of each wall, the floor and 
the ceiling of the room. The sampling was such that each target 
had 100 points—see Figure 3a. In short, the simulated dataset 
represents the point clouds captured by an ideal laser scanner in 
a test room with perfectly flat walls, floor and ceiling. 

 

 
(a) Without plane-based calibration 

 

 
(b) With plane-based calibration 

 
Figure 1. Residuals of the plane-based calibration method in the 
presence of a collimation axis error (B1= 50'') for the simulated 

dataset. 
 

 
     (a) Without plane-based calibration 

(b) With plane-based calibration 
 

Figure 2. Residuals of the plane-based calibration method in the 
presence of a rangefinder additive constant (A0= 1mm) for the 

simulated dataset 
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The systematic errors of terrestrial laser scanners described in 
Eqs. 4-6 were first added one-by-one to the error-less, 
simulated point clouds. In a point-based method, most 
misclosure patterns appear very similar to functional form of the 
corresponding systematic error model (Lichti, 2007). For 
example, the vertical eccentricity error, C2 in Eq. 6, can be 
observed as a sine function of the elevation angle in the residual 
pattern of the point-based method. 
 
Figures 1 and 2 are plots of residual due to collimation axis 
error (B1) and rangefinder additive constant (A0), respectively. 
These residual patterns are quite different from those observed 
in the point-based calibration method (Lichti and Franke, 2005) 
in which the residuals appear as the expected secant function 
for collimation axis error and the effect of the rangefinder offset 
is manifest as a linear function of range due to correlation with 
the positional elements of exterior orientation. These 
differences make it difficult to identify the systematic errors in 
the residuals from plane-based self-calibration.  
 
3.2 Optimal locations of laser scanners with simulated data 

An empirical investigation into optimal laser scanner location 
for the plane-based self-calibration was also conducted under 
the previously-described conditions. This investigation with 
simulated datasets in Figure 3 was based on the ratio of the 
estimated additional parameter to the true value, i.e. artificially 
added systematic error to the simulated data. With one of the 
two scan locations fixed at location “ 101”  shown in Figure 3b, 
point clouds for the second position were simulated from each 
of the 9 locations “ 102”  to “ 110” . We found that the accuracy 
of the range and elevation angle additional parameters was as 
high as 99% for this test. On the other hand, the accuracy of the 
collimation axis error (B1) varies in different laser scanner 
combinations. 

 
                     (a)                                      (b)  

 
Figure 3. (a) Simulated point clouds for finding the optimal 
scanner locations. Square sign is the centre of the test room. (b) 
The scanner is located in the centre of each cell, e.g. 105. The 
height of the scanner is 2m. 
 

 
Figure 4. The ratio between the estimated and true B1 for 

different laser scanner locations when the first location of the 
scanner is 101 in Figure 3(b). 

 

For all combinations of scanner locations in Figure 3(b), the 
accuracy of the estimated APs was high except for the 
collimation axis error, B1. The ratio of its estimated to true 
value was found to be strongly dependent on the scanner 
location, as can be seen in Figure 4. This additional parameter 
is accurately estimated at all locations except for the 
combination of 101 and 106. For the collimation axis error, the 
best laser scanner combinations were 105 and 110 with the 
location 101 in the case of this test room.  
 
3.3 Accuracy tests with simulated datasets 

The plane-based self-calibration method was applied to the 
simulated data described in the previous section. Two 
systematic errors, A0 and B1, were added to the error-less point 
clouds. The standard deviations of residuals for the range, 
horizontal direction and elevation angle without correction, 
with correction of A0 only and with correction of A0 and B1 are 
given in Table 1. In addition, the residual patterns of these cases 
are presented in Figure 5. Clear improvements in all spherical 
observations were observed and, in particular, that of elevation 
angle is the largest. The difference between the standard 
deviations of range in the cases with A0 correction only and 
with A0 and B1 correction is on the order of 10. This suggests 
that a priori knowledge of the existing systematic error, i.e. A0 
and B1, is required in order to achieve the maximum 
observational precision from calibration since, as already 
mentioned and can be seen in Figure 5a, model identification is 
difficult. 
 

 
                                              (a) 

 
(b) 

 
(c) 

Figure 5. Residual plots in the presence of rangefinder additive 
constant (A0) and the collimation axis error (B1). (a) Without 
calibration (i.e. registration only) (b) with A0 only (c) with A0 
and B1 

 

 
Table 1. Residual statistics of the plane-based self-calibration 
method in three different cases: without correction (registration 
only), with A0 correction only, and with A0 and B1 correction. 
STD is the standard deviation. 

 
A further series of accuracy tests was conducted in which a 
range of possible AP values was added to the simulated dataset. 
The range for rangefinder additive constant (A0) was 0.25mm to 

 No correction A0 A0 and B1 

STD vρ (mm) 0.70 0.24 0.02 
STD vθ ( ) 1.00 0.42 0.03 
STD vα ( ) 1.50 0.03 0.04 
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10mm, 10’’ to 200’’ for the collimation axis error (B1) and for 
the vertical circle index error (C0) was 10’’ to 100’’. These values 
were chosen for consistency with other studies (e.g. Lichti and 
Licht, 2006). A maximum bias of 0.006% was observed for all 
three additional parameters, with larger values generally being 
estimated more accurately. Some difficulty in the estimation of 
collimation axis error is expected when the magnitude of the 
applied B1 is increased as shown in Figure 5(b). For example, 
from Table 1, we observed a slight increase in vα in   
 

 
(a) Range finder additive constant (A0) 

 

 
(b) Collimation axis error (B1) 

 

 
(c) Elevation angle correction term (C0) 

 
Figure 6. Accuracy of some additional parameters with 
simulated datasets, which defined as the ratio of the true and 
estimated parameters. 
 
3.4 Estimation of the APs of the FARO 880 from real data 

The FARO 880 terrestrial laser scanner offers a near spherical 
field of view made possible by a 320� vertical angle scanning 
range and a 180� horizontal field of view. The scanner features 
two orthogonal inclinometers that correct the captured data for 
instrument tilt. The manufacturer specifies 0.01� (36’’) for the 
inclinometer accuracy and 3mm linearity error at 10m with 84% 
target reflectivity for the rangefinder. See Lichti (2007) for a 
description of its salient properties. 
 
Two datasets, named here Data1 (28 October/2005) and Data2 
(7 December/2005), captured with the FARO 880, were utilised 
for the test. A total of eight point clouds of a room were 
captured from two locations. The scanner was manually rotated 
on the tripod by 90� after each of the set of four scans was 
captured.  
 
The dimension of the room in Data1 is (H, W, L) = (3m, 5m, 
9m) with 18 planar targets. The nominal distance between the 
two scanner locations was 4m. The radial distance from the 
laser scanner to the object was approximately from 1.5m to 
7.5m. The plane-based calibration adjustment (minimally 
constrained) had 5641observations with 5538 degree of 
freedom. The dimension of the room Data2 is (H, W, L) = (3m, 
9m, 12m) with 25 planar targets. The nominal distance between 

the two scanner locations was 6.7m. The radial distance from 
the laser scanner to the object was approximately from 2m to 
10m. The plane-based calibration adjustment (minimally 
constrained) had 8231 observations with 8107 degree of 
freedom. 
 
Note that the planar targets for this on-site calibration were 
manually extracted from wall, ceiling and floors of the original 
point clouds and some obvious outliers were removed by 
investing the results of the first order plane fit. For the proposed 
plane calibration method, spherical coordinate observations 
were derived from the Cartesian coordinates exported using the 
commercial software, iQscene. Variance component estimation 
and the outlier detection method explained in Section 2.5 were 
used to optimise the contribution of each of the three groups of 
spherical observables.  
 
For the point-based calibration with the room Data1, 134 planar, 
A4-size targets were mounted on all four walls, the floor and 
the ceiling. Target center measurement was conducted using the 
commercial software, iQscene. The point-based calibration 
method (with free-network) adjustment had 2469 observations 
with 2019 degrees of freedom. For the point-based calibration 
with the room Data2, 131 planar, A4-size targets were mounted 
on all four walls, the floor and the ceiling. The point-based 
calibration method (with free-network) adjustment had 2193 
observations with 1738 degrees of freedom.  
 

 Without self-
calibration With calibration Improvement 

(%) 

 STD vρ (mm) 1.2 1.2 5.4 

STD vθ ( ) 67.9 18.6 72.6 

STD vα ( ) 24.3 19.9 18.4 

 
Table 2. Residual statistics from plane-based calibration after 

outlier removal for Data1 (28 October/2005). 
 

 Without self-
calibration With calibration Improvement 

(%) 

 STD vρ (mm) 2.4 1.9 21.0 
STD vθ ( ) 86.3 35.2 59.2 
STD vα ( ) 51.8 46.5 10.3 

Table 3. Residual statistics from point-based calibration after 
outlier removal for Data1 (28 October/2005). 

 

 Without self-
calibration With calibration Improvement 

(%) 

 STD vρ (mm) 1.0 0.8 21.4 

STD vθ ( ) 49.2 47.3 3.8 

STD vα ( ) 55.3 49.5 10.6 

Table 4. Residual statistics from plane-based calibration after 
outlier removal for Data2 (7 December/2005). 

 

 Without self-
calibration With calibration Improvement 

(%) 

 STD vρ (mm) 2.3 1.7 26.1 
STD vθ ( ) 109.8 36.7 66.6 
STD vα ( ) 65.88 20.9 68.3 

Table 5. Residual statistics from point-based calibration after 
outlier removal for Data2 (7 December/2005). 

 
Only a reduced set of the additional parameters (A0, B1, B2, B3, 
B4, C0 and C2) was used for all calibrations. The standard 
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deviations of the residuals for the range, horizontal and 
elevation angle for both the plane- and point-based methods are 
given in Tables 2 and 4. Both datasets showed significant 
improvement in the precision of all spherical observations.  
 
The plane-based calibration provided greater precision in the 
spherical observables than did the point-based method. In 
contrast, Lichti and Licht (2006) reported a similar level of 
point observational precision with all physical and empirical 
additional parameters of terrestrial laser scanners.  
 
 

 
Figure 7. Horizontal direction residual vs horizontal direction 
without plane-based self-calibration (Data1). 
 

Figure 8. Horizontal direction residual vs horizontal direction 
with plane-based calibration (Data1). 

Figure 9. Horizontal angle residuals vs elevation angle without 
plane-based self-calibration (Data1). 

Figure 10. Horizontal angle residual vs elevation angle with 
plane-based self-calibration (Data1). 

 
Plots of the residuals of horizontal direction angle both with 
and without, additional parameter correction from the plane-
based case are presented in Figures 7-10. Although they clearly 
show an improvement in the precision of the observations, they 
also show residual systematic effects that are likely due to un-
modelled errors since only a reduced-AP model has been 
implemented thus far. 
 

4. CONCLUSIONS 

A plane-based self-calibration method based on terrestrial laser 
scanner systematic error modelling has been presented and has 
been demonstrated to improve observational precision of the 
self-calibration residual standard deviation up to 72.6% with 
the help of outlier detection and variance component estimation.  
 
The contributions of this paper can be summarised as follows: 
First, the residual patterns of the plane-based calibration 
method are shown to be different from the functional models of 
systematic errors. This could cause great difficulty in systematic 

error model identification, not only for formulating error 
models but also for confirmation of the removal of the targeted 
systematic errors. Second, the results of the plane-based 
calibration are improved over those of the point-based method, 
although there are some difficulties in the accurate estimation of 
some known additional parameters. 
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ABSTRACT: 

Nowadays orthophotos from satellite and aerial imagery are very requested products, considering their low cost motivated by the 

highly automated production chain. The generation of orthophotos requires a block of oriented images and a digital model of the 

ground (DTM or DSM). In case a DTM is adopted, the lackness of information about buildings results in distortions. The availability 

of a LiDAR DDSM allows to overcome this problem, even though if the spatial resolution is not very high, some problems in 

correspondence of building contour might arise. To solve for this drawback, a method based on thickening a LiDAR DDSM from an 

initial grid of 2×2 m2 to a 0.2×0.2 m2 one is proposed here. This method has been implemented by exploiting the availability of a 

spatial DB of the same area, which allows to classify all points of the thickened DDSM in two categories: those belonging to a 

building and those not. A test of the method has been carried out on a photogrammetric block taken over the town of Lecco 

(Northern Italy) by a RC30 Wild camera at 1:17,000 mean scale, and afterward digitized by scanning. The LiDAR DDSM adopted 

has been provided by Lombardia Region at a spatial resolution of 2×2 m2. The thickening of the DSM has been performed using a 

building mask extracted from the new spatial DB of Lecco. Orthophotos created in this manner take advantage of the whole 

cartographic and spatial material already available at the Public Administration Department, and presents an improved accuracy than 

a classic orthophoto with a computation time approximately equal. 

 

  

1. INTRODUCTION 

In recent years, increasing demand for digital orthophotos has 

been pushing researchers to improve data quality and reduce 

production costs. Indeed, if in the past orthophotos were 

considered a cheap alternative to vector maps, or a by-

product of the photogrammetric mapping process, today they 

have come to play an autonomous role. This is mainly 

motivated by two factors: the growing worldwide diffusion of 

web location services (see e.g. Heipke, 2005; Walter, 2005; 

Leberl, 2007) requiring geographical support, which might 

help on-line users to access information; the need of 

organizations to produce detailed and up-to-date 

geographical data describing land changes, a particularly 

important task when dealing with urban areas, where data of 

high resolution and accuracy are required. Furthermore, the 

availability at an operational level of new technologies, such 

as IMU sensors, airborne digital cameras and aerial laser 

scanners, has significantly contributed to the development of 

orthophoto production. 

Not long ago, before the development of LiDAR technology, 

dense DTMs/DSMs could be generated at low cost only by 

means of aerial photogrammetry. However, especially in 

highly urbanized areas, due to perspective occlusions, a 

photogrammetric DTM/DSM may produce a higher error rate 

than LiDAR (Brovelli & Cannata, 2004). 

Therefore, we would like to investigate how urban area 

orthophotos could be improved through the use of LiDAR 

DSMs. 

Currently, Italian government agencies and departments tend 

to buy gridded DTMs/DSMs with a resolution of 2×2 m or 

1×1 m.   

Therefore, we have looked into problems related to using 

such DSMs, and we have tried to understand somehow these 

problems may be solved using other mapping products 

generally available at government agencies and departments. 

The results obtained should be considered as practical 

guidelines for institutions which would allow them to 

improve orthophoto quality by exploiting already available 

material (Dequal & Lingua, 2004). 

The resulting orthophotos will not have perspective 

deformations and can therefore be directly superimposed 

onto spatial databases or vector maps, which are not affected 

by such deformations. The generation of accurate 

orthophotos based on the use of DSM to model ground 

geometry was first proposed by Amhar et al. (1998) under the 

term “True-Ortophoto®”. It was then implemented in 

different photogrammetric packages. From a theoretical point 

of view, the generation of a true-orthophoto® does not 

significantly differ from that of classical orthophotos; 

however, it does introduce further problems, requiring 

suitable solutions (Schickler, 1998; Brown, 2003). For 

example, when a building is correctly represented, no 

information is obtained about the ground level area due to the 

occlusion produced by the building itself. If the generation of 

orthophotos is based on single images, there is no way to 

correctly fill in these empty areas. Consequently, the portions 

of orthophoto relative to these areas are usually generated by 

means of the DTM alone without the DSM, and this results in 

duplication of the image content (“ghost image”). The 

solution to this problem is to combine several images from 

different points of view (Rau et al., 2002, Biasion et al., 

2004), so if there is an occlusion area on an image, 

information about this area can be extracted from another 

images. 

A more complex issue to cope with is that of roof modeling. 

If the goal is the realization of a high resolution true-
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orthophoto® and the DSM has a lower planimetric resolution, 

information about where the roof border of a building is 

located might be lacking, and here the algorithm does not 

know if a pixel of the image represents a piece of terrain or 

roof. The result is a rough roof border, without a straight line 

(Figures 7 and 9). 

The aim of this paper is to present a solution which corrects 

this unwanted effect by exploiting a Dense Digital Surface 

Model (DDSM) using LiDAR data integrated into a spatial 

database which provides information about the building 

ground coverage. This solution may seem contradictory, 

given that the generation of an orthophoto is based on the 

availability of a higher quality product, such a Spatial DB.   

However, given the occlusion issues discussed here, this 

practical solution results in improvements to the quality of 

spatial data which can be used by government institutions, 

especially if the following considerations are taken into 

account: 

 

1. digital orthophotos can be generated and upgraded 

with a higher frequency and a lower cost with 

respect to existing vector maps; 

2. upgraded orthophotos are a very useful tool for 

checking landscape content and detecting changes, 

especially in urban areas. 

 

In addition to the presentation of the method implemented for 

deriving geometrically corrected orthophotos, and to the 

results of its application, in the following an analysis of cases 

in which corrections may or may not be truly necessary will 

be reported. 

 

 

2. THE PROPOSED METHOD 

As shown in Section 1, the problem focused in this paper has 

aimed to correct the border effects (see Fig. 7) due to the 

absence, which is very common, of break-lines in the 

DDSMs used to derive digital orthophotos. In urban areas 

this outcome is evident for buildings, specifically when they 

show large difference in height with respect to their 

surrounding terrain. 

Break-lines can be obtained by three different strategies. The 

first one is based on the automatic extraction of the building 

contours from the DDSM itself (i). However, DDSMs have 

often resolution of about 1 m or less, which makes 

approximate the derived contours, especially when buildings 

do not have simple shapes, such as regular figures with sides 

much longer than the DSM resolution (Forlani et al., 2005). 

The automatic detection of a detailed roof perimeter needs a 

resolution of a few tens of centimetres, which is rarely 

available.   

Indeed, even though LiDAR data are usually acquired with a 

higher point density, they are usually delivered, after 

filtering, at a resolution of 1-2 m. The other possible 

strategies rely on the building contour availability from 

external data source (ii), e.g. vector maps, or on their manual 

digitization from imagery (iii); the last solution is generally 

of low practical interest because of its high cost. Both the two 

solutions (ii) and (iii) require also the knowledge of the 

height of each building, whose availability is not 

commonplace in all countries. However, also when building 

heights can be derived from maps, these are limited to mean 

values, which do not enable to correctly model the roof 

geometry. 

The proposed method tries to exploit the high accuracy in 

describing the building height, which is typical to DDSM, 

coupled by the detailed description of building contours, 

which can be extracted from existing Spatial DB or digital 

vector maps, data that are generally available for the most 

urban areas. 

Starting from the original LiDAR DDSM, a denser one at a 

few centimetres resolution is generated, according whether 

the new grid node lies on the roof or on the terrain. 

Considering the planimetric layout of all building contours 

(and possibly accounting for other objects which need to be 

corrected due to their relative height with respect to the 

surrounding terrain), two binary masks are generated (see 

Fig. 1): 

 

1. the building mask (BM): the building raster map; 

2. the terrain mask (TM): the raster map which is 

complementary to the BM. 
 

 

 
 

Figure 1.  The building mask (on top) and the terrain mask   

(on bottom). 

 

 

Obviously the sum of both masks gives the entire zone. From 

an original vector format the two masks are rasterized with a 

planimetric resolution higher than that of the DDSM (few 

centimetres). Then the original DDSM is resampled 

according to new denser regular grid. Every new node will 

have the height of the nearest cell of the original DDSM, 

considering if the point lies on the BM or on the TM (Fig. 2). 

The approach allows the roof to be determined with a 

precision equal to the raster masks. 

The densification of the original DDSM is carried out at first 

on the zone covered by the BM, in such a way that the new 

node outside this mask is classified as a null value. The same 

operation is later performed with the TM. The sum of the two 

resulting DDSMs gives the whole DDSM useful for the 

generation of the geometrically corrected orthophoto. 

The flow chart of the developed method is shown in Figure 3. 
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In the following sections some applications of the proposed 

method based on different data set covering the same area 

will be shown. 

 

 

 
 

 Figure 2.  The creation of the Building and Terrain DDSMs 

     Legend:      ●   node of the original DDSM 

              +   node of the new DDSM 

              //   mask 

 

 

 
Figure 3.  Flow chart of the proposed method 

 

 

3. ORTHOPHOTO USING A GRID DTM 

3.1 Data set description 

The proposed method for the generation of orthophoto has 

been tested on a small aerial block (8 images) captured over 

the city of Lecco (Lombardia, Italy) by an analogue camera 

Wild RC30, equipped with a standard lens (150 mm). Images 

have been taken during 2003 and feature a mean scale of 

about 1:17000, covering an area of about 10,000 m2. The 

transformation from analogue to digital has been 

accomplished by using a photogrammetric scanner at a 

geometric resolution of 14 µm pixel size, corresponding to a 

footprint on the terrain of about 20 cm.  

The aerial triangulation and the ortho-rectification have been 

performed by Geomatica V10 Orthoengine, i.e. by using a 

standard commercial processing package. The advantage of 

the proposed technique relies in the fact that no special 

algorithms have to be implemented for the orthophoto 

generation, but only a pre-processing of the DSM is needed. 

This consists in the creation of both masks adopted to classify 

points on the terrain and on buildings, that are derived from a 

spatial DB of the study area. This has been created by a 

digatal photogrammetric process on the basis of the same 

image block adopted for the generation of the orthophotos 

themselves. Indeed, either the spatial DB and the images 

represent the landscape exactly at the same time, and 

therefore they should not show differences. On the other 

hand, discrepancies might arise concerning the DSMs and the 

DTM adopted for testing the procedure, which have been 

captured at different epochs.  

In the next sub-sections, results using DTM and DSM with 

different resolution will be shown.  

 

3.2 Results using a 20 m DTM 

Initially orthophotos at two different image resolution (50 cm 

and 20 cm, respectively) have been created based on a DTM 

covering the whole Lombardia region, featuring a grid of 20 

m resolution.  

In figure 4 a patch of the resulting orthophoto at the 

resolution 20 cm is reported. The layer corresponding to 

buldings on the spatial DB has been super-imposed to 

orthophoto, in order to check the quality of the geometry 

correction. In reality, these tests have been performed on a 

wider area than that shown in figure 4. For the sake of picture 

clarity and readability, here we only show a detail of 

orthophotos generated by different data sets and methods 

over the area where a large commercial centre designed by 

Renzo Piano arises. This choice is motivated by the complex 

geometry of the roof and the height of this building (50 m), 

representing a very critical case study to check the 

effectiveness of the proposed approach. 

In figure 5 a zoom on the central area of figure 4 is reported, 

showing that low buildings are correctly represented because 

the use of a DTM does not result in significant errors. On the 

contrary, the piece of orthophoto corresponding to the central 

building has not an adequate correspondence with the vector 

map, because a DTM in this area is not able to provide 

information to correct geometric distortions. The mean 

magnitude of this misalignement error results in the order of 

some meters. Very similar results have been obtained with 

both 20 cm and 50 cm resolution orthophotos.  

 

 

 
 

Figure 4.  Orthophotos with resolution 20 cm generated by 

using a 20 m resolution DTM; the building layer 

(in red) has been super-imposed. 
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Figure 5. Detail on errors concerning the Renzo Piano 

building by using the DTM at 20 m resolution. 

 

 

3.3 Results using a 2 m LiDAR DTM 

LiDAR (Light Detection and Ranging) technology is able to 

provide a complete 3-D model (DSM) of the investigated 

surface. By filtering vegetation, buildings and other objects, a 

DTM can be derived with an accuracy in the order of 

decimetres.  

In this test, a DTM at a resolution of 2 m has been provided 

by the Land Administration Dept. of Lombardia Region. 

A detail of the orthophoto generated using a LiDAR DTM at 

20 cm image resolutions is shown in Figure 6. Also in this 

case, like in Fig. 4, there is not a good correspondence to 

vector maps in case of tall buildings. 

 

 

 
 

Figure 6. Orthophotos at an image resolution 20 cm 

according to a LiDAR DTM of 2 m resolution. 

 

 

4. ORTHOPHOTO USING A GRID DSM 

LiDAR allows also to derive a DSM of the interested area, 

that can be used to straighten up the position of each 

buildings, especially when the height is relevant. The adopted 

DSM was also provided by Lombardia Region at a 2 m 

spatial resolution.  

Some tests have been performed at the original resolution of 

the DSM (2 m), and with other two reduced resolutions (4 m 

and 10 m). These last DSMs have been created with a thin 

out operation on the original DSM, up to 4 m (deletion of the 

50% of the nodes), and 10 m (deletion of the 96% of the 

nodes). In Fig. 7 the orthophoto at image resolution of 20 cm 

according to a DSM of 2 m is shown. 

Likewise the previous case when a DTM has been adopted, 

here the correspondence between orthophoto and vector data 

is satisfying not only for low buildings, but also for the tall 

constructions. Moreover, results achieved by using DSMs at 

different resolutions (2, 4 and 10 m) are quite similar, even 

though the results correspond to the use of the DSM at the 

higher resolution (2 m). After a more accurate analysis, it is 

possible to pick out a jagged gutter line on each orthophoto, 

generated by a lack of data  along the roof edges (see Fig. 7). 

Indeed, here an interpolation of the grid DSM is needed, 

because the resolution of the orthophoto is higher than the 

resolution of the DSM, but the algorithm has not information 

about where the roof edge is really located. The interpolation 

is based on the height values of the points in a surrounding 

area, independently if a point is located on a terrain or on the 

roof building. 

 

  

 

 
 

Figure 7. Orthophoto at image resolution of 20 cm, 

according to a DSM at resolution 2 m (on top); on 

the bottom a detail showing the jagged gutter line 

effect is reported. 

 

 

5. ORTHOPHOTO USING THE PROPOSED 

METHOD 

5.1 Generation of orthophotos 

The method to generate orthoimages proposed in this paper 

has been developed to avoid the jagged gutter line effect due 

to the use of a coarse DSM.  

As described in Section 2, the first step is to create the 

buildings and terrain masks of the considered area in raster 

format. Using a spatial database provided by the 

administration of the city of Lecco, we could extract only the 

zone relating to the surface covered by buildings, while the 

remaining part have been classified as terrain. From an 

original vector format, both masks have been rasterized with 

40 cm and 20 cm pixel size resolution (see Figure 1). These 

resolutions allow to derive information about where a 
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building border line is really located with a largest error of 40 

and 20 cm, respectively. 

The following step is the thickeness of the original 2 m 

LiDAR DSM to the same resolution of the masks. Initially, 

the portion covered by the BM has been thickened, by 

assigning the height value of the first nearest node (nearest 

neighbour method) to each new grid node of the derived 

DDSM, considering only the point inside the mask. To each 

point outside the mask a “nodata” value has been assigned. 

The same operation has been performed with the TM. These 

tasks have been implemented to be carried out in GRASS and 

ArcGIS GIS environments.  

By using these two DDMSs is now possible to generate of 

the corresponding orthophotos (Figure 8). 

The last step is tth fusion of both orthophotos, being one the 

complementary of the other. The same result could be 

achieved by the preliminary mosaicking of two DDMSs and 

the generation of the complete orthophoto in only one step.  

 

 

 
 

Figure 8. Orthophotos generated in correspondence of 

buildings and terrain DDSMs.  

 

 

5.2 Results with the proposed method 

In order to show the improvement in the orthophoto quality 

obtained by adopting the proposed method, we focus on the 

results achieved in correspondence of the building of Renzo 

Piano already used in the previous cases. In Fig. 9 the 

orthophotos generated on the basis of the building DDSM 

and the full orthophoto are reported. In this case the building 

DDSM has a resolution of 20 cm, exactly the same of the 

orthophoto. Results are very good, being the jagged gutter 

line effect fully removed. Figures 10 illustrates the results 

using the complete DDSM with the union of both buildings 

and terrain DDSMs to generate an orthophoto at the 

resolution of 20 cm. Here both DDSMs at resolutions of 20 

and 40 cm have used. 

In these cases the correspondence between the vector map 

and the corrected orthophoto is verified in zones with both 

low and tall buildings, therefore in every area of the picture. 

 

 

 
 

Figure 9. The orthophoto generated on the basis of the 

buildings DDSM and the complete orthophoto. 

 

 
 

Figure 10.  Orthophoto generated from a 20 cm DDSM. 

 

5.3 Quantitave check of the results 

A quantitative control of the results using a 20 m resolution 

DTM and a 2 m LiDAR DSM has been performed with the 

evaluation of the displacements between the spatial DB and 

the generated orthophotos. In particular, a sample of 100 

buildings around the tall Renzo Piano building adopted a 

case study has been chosen for this control. The histograms 

in Figure 11 represent the measured displacements. 
As it can be seen by analyzing the histograms, with a 20 m 

DTM the errors vary from a few centimetres up to 5-6 meters, 

the latter corresponding to the tallest buildings. Using a 2 m 

DSM, the error is always less than the DSM resolution but 

the jagged gutter line effect is present. 

Finally the check with the proposed method has given errors 

in the range of few centimetres, because the orthoprojection 

of buildings has been corrected to coincide to the contours 

coming from the vector map. 
Moreover, it was verified that the 40 cm DDMS resolution 

orthophotos have also a high quality, even though the best 

results can be obtained by fixing the resolution of the DDSM 

exactly equal to the resolution of the orthophoto, (in our case 

20 cm). 
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Figure 11.  Displacement histograms (in m) measured using a       

20 m DTM (on top) and 2 m LiDAR DDSM (on 

bottom) 

 

 

5.4 Computational cost 

It was verified that the computational cost depends mainly on 

the values of the output parameters, and specifically on the 

final orthophoto image resolution. In the test executed with 

the different DTMs, DSMs and DDSMs, the time necessary 

for the orthophoto production was about the same if the 

orthophoto resolution was kept constant. This is quite 

obvious, because with a low resolution DTMs or DSMs the 

software must execute a grid interpolation to get the height 

values needed for the rectification of each pixel of the 

original image. Instead, with a DDSM the interpolation is not 

necessary and this can increase the computation speed. In any 

case the file dimension is considerable (for example passing 

from 2 m up to 20 cm resolution, the dimension of the file 

has increased by about 96%) and therefore, considering the 

need to manage a so large file, the computational time 

remains about the same. 

 

 

6. FINAL CONSIDERATIONS AND FURTHER 

IMPROVEMENTS 

This paper proposes a method, which has been tested on real 

data, for generating orthophotos geometrically corrected to 

account for modelling of buildings. The implemented 

technique exploits a Dense Digital Surface Model (DDSM) 

acquired through LiDAR technology, coupled with a vector 

map describing the shape of the buildings. The method is 

useful when the goal is to create a high accuracy orthophoto 

in which every building is correctly rectified.   

For this reason, it is particularly suitable for areas where 

there is a high density of tall buildings. When generating 

such orthophotos (also described in the literature as “True-

orthophoto®”), the main problem to consider is the 

rectification of the gutter line of every building with a 

precision of the same order of the orthophoto’s geometric 

resolution. Tests carried out during this research have shown 

that this problem cannot be solved for by using DTM or 

DSM only. 

In the paper, the orthophoto corresponding to the building 

roof is generated by deriving heights from the DSM through 

a simple interpolation method (nearest neighbour). This 

technique could be improved by better 3-D modelling of the 

roof structure (e.g. by using a parameterized model), or by a 

more refined interpolation technique. The decision about 

which portion of the ground is covered by buildings is 

currently taken by using existing vector maps of the same 

area.  However, the vectorization of raster maps (Brovelli & 

Zamboni, 2006) would make available this kind of data as 

well. 
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ABSTRACT 
 
The improvement of laser scanning as a proficient technology to better understand the complexity of the forest has recently allowed 
the detection of the forestry parameters at tree level. From a forest inventory point of view, however, a common use of such 
technology is related to the accuracy that can be obtained if vast and differently composed forestry surfaces are considered. In this 
paper, an improvement in the morphological analysis methods for tree extraction is presented. The method, developed in an open 
source environment, is based on the automatic determination of the forest structure by means of some LiDAR-extracted vegetation 
indexes. The study site is located in some mountainous parts of Friuli Venezia Giulia (N-E Italy) characterized by coniferous, mixed 
and broad-leaved forests with high variability in terms of population densities and composition. The results have been validated 
using topographic total station data surveyed in situ, in 13 forestry sample plots with a total of about 550 reference trees. Moreover, 
some further datasets have been studied by mean of photo-interpretation process on high resolution aerial images. The paper 
highlights the advantages of using this dynamic approach for tree extraction. 
 
 

                                                                 
*  Corresponding author.   

1. INTRODUCTION 

Monitoring of the forestry ecosystem is a current topic in the 
context of quantification and sustainable management of 
wooded resources. To characterize the vegetation from an 
ecological state and biomass content point of view, an accurate 
knowledge of the population density is needed. The assessment 
of such parameters is critical in terms of field operations and 
time needed. In this context, Airborne Laser Scanning (ALS) is 
a promising survey technique for forestry inventories because of 
its capacity to directly assess the three dimensional structure of 
the forest due to the high point number of sampling per surface.  
Computer science plays a major role in the laser surveying field: 
the data processing and the developing of new algorithms for 
filtering, classifying and modelling of LiDAR data in the 
forestry field are research topics constantly being developed. 
Part of the research activities carried out within the Interreg IIIA 
Italy-Slovenia 2003-2006 project "Cadastral map updating and 
regional technical map integration for the Geographical 
Information Systems of the regional agencies by testing 
advanced and innovative survey techniques" at the University of 
Udine concerned the use of LiDAR data in the forestry field. In 
this context, attention has been focused on the development of 
informative methodologies and algorithms useful in the 
automatic extraction of the parameters characterizing the three-
dimensional structure of the trees. The experiments were 
performed using an original software developed in the 
laboratory. The main components of the software allow the 
visualization of the laser scanning data, to draw sections, to 
calculate DTM and DSM and to overlap them with other 
cartographic maps (Beinat, Sepic, 2005). On this basis a specific 
tool were implemented in order to extract forestry parameters of 
interest like the cartographic position of the single trees, the tree 
height, the crown shape and the crown insertion depth.  
 

From a tree-level inventory point of view, the extraction of tree 
position is the most important parameter to determine. The tree 
parameters (e.g. crown area, crown depth, volume) can be 
derived starting from the preliminary detected tree position, as 
many authors have already done (Hyyppä et al, 2004; Morsdorf 
et al., 2003; Pitkänen et al, 2004; Weinacker et al., 2004). The 
results obtained for individual tree extraction have varied 
significantly from study to study. Many factors contribute to 
cause this variation: the methods applied and the forest 
characteristics are the principal ones. Concerning the methods, 
the first studies were related to the use of rasterized Crown 
Height Model (CHM) as input data to perform local analysis 
while, recently, a trend towards using the point cloud data 
directly has been noticed (Pyysalo and Hyyppä, H., 2002; Tiede 
et al., 2005; Barilotti and Sepic, 2006). As far as the forest 
composition is concerned, some authors derive forest 
information using laser data in synergy with high resolution 
aerial images. The latter technique provides color information 
usable for classification (Leckie et al., 2003; Persson et al. 
2004). In this paper, a new methodology for tree extraction is 
presented. The characteristic elements of the implemented 
procedure are based on the assessment of local forest structure 
which is carried out by a multivariate analysis on laser-derived 
vegetation indexes. This allows the application of mathematical 
morphology in an auto-adaptive way. The method, following an 
automatic approach, is able to dynamically fit the apex 
searching parameters on the basis of the dataset characteristics, 
increasing the efficiency of the tree extraction process. 
 

2. MATERIALS 

The study areas are located in some mountainous areas of Friuli 
Venezia Giulia Region (N-E Italy) essentially characterized by 
coniferous forests (spruce, spruce-fir), broad-leaved forests  
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(beech) and mixed forests (spruce, fir, beech and Alpine Larch). 
Within these areas some sub-zones of interest have been located 
and geo-referenced using topographic total station and GPS. 
This has allowed the precise and accurate determination of the 
coordinates of 13 circular forestry plots (transects) with radius 
ranging between 12 and 25 meters. During a field measuring 
campaign, detailed information on the morphology and the 
structure of each tree were collected. Using a topographic total 
station the cartographic position of all trees (diameter at breast 
height more than 5 cm) and the crown extension (4 sampling 
points for each one) were measured (e. g. in Figure 1). The total 
data acquired in situ using topographic instruments covers 
approximately 550 tree points and 2200 crown points. 
 

 
 
Figure 1 – Example of trees collected on site in MBD plot. The 

correspondent high vegetation laser points can be 
seen in the background of the image.  

 
The forestry characteristics of the studied plots with the 
respective laser point densities are reported in Table 1. 
 

 
Table 1 – Summary of the georeferenced plot characteristics. 

Considering the different age and composition of the 
13 transects compared to the different laser densities, 
8 different forestry situations can be found. 

The height of crown insertion was measured using portable 
instruments (length and angle). The diameter at breast height 
was also measured. These values were used to localize the 
dominated vegetation. However, the individual trees whose 
apex did not reach the top of the canopy were objectively 
surveyed during the field operations. As far as the laser data is 
concerned, the main characteristics of the datasets are reported 
in column 5 (Table 1). Some datasets were detected using a 
multiple pulse laser scanner (Optech ALTM 3100). On one 
hand, such an instrument increases the capacity to sample the 
intermediate layers of the vegetation but, on the other, it does 
not substantially furnish extra information on the higher part of 
the canopy, when compared to the First and Last (F&L) data. 
However, in these cases we have plots with higher sampling 
points (5-10 pts/m2) than those surveyed with a F&L pulse laser 
scanner (low density, 1.5 – 2 pts/m2). The flight altitude was 
about 1000 m above ground and the laser beam divergence was 
0.2 mrad (small footprint), according to the different datasets. It 
has to be specified that none of this laser data was specifically 
collected for forestry measurements. 
Moreover, 4 further datasets have been studied using high 
resolution aerial photography (20 cm pixel) which allowed us to 
single out the position of the trees by a photo-interpretation 
procedure. The forest characteristics were also photo-
interpreted. The corresponding LiDAR dataset was surveyed 
with a F&L instrument (Optech ALTM 3033) for an average 
density of about 3 point/m2, as shown in Table 2. 
 

 
Table 2 – Summary of 4 photo interpreted transect. The PHA 

transect, in particular, is composed of a very dense 
population of planted spruces.  

 
Approximately 258 trees were photo-interpreted on the basis of 
the high resolution aerial photography. 
 

3. METHODS 

The methods presented here for tree extraction are related to the 
morphological mathematical approaches. The procedure is 
composed of a series of elaborations and transformations that 
can be schematized as follows: 
• Pre-processing of the raw laser data (true DSM); 
• Application of mathematical morphology algorithms, 

following a single tree approach, to extract the canopy 
apexes; 

• Application of a dynamic search radius based on 
multivariate analysis of LiDAR-extracted indexes. 

The last step is an important improvement in the method used 
for tree extraction because it makes it possible to automatically 
apply the morphological analysis in a local context. As will be 
shown later, such a dynamic and auto-adaptive procedure has 
been implemented in order to eliminate the need for a detailed 
knowledge of the dataset characteristics and the forest 
composition as well. A description of the implemented 
algorithms and the related steps of elaboration are reported 
below. 

Plot 
ID 

n° of 
trees/h

a 

Area 
(m2) 

Forest 
characteristics 

LiDAR data 
characteristics 

FOA 663 450 Mature - mixed 2 pt/m2 - F&L 
FOB 531 450 Mature - mixed 2 pt/m2 - F&L 
MBA 619 450 Mature - mixed 6 pt/m2 - Multi 
MBB 1525 450 Juvenile - spruce 7 pt/m2 - Multi 
MBC 575 450 Juvenile - spruce 8 pt/m2 - Multi 
MBD 463 2000 Mature - spruce 10 pt/m2 - Multi 

PRB 840 450 Juvenile/adult -
spruce 1,5 pt/m2 - F&L 

PRC 752 450 Juvenile/adult -
spruce 1,5 pt/m2 - F&L 

SAA 336 2000 Mature - beech 4 pt/m2 - F&L 
TUA 538 700 Juvenile - beech 2 pt/m2 - F&L 
TUB 862 450 Juvenile - beech 2 pt/m2 - F&L 
TUC 553 450 Juvenile - beech 2 pt/m2 - F&L 
VBA 1105 450 Juvenile - spruce 5 pt/m2 - Multi 

Plot 
ID 

n° of 
trees/ 

ha 

Area 
(m2) 

Forest 
characteristics 

LiDAR data 
characteristics 

PHA 1380 450 Juvenile - spruce 3.5 pts/m2 - F&L 
PHB 410 2000 Adult - spruce 3 pts/m2 - F&L 
PHC 385 2000 Mature - spruce 3 pts/m2 - F&L 
PHD 185 2000 Mature - mixed 2.5 pts/m2 - F&L 

27

IAPRS Volume XXXVI, Part 3 / W52, 2007



 

3.1 Pre-processing (true DSM) 

The implemented step relating to the laser data pre-processing 
consists of an algorithm that eliminates from the dataset the 
points corresponding to the laser beam reflection under the 
canopy. The algorithm executes a first triangulation (Delunay) 
of all points, then analyzes the height (z) difference between the 
vertices of each triangle. Those vertices whose height difference 
is greater than a threshold value (according to the minimal 
height of the forest) are eliminated. This allows the creation of a 
Digital Surface Model (DSM) without any triangulation inside 
canopy (true DSM) and therefore introduces a higher degree of 
DSM adhesion to the external forest surface.  
 
3.2 Morphological analysis 

3.2.1 Mathematical morphology 
The method proposed for the tree extraction is based on the 
morphologic analysis of the laser point distribution. 
Accordingly, the Top Hat algorithm, whose formulation is 
related to the image elaboration theory (Serra, 1982), was 
implemented. This mathematical function allows the extraction 
of the highest elements in the scale of the represented values, 
independently from the image typology (Andersen et al., 2001, 
Barilotti and Turco, 2006). If we considering f(x) as the grey 
value of a generic pixel x of a point localized in u; f(X) as the 
corresponding value of the transformation of the matrix X; λ as 
the structural geometric element to determine (or as the 
dimension of the explorative kernel centred in x), the Top Hat 
function is based on the Opening transformation (1) defined as 
follows: 
 

Oλ f(X) = Dλ [Eλ f(X)]             (1) 
 
Therefore, the following transformations of Erosion (2) and 
Dilatation (3) are applied: 
 

Eλ f(X) = inf {f(u) : u є λx}            (2) 
 

Dλ f(X) = sup {f(u) : u є λx}            (3) 
 
The Erosion operator (2) associates to the centre of the kernel 
(λx) the inferior (inf) value among the surrounding pixels while 
the Dilatation operator (3) associates the superior (sup) value. 
The extraction of the local maximums in the scale of the  
image values is carried out by using the function Top (4)  
that subtracts the primitive image (function) from the Opening-
transformed function: 
 

TOP = {x: f(x) - Oλ f(X)}             (4) 
 
Extending the Top Hat concept directly to the pre-filtered point 
cloud, the method allows the detection of the set of points 
belonging to the top of the crown, avoiding the interpolation  
on raster images. A preliminary set of higher points (seed 
points) is obtained in this way, the number of which depends on 
the kernel used (e.g. λ = 3 x 3 and cell value of 1 meter). It is 
assumed that these points are an over estimation of the real 
trees, particularly when a kernel smaller then 3 meters is used 
(e.g λ = 3 x 3 and cell value of 0.5 meters).  
 
3.2.2 Fixed search radius 
In order to diminish this kind of error, a checking algorithm that 
identifies and corrects the erroneously classified apexes (often 
localized in the crown edges) was introduced. The algorithm 
compares the height value of each extracted apex to the nearest 

laser points, using an opportune (user defined) search radius. If 
a point with a greater height value is found inside the search 
window, it becomes the new apex. Normally, a search radius 
slightly bigger than the kernel (λ used in the morphological 
analysis) maintains the high level of the method efficiency but, 
on the other hand, the number of false positive trees remains 
high. Experimentally, it has been observed that the optimal 
radius ranges between 1.50 and 1.80 meters when a 3 m kernel 
is used. This average radius can be manually set up and 
optimized on the basis of the expected forest typology. 
However, different λ and radius should be used depending on 
the forestry species present and population density.  
 
3.3 Pre-detection of forestry composition 

When the study area is characterized by a very high variability 
of forest composition and structure, the working procedure 
should foresee a sub segmentation of the LiDAR dataset, 
applying different analysis parameters. To avoid this procedure, 
which is expensive in terms of time, a method to automatically 
assess the forest structure was introduced, performing a multi-
variate analysis on two different LiDAR-extracted indexes: 
• Laser Penetration Index (LPI) (Barilotti et al, 2006);  
• Crown Height Model (CHM). 
 
3.3.1 Laser Penetration Index (LPI) 
The laser beam penetration through the canopy varies 
depending on to the macro-species composition, the tree 
density, the height of the forest. Concerning the broad-leaved 
forests, the season of survey plays an important role for the 
laser penetration capacity, which is reduced by the presence of 
the foliage cover. Moreover, geometric LiDAR parameters like 
the laser beam dimension, the flight altitude and the scan angle 
should be taken into consideration but, as constant flight 
setting, are not considered here. This specific capacity of the 
LiDAR measurements in penetrating the canopy can be studied 
in terms of ground point number variation through the dataset. 
On the basis of this assumption, a Laser Penetration Index (LPI) 
(5) was defined as follows: 
 

LPIij = Gij / (Gij + Vij)             (5) 
 
Where              Gij =  Ground Point Density  

Vij = High Vegetation Point Density (h > 1 
above the ground) 

 
Gij in the denominator allows the normalization of local 
sampling density due to LiDAR strips overlapping and 
variations in the helicopter speed. Because of the non-
homogenous distribution of LiDAR sampling points in the 
studied areas, Gij and Vij are calculated on the basis of a 
neighbourhood analysis by means of an explorative radius 
which is determined using the initial point sampling density.  
An example of LiDAR data elaboration is given below: Ground 
Point Density and High Vegetation Point Density are reported 
in Figure 2-Upper and 2-Center, respectively. In the sequence 
the values are represented using a yellow-blue coloured scale. 
As normalized index, LPI ranges between 0 and 1, as expected 
(yellow to blue respectively in Figure 2-Lower). LPI values 
close to 0 describe dense vegetation while values close to 1 are 
characteristic of an open stand or clear ground. Intermediate 
values of the LPI synthesize local variations of the forest in 
terms of structure and composition. An analysis of the LPI 
values leads us to the following conclusions:  
• The denser the population the less the penetration (this is  
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        particularly true when the same species is considered); 
• The laser penetration is lower in the broad-leaved forests 

than in the coniferous forests if the dataset is surveyed in 
summer (the opposite is true in autumn, because of the 
absence of foliage cover); 

• A multi-layered forest tends to reduce the LPI values; 
• The penetration is generally lower when tall stand or very 

dense populations are considered. 
 

 
 

 
 

 
 
Figure 2 – Penetration index (LPI) elaboration in a mixed forest 

area. Upper: Ground Point Density map; Center: 
High Vegetation Point Density map; Lower: Laser 
Penetration Index. 

 
3.3.2 Crown Height Model (CHM) 
The Crown Height Model is a widely used vegetation index 
allowing the automatic estimation of the forest height, the forest 
cover and, in the case of multi-temporal surveyed data, the 
detection of the forestry cover changes. This index can be easily 
obtained by an algebraic subtraction between the rasterized 
Digital Surface Model and the Digital Terrain Model (Hyyppä 
et al., 2001). Even though a tendency to underestimate the real 
heights has been highlighted (Patenaude, 2004), the information 
on the CHM can be used to interpret the age of the forest.  
In a natural ecosystem, if the same species is actually 
considered, the higher the average stand height, the more  
mature the population, therefore, the lower the density.  
 
3.3.3 Multivariate analysis 
Multivariate statistical analysis allows the exploration of the 
relationship between many different types of attributes. In an 
unsupervised classification, the features actually at any 
specified locations are unknown. The structure of the forest can 
be however derived in a relative way. Reading the spatial 
variability of the LPI and CHM values it is possible to aggregate 
each of the locations into one of a specified number of groups or 
clusters. The following examples (Figure 3) show 9 classes of 
variability in 3 different forested areas when multivariate 
analysis is performed using LPI and CHM. The sequence 
highlights the capacity of the method to separate differently 
composed areas. Each clustered area corresponds to a different 
forestry composition. Thus, the multivariate map can be used 
for an automatic sub-segmentation of the dataset. 

   
 

   
 

   
 
Figure 3 – Examples of multivariate map on three different 

forested areas. From top to bottom: coniferous forest 
(spruce with larch.), mixed forest (spruce and 
beech), broad-leaved forest (beech). 

 
3.4 Dynamic morphological analysis 

A dynamic process which considers the multivariate values was 
implemented allowing the local application of morphological 
methods previously described. On the basis of the classified 
index values, a double entrance table was implemented. The 
search radius is considered as the independent variable which 
value is empirically determined. Moreover, independently from 
the stand characteristics, the local density of laser points was 
taken into consideration for tree extraction processes.  
This further variable was introduced by performing a triple-
entrance table. This means that, for each class of laser density, a 
double entrance table was implemented. Thus, each location 
(apex) can be visualized as a point in a multidimensional 
attribute space whose axes correspond to the represented 
variables. The method is applied to the preliminary apexes, 
extracted using the Top Hat algorithm. In this case, a 3 x 3 
kernel (λ) with cell dimension of 0,5 m was used in order to 
guarantee the maximum degree of efficiency. For each seed 
apex, the average values of LPI, CHM and laser density are 
calculated within an explorative surrounding window. The 
combination of these values furnishes the best value to use as a 
search radius within each preliminary space location. 
Afterwards, the search radius procedure is iteratively applied, 
until the false apexes converge to the correct ones. The 
convergence procedure is performed until no greater height 
values are found inside the dynamic-defined search window. 
 

4. RESULTS 

The result of the comparison between field trees (see Table 1) 
and laser extracted trees is reported in Table 3 and Table 4. The 
former table is related to the fixed radius approach shown in 
paragraph 3.2.2. In this case, the analysis parameters (λ and 
radius) were manually determined and optimized according to  
the real tree locations. The latter table reports the results of the 

200 m 

50 m
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correlation between field trees and LiDAR–extracted trees when 
the dynamic search radius method is performed (3.4 chapter). 
 

 
Table 3 – Comparison between field tree number and LiDAR-

extracted trees using the fixed search radius method. 
All values are reported in percentage. 

 

 
Table 4 – Comparison between field tree number and LiDAR-

extracted trees using the dynamic search radius 
method. All values are reported in percentage. 

 
In the two tables, trees with a diameter which significantly 
inferior to the surrounding ones are considered “dominated”. 
Moreover, the apexes which are located 3 meters beyond field 
surveyed trees are considered “false positives”. In Figure 4, an 
example of the use of these approaches is given. The green 

triangles represent the position of the trees surveyed on site. 
The red points identify the trees extracted using a fixed search 
radius, while the black ones, which are tagged with the 
corresponding radius used, derive from the application of 
dynamic radius. As can be seen in the image, three more apexes 
were detected while a false positive one was extracted in this 
transect. 

 

 
 
Figure 4 – Example of dynamic search radius application in the 

MBC transect. The green triangles are the real trees 
and the black points the extracted trees using a 
dynamic approach. The apexes, extracted using the 
fixed-radius method, are shown in red.  

 
A summary of the percentage differences between the two 
approaches is given in Table 5. 
 

Plot_ID  Diff. correct 
dominant (%) 

Diff. correct 
dominated (%) 

Diff. false 
positives (%) 

FOA 5 0 -13 
FOB 0 12 -8 
MBA 16 0 -7 
MBB 0 0 0 
MBC 19 0 0 
MBD 11 0 -1 
PRB -3 0 -11 
PRC -7 0 -12 
SAA 6 0 -5 
TUA 5 5 -5 
TUB 4 0 -3 
TUC 13 0 28 
VBA 0 0 0 
PHA 21 0 0 
PHB 18 0 1 
PHC 5 0 0 
PHD 14 0 14 

 
Table 5 – Comparison between percentage of extracted trees 

using fixed and dynamic search radius methods. The 
values reported in red show a decreased quality of 
the results obtained using the dynamic method. 

 
The first column, showing positive values, implies that the 
dynamic method generally enhances the performance of the tree 
extraction process. This improvement reaches significant values 
especially in the case of juvenile forests, characterized by small 

Plot 
ID 

LiDAR 
Extracted 

Correct 
dominant 

Correct 
dominated 

False 
positives 

FOA 70 85 0 13 
FOB 92 100 0 25 
MBA 86 68 0 39 
MBB 29 63 0 0 
MBC 65 81 0 0 
MBD 86 88 0 9 
PRB 84 82 0 13 
PRC 85 76 0 21 
SAA 95 83 0 17 
TUA 118 100 33 50 
TUB 79 85 0 21 
TUC 80 71 0 12 
VBA 60 83 0 0 
PHA 61 61 0 2 
PHB 68 68 0 0 
PHC 79 79 0 0 
PHD 84 81 0 3 

Plot 
ID 

LiDAR 
Extracted 

Correct 
dominant 

Correct 
dominated 

False 
positives 

FOA 60 90 0 0 
FOB 88 100 12 17 
MBA 89 84 0 32 
MBB 29 63 0 0 
MBC 81 100 0 0 
MBD 95 99 0 8 
PRB 71 79 0 3 
PRC 68 69 0 9 
SAA 97 89 0 12 
TUA 116 100 38 45 
TUB 79 89 0 18 
TUC 120 83 0 40 
VBA 60 83 0 0 
PHA 82 82 0 2 
PHB 86 85 0 1 
PHC 85 85 0 0 
PHD 111 95 0 16 
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diameters, where the population density is very high. The results 
also seem to improve significantly when the forestry plot is 
mature and mono-layer structured (even-aged). In this case, the 
percentage of trees extracted correctly reaches high values, 
meaning that the most interesting part of the forest (from an 
above ground biomass content point of view) is extracted in 
coniferous forests as well in broad-leaved forests. Only two 
transect (PRB, PRC) show worse results. This is probably due to 
the insufficient density of the laser survey (< 1.5 pts/m2). 
However, the second column in table 5 is related to the 
differences regarding trees which were extracted but were in 
fact “false positive”. In this case negative values indicate that 
the dynamic radius approach is able to maintain a lower level of 
local overestimations, due to the high variability of laser point 
distribution. However, this overestimation remains high in the 
case of juvenile converted broadleaved forests. Within these 
forestry categories, as the LPI tends to assume minimum values, 
the corresponding search radius become much small. Further 
experiments should be done, in order to consider whether the 
use of denser laser surveys could diminish this kind of error. 
 
5. CONCLUSIONS 

An innovative method of laser scanning data processing to 
automatically detect tree positions is proposed. The method, 
developed in an open source environment, is based on the 
automatic determination of the forest structure by means of 
some LiDAR-extracted vegetation indexes. This information is 
used to improve the quality and the accuracy of the tree 
extraction process based on mathematical morphology analysis. 
The main characteristic of the method is its high flexibility due 
to the multivariate approach implemented that not only 
considers the local forest composition but also adapts itself to 
the relative distribution of the laser sampling points. A field 
survey campaign in some mountainous geo-referenced plots 
highlighted the optimal performances of the method as far as the 
positioning and counting of the dominant trees (the main source 
of forestry biomass), in both coniferous and broad-leaved forests 
is concerned. The high percentage values of trees extracted 
prove the LiDAR to be an interesting and efficient technology in 
improving the knowledge of the forestry ecosystems and may be 
useful in the better management of natural resources.   
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ABSTRACT: 
 
The complexity of natural scenes and the amount of information acquired by terrestrial laser scanners turns the registration among 
scans into a complex problem. This problem becomes even more complex when considering the relatively low angular resolution of 
terrestrial scanner compared to images, the monotonicity of manmade surfaces that makes the detection of corresponding objects 
difficult, and the lack of structure of vegetated objects that makes the detection of meaningful features difficult. Since most modern 
scanners are accompanied with consumer cameras of relatively high quality, it stands to reason making use of the image content for 
the registration process. Such alternative will benefit from the large body of image based registration work that has been carried out 
for several decades and therefore has the potential of providing an alternative and simple approach for the registration of pairs and 
multiple scans simultaneously. In this paper, we study the registration of terrestrial scans via image-based information. For this 
purpose, we propose an efficient autonomous model that supports the registration of multiple scans. Following the presentation of the 
model, we analyze its application to outdoor, complex scenes, ones that are common to find in actual laser scanning projects. 
 
 

1.  INTRODUCTION 
 
Terrestrial laser scanners are rapidly becoming a standard 
technology for 3D modeling in surveying and engineering 
projects. In most cases, the acquisition of several scans is 
needed to obtain full scene coverage, and therefore requires the 
registration of the individual scans into one global reference 
frame. For the registration, the common practice involves the 
deployment of artificial targets in the scene as tie objects, with 
typical targets having the form of spheres, which are easily 
distinguishable, or reflectors whose high-energy return eases 
their detection. Following the detection of the tie objects, the 
rigid body transformation between the coordinate systems can 
be solved. To avoid manual intervention in the registration 
process, a growing body of work addresses the problem of 
autonomous registration in relation to both range images and 
terrestrial laser scans. The commonly studied model usually 
involves variants of the Iterative Closest Point (ICP) algorithm 
family (Besl and McKay, 1992; Chen and Medioni, 1992) that 
differ in the features toward which distances are minimized (see 
e.g., Rusinkiewicz and Levoy, 2001), and the numerical 
framework that is being used (e.g., Mitra et al., 2004; Pottmann 
et al., 2006). Dalley and Flynn (2002) sort the iterative 
algorithms by their robustness to initial pose parameters, rate of 
convergence, and by their sensitivity to outliers. For reasons 
such as existence of local extrema in the solution space, 
existence of outliers, occlusions, and lack of information 
regarding the point distribution in the object space, no guaranty 
can be given that convergence to the actual solution is reached 
unless the iterations begin close enough. 

As the iterative methods require good initial pose parameters, 
autonomous techniques for their approximation have been 
proposed for range images of relatively simple objects, with 
well-defined shape and structure, and high-level of connectivity 
(see e.g., Gelfand et al., 2005; Huber, 2002; Huang et al., 2006). 
A small number of works address the actual complexity of 
terrestrial laser scans. Bae and Lichti (2004) are using a 
variation in curvature as the matching criterion on local points. 
This requires the computation of the normal vector and the 
curvature itself. Dold and Brenner (2006) propose an 

autonomous matching procedure that is based on planar patches. 
Following their extraction, patches from different scans are 
matched subject to geometric constraints. Gruen and Akca 
(2005) present a least squares matching based registration 
scheme. The reported algorithm is more stable than the classic 
ICP, but still requires an initial transformation. 

The registration of terrestrial laser scans can be aided by the 
images that are usually acquired simultaneously with the range 
data. Images enjoy high spatial resolution, and record color 
content of the scene, which is usually very rich and diverse. The 
role of image content for realistic texture rendering suggests 
that the tight link between the two sensors is only due to 
increase. As such, it provides an alternative candidate to form 
the registration process of laser scans. Image based registration 
also benefits from the vast amount of research that has been 
devoted to the registration problem. Registration of laser scans 
supported by images received indeed some attention in recent 
years. Ulirch et al. (2003) define a framework to integrate image 
information with scanning data. Kang et al. (2007) propose 
using the Moravec operator and cross correlation as a means to 
find point correspondence between images and use those for the 
registration phase. Al-Manasir and Fraser (2006) suggest using 
relative orientation between images for scans registration 
supported by the placement of artificial, signalized, targets. Seo 
et al. (2005) present an approach that uses image-matching 
schemes on relatively small scenes acquired by a table scanner. 
Finally, Liu et al. (2006) consider a more general framework 
with no rigid attachment between the camera and the scanner 
but with the imposition of some specific geometric constraints.  

Since image-based content is only an integral part of most laser 
scanning systems, it stands to reason investigating the potential 
in the registration of laser scans using intensity information. 
Normally, such registration will be purely image based (e.g., via 
bundle adjustment), where images will be mutually matched 
and simultaneously solved. However, laser-scanning projects 
usually acquire data from a relatively wide base, and therefore, 
especially in open scenes, only a limited number of images 
overlap between scans, particularly for establishing a strong 
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Figure 1. Top: panoramic view of the scanned scene as acquired by a camera mounted on the scanner (for the original images see 
Figure 5), Bottom: Polar representation of terrestrial laser scans; the horizontal and vertical axes of the image represent the values of 
θ, φ respectively and intensity values as distances ρ (bright=far). "No-return" and "no-reflectance" pixels are marked in red. 
 
photogrammetric image block. Additionally, image based 
registration will relate to object space by up to a scale factor. 
Therefore, establishing this link requires a subsequent 
registration, and if autonomous registration is of concern, such 
registration should relate to the laser point cloud.  
 
The approach proposed here is based on using the direct relation 
between the acquired images and the laser data (see Fig. 1), but 
instead of solving a block of images it solves a set of rigid body 
transformations, which are more robust, efficient, and require a 
small subset of points. The model applies to the registration of 
pair of scans as well as multiple scans and assumes no support 
in the form of artificial targets or a priori scanning pose 
parameters. Essentially the assumption is that a digital camera is 
attached to the laser scanner equipment and is calibrated with 
respect to it. Our objective is to utilize both the relatively robust 
geometric models for the registration of 3D scans with the 
powerful techniques of keypoint image matching as a means to 
generate the initial set of correspondences. Our aim is to 
develop an algorithm that can handle the data volume and the 
expected complexity of the scanned scenes. To make the 
registration more reliable and robust we make use of the known 
calibration between the laser scanner and the imaging system to 
treat the problem in a dual manner – extracting features and 
matching them in 2D image space but computing the actual 
transformation between the scanners, in 3D space. With the 
proposed model, we test the applicability of the model to the 
registration of terrestrial laser scans. We analyze the advantages 
and disadvantages of image supported terrestrial laser scans 
registration. The results provide an insight into how these 
sources of information can be used jointly for the registration of 
terrestrial laser scans. 
 

2. METHODOLOGY 
 
Generally, there are two reference frames involved in the model 
– the image reference frame (and there are n images acquired 
per scan), and the scanner reference frame. Essentially, our 
objective is to recover the scanner pose parameters, using the 

image content. Such problem can be approached in two ways: i) 
solving the image (relative) pose parameters and then 
computing the scanner pose parameters using a boresight 
transformation, see e.g., Al-Manasir and Fraser (2006), and ii) 
using the boresight computation between scanner and images to 
find the local 3D point coordinates and computed  directly the 
scanner pose parameters using a rigid body transformation.  

While the first approach offer slight advantages in terms of the 
quality of the matched entities (therefore, leading to better 
registration accuracy) it leads to a more complex framework 
involving the simultaneous orientation of multiple images. In 
contrast, the second approach that estimates a rigid body 
transformation, involves only a single transformation per scan, 
one that is relatively easier to compute. 
 
2.1 Camera to scanner registration 
 
The camera mounted on top of the scanner can be linked to the 
scanner body by finding the transformation between the two 
frames shown in Figure 2. Such relation involves three offset 
parameters and three angular parameters. This relation can also 
be formulated via the projection matrix P. With P a 3x4 matrix 
that represents the relation between world 3D point (X) and 
image 2D point (x) in homogeneous coordinates. Compared to 
the six standard boresighting pose parameters, the added 
parameters (five in all) will account to interior orientation 
parameters. The projection matrix can be formulated as follows:  
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fx and fy are the focal lengths in the x and y directions 
respectively, s is the skew value, x0 and y0 are the perspective 
offset across the two image axes. R is the rotation matrix 
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between the scanner and the camera reference frames (the red 
and the blue coordinate systems in the figure respectively) and t 
the translation vector (Hartley and Zisserman, 2003).  

For the estimation of the relative pose offset between the 
scanner and the camera image, points for which well-defined 
3D laser points exist are selected. Using the laser points as 
control information allows computing the projection matrix 
directly and linearly. In this regard, we point that the calibration 
of the lens distortion parameters (radial and decentring) will 
provide an even better accuracy. At each scanning position, n 
images are acquired in predefined “stops” along the scan (e.g., 
every 360/n degrees). For each image, the projection matrix, P, 
represents the relation between the image and the scan. The 
proposed model assumes that,  i) the camera is rigidly mounted 
to the scanner, ii) the interior camera parameter are fixed and 
known, and iii) the acquisition position is fixed across all 
scanning positions. These standard assumptions enable using 
the same projection matrices for all images in the same “stop” 
in different scans. 
 
2.2 Detection of corresponding points  
 
Finding an image points correspondence has been an active 
research for several decades. Mikolajczyk and Schmid (2004) 
present a comparative review of the modern methods, and note 
that they are composed of two fundamental steps: extraction, 
and matching. The goal of the extraction phase is to detect 
keypoints (sometimes terms interest points) in a repeatable 
manner. The challenge in this stage is to yield high repeatability 
rate even under extreme viewpoint, resolution, and exposure 
changes (e.g., brightness and contrast). The goal of the 
matching phase is to find correspondence among the keypoints 
that were extracted from the different images. For this purpose, 
descriptors that provide distinctive characterization of the 
keypoint are used. Following the generation of a descriptor for 
each detected keypoint, the matching is performed by searching 
for similar descriptors in different images and upon finding 
them, recording them as candidate tie-points. The challenge in 
the matching phase is to design a descriptor that offers unique 
and descriptive features while being insensitive to small 
detection errors and perspective deformation. Following the 
generation of proposed correspondences phase, some correct 
and some not, comes the computation of the transformation 
between the images. This will usually be driven by the Random 
Sampling Consensus (RANSAC) algorithm (Fishler and Bolles, 
1981). An important aspect in the application of the RANSAC 
algorithm is the minimal number of points required to compute 
the hypothesis transformation in each iteration. This number 
affects the number of required iterations and thus, the chances 
to finally converge to the correct solution. In this regard, one 
should prefer a geometric model with a small set of points to 
calculate the hypothesis transformation. 

For the extraction of keypoints and their descriptors, we make 
use of the Scale Invariant Feature Transform (SIFT) that was 
proposed in Lowe (2004), and was applied in photogrammetry 
in Shragai et al. (2005), and Läbe and Förster (2006). 
 
2.3 Scale Invariant Feature Transform 
 
The Scale Invariant Feature Transform - SIFT (Lowe, 2004) is a 
methodology for finding corresponding points in a set of 
images. The method designed to be invariant to scale, rotation, 
and illumination. The methodology consists of the following 
four steps:  

 
Figure 2. Reference frames of the scanning system with a 
mounted camera. 
 
1. Scale-space extrema detection – using the difference of 

Gaussian (DoG), potential interest points are detected.  
2. Localization – detected candidate points are being probed 

further. Keypoints are evaluated by fitting an analytical 
model (mostly in the form of parabola) to determine their 
location and scale, and are then tested by a set of 
conditions. Most of them aim guaranteeing the stability of 
the selected points.  

3. Orientation assignment – orientation is assigned to each 
keypoint based on the image local gradient. To ensure scale 
and orientation invariance, a transformation (in the form of 
rotation and scale) is applied on the image keypoint area. 

4. Keypoint descriptor – for each detected keypoint a 
descriptor, which is invariant to scale, rotation and changes 
in illumination, is generated. The descriptor is based on 
orientation histograms in the appropriate scale. Each 
descriptor consists of 128 values. 

With the completion of the keypoint detection (in which 
descriptors are created), the matching process between images 
begins. Matching is carried out between the descriptors, so the 
original image content is not considered here. Generally, for a 
given keypoint, matching can be carried with respect to all the 
extracted keypoints from all images. A minimum Euclidian 
distance between descriptors will then lead to finding the 
correspondence. However, matching in this exhaustive manner 
can be computationally expensive (i.e., O(N2) with N the 
number of keypoints). Common indexing schemes cannot be 
applied to improve the search here because of the descriptors 
dimensionality. However, an indexing paradigm, called Best 
Bin First (BBF) can be applied (Lowe, 2004). The BBF 
algorithm reduces the search to a limited number of the most 
significant descriptors values and then tries locating the closest 
neighbor with high probability. Compared to the exhaustive 
matching, this approach improves the performance by up to two 
orders of magnitude, while difference between the amounts of 
matched points is small. Our proposed solution follows Brown 
and Lowe (2003) where all key points from all images are 
organized in one K-d tree. Once a set of matching points has 
been generated, another filtering process is applied.  

Figure 3 shows the keypoints extracted in a scene that mixes 
structured and unstructured objects, the squares around each 
keypoint illustrates the scale in which it was detected and the 
small vector, its orientation. 
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Figure 3. SIFT keypoints with orientation and scale. 
 
2.4. Linking the laser scans and the image information 
 
Since the registration scheme is based on a rigid body 
transformation, the extraction of keypoints in image space 
should now be transferred into the local 3D object space. 
Generally, this transfer requires tracing the ray into object 
space. However, we apply here a back projection of the 3D 
point cloud onto the image using the boresight parameters that 
were derived in the calibration phase (see Section 2.1). We then 
assign the 3D coordinates of the relevant laser point to the 
keypoints. The result of the back-projection of the laser point 
cloud into the imaging system reference-frame is demonstrated 
in Figure 4. Notice that vegetation expression in the range 
image compared to intensity one.  
 
The 3D coordinate assignment is not immediate, however. 
Keypoints are defined by their position and scale (window size), 
therefore, for each keypoint, candidate 3D coordinates are 
collected from the scale dependent corresponding window (see 
Figure 3). Generally, the coordinate assignment problem can be 
partitioned into two cases the first is when the point falls on a 
solid object; the second is when the point falls between 
surfaces. In the first case, we assign the nearest 3D coordinate 
in terms of angular distance between the keypoint direction and 
laser point direction, while in the second we assign the 3D 
coordinates of the point closest to the imaging system. The 
motivation for this is as follows, for solid objects the keypoint 
location is well defined and, therefore, the nearest 3D point will 
have the smallest bias among all candidates (we note that some 
refinement to the ray direction can be applied, but this is 
negligible). For the other case, with lack of any other 
information we opt toward assigning the closest distance within 
the candidate 3D points under the realization that it is the 
foreground object, which is likeliest to do with the detection of 
the point as keypoint. Differentiation between the two cases is 
achieved by computing the std. of the 3D points' depth. 
 
2.5 Registration between scans  
 
With the candidate matches, the registration of the laser scan 
becomes an estimation problem of the rigid body 
transformation, 

( ) ( xSISIXX −++= −1
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where I is a 3x3 identity matrix, and S is an skew-symmetric 
matrix, defined as: 
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The transformation can estimated linearly using such methods 
as the one proposed in Horn et al. (1988). Since some of the 
proposed matches are outliers, a RANSAC solution guides the 
parameter estimation. One of the appealing properties of the 
registration based on the rigid body transformation is that only 
three points are needed to generate a hypothesis. Therefore, 
even if a small fraction of inliers is assumed, the number of 
trials will be controllable and very efficient. Choosing the 
relative orientation option and using, for example, the well-
known eight-point algorithm to estimate the fundamental matrix 
(Hartley and Zisserman, 2003) will obviously have a much 
higher cost under a small fraction of inliers assumption. 
 

    
Figure 4. Depth image calculated to fit the original image, left: 
the depth image, right: the original image. Because the spatial 
resolution of the laser point cloud is much sparser than the 
image resolution (0.12o compared to 0.03o here) filling of depth 
image was applied for demonstration purposes only. 
 

3.  RESULTS 
 

)    (2)  

To demonstrate our approach we test the proposed algorithm on 
three scans acquired in a row by Riegl 360. The image 
sequences of the three scans are presented in Figure 5. The 
distance between the scanners is 8.15, and 22.28 [m] 
respectively, and the maximal scanning range ~100 [m]. Six 
mega-pixel size images acquired by the Nikon-D100 were 
processed in full resolution. For each image SIFT keypoint were 
extracted with 4,000-11,000 keypoints per image evaluated for 
the matching. Figure 3 shows a typical set of keypoints (with 
some pruning for visual clarity). Matches are then evaluated 
between each image in a scan to all seven images in the 
counterpart scan (for multiple scans a similar procedure will 
apply). Tables 1, 2 list the number of matches (descriptor wise) 
between each image in one scan and the images in the other. 
Even though Table 1 has a dominant diagonal, the structure of 
the match matrix is arbitrary and depends on similarity between 
the images in the scans. Figure 5 clearly shows why the first set 
is diagonal dominant. Figures 6 (top and center) shows the 
matched keypoints between the pair of sixth images in set 1-2. 
Generally most matches are correct, but some outliers can be 
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seen, e.g., point 134 (encircled) that has no counterpart. Figures 
6(bottom) shows the matched keypoints between image 7 of 
scan 2 and 3 of scan 3. One can see that the number and quality 
of the matches is relatively poor compared to the first pair.  
Overall, 1256 matched points (sum of all values in the table) 
were found all scans in set 1-2, and 123 points between 2 and 3. 
For each matched keypoint, 3D coordinates are assigned (see 
Section 2.3). Image pairs with less than four matched points are 
overlooked due to the realization that such a small number is 
most likely the result of lack of overlap between the images 
with only accidental matches found (this was also validated by 
manual inspection). This further pruning reduces the number of 
matched keypoints to 1219 and 68 matches respectively. 
Following the assignment of the 3D coordinates to the matched 
keypoint comes the RANSAC guided 3D rigid body 
transformation.  
 
Table 1: number of matches, scans 1 & 2 –baseline 8.15 [m] 

scan 2 
img # 1 2 3 4 5 6 7 

1 4 6 4 0 1 3 0 
2 4 1 11 3 4 3 3 
3 0 5 16 5 0 3 0 
4 0 1 2 35 36 2 4 
5 4 1 1 0 347 115 6 
6 2 3 4 0 55 414 38 

scan 1 

7 5 2 1 0 2 4 96 

Table 2: number of matches, scans 2 & 3 –baseline 22.28 [m] 
scan 3 

img # 1 2 3 4 5 6 7 
1 3 2 1 1 2 0 2 
2 0 2 1 1 2 2 2 
3 0 3 0 6 2 4 1 
4 3 5 0 0 3 5 0 
5 0 12 4 8 1 2 2 
6 1 6 7 4 0 2 0 

scan 2 

7 0 2 13 3 2 1 0 

Out of 1219 proposed matches, 979 were found correct (amount 
to 80.3% of the proposed matches) for set 1-2.  In contrast, out 
of the initial 68 candidates in the 2-3 scan, 18 proposed 
correspondences were found (amounts to 26.5%). The 
differences in correct correspondences reflects the change in the 
baseline between the scan pair (8 compared to 22 [m]). The 
comparison of the estimated parameters to manual calculation, 
considered as ground truth, shows that the translation error on 
the scanning position is on order of 0.65 [m] for the first pair 
and 1.15 [m] for the second one; the angular error was (0.12, 
0.3, 0.01) [o] for ω,φ,κ angles respectively and (0.18,0.07,1.09) 
for the second. Those offsets can related to errors that are 
accumulated in the course of the process (calibration errors, 
image to range data conversion errors and matching accuracy 
errors). However, these values are good enough to launch an 
ICP procedure between the point clouds, which is advisable to 
perform for tuning the registration. 

4. CONCLUSIONS 

The registration results of the two scans show the great potential 
of registration via images. As the paper has demonstrated when 
considering the image-based registration problem between scans 
as a platform for an eventual rigid body transformation, the rich 
image-based information (extracted keypoints) allows using 

homologous registration candidates which wouldn't have been 
naturally detected using any of the range data registration 
methods one finds. The rigid body transformation also allows 
using small subsets of points for the RANSAC hypothesis 
generation, thereby allowing greater flexibility in the feature 
extraction phase.  

 

          

  
Figure 6. Matched keypoints between images pairs, up) from 
scans 1-2, center) blowup showing the quality of the matches, 
bottom) matches from scan 2-3 the different viewing geometry 
dropped the number of matches. 
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ABSTRACT: 
 
The amount and variability of dead wood in a forest stand is an important indicator of forest biodiversity, and relates to both the 
structural heterogeneity and the amount of habitat available for biota.  In this study, we investigate the capacity of light detection and 
ranging (lidar) technology to estimate the percentage of dead trees in coastal forests on Vancouver Island, British Columbia, Canada.  
Twenty-two field plots were established from which the tree structural classes, or wildlife tree (WT) classes, of all stems (DBH > 10 
cm) were estimated.  For each plot, the frequency distributions of the WT classes were highly skewed, so lognormal distributions 
were fitted, and the means (µ) and standard deviations (σ) of the log-transformed data were extracted.  The relationship between µ 
and the percentage of dead trees within the plots was highly significant (r2 = 0.77, p < 0.001).  A variety of metrics were extracted 
from the lidar vegetation returns and compared against µ, and results indicated that the natural logarithm of the coefficient of 
variation was the best predictor (r2 = 0.75, p < 0.001), followed by the heights of the 20th percentile (r2 = 0.69, p < 0.001).  In 
general, results indicated that the lowest lidar height percentiles were more significant predictors of µ, which is likely based on the 
direct linkage between the number of dead trees in a stand and its canopy architecture.   
 
 

                                                                 
* Corresponding author 

1. INTRODUCTION 

The Canadian province of British Columbia contains 
approximately half of the country’s softwood lumber inventory, 
and in 2005 the forestry industry was responsible for 45% of the 
province’s manufacturing shipments (BC Stats 2005).  While 
forestry’s economic benefits are significant, extraction must be 
performed in a sustainable manner.  In response to this need, the 
Province of British Columbia has developed a suite of resource 
values to monitor forest health and sustainability, such as 
biodiversity, timber, and soil, amongst others.   
 
Each resource value is assessed by monitoring a number of 
indicators, such as tree height, diameter at breast height (DBH), 
species richness, and wildlife tree (WT) class (or decay class), 
which are traditionally measured using field-based approaches 
in association with aerial photography.  Field assessments, 
however, can be expensive, labour intensive, provide small 
sample sizes and intensity, and often cover only limited 
geographic areas, while aerial photography suffers from time 
and cost issues, is prone to operator bias and subjectivity, and is 
limited by a shortage of trained interpreters.  As a result, there 
has been increased interest in augmenting ecosystem and timber 
inventory mapping initiatives using digital remote sensing 
technologies, including recent research into light detection and 
ranging (lidar).   
 
Various measures of forest structure and biodiversity have 
previously been estimated within the context of coastal 
northwest forests using lidar (e.g. Lefsky et al., 1999; Hudack et 
al., 2002; Anderson et al., 2005; Lefsky et al., 2005a; Lefsky et 
al., 2005b; Coops et al., 2007).  Seielstad and Queen (2003) 
discussed the ability of lidar to characterise fuel bed roughness 

in forests in the western United States, and noted that the direct 
estimation of coarse woody debris loads may be achievable. 
One important variable that has not been examined, however, is 
the decay class or structural life stage of the tree, which captures 
the growth form of the current individual tree, from young 
vigorous trees, to older large live trees and veterans, to standing 
dead snags, to broken stems in various stages of decay. Within 
British Columbia the form classification is known as the 
wildlife tree class, which when accumulated over a stand 
provides an indication of the amount of dead trees and their 
state of decay.  The amount and variability of dead wood is an 
important indicator of forest biodiversity (Noss, 1999).  Snags 
are a critical component of coastal forests, increasing structural 
heterogeneity and providing habitat for forest biota (Clayoquot 
Sound Scientific Panel, 1995).  The goal of this paper was to 
estimate the percentage of dead trees within plots in unmanaged 
forests by developing statistical relationships between plot-level 
distributions of WT class and lidar-derived vegetation metrics. 
 
 

2. METHODS 

2.1 Area of Investigation 

Our investigation focused on the Kennedy Flats, Clayoquot 
Sound, Vancouver Island, British Columbia, Canada, (49o0’35” 
N, 125o37’21” W).  Clayoquot Sound includes both mature first 
and second growth forest.  The area is classified as Coastal 
Western Hemlock (CWH) zone, based on the Biogeoclimatic 
Ecosystem Classification (BEC) system (Meidinger and Pojar 
1991), and has been mapped using the province’s Terrestrial 
Ecosystem Mapping (TEM) classification system, which is 
derived from 1:20,000 to 1:50,000 aerial photography (Mitchell 
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et al., 1989; Demarchi et al., 1990).  Based on the TEM 
classification system, the area encompasses the full range of 
forest structural stages from shrub and herb (14% of total area), 
pole and sapling (32%), young forest (4%), and old forest 
(46%). 
 
2.2 Field Data Collection 

Field data were collected in 2005 and 2006 from 22 forest plots 
ranging from pole/sapling to old forest based on the TEM 
classification (Table 1). Five of the old forest plots were located 
in variable retention harvest blocks. Data were collected from 
625 m2 or greater rectangular plots, with plot centres and 
corners mapped at a horizontal accuracy of approximately 1-5 m 
using a post-processed differentially corrected GPS (Trimble 
GeoXT). For each stem with a DBH > 10 cm, distance and 
bearing from plot centre, tree height, DBH, and species were 
recorded, with crown dimensions measured for every fifth tree. 
For conifers, the WT class was estimated using a field sheet 
showing growth and decay stages ranked 1 through 9: classes 1-
2 were living trees; 3-5 were dead trees with hard wood; 6 
represented dead trees with broken tops and spongy wood; 7 
and 8 were dead trees with broken tops and soft wood; and class 
9 represented dead and fallen trees.    
 
 

Variable 
Pole/Sapling 

n = 5 
(mean/range) 

Young Forest 
n = 3 

(mean/range) 

Old Forest 
n = 12 

(mean/range) 

Stems ha-1 1491 / 1544 1147 / 816 957 / 1391 

Basal Area  
(m2 ha-1) 

144.9 / 127.3 84.1 / 36.8 142.3 / 372.6 

Mean 
Height (m) 

19.3 / 5.3 18.3 / 3.9 12.6 / 12.6 

Standard 
Deviation 
of Height 

(m) 

6.1 / 2.0 5.1 / 1.3 6.33 / 12.1 

Maximum 
Height (m) 

32.5 / 18.0 25.8 / 4.7 27.0 / 30.4 

Mean DBH 
(cm) 

27.8 / 12.8 25.6 / 5.5 31.3 / 37.2 

Maximum 
DBH (cm) 

107.6 / 106.8 125.7 / 98.9 170.5 / 343.2 

Standard 
Deviation 
of DBH 

(cm) 

17.2 / 13.7 15.8 / 5.4 29.4 / 63.4 

Dead Trees 
(WT Class 

3+) (%) 
12.0 / 18.1 13.1 / 9.0 19.6 / 12.1 

 
Table 1.  Summary statistics for sample plots by age class for 
stems with a DBH > 10 cm.  Two outliers were excluded from 

this summary and all subsequent analyses. 
 
Initial examination of the field data indicated that two plots 
were outliers and excluded from analysis. The first was 
composed of extremely dense overstocked conifer and 

contained no lidar ground returns; the second was located in a 
stand which had experienced significant disturbance, possibly 
from insect infestation, resulting in a stand structure not 
replicated in the dataset.   
 
2.3 Fitting Lognormal Probability Density Functions to WT 
Class Data 

For all plots, the majority of the trees were living (WT classes 1 
and 2), with the small remainder being dead and in various 
stages of decay (WT classes 3-9), resulting in skewed 
distributions. Lognormal distributions may be fitted to data that 
are highly skewed, which is a common problem across the 
biological sciences (Limpert et al., 2001). A random variable 
(x) has a lognormal distribution if log(x), usually the natural 
logarithm, is normally distributed.  For each plot, lognormal 
probability density functions (PDFs) were then fit to the 
frequency distributions of WT classes using the following 
equation: 
 
 

2
1 (ln( ) )

( ) * exp 22 2

x
f x

x

µ

σ π σ

−
= −

 
 
 

 (1) 

 
 
where  f(x) = the lognormally distributed variable 
 µ = mean of x or scale parameter 
 σ = standard deviation of x or shape parameter  
 
The µ and σ parameters are related to the frequency distribution 
of WT class of a given plot in similar ways.  Stands containing 
large numbers of healthy living trees (e.g. WT class 1) tend to 
have small values for µ and σ.  Increases in the percentages of 
dead trees, however, particularly in the more advanced stages of 
decay, will cause increases in both parameters (Figure 1).  
 
 

 
Figure 1.  Examples of lognormal distributions fit to WT class 
frequencies in one pole/sapling, one young forest, and two old 
forest plots.  Note increases µ and σ as stand age increases.    
 
The lognormal µ and σ parameters were compared to the 
percentages of dead trees (WT classes 3-9) within each plot 
using linear regression techniques.  These parameters were then 
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used as proxies to represent the percentage of dead trees within 
each plot.   
 
2.4 Lidar Data Collection and Variable Extraction 

Small footprint laser data were collected during July 2005 by 
Terra Remote Sensing (Sidney, British Columbia), using a 
TRSI Mark II two-return sensor onboard a fixed-wing platform.  
Flying at a mean height of 800 m above ground level, the 
survey was optimized to achieve a nominal point spacing of one 
laser pulse return every 1.5 m2 (Table 2).  Ground and non-
ground returns were separated using Terrascan v 4.006 
(Terrasolid, Helsinki, Finland).   
 
 

Sensor and Survey 
Parameters 

Value 

Sensor Type 
TRSI Mark II discrete 

return sensor 

Number of Returns Two, first and last 

Beam Divergence 
Angle (mrad) 

0.5 

Wavelength (nm) 1064 

Mean Flying Height 
Above Ground (m) 

800 

Pulse Frequency 
(kHz) 

50 

Mirror Scan Rate 
(Hz) 

30 

Scan Angle (degrees) ±23 

Mean Footprint 
Diameter (m) 

0.4 

 
Table 2.  Lidar sensor and survey parameters. 

 
A 0.5 m spatial resolution digital elevation model (DEM) was 
created by applying a natural neighbour interpolation algorithm 
to the ground returns (Sibson, 1981; Sambridge et al., 1995).  
The heights of the vegetation returns above the ground were 
then computed by subtracting the DEM heights from the 
vegetation return heights.  A large number of variables were 
extracted from the lidar vegetation data based on Gobakken and 
Næsset (2005), and Næsset (2002; 2004), but without removing 
returns below a height threshold. These variables attempt to 
capture vertical structure by classifying hits into percentiles 
based on their height distribution through the forest canopy, and 
included the 5, 10, 15… 95 percentiles, in addition to the 
means, maximums, standard deviations, and coefficients of 
variation of vegetation return heights within each plot.  The 
natural logarithms of the cases of each variable were also 
computed. 
 
2.5 Data Analysis 

The lidar-derived variables were compared to the lognormal 
parameters for the WT class distributions using both correlation 
analyses and simple regression approaches to test the 
significance of these relationships.  
 
 

3. RESULTS 

3.1 Predicting the Percentages of Dead Trees with Lidar-
Derived Variables. 

The best lidar-derived variables for directly predicting the 
percentages of dead trees in the plots (where 0% indicates a 
stand contains no dead trees, and 100% is indicative of a stand 
where all trees are dead and showing some sign of decay) were 
the natural logarithm of the coefficients of variation (r2 = 0.42, r 
= 0.64, RMSE = 4.4%, p = 0.0021) and the heights of the 20th 
percentiles (r2 = 0.39, r = 0.62, RMSE = 4.5%, p = 0.0033).  
 
3.2 Lognormal Distribution Parameters and Percentages of 
Dead Trees 

Using the plot-based field observations, the relationship 
between the percentage of dead trees and the parameters derived 
from the fitted logarithmic distributions (i.e. µ and σ) were 
explored.  Results indicated that µ (mean of the lognormally 
distributed variable, or scale) was the best predictor of the 
percentage of dead trees (Figure 2).  
 
 
 

 
Figure 2.  The best predictor of the percentage of dead trees in 
each plot was the lognormal µ parameter.  Model: r2 = 0.77,  
r = 0.88, RMSE = 2.8%, p = <0.001; y = 4.73+35.96*x  
 
3.3 Predicting the Lognormal µ Parameter with Lidar-
Derived Variables 

The best predictors of the WT class lognormal µ parameter were 
the natural logarithm of the coefficients of variation (Figure 3) 
and heights of the 20th percentiles (Figure 4)  The lowest height 
percentiles, from the 5th to the 35th, were each capable of 
explaining 60%-70% of the variance in µ, and all were 
negatively correlated with the parameter. This capacity 
diminished with increases in the percentiles (Figure 5).     
 
Figure 6 shows the height of the 20th percentile and the 
percentage of dead trees by structural class.  As forest stands 
increase in age, the percentage of dead trees and the number of 
canopy gaps increase, allowing lidar pulse returns to penetrate 
deeper through the forest canopy.  The trend of the mean 
vegetation return height varies closely with that of the 20th  
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Figure 3.  The best predictor of the WT class lognormal µ 
parameter was the natural logarithm of the lidar coefficient of 
variation. Model: r2 = 0.75, r = 0.87, RMSE = 0.070, p < 0.001;  
y = 0.48+0.20*x 
 
 
 
 
 
 
 
 

 
Figure 4.  The WT class lognormal µ parameter estimated using 
the lidar 20th percentile.  Model: r2 = 0.69, r = -0.83,  
RMSE = 0.079, p < 0.001; y = 0.45-0.16*x 
 
 

 
Figure 5.  The lidar height percentiles, plotted against the 
coefficients of determination between the lognormal µ 
parameter and the heights of the percentiles.  It is the lowest 
percentiles that account for most of the variance in µ.  Note that 
all Pearson correlation coefficients were negative, indicating an 
inverse relationship between µ and the heights of the 
percentiles.   
 
 
 
 
 

 
 Figure 6.  Means and ranges of (1) lidar-derived heights of the 
20th percentile, and (2) the percentage of dead trees, grouped by 
TEM structural class. 
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percentile (r = 0.88).  The standard deviation of the vegetation 
return heights, however, were relatively stable across the age 
classes, resulting in an increase in the coefficient of variation 
from approximately 0.15 to 0.3 for pole sapling and young 
forest, to 0.4-1.2 for old forest. 
 

4. DISCUSSION 

The distribution of WT classes, or tree structural classes, within 
a plot is an important variable to consider when developing an 
understanding of the current structure of a forest stand, as well 
as for managing the stand for wildlife and biodiversity values. 
Whilst the range of wildlife tree classes from 1 to 9 within a 
plot is highly variable, fitting distributions to the observed 
frequency of WT classes and correlating these parameters with a 
simplified index of the proportions of live and dead stems is, we 
believe, an important result.  Once we have developed 
confidence in our capacity to understand how the distribution 
parameters vary over the landscape as a function of stand form, 
we then look to lidar technology to extrapolate over large areas.  
 
The results presented here indicate the capacity of lidar to 
estimate lognormal parameters describing the percentage of 
dead trees within plots in unmanaged forests.  The method was 
superior to simply attempting to predict the percentage of dead 
trees directly using lidar-derived variables.  The natural 
logarithm of the coefficient of variation was the best predictor 
of µ, however, generally all of the lower percentiles were also 
strongly and negatively correlated with the parameter.  We 
believe this is a result of the direct linkage noted by Clark et al. 
(2004) between tree mortality and overall stand structure.   
 
Clayoquot Sound’s old forests are characterized by 
heterogeneous canopies and patchy understories, with gaps 
where old trees have died and young ones are regenerating 
(Clayoquot Sound Scientific Panel, 1995).  These gaps, at least 
partly the result of the presence of defoliated, often limbless 
snags with very different structures than living trees, increased 
the mean penetration depth of lidar returns into the forest 
canopy, and decreased the heights of the lower height 
percentiles.  Critically, non-ground returns were not removed 
below a given height threshold, and though many may have 
actually intercepted the understorey, coarse woody debris, large 
stones, or the ground, their inclusion was nonetheless an 
important contribution to the analyses.     
 
Increasing the number of plots across the full range of tree 
structural class distributions is a necessary next step to both 
adequately capture the heterogeneity within and between the 
structural classes (especially old forests) found in the study 
area. Additional field data will also enable the application of 
multivariate statistical techniques, where more than a single 
predictor variable can be employed. Furthermore, additional 
research is required to determine if these techniques can be 
extended to managed forests. We believe that distribution 
parameters can be robust proxies for plot-based indicators of 
forest structure and biodiversity, and can be useful to ecologists 
and forest managers interested in augmenting their current 
mapping initiatives using lidar remote sensing.    
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ABSTRACT: 
  
Within the paper, the combined application of terrestrial image and LIDAR data for façade reconstruction is discussed. Existing 3D 
building models as they are available from airborne data collection are additionally integrated into the process. These given models 
provide a priori information, which efficiently supports both the georeferencing of the terrestrial data and the subsequent geometric 
refinement. Approximate orientation parameters for the terrestrial LIDAR measurements are provided by suitable low-cost 
components. Exact georeferencing is then realised by an automatic alignment to the building models, which are given in the required 
reference coordinate system. The automatic relative orientation of the terrestrial images is implemented by tie point matching. A 
modified version of this matching process is then used to align these images to the terrestrial LIDAR data, which were already 
georeferenced in the preceding step. After this fully automatic orientation process, the given 3D model is refined by the extraction of 
window structures from the LIDAR point clouds and façade images. 

 

1. INTRODUCTION 

Terrestrial LIDAR is frequently used for the collection of highly 
detailed 3D city models. Urban models are already available for 
a large number of cities from aerial data like stereo images or 
airborne LIDAR. However, while airborne data collection is 
especially suitable to provide the outline and roof shape of 
buildings, terrestrial data collection from ground based views is 
especially suitable for the refinement of building facades. Thus, 
terrestrial and aerial data provide complementary information 
during 3D city model generation. In our approach, this is 
realised by using given 3D building models from aerial data 
collection as a priori information during geocoding of the 
terrestrial data. This automatic alignment for both the terrestrial 
LIDAR and image data is one of the main focuses of this paper. 
In the second part of the paper, the combination of LIDAR and 
image data for façade modelling while using the given 3D 
models as reference surfaces will be discussed.  

Spatially complex areas like urban environments can only be 
completely covered by terrestrial laser scanning (TLS) if data 
collection is realised from different viewpoints. Usually, scans 
from different viewpoints are aligned based on tie and control 
point information measured at specially designed targets. These 
targets are manually identified while a refined measurement is 
performed automatically. In contrast, our approach allows for 
fully automatic registration and georeferencing by matching the 
point clouds from terrestrial laser against the corresponding 
faces of the given 3D building model. This can be implemented 
by the standard iterative closest point algorithm introduced by 
(Besl & McKay 1992) since a coarse alignment of the scans is 
available. For this purpose, the position and orientation of the 
scanner is determined simultaneously to point measurement by 
integrated GPS and digital compass.  

One of the main applications of 3D city models is the 
generation of realistic visualisations. This requires a suitable 
texture mapping for the respective building surfaces in addition 

to geometric data collection. Thus, in order to simultaneously 
capture corresponding colour information, a digital camera is 
directly integrated in some commercial 3D systems. However, 
this limits the camera viewpoints to the laser scanning stations, 
which might not be optimal for the collection of high quality 
image texture. Additionally, laser scanning for the 
documentation of complex object structures and sites frequently 
has to be realised from multiple viewpoints. This can result in a 
relatively time consuming process. For these reasons, the 
acquisition of object geometry and texture by two independent 
sensors and processes to allow for an image collection at 
optimal positions and time for texturing will be advantageous. 
Even more important, images collected from multiple terrestrial 
viewpoints can considerably improve the geometric modelling 
based on the TLS data.  

Captured images can be directly linked to the 3D point cloud if 
the camera is directly integrated to the laser scanner and a 
proper calibration of the complete system is available. In 
contrast, for independent viewpoints of camera and laser, the 
combined evaluation requires a suitable co-registration process 
for the respective range and image data sets. The automatic 
orientation of terrestrial images considerably benefits from the 
recent availability of feature operators, which are almost 
invariant against perspective distortions. One example is the 
affine invariant key point operator proposed by (Lowe 2004), 
which extracts points and suitable descriptions for the following 
matching based on histograms of gradient directions. By these 
means robust automatic tie point measurement is feasible even 
for larger baselines.  

We use this operator to align both the terrestrial images and the 
terrestrial LIDAR data. First, a bundle block adjustment based 
on the matched key points between the digital images is 
realised. The resulting photogrammetric network is then 
transferred to object space by additional tie points which link 
the digital images and the TLS data that were georeferenced in 
the preceding step. For this purpose, the feature extraction and 
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matching is also realised using the reflectivity images as they 
are provided from the laser scanner. These reflectivity images, 
which are usually measured in addition to the run-time during 
scanning, represent the backscattered energy of the respective 
laser footprints. Thus, the intensities are exactly coregistrated to 
the 3D point measurements. Despite the differences between 
these reflectivity images and the images captured by a standard 
digital camera with respect to spectral band width, resolution 
and imaging geometry they can be matched against each other 
automatically by the key point operator.  

While the automatic georeferencing of the different data sets 
will be discussed in Section 2, their combined use for a refined 
3D modelling will be presented in Section 3. The benefit of 
using both image based measurements and densely sampled 
point clouds from terrestrial laser scanning is demonstrated for 
automatic façade refinement by the extraction of window 
structures. 

2. DATA PREPARATION AND ORIENTATION 

Within our investigations, a standard digital camera NIKON 
2Dx was used for image collection, while the Leica HDS 3000 
scanner was used for LIDAR measurements. This scanner is 
based on a pulsed laser operating at a wavelength of 532 nm. It 
is able to acquire a scene with a field of view of up to 360° 
horizontal und 270° vertical in a single scan. The typical stand-
off distance is 50 to 100 meters, but measurements of more than 
200 meters are possible. The accuracy of a single point meas-
urement is specified with 6 mm. Within our tests the facades of 
the historic buildings around the Schillerplatz were recorded. In 
order to be able to reconstruct the scene in detail, the resolution 
on the facades was chosen to about ten centimetres, which is 
typical for this type of application. To prevent holes in the point 
cloud i.e. due to occlusions by the monument placed in the 
centre of the square, the dataset is composed of three separate 
360°-scans from varying stations. 

For direct georeferencing of the terrestrial scans, a low-cost 
GPS and a digital compass were additionally mounted on top of 
the HDS 3000 laser scanner. Digital compasses such as the 
applied TCMVR-50 can in principle provide the azimuth at a 
standard deviation below 1°. However, these systems are 
vulnerable to distortion. Especially in build-up areas the Earth’s 
magnetic field can be influenced by cars or electrical 
installations. These disturbances usually reduce the accuracy of 
digital compasses to approximately 6° (Hoff and Azuma, 2000). 
The used low cost GPS receiver mounted on top of the digital 
compass is based on the SIRF II chip. Since it was operated in 
differential mode, the EGNOS (European Geostationary 
Navigation Overlay Service) correction signal could be used. 
By these means the accuracy of GPS positioning can be 
improved from 5-25m to approximately 2m. The vertical 
component of the low-cost GPS measurement was discarded 
and substituted by height values from a Digital Terrain Model. 

For our test area the geometry of the respective buildings is 
already available from a 3D city model, which is maintained by 
the City Surveying Office of Stuttgart. In the following this 
building geometry is used both for georeferencing and refined 
modelling. The quality and amount of detail of this data set is 
typical for such 3D models, like they are available area covering 
for a number of cities. For the applied city model the roof faces 
were collected semi-automatically by photogrammetric stereo 
measurement. In contrast, the outlines of the buildings were 
captured by terrestrial surveying. Thus, the horizontal position 
accuracy of façade segments, which were generated by extru-

sion of this ground plan, is relatively high, despite the fact that 
they are limited to planar polygons. 

2.1 Georeferencing of LIDAR data  

A global orientation of the laser scanner head in WGS 84 is 
measured by the low-cost GPS in combination with the digital 
compass. This approximate solution is further refined using the 
iterative closest point (ICP) algorithm introduced by (Besl & 
McKay 1992). The result of the direct georeferencing is used as 
an initial value for the iterative registration of the laser scans. 
Once the registration of the TLS data has converged, it is kept 
fixed. Then the complete dataset is registered with the city 
model using the same algorithm. Since the initial approximation 
of the direct georeferencing is within the convergence radius of 
the ICP algorithm, this approach allows for an automated geo-
referencing of TLS data (Schuhmacher & Böhm 2005).  

 
Figure 1:  3D point cloud from laser scanning aligned with a 

virtual city model. 

As it is demonstrated in Figure 1, after this step the 3D point 
cloud is available in the reference system as provided by the 3D 
city model. 

2.2 Alignment of image data 

The integration of image data into the façade reconstruction 
requires image orientation in a first step. The images have to be 
aligned with each other and registered according to the already 
georeferenced laser point cloud. This is usually performed by 
means of a bundle block adjustment providing accurate 
estimates of the orientation parameters. While tie points are 
necessary for connecting the images, control point information 
is needed for the georeferencing. Aiming at a fully automatic 
reconstruction process, both tie points and control points are to 
be derived automatically.  

2.2.1 Image to image registration 
Image to image registration based on tie points is a prerequisite 
step for photogrammetric 3D modelling. In the recent past, 
much effort has been made to develop approaches that 
automatically extract such tie points from images of different 
types (short, long, and wide baseline images) (Remondino & 
Ressl 2006). While matching procedures based on cross-
correlation are well suited for short baseline configurations, 
images with a more significant baseline are typically matched 
by means of interest points. However, these techniques would 
fail in case of wide baseline images acquired from considerably 
different viewpoints. The reason is large perspective effects that 
are caused by the large camera displacement. Points and corners 
cannot be reliably matched. Therefore, interest point operators 
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have to be replaced by region detectors and descriptors. As an 
example, the Lowe operator (Lowe 2004) has been proved to be 
a robust algorithm for wide baseline matching (Mikolajczyk & 
Schmid 2003).  

   

Figure 2. Image data for photogrammetric modelling. 

Figure 2 shows images from a calibrated camera (NIKON D2x 
Lens NIKKOR 20mm). For the automatic provision of tie 
points the SIFT (scale invariant feature transform) operator has 
been applied to extract and match key points. Wrong matches 
were removed by a RANSAC based estimation (Fischler & 
Bolles 1981) of the epipolar geometry using Nister’s five point 
algorithm (Nister 2004). Finally, the image orientations were 
determined from 2079 automatically extracted tie points. 

2.2.2 Image georeferencing 
The provision of control point information, which is necessary 
for the determination of the orientation parameters, typically 
involves manual effort if no specially designed targets are used. 
The reason is that object points with known 3D coordinates 
have to be manually identified in the images by a human 
operator. The idea to automate this process is linking the images 
to the georeferenced LIDAR data by a matching process (Böhm 
& Becker 2007) which is similar to the automatic tie point 
matching as described in Section 2.2.1.  

Common terrestrial laser scanners sample object surfaces in an 
approximately regular polar raster. Each sample provides 3D 
coordinates and an intensity value representing the reflectivity 
of the respective surface point. Based on the topological 
information inherent in data acquisition, the measured 
reflectivity data can be depicted in the form of an image. This 
allows for the application of image processing tools to connect 
the images captured by the photo camera to the LIDAR data.  

  
Figure 3.  Measured laser reflectivities as 3D point cloud (left) 

and 2D image representation (right).  

Figure 3 (left) shows the laser point cloud of an already 
georeferenced scan. The position of the laser scanner is marked 
by the coordinate axes of the local scanner system. The image 
representation derived from the reflectivity values is given in 
Figure 3 (right). Each pixel with a valid laser reflectivity value 
refers to the 3D coordinates of the related sample point. Thus, 
obtained point correspondences between the laser image and the 
photos provide control point information which is necessary for 
the determination of the photos’ orientation parameters.  

However, images generated from laser reflectivities 
considerably differ from images that have been captured by 
photo cameras. On the one hand, the laser intensities represent 
the reflectivity of the measured surface only in a narrow 
wavelength range (for example 532 nm for the HDS 3000). 
Furthermore, the viewing direction and the direction of 
illumination are identical in case of laser scanning. By contrast, 
photo cameras usually work with ambient light sources which 
may cause shadow areas on the object and therefore lead to grey 
value edges in the photograph. On the other hand, the laser 
image is not based on central projection but on polar geometry. 
Thus, like it is visible in the right image of Figure 3, straight 3D 
lines appear curved in the reflectivity image. Another aspect is 
the sampling distance, which is often much higher for a laser 
scan compared to the spatial resolution of a photo captured by a 
camera. For these reasons, the determination of point 
correspondences between a laser reflectivity image and a 
photograph requires an algorithm which is insensitive to 
changes in illumination and scale and uses region descriptors 
instead of edge detectors.  

Figure 4 depicts the laser reflectivity image (left) and one of the 
photographs captured by the NIKON camera (right) in real 
proportions. In order to have similar intensity values in both 
images, only the green channel of the photograph has been 
considered for the determination of corresponding points. The 
resulting key points were extracted and matched by means of 
the SIFT implementation provided by Vedaldi (2007). Using 
default settings 492 key points are detected in the laser 
reflectivity image and 5519 in the photograph. Of those 31 are 
matched to corresponding key points represented by the red 
dots and lines in Figure 4. Due to the decreasing reflectivity 
values in the right part of the laser image, correct matches could 
be found only on the left part of the building façade.  

 
Figure 4.  Key point correspondences for the laser reflectivity 

image (left) and one of the photographs (right).  

In a next step, wrong matches are to be removed by a RANSAC 
based computation of a closed form space resection (Zeng & 
Wang 1992). For this purpose, the SIFT point correspondences 
are used as control point information. However, the accuracy of 
orientation parameters obtained from a minimal set of points 
strongly depends on the point configuration. If the points are 
close together, the solution of the space resection becomes 
unstable and the uncertainty of the SIFT point coordinates 
(Remondino & Ressl 2006) leads to significant variations in the 
orientation parameters. Therefore, it is difficult to find the 
correct solution within the RANSAC process. In order to 
improve the accuracy of the key point positions and the derived 
orientation parameters, the initial set of point correspondences 
is augmented: For each pair of key points, new point 
correspondences are generated by randomly shifting the key 
point in the photograph by a few pixels. Out of these additional 
point correspondences only the one is kept which contributes to 
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the best solution for the exterior orientation. Beyond that, for a 
further stabilisation of the RANSAC process, a priori 
information on the ground height is integrated. Assuming a 
smooth terrain in front of the building, only those solutions are 
considered, where the positions of the camera and the laser 
scanner differ less than 1m in height. In this way, about 22% of 
the key point matches are confirmed as valid correspondences.  

The resulting approximate orientation parameters for the 
photographs are then refined in a final bundle adjustment. For 
this purpose the Australis software package was used. The 
average standard errors of the estimated orientation parameters 
are σX = 7.6cm, σY = 5.6cm, σZ = 8.1cm, σaz = 0.167°, σel = 
0.164°, σroll = 0.066°. The average precision of the computed 
object coordinates is σX = 3.3cm, σY = 4.7cm, σZ = 2.1cm.  

3. FAÇADE RECONSTRUCTION 

After this georeferencing process, the collected terrestrial data 
sets are aligned to the existing building model, which is 
provided from the existing 3D city model. Thus, both the 
LIDAR point clouds and the images can be used to enhance this 
coarse model. In the following, this is demonstrated exemplarily 
for the geometric refinement of the building façade by a two-
step approach. First, the LIDAR point clouds are used to 
decompose the given building model into 3D cells to 
additionally represent façade structures like windows and doors. 
This cell decomposition, which can be used very effectively to 
represent building models at multiple scales (Haala et al 2006), 
is then refined in a second step by photogrammetric analysis of 
the images. Thus, the amount of detail is further increased for 
the window frames while profiting from the higher resolution of 
the image data.  

3.1 Façade Refinement by Terrestrial LIDAR 

As a first step of the LIDAR based refinement of the building 
façade, suitable 3D point measurements are selected by a simple 
buffer operation. While assuming that the façade can be 
described sufficiently by a relief, the vertical distances between 
the measured 3D laser points and the given façade polygon can 
be used to generate a 2.5D representation, or can even be 
interpolated to a regular grid. Thus, further processing like the 
following segmentation is simplified considerably by such a 
mapping of the 3D points against the given façade plane.  

3.1.1 Point cloud segmentation 
The LIDAR measurement will be used to decompose the coarse 
3D building with a flat front face into suitable façade cells. For 
this purpose, planar delimiters are derived by segmenting 
LIDAR points measured at the window borders. 

 
Figure 5.  3D point cloud as used for the geometric refinement 

of the corresponding building façade. 

Figure 5 shows a point cloud, which was selected for a building 
façade based on the alignment to the virtual city model as 
depicted in Figure 1. This 2.5D representation clearly 
demonstrates that usually fewer points are measured at window 
areas than the façade of a building. This is due to specular 
reflections of the LIDAR pulses on the glass or points that refer 
to the inner part of the building and were therefore cut off in the 
pre-processing stage. If only the points are considered that lie 
on or in front of the façade, the windows will describe areas 
with no point measurements. Taking advantage thereof, our 
point cloud segmentation algorithm detects window edges, 
which are defined by these no data areas. In principle, such 
holes can also result from occlusions. This is avoided by using 
point clouds from different viewpoints, though. In that case, 
occluding objects only reduce the number of LIDAR points 
since a number of measurements are still available from the 
other viewpoints.  

Our segmentation process differentiates four types of window 
borders: horizontal structures at the top and the bottom of the 
window, and two vertical structures that define the left and the 
right side. As an example, the edge points of a left window 
border are detected if no neighbour measurements to their right 
side can be found in a pre-defined search radius at the façade 
plane. We used a search radius a little higher than the scan point 
distance on the façade, otherwise, no edge points would be 
found at all. 

 
Figure 6. Detected horizontal and vertical window lines. 

Based on the extracted edge points, which are depicted in 
Figure 6, the window borders can be determined in the 
following step. 

3.1.2 Spatial-Partitioning of the building façade  
Within this step, horizontal and vertical lines are estimated from 
non-isolated edge points. As it is also visible in Figure 6, these 
boundary lines are then used to decompose the building façade 
in suitable cells. Each of these cells represents either a 
homogeneous part of the façade or a window area. After a 
classification based on the availability of measured LIDAR 
points, window cells can be eliminated from the façade and the 
refined 3D building model is generated.  

The separation of cells into building and window fragments is 
based on a ‘point-availability-map’. This low resolution binary 
image provides pixels which either represent façade regions, 
where LIDAR points are available, or areas with no 3D point 
measurements. This image is then used to compute the ratio of 
façade to non-façade pixels for each facade cell as required for 
the following classification. A refined classification is 
implemented based on neighbourhood relationships and 
constraints concerning the simplicity of the resulting window 
objects. Uncertain cells are for example classified depending on 
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their neighbours in order to align and adapt proximate windows 
in horizontal and vertical direction. Within this step, convex 
window objects can additionally be guaranteed.  

3.1.3 Model Refinement  
Finally, the façade geometry is modelled by eliminating the 
classified window cells from the existing coarse building 
model. For this purpose, a plane parallel to the facade at 
window depth is determined from LIDAR points measured at 
the window crossbars.  

 
Figure 7. Refined facade of the given building model. 

As depicted in Figure 7, the classified facade cells are then 
carved out from the building model at this window depth. 
While the windows are represented by polyhedral cells, also 
curved primitives can be integrated in the reconstruction 
process as demonstrated by the round-headed door of the 
building. Furthermore, our approach is not limited to the 
modelling of indentations like windows or doors. Details can 
also be added as protrusions to the façade.  

3.2 Image based Facade Refinement 

For our data set, the point sampling distance of terrestrial laser 
scanning was limited to approximately 10cm. Thus, smaller 
structures can not be detected. However, the amount of detail 
can be increased by integrating image data in the reconstruction 
process. This is exemplarily shown for the reconstruction of 
window crossbars.  

3.2.1 Derivation of 3D edges 
By matching corresponding primitives, the georeferenced image 
data is used to derive the required 3D information. In order to 
reconstruct linearly shaped façade detail such as crossbars, edge 
points are extracted from the images by a Sobel filter. These 
edge point candidates are thinned and split into straight 
segments. Afterwards, the resulting 2D edges of both images 
can be matched. However, frequently occurring façade 
structures, such as windows and crossbars, hinder the search for 
corresponding edges. Therefore, the boundaries of the already 
reconstructed windows are projected into both images. Only the 
2D edges within these regions are further processed. Thus, 
possible mismatches are reduced, even though, they cannot be 
avoided completely. Figure 8 depicts the selected 2D edges for 
an exemplary window in both images.  

Remaining false correspondences result in 3D edges outside the 
reconstructed window. Therefore, these wrong edges can be 

easily identified and removed. In addition, only horizontal and 
vertical 3D edges are considered for the further reconstruction 
process. The reconstructed wrong (green) and correct (red) 3D 
edges are shown in local façade coordinates in Figure 9. The 
position of the window that has been derived from the LIDAR 
data is illustrated in black. 

  
Figure 8.  Selected 2D edges for a window in both images. 

 
Figure 9. Wrong (green) and correct (red) 3D window edges. 

3.2.2 Reconstruction of additional façade structures 
Photogrammetric modelling allows the extraction of well-
defined image features like edges and points with high 
accuracy. By contrast, points from terrestrial laser scanning are 
measured in a pre-defined sampling pattern, unaware of the 
scene to capture. That means that the laser scanner does not 
explicitly capture edge lines, but rather measures points at 
constant intervals. For this reason, the positional accuracy of 
window borders that are reconstructed from LIDAR points is 
limited compared to the photogrammetrically derived 3D edges 
at crossbars. As a consequence, the 3D reconstructions from 
laser points and images may be slightly shifted. Therefore, the 
reconstruction of the crossbars is done as follows: 

For each window, hypotheses about the configuration of the 
crossbars are generated and tested against the 3D edges derived 
from the images. Possible shapes are dynamically generated as 
templates by recursively dividing the window area in two or 
three parts. Recursion stops when the produced glass panes are 
too small for a realistic generation of windows. The minimum 
width and height of the glass panes are restricted by the same 
threshold value. After each recursion step, the fitting of the 
template with the 3D edges is evaluated. The partition is 
accepted if 3D edges are available within a buffer area around 
the dividing line. In a final step, the crossbars and the window 
frame are modelled. For this purpose, new 3D cells with a pre-
defined thickness are generated at the accepted horizontal and 
vertical division lines as well as at the window borders. The 
result is exemplarily shown for two windows in Figure 10. 
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Figure 10. Reconstructed crossbars for two windows.  

Most crossbars can be reconstructed reliably. However, 
problems may arise for windows that are captured under 
oblique views. This is due to perspective distortions or 
occlusions making it difficult to detect 2D edges at crossbars 
(Figure 11). Consequently, only a reduced number of 3D edges 
can be generated thereof in those areas.  

  
Figure 11.  2D edges for a window under an oblique view. 

In order to stabilize the modelling process of crossbars, 
neighbourhood relationships are taken into account. The 
crossbar configuration is assumed to be equal for all windows 
of similar size which are located in the same row or column. 
Based on this assumption, similar windows can be 
simultaneously processed. Thus, the crossbar reconstruction 
leads to robust results even for windows that are partially 
occluded or feature strong perspective distortions in the 
respective image areas.  

 
Figure 12. Refined facade with detailed window structures. 

The final result of the building façade reconstruction from 
terrestrial LIDAR and photogrammetric modelling can be seen 
in Figure 12. This example demonstrates the successful 
detection of crossbars for windows of medium size. However, 
the dynamic generation of templates even allows for the 
modelling of large window areas as they often occur at facades 
of big office buildings.  

4. CONCLUSION 

Within the paper the combined use of terrestrial image and 
LIDAR data for the extraction of façade geometry was 
presented. For this purpose a fully automatic geoereferencing of 
the collected data sets based on SIFT algorithm was realised in 
a first processing step. As presented, SIFT matching is a 
promising tool for the marker-free connection of photos and 
laser data. It is working well in standard scenarios for relative 
small baselines when the viewing direction of the laser scanner 
is approximately perpendicular to the dominating object 
surfaces. In this case, perspective distortions and decreasing 
reflectivity values in the laser image are negligible. However, 
problems may arise if the point density of the laser scans is low 
compared to the spatial resolution of the photograph leading to 
an instable matching and orientation process. 

The refinement of 3D building models is based on a cell 
decomposition approach. As it was already proved for the 
automatic generation of topologically correct building models at 
different levels of detail (Haala et al 2006), this approach allows 
the simple integration and removal of geometric detail for given 
building models. Even more important, symmetry relations like 
coplanarity or alignment can be guaranteed even for larger 
distances between the respective building parts. Thus, despite of 
the limited extent of the window primitives, which were 
extracted from terrestrial LIDAR and images, structural 
information can be generated for the complete building.  
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ABSTRACT: 
 
Forest inventory schemes collect, besides tree species and some area parameters, geometric tree parameters such as diameter at 
breast height (DBH), tree height, stem profiles, azimuth and distance. For some years the use of a terrestrial laserscanner for this 
forestry inventory task has been discussed. Dense 3D point clouds recorded in forest stands may form the basis for automatic 
determination of forest inventory parameters. 
 
The paper presents an algorithm to detect trees in a horizontal cross section through a point cloud. This algorithm is divided in two 
segmentation steps to minimise the probability of false detections. The first segmentation step is a point cluster search in a cross 
section of the point cloud. In a second step all clusters are verified or discarded by analysing the point density in neighbouring cross 
sections. A study with 547 trees shows a detection rate of 97.4 % in single scan laserscanner data. Two other plots with heavy 
branching show a detection rate of 100 % and 94 %. Besides the tree detection, a new parameter is introduced to eliminate miss-
fitted stem diameters. By using this parameter a least squares polynomial model is generated to smooth the diameters along the stem. 
Finally some results are demonstrated. 
 
 

1. INTRODUCTION 

Almost 73% of the European forest areas are used as production 
forest (Food and Agriculture Organisation of the United 
Nations, 2007). In order for efficient cultivation and planning to 
take place the current timber volume of standing trees inside a 
forest holding needs to be carefully monitored. Therefore forest 
inventories are carried out at regular intervals. Besides other 
inventory parameters, the most important geometric tree 
parameters are diameter at breast height and tree height, which 
are typically measured manually. Measurements on standing 
trees to determine the timber present is a time-consuming and 
costly process. The boles are typically measured after felling. 
Terrestrial laserscanning is an important technique which 
enables a non-destructive determination of standing timber. In 
the last 5 years terrestrial laserscanning has become an 
interesting tool for forest application. For instance, Aschoff et 
al. (2006) have researched the forest hunting habitats of bats 
with the use of terrestrial laserscanner data.  
 
Laserscanner point clouds have a very high point density, which 
enables an extensive analysis and an automation of several 
utilisation processes. Different studies have been published with 
the aim of automatically determining forest inventory 
parameters from point clouds (Simonse et al., 2003; Hopkinson 
et al., 2004; Watt and Donoghue, 2005; Henning and Radtke, 
2006b). 
 
Segmentation and tree identification is done in a horizontal cut 
of the point cloud, to reduce processing time. Scan points on 
stem surfaces are mapped as an arc within the layer. Hopkinson 

et al. (2004) demonstrated tree detection by overlaying a 
manually surveyed tree map on the point cloud layer. Fully 
automatic segmentation and tree identification is presented in 
Aschoff et al. (2006). A horizontal cut from the scanned point 
cloud is mapped to a constant raster and after a layer 
segmentation a Hough-transformation is performed. Based on 
this work Thies and Spiecker (2004) present a detection rate of 
22% in single scan and 52% in multiple scan setups.   
 
The approach presented here was first suggested in Bienert et 
al. (2006). The goal was to develop a program to determine 
forest inventory parameters by analysing laserscanner point 
clouds. In the following section, the plot acquisition and 
different data sets, provided in several study areas, will be 
outlined. Previous work had shown that the tree identification in 
single scans still produce false detections (classified as type I 
and type II errors). Heavy branching or dense undergrowth 
influence the tree identification. Sometimes a detection rate was 
obtained of less than 15%. Thus, the tree detection method was 
enhanced to minimise the probability of false detections. 
Section 3 will present the automatic identification of forest trees 
scanned in single scan setups by using two different approaches 
of segmentations. Beyond the use of segmentation, section 4 
will show the profile fitting at several heights along the stem. A 
parameter which eliminates miss-fitted diameters will be 
introduced. In section 5 a diameter smoothing technique using a 
least squares polynomial model along the stem is given. Finally, 
section 6 will present the segmentation results of study areas 
containing a total of 547 trees of different species. Additionally 
results of the profile fitting and smoothing will be presented. 
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2. DATA SETS 

2.1 Data recording  

All data sets presented in this paper were acquired with the 
terrestrial laserscanner FARO LS 800 HE80. This full spherical 
laserscanner with a field of view of 360° horizontal and 320° 
vertical has a range up to 80 m. With a distance accuracy of 
±3 mm and a data rate of 120 000 points per second, point 
clouds with more than a million accurate measured surface 
points can be obtained in a short time (a typical 30 million point 
scan can be performed in 8 minutes). The LS 800 HE80 uses 
the phase-shift principle for range determination where a mirror 
rotates and directs the laser pulses (Faro, 2005).  
 
To ensure a levelled instrument a built-in spirit level was used. 
The start direction was aligned to north to calculate azimuths 
without an offset. All plots were scanned in the single scan 
mode, so the scanner was placed at the plot centre.  
 
2.2 Study areas 

In May 2006 (leaf-on), 21 plots were acquired in several stands 
in the Vienna Woods 25 km west of Vienna. 52% of all plots 
were mixed plots with coniferous and deciduous trees, 33% 
were beech (Fagus sylvatica) and 5% spruce (Picea abies) 
plots. The stands ages are between 65 and 140 years. Manual 
reference data like DBH, tree height, azimuth and distance were 
measured subsequently. The radius of each plot was 15 m and 
the used scan resolution was 0.045°. 
 
Another test site was acquired in March 2007, close to 
Aberfoyle in Scotland. These plots (plot A and B) contained 34 
year old spruce (Picea abies) and were located on hilly terrain 
with less undergrowth. Both were scanned with a scan 
resolution of 0.036° and had a plot radius of 10 m. Figure 1 
shows an intensity image of plot A. In contradiction to the study 
area of the Austrian forest, heavy branching on the lower region 
of the stems is present. 
 

 
 

Yet another plot (plot C) was scanned 2006 in a Sitka spruce 
(Picea sitchensis) plantation in North Tipperary near Roscrea, 
Ireland. This plot was located on flat terrain and had a stand age 
of 35 years. A scan resolution of 0.036° was used. Inside a plot 
radius of 12 m harvester data was available to compare the 
diameter along the stem obtained from the program. Harvesters 
equipped with the appropriate sensors are able to measure 
diameter and length of boles. 
 
 

3. TREE DETECTION 

After a terrain model reduction, as described in Bienert et al. 
(2006), tree detection was undertaken. The segmentation was 
subdivided into two different algorithms to minimise 
classification errors, which is helpful on data sets from plots 
with heavy branching. Initially a segmentation based on a point 
cluster search was done. Then all clusters were analysed in a 
second step, to determine their point density inside a raster. The 
outcome of the tree detection was the number of trees in the 
plot and the approximate position of each tree.  
 
3.1 Segmentation based on point cluster search 

As outlined in Bienert et al. (2006) and Scheller and Schneider 
(2006) the segmentation was done on a slice with a thickness of 
10 cm cut through the point cloud 1.3 m above the terrain 
model. The whole slice was analysed by a 2D-quadratic 
structure element with a size s. This element moves over the 
slice in X/Y projection and searches for point clusters with 
more than n>nmin points. One object will be separated into two 
objects if the distance between one point and the nearest one is 
bigger than s/2. To classify the objects as trees, a circle fitting 
with all points of an object was done. As exclusion criteria the 
error of unit weight and the fitted diameter of the circle fitting 
are used to classify objects.  
 
This algorithm produces type I and type II errors. Points which 
belong to a branch produce an error of unit weight bigger than 
the present threshold value and so the object will be rejected. 
As a result of this segmentation an object list was generated 
with all classified trees (containing false objects – type II 
errors) and a rejected object list with point clusters which fail 
the classification (containing tree cluster points – type I errors).  
 
3.2 Segmentation based on point density raster analysis  

Scanning techniques are characterised by a regular point grid 
area on a surface. The number of points inside this defined 
raster area depends on the scan resolution used and the 
alignment of the object surface to the scanner. A cut with a 
thickness greater than (minimum two times) the vertical scan 
resolution through a point cloud produces different numbers of 
points inside this defined raster in X/Y projection. 
 
Subsequently the point density raster analysis of the object and 
rejected object list from the first segmentation step could be 
performed. The rejected object list was used to minimise type I 
errors, given that it contained stems which are not detected in 
the first segmentation phase. The 2D-bounding box for each 
cluster with xmin, xmax, ymin and ymax defined the object size and 
a raster with a cell size of 4 cm was overlaid (Figure 2a). 
Because of the distance from scanner to object and scan 
resolution are known, a maximum number of target points, 
which exist inside one raster (Figure 2c), can be calculated 
(equation 1 and 2). To get the number of redundant points a 
diagonal oriented vertical object surface (inside a raster 
element) was used. Because of the perpendicular stem direction, 
raster elements with a very high point number were produced 
(Figure 2b). Minimising the predicted target number by about 
30% the minimum threshold for the raster analysis was defined. 
All scan points of a raster element above the threshold (Figure 
2d) were copied to a new co-ordinate list, which includes only 
points of the stem surface. After analysing all rejected objects 
the new co-ordinate list was checked with the cluster search 
method mentioned in section 3.1.   

Figure 1. Intensity image of plot A 
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where: n = number of points 
 ∆z = cut thickness 
 celldiag = diagonal cell size 
 ∆d* = average distance between object point 
 S = distance from scanner to object 
 α = scan resolution 
 
* assumed that the scanner is on the same level like the object 

points 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. a) Rejected object with overlaid raster; b) number of 

points inside the raster; c) threshold value 
calculation with simulated scan parameters; d) raster 
elements which pass the threshold (yellow elements) 

 
The object list, which contained type II errors, was examined, 
repeating the technique of point density analysis. Type II errors 
caused by branching or undergrowth were characterized by a 
lower point density. Raster elements with a point number 
beneath the threshold were detected and therefore deleted from 
the object list.   
 
 

4. DIAMETER PROFILE FITTING 

Stem profiles at different height intervals (Figure 3) can be 
determined with the knowledge of the approximate position and 
diameter returned by the tree detection process. Starting from 
the reference ground point (Bienert et al., 2006) the profile 
fitting was done, using a least square circle fitting algorithm 
(Bienert et al., 2006). This procedure minimises the mean 
square distance from the fitted circle to the data points, which is 
similar to the algorithm shown in Henning and Radtke (2006a).  
 

Henning and Radtke (2006a) show that surface points caused by 
branching appear outside of the stem cross-section. An 
overestimated diameter will result. If only a short section of the 
stem profile is visible, it is not possible to determine reliable 
diameters. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Point cloud of a spruce (left); generated profiles 

(middle); combined side view of a cut-out (right) 
 
A new parameter, the “Reliability Factor”, was introduced to 
detect these over- and underestimated diameters as outlined in 
Bienert et al. (2007). Attributes of the circle fittings are used to 
evaluate the quality of the fit. The belonging to the universe is 
defined by the probability Px of each parameter x. The 
following information are used:  
• the error of unit weight of the circle fitting (Pσ0), 
• the standard deviation of the fitted diameter (PσDiameter), 
• the visible stem section (angle of the visible circle section) 

(Pα), 
• the ratio of the scanned point number and the calculated 

number of points (determined by scan resolution, distance 
to stem, cut thickness) (P%) 

• a median filtering with 11 neighbour elements of the fitted 
diameters along the stem (PMedian). 

 
The probability Pσ0, PσDiameter and Pα are determined by 
calculating the ratio of each value to a threshold (Px = x / THx). 
To consider the median filtering the diameter is compared with 
the median of its five neighbour up- and downward diameters. 
If the difference between the diameter and the median diameter 
is smaller than 5% of the median diameter, PMedian is 1 
otherwise 0. All five summands consist of values 
between 0 and 1. The reliability factor was calculated as an 
arithmetic mean (equation 3). In general, diameters with a 
factor greater than 0.7 are deemed as reliable.  
 
 
ZP = (Pσ0 + PσDiameter + Pα + P% + PMedian)/5                             (3) 
 
 
To predict the taper of standing trees taper equations and basic 
taper models are extant (Nieuwenhuis, 2002). A modified 
Kozak taper equation was used. Therefore a prediction of taper 
in non-observable stem heights can be done based on observed 
measurements.  
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5. UTILISING A POLYNOMIAL MODEL TO SMOOTH 
THE STEM 

To improve the value recovery in forest stands, accurate stem 
shape and position of trees is essential. The efficiency of the 
harvesting operations can be greatly increased by determining 
the crop “profile”. Three important aims are to consider: 
maximising of (timber) volume, maximising of (timber) value 
and minimising of costs (Nieuwenhuis, 2006). Even just a few 
noisy values in the predicted stem profile can greatly impact on 
the processes used to determine the expected products extracted 
form a stem and its overall value. This in turn means that there 
are inaccuracies the inventory data. In order to ensure the stem 
profile is as accurate as possible the effects of noisy values 
must minimised as much as possible. In pursuit of this goal a 
weighted polynomial function is an invaluable technique to 
smoothen stem diameters. 
 
In fitting a smoothing function, such as spline or polynomial 
model to the stem diameters, the important point to realise is 
that one can obtain a fit as close to the data as one wants, 
simply by adding more and more breakpoints. However, what 
one really wants is a smooth curve, flexible enough to capture 
the (unknown) functional relationship underlying the data, yet 
smooth enough not to follow the noise component in the data 
due to measurement errors. The problem of separating the noise 
from the underlying trend becomes more manageable if an 
indication of reliability can be determined. During the circle 
fitting process the reliability factor was determined as outlined 
in section 4. 
 
This Reliability Factor was used to produce a set of weights for 
each point on which the polynomial model was to be built. This 
helps to ensure that unreliable data does not impact greatly on 
the fitted model. The inputted data to the model is the set of 
diameters from the circle fitting process and their corresponding 
reliability values as weighting factors. The polynomial model 
was fitted to the weighted set of inputs, using least squares 
regression. This minimised the residual sum of errors over the 
data (Hastie et al., 2001). A polynomial model was used instead 
of an interpolating spline, as the goal in fitting the model is to 
approximate the trend of the data and minimise the effects of 
noise. Approximating spline models exist and a smoothing 
spline was orginally used for this purpose (De Boor, 1978). 
However, given the levels of noise and relatively simple shape 
of  tree stems the least squared polynomial model was favoured. 
This simpler model was found to track the underlying trend 
adequately, given the noise and did not require the specification 
of a smoothing parameter. 
 
 

6. RESULTS 

6.1 Segmentation 

The results shown here are derived from the 21 plots acquired 
in May 2006. Overall 533 of 547 trees could be detected 
correctly and therefore the detection rate was 97.4%. There 
were 14 type I errors, mainly caused by occlusions of trees and 
vegetation standing in the foreground. Therefore not enough 
laser points were landing on the stem surface within the 
horizontal data cut. 60 type II errors are produced. Figure 4 
shows the number of errors caused in the different plots. 
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Figure 4. Detection errors 

 
To assess the efficiency of both segmentations two plots (plot A 
and B) with heavy branching (Figure 5) were processed. Plot A 
and plot B consist of each 16 trees inside a plot radius of 10 m. 
By using the segmentation based on point cluster search only 2 
(plot A) and 6 (plot B) stems could be found correctly. After the 
second segmentation using point density raster analysis all trees 
of plot A could be identified correctly and only one tree of 
plot B could not be found. The results of the segmentation of 
both plots are outlined in Table 1. 
 

 
 

Figure 5. Spruce with heavy branching (left); top-view of a 
horizontal 10 cm cut 

 

Segmentation based on 
 

point cluster search point density raster 
analysis 

Data Plot A Plot B Plot A Plot B 

Trees 16 16 16 16 

Classified objects 23 21 16 21 

Correct found stems 2 6 16 15 

Detection rate 12.5% 37.5% 100% 93.75% 

Type I error 14 10 0 1 

Type II error 21 15 0 6 

 
Table 1.  Results of the segmentation 
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6.2 Diameter profile fitting 

To assess the accuracy of profile fitting along the stem 
harvester stem file data was used. Figure 6 shows the 
comparison between the profile fitting and the diameters from 
the harvester along a Sitka spruce stem located 8.5 m from the 
laserscanner. The underestimation caused by too few survey 
points landing on a short stem segment, while the 
overestimation is caused by branching. The standard deviation 
of the profile differences of all fitted diameters (yellow 
rectangles in Figure 6) along the stem is 3.91 cm. Thus, all 
under- and overestimated diameters can be detected by using 
profiles with a “Reliability Factor” bigger than 0.69 (Figure 7). 
A standard deviation of 1.36 cm is obtained.  
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Figure 6. Derived diameters from the profile fitting of a Sitka 

spruce in comparison with the diameter obtained 
from the harvester  

 

0

50

100

150

200

250

300

350

400

1 21 41 61 81 101 121 141 161 181 201

stem height [dm]

di
am

et
er

 [m
m

]

harvester diameter program diameter  
 
Figure 7. Derived diameters of a Sitka spruce with an 

“Reliability Factor” bigger than 0.69 in comparison 
with the diameter obtained from the harvester 

 
The stem was smoothed up to a height of 7.8 m with a standard 
deviation of 0.64 cm by a polynomial model (Figure 8 - green 
triangles). As a height of 7.9 m a taper prediction based on the 
modified equation of Kozak, as outlined in section 4, was done 
(Figure 8 – red points). This equation was specific for spruce 
species with Ireland-Centric coefficients.  
 
Table 2 summarises the accuracies of the profile fitting (all 
diameters, reliable diameters), the smoothing and the predicted 
taper for the tree from Figure 8. Finally the standard deviation 
of 22 trees inside a 12 m radius of the Sitka spruce plantation 
(plot C) are shown in Table 3.  
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Figure 8. Reliable diameters, smoothed data and predicted taper 
compared with harvester data of one Sitka spruce 

 

[cm] Standard 
deviation 

Arithmetic 
mean 

Max. 
difference 

Min. 
difference 

All 
diameters 3.91 1.03 0.168 0 

Reliable 
diameters 1.36 -0.94 -5.30 0 

Polynomial 
model 0.64 -2.20 -2.30 0 

Predicted 
taper 1.36 0.20 3.70 0 
 
Table 2. Results of the profile fitting of one Sitka spruce located 

in plot C (compared with harvester data) 
 

[cm] Standard 
deviation 

Arithmetic 
mean 

Maximum 
difference 

Minimum 
difference 

Reliable 
diameters 2.48 -0.64 19.60 0 

 
Table 3. Results of the profile fitting of plot C with 22 trees 

(compared with harvester data) 
 
 

7. CONCLUSION 

In collaboration with TreeMetrics (www.treemetrics.com), a 
computer program (AutoStemTM) was developed in the C++ 
programming language to automatically determine forest 
inventory parameters based on terrestrial laserscanner point 
clouds. Figure 9 shows the AutoStemTM user interface. By 
processing a point cloud (X, Y, Z), stem number ordered by 
azimuth, stem position, diameter at breast height (DBH - 
measured at a height of 1.3 m), tree height and profiles along 
the stem in user specific heights are displayed. Data sets 
recorded in natural or production forests from one position 
(single scan mode) or more positions (multiple scan mode) can 
be processed. Obstructions such as undergrowth, rocks and 
heavy branching do limit the effective range of a single scan. In 
these situations multiple scans are done to gather the necessary 
information. 
 
By using two segmentation algorithms a slice of a point cloud 
was analysed. The rate of success was enhanced by using both 
algorithms for plots with heavy branching. Type I errors were 
minimised by the second segmentation process. Furthermore 
robust tree detection is possible, which the detection rate of 
97.4% confirms. Nevertheless some type I and type II errors are 
present.   
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Figure 9. AutoStemTM user interface  
 
The newly introduced reliability factor enables the detection of 
badly fitted diameters (Figure 7 vs. Figure 8) allowing a better 
determination of the stem shape to be made. An average 
standard deviation of 2.48 cm for 22 Sitka spruces was 
presented for profile fitting with a height interval of 10 cm, 
compared with harvester data. Henning and Radtke (2006a) 
present a standard deviation of nine loblolly pine trees of 
2.1 cm estimated at every 1-m bole section. However, this was 
done using co-registered datasets of three separate scanner 
positions around each tree. By processing point clouds obtained 
in multiple scan setups, occlusions can be reduced and accuracy 
increased.  
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ABSTRACT: 
 
Recently, a laser scanner technology has been receiving more attention. Nowadays use of terrestrial laser scanners (TLS) is 
continuously increasing. This technique offers the possibility of measuring millions of points within short period of time. Thus, it is 
possible to record complete 3D objects efficiently. In this communication the process followed to model the hull and the deck of the 
ship will be described. To perform this process, a point definition from a terrestrial laser – scanner Faro LS 880 was used as 
information source. From this data, the commercial package software Geomagic Studio 8 has been used, to obtain the three-
dimensional model of two differentiated parts of the ship. The importance of this process lays on the fact that an inverse process has 
been followed: it is the model that has been obtained from the real ship. From these 3D models some series of analysis and 
verifications could be made, like diverse measurements, construction defects, determination of possible asymmetries, etc. even though 
these aren’t presented in this communication. Another remarkable objective of this project is to calculate the volume of the underbody. 
The waterline which indicates the level at which the ship floats in the water (thus it’s a line which separate underbody from dead 
works of the ship) helps us to obtain the 3D model of the underbody by means of Geomagic software and then to calculate its volume.  
 
 

1. INTRODUCTION 
 
The construction of sporting, pleasure and fishing craft has, in 
recent years, become an important source of revenues for the 
shipbuilding sector. Demand, moreover, is steadily growing, 
and this grow is expected to continue in the medium term. 
Consequently, an increasing number of businesses are entering 
into the sector which is made increasingly competitive.  
The manufacturing process for this type of craft, which is 
largely manual, relies on the expertise of individual operatives, 
and results in products that are generally unique and different. 
Moreover, rigorous quality control programmes are rarely 
implemented and construction or assembly workflow diagrams 
are not generally used. Parts are on occasion wasted or re-
worked due to production errors, for example, causing 
production delays and increased costs. This situation, combined 
with the urgent need to increase productivity and competitivity, 
is putting pressure on shipbuilders to improve production 
processes with the incorporation of design and new 
manufacturing technologies, which - without increasing costs 
significantly – will define a priori the quality of the final 
product and ensure that the different parts of the finished craft 
contain no asymmetries or construction defects.  
The construction of accurate three-dimensional models that use 
terrestrial laser scanning techniques, which permit millions of 
points to be measured in a question of minutes, offers particular 
promise in terms of the design and construction of boats 
(Thiyagarajan, 2003), replacing other traditional, slower and 
more inaccurate methods based on moulds subsequently 
adapted to the definitive boat shape.  
Terrestrial laser scanner measurement techniques generate a 
large quantity of information, which requires substantial 
processing to arrive to the point where a definitive 3D model is 
obtained.  
 
 
 
 
* Corresponding author  

2. 3D LASER SCANNER TECHNOLOGY 
APPLICATIONS  

 
Cultural heritage recording (Barber, 2005; Stenberg, 2006; 
Vistini, 2006), architectural modelling (Levoy, 2000; Akca, 
2006), building reconstruction (Alshawabkeh, 2005), accident 
investigation (Pagounis, 2006) and structural engineering 
(Gordon, 2004) are just some of the subjects now benefiting 
from the use of terrestrial laser scanning.  
The most important area of application of laser scanning to 
engineering is 3D modelling of existing structures and industrial 
equipment (Straiger, 2002). 3D plant models are needed as 
basic data for design, especially when modernising industrial 
plants. Plant models are also used in maintenance and facility 
management systems of industrial plants as a 3D virtual reality. 
The 3D virtual model gives dimensions for efficient 
maintenance.  
The main infrastructure applications are for modelling of 
buildings, bridges, tunnels, underground facilities and for 
virtual city modelling (Kretschmer, 2004; Böhm, 2005; Arayici, 
2005). Laser scanning is also used for mining industry and 
modelling in the shipbuilding (Gutiérrez, 2006; Arias, 2006).  
 

3. AIMS OF THIS PROJECT 
 
In this paper the investigations of the 3D modelling using the 
terrestrial laser scanning system are presented. It describes a 
project whose final aim was to establish overall conditions of a 
wooden boat, because of the future possibility to do up it. Other 
important aim of the project was to calculate a volume of the 
underbody. To reach this goal of the work we needed to mark a 
waterline on the hull. The waterline refers to an imaginary line 
marking the level at which the boat floats in the water, thus it’s 
a line which separate underbody from dead works of the boat. 
The ship speed is determined by, amongst other things, the 
waterline length.  
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The boat is based on a structure consisting of two differentiated 
parts: the deck and the hull. From a mosaic of TLS point clouds 
we have constructed three-dimensional models of these two 
components using the commercial package software Geomagic 
Studio 8.  
 

4. MEASURING OF THE SHIP 
 
 3.1.   Instrumentation 
 
The equipment used for the data collection is listed as follows: 
- Three-dimensional terrestrial laser scanner FARO LS 880 

(Figure 1). Each scan covers a 320º vertical and 360º 
horizontal field-of-view. 

- Magnetic targets were implemented to increase the 
precision in assembling the different scans. 

- Laptop computer. Terrestrial laser applications require the 
scanner to be connected to a computer in which the point 
clouds recorded by the laser are stored in real time. 

- Tripod. A tripod provides the support necessary to ensure 
the terrestrial laser scanner during scanning operations. 

- Software application for linking up the point clouds 
captured in each of the scans. 

- Software for cleaning up, debugging and filtering the point 
clouds generated by the scans. 

- Software for generating 3D surface models from the pre – 
processed point clouds.  

 
 

 
 

Figure 1. The 3D laser scanner FARO LS 880 
 
 
3.2. Data Acquisition 
 
Preliminary steps. Prior to commencing the scanning tasks, the 
surroundings of the element to be modelled should be analysed 
in detail. The following points need to be taken under 
consideration:  
• Suitable positions to capture data, using the laser that will 

minimise both the number of scan locations and 
information lost, must be identified.  

• Elements that may prevent correct data capture or that may 
introduce information that could hinder subsequent 
processing, must be identified.  

• Any possible sources of vibrations near the scanning area 
must be removed to avoid adverse effects on the quality of 
the scans.  

 
Scanning procedure. Once these preliminary steps have been 
taken, the fieldwork stage can proceed. This phase is structured 
as follows:  
1) Creation of sketches, indicating the position of elements of 

interest and of the scanner in each scanning session is 
extremely useful for subsequent information processing 
phases.  

2) The scanner is positioned in the previously selected 
locations and scanning commences. The scanning 
procedure consisted of moving the 3D laser scanner around 
the ship, so that the studied object was surrounded 
completely. During the scanning process, the following 
guidelines should be followed:  
a. Ensure overlaps of about 20% between adjacent areas 

of interest and avoid shadow areas where there is no 
information. This will ensure that all areas are fully 
covered so that when the different scans are finally 
put together, no essential elements will be excluded 
from the final model.  

b. Once the data capture process commences, ensure that 
the objects to be scanned are not moved.  

c. Avoid any movement or vibration, no matter how 
small, of the scanner.  

d. It is recommended that targets that can be 
automatically recognised by the software are used as 
control points. In this way overlapping between scans 
can be minimised.  
In our case this matter was essential. Every scan was 
made with 10 targets always ensuring overlaps of 5 
targets between two following scans. It was especially 
important at the moment of assembly of the hull and 
the deck. During the scanning process of the hull at 
least one of the targets was placed on the deck, which 
helps us during assembly process.  

3) Finally, it is recommended during this phase to assemble 
the successive scanned models prior to leaving the site. 
This will avoid any subsequent problems arising as a 
consequence of incomplete data, corrupted files, etc. The 
additional time required for this work is more than 
compensated for by the avoidance of possible subsequent 
complications that may be difficult to rectify.  

 
The measurement procedure followed for the data collection 
took approximately 7 working hours, scanning both elements of 
the boat, the hull and the deck.  
The waterline that refers to an imaginary line marking the level 
at which the boat floats in the water, was marked by some 
targets to help us to recognize it on the scans (showed by Fig.2). 
The waterline was the essential date to calculate the volume of 
the underbody in this case.  
 

 
 

Figure 2. Waterline marked with black and white targets  
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Discussion. In general, our scanning procedure works quite 
smoothly.  
Our biggest failure was the lack of calibration of the scanner 
before the scanning procedure that caused a standard deviation 
of registration accuracy of about 3-4 cm.  
We have found some problems during the automatic recognition 
of white spherical targets by the software especially with the 
direct sun. It was needed to find the way to make a shadow in 
the place of the targets (i.e. to cover it with something dark, i.e. 
umbrella in our case) and repeat the scan. It takes up about one 
working hour in the course of our outside work. During the 
registration some difficulties were encountered as will be 
discussed in section 5.  
In my opinion the registration accuracy could be improved 
changing direction of scanning procedure. Instead of moving 
the 3D laser scanner around the ship (the beginning point and 
the end point are the same), it could be moved from the 
beginning to the end along the left side of the ship and then 
from the beginning to the end along the right side of the ship. 
This procedure should be applied both to the hull and to the 
deck of the ship.  

 
3.3.  Data processing: 3D visualization 
 
Data processing. Once the previous phase is completed, the 
next stage is data processing, which will result in the 3D surface 
models. This is a slow and laborious process performed using a 
computer and specialised software for pre-processing the 3D 
point clouds. This phase, in fact, represents the bulk of the work 
involved in the project. Therefore, the cost of this phase is 
largely dictated by the cost of labour for the information 
processing process in the laboratory.  
 
The scans, registered in the global coordinate system, are 
analysed in order to locate points not relevant to the project. The 
scanner records measurements returned from all the elements 
within its field of view, many of which will not be parts of the 
boat (surrounding things, other boats, work tools and 
accessories, etc). These data are removed from the point cloud 
with the help of the photographs.  
The “cleaning” process and data processing are made by the 
commercial package software Geomagic Studio 8. Our work 
consists of three main phases: 
 
• Point Phase,  
• Polygon Phase,  
• and the last one – Shape Phase. 
 
Point Phase. The first one is the phase of point elimination and 
noise reduction. In this phase redundant information is 
eliminated from the point cloud that is to be modelled with the 
intention of reducing the volume of data, thereby simplifying 
subsequent operations. We need to remove these stray point, 
known as disconnects or outliers that may exist around the 
object. These can be identified as points that are far away from 
the main point cloud and don’t represent any geometry that we 
want to keep. The filtering process requires a certain degree of 
skill and experience, as there is a risk of filtering out too much 
data - with the consequent loss of information – or too little 
data, which can cause subsequent problems due to excessive 
information and overly-large files.  
 
Frequently, during the scanning process, an element of “noise” 
is introduced into the data. This “noisy data” is identified by a 
rough, uneven appearance in the surface object and is due to 
such factors as small vibrations in the scanning device, 
inaccurate scanner calibration, or the character of the surface on 

the object being scanned. It’s need to minimize this noise. 
Finally we can use sampling to reduce the number of points in 
the object while maintaining an accurate representation of the 
part. With unordered data, we can use uniform sampling to 
reduce the number of points and leave points organized so they 
produce triangles roughly the same size when wrapped.  
The point cloud prepared like that (“clean point cloud”) is ready 
to go to the wrap phase.  
 
Polygonal Phase. Once the point object has been cleaned and 
organized, it is time to wrap the object with a polygon mesh. 
Three-dimensional surface models comprising triangular facets 
are constructed for the hull and for the deck from the filtered 
point clouds. Correct triangulation is the basis for subsequent 
correct modelling of curves and surfaces, and the results will 
largely depend of how well the point clouds have been filtered. 
In regular areas with simple shapes, filtering may be more 
intense, resulting in a lower number of triangles with longer 
sides. In irregular areas with complex shapes, filtering should be 
less intense, resulting in a larger number of triangles with 
shorter sides.  
The wrapping process shows us the first result of our work. 
Before the coming to the finish part of the project, it’s need to 
fill the missing data.  
 
Shape Phase. Once the polygon model has been edited to fix 
any imperfections and holes, it is ready for the next phase. This 
would be the Shape Phase, which is the phase where it’s 
creating NURBS (Non-Uniform Rational B-Spline) surfaces 
over the polygon object using autosurfacing.  
 
The figures 3 and 4 show the results of three main phases of the 
project of both parts of the ship.  
 

 
 

Figure 3. Results of Point Phase, Polygon Phase  
and Shape Phase of the hull 

 
Discussion. How well our data processing flow works? In most 
cases, it works well. However, it was time-consuming because 
of the enormous quantity of points. Sometimes the computer 
works very slowly, especially in cases of surface extraction. In 
the worst cases the computer suspended after the long working 
hours and it was needed to repeat the Shape Phase, which was 
the most time-consuming task. 
We were disappointed by the number of holes, some several 
centimeters in size, even with the results of the application of 
“fill holes” tool. The Shape Phase of the hull wasn’t very 
satisfactory because of the too much missing data. The deck 
was a more complex structure but personally we were quite 
more pleased with the results of the filling holes of the deck 
then of the hull. 
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Figure 4. Results of Point Phase, Polygon Phase  
and Shape Phase of the deck 

 
5. RESULTS 

 
Scanning procedure. Fieldwork lasting approximately 7 hours 
was performed by a team of 3 individuals, as follows:  
 

1) A sketch was first created of the position of the 
elements to be modelled, as also of the position of the 
scanner and of the field of vision for each scan. The 
scanner was prepared to capture data within its 320° x 
360° field of view.  
The 360º field of view was necessary because some 
targets were placed around the ship to obtain the best 
precision possible in every scan. It helps us during the 
assembly process then.  

2) Magnetic targets, which are automatically recognised 
by the software, were used to mark a series of control 
points on the objects. About 7 hours’ fieldwork was 
necessary for the measurements, and over 41 million 
points were measured.  

3) Finally all the scans were registered to object space. 
During this operation some difficulties were 
encountered, for example variation of the sea level 
(flow and ebb) between start and final of the scanning 
process, difficulties of placing the laser scanner in 
some scans, etc.  
There were 11 scans needed to scan the deck of the 
boat and 15 scans to scan the hull. 10 targets were 
used in every scan, always ensuring overlaps of 5 of 
them between two following scans. During the 
scanning process of the hull at least one target was 
place on the deck and then during the scanning of the 
deck, one of the targets was placed in the same site. 
This method works perfectly and helps us to assembly 
the deck and the hull during the laboratory work.  
All the scans were registered in the computer using 
the software FARO SCENE and the results were quite 
satisfactory.  

 
Data processing. The first step before start the 3D modelling 
was to apply the previous filtering to the point clouds of the hull 
and the deck. The results of this process were the point clouds 
with spaces between the neighbour points of 10 cm.  
The surface models were obtained as follows:  

1) Point Phase. Areas of irrelevance to the project were 
eliminated from the scans aligned in the global 
coordinate system, mainly representing the 

surrounding things, other boats, work tools and 
accessories, etc. The pre-processing of the point 
clouds was carried out separately for the hull and the 
deck, with 778,742 points obtained for the hull, and 
332,213 points for the deck.   
Redundant information on the point clouds and points 
falling outside the future model surface were 
eliminated to facilitate file handling. Given the 
simplicity of the hull surface, the noise reduction 
wasn’t apply, only the filtering process and uniform 
sampling were performed, thereby reducing the 
number of points to a total of 139,446. Since the deck 
was a more complex structure, we applied the noise 
reduction, and then filtering process and uniform 
sampling were performed, resulting in a final total of 
179,874 points.  

The Figure 5 shows the standard deviation values along the 
deck of the ship after application of noise reduction. The             
mean value of standard deviation in shape after noise reduction 
was of 0.0221 m.  
 

 
 

Figure 5. The standard deviation values along the deck of the 
ship after application of noise reduction 

 
2) Polygonal Phase (the wrapping). The quality of this 

polygonal model depends directly on the filtering 
process. The hull, with relatively simple shapes, 
resulted in fewer triangles with longer sides compared 
to the deck (more complex shapes, therefore more 
triangles and shorter sides). Triangulation of the point 
clouds for the hull resulted with 211,794 current 
triangles, and for the deck, with 312,932 current 
triangles. 

 
In the above Table 1 we find the results after the Polygonal 
Phase applied to the hull and the deck of the ship. The hull has 
no residuals in this case because we haven’t applied the noise 
reduction.  
The standard deviation gives the reference to deviation in shape 
between the point cloud data set and polygonal model.  
  

 
 

The hull 
 

 
The deck 

 
Value [m] Positive Negative Positive Negative 

Max. 
distance 0 0.008162 -0.008197 

Average 
distance 0 0.000008 -0.005841 

Standard 
deviation 0 0.000319 

 
Table 1. Values of standard deviation and the residuals after the 

Polygonal Phase 
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3) Fill Holes. Identification of missing data and manual 

completion. This task was mainly manual. 
4) Shape Phase (autosurfacing). Using the triangles 

obtained, the next stage was definition of the surfaces 
that would form the models. This operation was again 
carried out separately for the deck and the hull. 

The figure 6 shows the standard deviation values along the hull 
of the ship after application of autosurfacing. The full results 
after the Shape Phase applied to the hull and the deck of the 
ship are shown in Table 2.  
The standard deviation gives the reference to deviation in shape 
between the point cloud data set and surface model. 
 

 
 

Figure 6. The standard deviation values along the hull of the 
ship after the autosurfacing 

 
5) Assembly of the two main elements of the boat – the 

hull and the deck (first part of the Figure 7 shows the 
result of the assembly).  

 

 
 

The hull 
 

The deck 

Value [m] Positive Negative Positive Negative 
Max. 

distance 0.029997 -0.029840 0.059953 -0.059851 

Average 
distance 0.004767 -0.003123 0.007784 -0.008039 

Standard 
deviation 0.006847 0.012581 

 
Table 2. Values of standard deviation and the residuals after the 

Shape Phase 
 

About 46 hours of laboratory work was required for above 
mention tasks. The results of the 3D modelling were quite 
satisfactory. The standard deviations of shape (between the 
point cloud data set and the surface model) for the 3D models 
resulted of 0.006847m for the hull and 0.012581m for the deck.  
 
It’s possible to apply three above mentioned phases to 3D point 
cloud of the whole boat. 
We have started with 1,110,955 points and we applied the noise 
reduction. Then filtering process and uniform sampling were 
performed, resulting in a final total of 167,750 points in Point 
Phase. 
Triangulation of the point cloud for the boat resulted with 
323,862 current triangles, in Polygon Phase. Finally the Shape 
Phase resulted with 5342 patches obtained by applying the 
autosurfacing. The final results of every one of these phases are 
shown in Fig. 7.  
 

 
 

Figure 7. The results of Point Phase, Polygon Phase  
and Shape Phase of the ship 

 
The standard deviation (deviation in shape between the point 
cloud data set and the surface model) resulted of 0.012161m for 
the 3D model of the whole boat.  
The residuals are shown in Table 3.  
 

Value [m] Positive Negative 
Max. distance 0.059715 -0.059498 
Average distance 0.008139 -0.006322 
Standard deviation 0.012161 

 
Table 3. Values of standard deviation and the residuals of the 

whole ship after the Shape Phase  
 
One of the most important matters when we speak about the 
speed of the boat it’s surely the power of the engine. 
The essential information to start calculating the power that we 
need for the boat is its length of waterline. So the length of 
waterline was the crucial date needed.  
There exist diverse ways to obtain the power that we need in the 
propeller of the boat to reach the wished speed relating the 
length of waterline with the displacement of the boat. The 
length of waterline was obtained by means of marking it on the 
hull with black and white targets which were easily recognized 
on the scans.  
The displacement of the boat is related with the submerged 
volume of underbody (in this case it was 145 m3) and with its 
form. These would be easily obtained by means of use of 
commercial package software Geomagic Studio 8. 
The underbody point cloud is demonstrated in Fig. 8.  
 

 
 

Figure 8. The form of the underbody of the ship 
(the point cloud) 
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Discussion. Our results were quite satisfactory because we 
obtained 6,8 mm of deviation of shape in the hull and 12,5 mm 
of deviation in shape in the deck case. Considering the size of 
the whole ship (about 40 m) the results obtained were really 
good. The residuals weren’t so big so the stability of the laser 
scanner during the data acquisition was quite good.  
The final results could be improved by previous calibration of 
the laser scanner.  
Comparing the results of the whole boat with the results of the 
hull and the deck, which we obtained during the separate 
processing results of better values for the whole boat (we 
obtained 12,5 mm of deviation in shape for the whole model of 
the ship), but it can result little objective in this case because of 
different ways of pre – processing of the point clouds of the 
boat: separate handling and joint handling. The first one permits 
personal and separate processing of both parts of the boat and 
the second one requires applying of the same processing 
parameters to the hull and the deck what can provoke a loss of 
some information. Besides it’s easier to work with separate 
parts of the boat because the point clouds contain less points 
and it facilitates the 3D modelling. 
 
 

6. CONCLUSIONS  
 
Nowadays, three-dimensional models can be rapidly and 
effectively created using laser scanning techniques, which can 
measure millions of points in a matter of minutes with 
millimetre-level precision. Moreover, they avoid the error 
propagation that is typical of classical topographic methods. 
Specific software is used to process the point clouds and to 
develop the final 3D surface models.  
Although these techniques offer the potential for improving the 
working methods currently employed in most companies in the 
sector, they have some drawbacks. The two major 
disadvantages are: the cost of the equipment and the highly 
specialised, laborious and lengthy data processing work 
required to develop the 3D models. Nevertheless, it is likely that 
equipment costs fall, and the data processing and 3D model 
creation become less complex in the future. 
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ABSTRACT: 
 
The relationships between measures of forest structure as derived from airborne laser scanner data and the variation in quantity of 
young trees established by natural regeneration in a size-diverse spruce forest were analyzed. A regeneration success rate (RSR) was 
regressed against 27 different laser-derived explanatory variables. The 27 different models were ranked according to their Akaike 
information criterion score. Each laser variable was then associated with two categories. These were return and type. Within the 
return and type categories, the variables were grouped according to if they originated from first or last return echoes and if they were 
canopy height or canopy density metrics. The results show that the laser variables strongest correlated to the quantity of small trees 
could be attributed to last return and density metrics. 
 
 

                                                                 

2.1 

*  Corresponding author.  

1. INTRODUCTION 

The number of seedlings in uneven-aged forest types is 
influenced by several factors. An essential requirement for 
regeneration is a source of seeds. Furthermore, the 
establishment of a seedling from a seed is dependent on the 
properties of the humus layer, competition from other plants, 
nutrient availability, and microclimate (moisture and light/heat) 
at the specific site. Many of these factors are directly or 
indirectly influenced by stand structure. For instance, stand 
structure will affect below canopy light levels, which not only 
determine energy input but also influence temperature, the 
composition of the bottom- and field layer species, humus layer 
processes and so on. Thus, under varying forest structure, the 
quantity and vitality of the young growth will be expected to 
vary accordingly.  
 
Small footprint airborne laser scanning has shown to produce 
good data for reproducing forest structures. The laser depicts 
the canopy by transmissions of geo-referenced laser pulses, 
recording vegetation heights at the hit point of each pulse. 
Structural characteristics of the canopy have been modelled 
from discrete laser returns by several authors (e.g. Maltamo et 
al., 2004; Parker and Russ, 2004; Tickle et al., 2006). The 
results have been good because laser pulses can penetrate at 
least 40 % of maximum canopy height (Næsset, 2004a) and 
therefore account for much of the variation in canopy structure. 
However, the retrieval of small trees (say diameter less than 
five cm in breast height) under a dominating canopy by means 
of laser scanning is challenging. Still, even though there are 
several factors that influence establishment and growth that are 
not, or only partly, affected by the stand structure, it is likely 
that there exist some relationship between the laser-depicted 
canopy and the variation in young growth. We believe that 
utilization of laser data describing canopy structure to detect 
young growth could be a valuable contribution for improving 

existing recruitment models or constructing new ones based 
solely on laser variables.   
 
The objective of the present study was to analyze the 
relationship between measures of forest structure as derived 
from airborne laser scanner data and variation in the quantity of 
young trees in the height range of 0.1 to 3 m in a size-diverse 
spruce-dominated forest. The focus was on exploration and 
identification of laser-derived variables that have a potential for 
development of future prediction models that might be used in 
operational forest management.  
 
 

2. MATERIALS AND METHODS 

Field inventory 

The data were collected on 72 circular field plots of 25 m2 each. 
The plots were located in 18 clusters comprising four plots in a 
boreal forest reserve outside Oslo (59º 50´N, 11º 02´E, 190–370 
m a.s.l). Stand characteristics appear in Table 1. The forest area 
is further described by Bollandsås and Næsset (2007). From the 
centre of each cluster, one plot of 25 m2 was located 12 meters 
from this centre in each cardinal direction. The position of each 
cluster centre was determined by differential GPS+GLONASS 
measurements. Each plot was split into four by two 
perpendicular lines through the plot centre in a north/south and 
east/west direction. In each of these resulting 6.25 m2 
quadrants, the number of seedlings between 0.1 and 3 m were 
recorded. A regeneration success rate (RSR) was computed 
from these records by first counting seedlings in each quadrant 
(ni). However, we stopped counting if the number reached a 
limit considered sufficient on an area of 6.25 m2 (nsuf). This 
limit was set to three seedlings. Then we summed ni for the four 
quadrants and RSR was computed as this sum relative to a 
number of seedlings considered sufficient for the entire plot 
(4nsuf). The reasons for using RSR instead of the actual number 
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are that above a certain number, the establishment is most likely 
dependent on growth factor variations on a very small spatial 
scale, for instance the occurrence of partly decomposed downed 
logs or bare mineral soil, but also that RSR will be more 

representative of the number of seedlings needed for the 
regeneration to be successful.  
 

 
 
Characteristica

 
n 

 
Mean 

 
STD 

 
Range 

Minimum diameter (cm) 18 3.2 0.3 3.0 - 4.0 
Maximum diameter (cm) 18 47.0 7.3 33.3 - 60.6 
Diameter range (cm) 18 43.8 7.3 30.3 - 57.1 
Mean diameter by basal area (cm) 18 21.11 3.8 14.60 - 30.32 
Lorey`s mean height (m) 18 21.65 3.7 15.20 - 28.90 
Dominant height (m) 18 26.27 3.3 19.80 - 32.00 
Number of stems (ha-1) 18 1033 308 630 - 1780 
Stand basal area (m2ha-1) 18 34.2 5.7 21.6 - 45.5 
Volume (m3ha-1) 18 360.7 110.4 171.9 - 634.8 
Species distribution (%) 
Spruce 18 90  71 - 100 
Pine 18 0  0 - 2 
Deciduous 18 10  0 - 28 

 
Table 1. Forest data by clusters. 

 
 
2.2 

2.3 

Laser scanner data 

A Hughes 500 helicopter carried the ALTM 1233 laser 
scanning system produced by Optech, Canada. The average 
footprint diameter was approximately 18 cm. The mean number 
of pulses transmitted was 5.0 m-2. First and last returns echoes 
were recorded. 
 
First and last pulse height distributions were created for a circle 
(r=8.46 m) around each sample plot centre from the laser 
echoes considered to be reflected from the tree canopy, i.e., 
echoes with height values of >3 m. The radius of 8.46 is the 
maximum radius that could be used without having overlap 
between laser data from adjacent plots. The tree canopy 
threshold value of 3 m was set to correspond to the maximum 
height of trees belonging to the understorey. From these 
distributions a total of 27 variables were derived. Three 
percentiles of 10%, 50%, and 90% of maximum height 
characterized both first and last return laser heights. We 
labelled these as the height variables. Accordingly, measures of 
canopy density were derived by dividing the range between the 
lowest laser canopy height (>3 m) and the maximum canopy 
height into four uniform fractions. Cumulative canopy densities, 
henceforth called density variables, were then computed as the 
proportions of first and last pulse laser hits between the lower 
limit of each fraction and maximum laser height to total number 
of pulses. Moreover, maximum and mean height values, 
standard deviations and coefficients of variation were derived. 
Further details are provided by Næsset (2004b).  
 

Data analysis 

Because the data originate from clustered plots, there exists 
spatial dependency between plots within clusters. Thus, data 
analysis was carried out by means of the PROC MIXED 
procedure of the SAS statistical software package (Anon., 
1999), estimating random coefficient models. Each variable 
extracted from the laser data were regressed against RSR. 
Subsequently, each of the models was ranked by their Akaike 
information criterion (AIC) (Akaike, 1974) score. This yielded 
a rank of each laser variable according to the goodness of fit of 
each model.  

 
 
 
Then, each laser variable was attributed to groups of first- or 
last return; and height- or density variable. The first- and last 
return groups constitute what we labelled the return category. 
Similarly, the height- and density groups constitute the type 
category.   
 
 

3. RESULTS 

Table 2 displays the results from the ranking of the laser 
variables according to the AIC values. The table shows the 
modus group (most frequent group of variables within the 
category) with the corresponding frequency for both variable 
categories. The best explanatory variables for RSR according to 
these rankings are attributed to last return echo and density 
metrics. Of the five highest AIC-ranked variables 80% were 
related to last return echo and 100% to density metrics.  
 

 Return a  Typeb

 
# of ranked 
variables 

Modus 
group 

Freq. 
(%) 

 Modus 
group 

Freq. 
(%) 

5 Last 80  Density 100 
10 Last 70  Density 100 
15 Last 60  Density 100 

 
Table 2. The most frequent group of variables (modus group) of 
the best AIC-ranked 5, 10, and 15 variables assigned to return 

and type categories. 
 

a First or last laser echo. 
b Type of laser variable (height or density variable). 
 
 
 

4. DISCUSSION 

Establishment – measured as regeneration success rate –was 
found to be best explained by density metrics and variables 
originated from last return data. While the first return data 
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describes the surface of the canopy, the last returns penetrate 
deeper into the canopy and thus account for more vertical 
canopy variation. Last return data are therefore better 
accounting for light conditions on the ground. This may also be 
the reason why density metrics are better than height metrics. 
Since they are greatly affected by the density and structure of 
the canopy, they also account for light conditions on the ground 
better than the height variables. 
 
For germination and early establishment of spruce seedlings, 
soil temperature and humidity are the most important factors 
(Mork, 1938; Bjor, 1971). Light levels affect both temperature 
and the distribution of bottom and field layer vegetation, which 
can be important for water availability. Even though the nearest 
neighbour trees may have a large influence on light conditions, 
light levels below the canopy will be affected by trees on a 
large scale in this mature forest. In fact, the radius of 8.46 m 
that we used in this study was not very large, as light levels 
below the canopy are affected by trees or gaps up to at least 
twice the dominant stand height at northern latitudes 
(Flemming, 1962; Golser and Hasenauer, 1997). Our radius was 
set to avoid overlap between adjacent plots, but in further 
studies different and greater radii should be investigated. 
 
Establishment may be influenced by many stochastic factors, of 
which weather conditions are the most important, having a 
strong influence on seed production, germination, and seedling 
mortality. Also non-stochastic factors like soil conditions, 
ground vegetation or micro-topography may influence 
establishment, regardless of stand structure. Our study was 
conducted in a multi-storied, natural spruce forest. In a 
managed spruce forest, the relationship between structure and 
regeneration may not be completely the same. One obvious 
difference may be the type and frequency of treefall gaps, 
which enhances regeneration by soil disturbance and woody 
debris and are important regeneration niches in a natural spruce 
forest (Kuuluvainen, 1994). Those elements are created mostly 
by the downfall of (over-) mature trees and related to stand 
structure. In the managed forest trees are removed at an 
economic maturity age, and the presence of treefall gaps and 
downed logs are lower and not related to stand structure in a 
similar way as in natural forests. Thus, a separate study should 
be conducted for managed forests. 
 
 

5. CONCLUSION 

Our study was a screening which aimed at identifying laser 
variables that might explain regeneration success. A full 
correlation between laser data variables derived from the 
canopy and regeneration will never be found, as factors not 
affected by canopy structure also strongly influence 
regeneration success. However, the study has shown that 
already existing data derived from laser scanning, for instance 
during a regular forest inventory, may give us surplus 
information on regeneration. Our data show that there is a 
relationship between canopy structure and seedling number, 
possibly strong enough for prediction of regeneration success in 
future prediction models.  
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ABSTRACT: 
 
There is an increasing interest of the scientific community in the generation of 3D facade models from terrestrial laser scanner (TLS) 
data. The segmentation of building facades is one of the essential tasks to be carried out in a 3D modelling process. Since in reality, 
majority of facade components are planar, the detection and segmentation of geometric elements like planes respond to the previous 
task. The RANSAC paradigm is a robust estimator and probably the most widely used in the field of computer vision to compute 
model parameters from a dataset containing outliers. Indeed, RANSAC algorithm is usually successful for fitting geometric 
primitives to experimental data like for example, 3D point clouds resulting from image matching or from airborne laser scanning. 
The innovative idea of this study is the application of RANSAC algorithm to TLS data, characterized by a meaningful proportion of 
outliers. Therefore, this paper presents an approach allowing automatic segmentation and extraction of planar parts of facades 
scanned by TLS. Firstly, potential planes describing planar surfaces are detected and extracted using RANSAC algorithm. Then, a 
quality assessment based on manually extracted planes is carried out. The obtained results are evaluated and prove that the proposed 
method delivers qualitatively as well as quantitatively satisfactory planar facade segments. 

 
 

1. INTRODUCTION 
 

The reconstruction of geometric 3D models is one of the most 
important goals of 3D modelling in urban areas. In recent years, 
advances in resolution and accuracy have rendered airborne 
laser scanners (ALS) suitable for generating Digital Surface 
Models (DSM) and 3D models. These data alone do not provide 
complete 3D models since they do not cover building facades. 
In this context, generation of 3D city models with both high 
details at ground level, and complete coverage for bird’s-eye 
view became more and more a challenging task. On the one 
hand, facades are acquired at ground level using Terrestrial 
Laser Scanners (TLS). On the other hand, roof shapes and 
terrain information are deduced from a DSM produced by ALS 
data (Tarsha-Kurdi et al., 2006).  
 
However, if numerous approaches have been developed over 
the past 10 years for airborne laser data, the situation is not so 
bright for terrestrial laser data. This is due, among others, to the 
gap between the architectural 3D range scanning and an 
efficient use of the data by professionals (Spinelli et al., 2006).  
 
According to (Barber et al., 2001; Stephan et al., 2002), the way 
in which point cloud modelling is performed depends strongly 
on the aim of the study. Generally, two modelling approaches 
can be distinguished: approaches fitting geometric primitives 
and approaches based on meshing methods. The latter allows 
fitting unspecified objects having irregular shapes and that 
cannot be approximated by simple geometric primitives.  
 
The goal of this paper is to introduce an approach allowing 
automatic segmentation and extraction of planar parts from 
facades acquired by TLS. This approach is in line with fitting 
geometric primitives approaches. The step of segmentation 

which aims to decompose facades into planar surfaces is carried 
out using RANSAC paradigm.   
 
After introducing the RANSAC algorithm, the methodology 
used to segment and extract multiple planes describing planar 
surfaces is presented. Furthermore, each operation is illustrated 
and applied on a point cloud describing a multi-planar facade. 
Finally, the results are presented and evaluated in a qualitative 
as well as in a quantitative way.  
 
 

2. RELATED WORKS 
 

A variety of techniques applied to the classification and 3D 
segmentation of point clouds originally result from traditional 
photogrammetric, computer vision and signal processing fields 
(Belton and Lichti, 2006). Some of these include 
transformations from one space into a parameter space, like for 
example the Hough transform and the Gaussian sphere 
(Vosselman et al., 2004). They try to gather common elements 
based on the surface parameters and surface normal information 
respectively. Techniques such as tensor voting (Tong et al., 
2004; Schuster, 2004) and region growing (Besl and Jain, 1988) 
have been applied to segmented data based on localised 
information. Morphological approaches such as medial axis and 
skeletonisation have also been used by introducing diffusion 
equations, radial basis function and grass-fire techniques (Gorte 
and Pfeifer, 2004; Ma et al., 2003).  
 
Related to facade segmentation collected by TLS, extended 
region growing algorithms are often used to extract planar 
surfaces (Pu and Vosselman, 2006; Stamos et al., 2006; Dold 
and Brenner, 2004; Lerma and Biosca, 2005). It starts by 
determining a seed surface (a group of nearby points that fit to a 
plane), and then the seed surface grows according to specific 
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criteria. On the one hand, the proximity criterion means that 
only points within a certain distance to a seed surface can be 
added to this seed surface. On the other hand, the globally 
planar criterion means that a plane equation is determined after 
fitting a plane passing through all points located in this seed 
surface. Points can only be added if the perpendicular distance 
to the plane is below some threshold. Although it provides 
interesting results, the limitations of this algorithm come from 
the big number of thresholds needed. Also computing time is 
considerable when the algorithm is applied on 3D point clouds.   
 
Another method is increasingly used to extract planar surfaces 
especially by fitting geometric primitives. It is the RANSAC 
(RANdom SAmple Consensus) paradigm, which is applied to a 
wide range of problems dealing with model parameters 
estimation. Indeed, (Bauer et al., 2005) use RANSAC method 
to detect and extract the main facade planes. Promising results 
are obtained for creating plane based models for buildings, even 
using dense 3D point clouds. However, the 3D point cloud was 
not acquired by TLS, but through image matching. According to 
(Durupt and Taillandier, 2006), RANSAC estimation algorithm 
can also be used to extract planar primitives directly from 
cadastral limits and from a DEM (Digital Elevation Model). 
Through their study, it is shown that an evaluation carried out 
on 620 buildings in a dense urban centre provides encouraging 
results. Nevertheless, the algorithm has only been tested on 
ALS data. 
 
Often, when one wants to compute model parameters from a 
dataset containing a significant proportion of outliers, many 
computer vision algorithms - especially algorithms including 
robust estimation steps - are adopted. The RANSAC algorithm 
is probably the most widely used robust estimator in this field 
(Matas et al., 2002). Nevertheless it has rarely been applied on 
TLS data for fitting models, although affected by noise and 
artefact errors. Hence, it is interesting to study the performance 
of this algorithm in estimating model parameters in a purpose of 
segmenting TLS data.  
 
 

3. RANSAC PARADIGM 
 

The RANSAC paradigm is an algorithm for robust fitting which 
has been introduced by (Fischler and Bolles, 1981). It is one of 
the probabilistic voting methods known to reduce the 
computing time. Indeed, it was developed in order to reduce the 
number of necessary trials of traditional voting techniques, like 
Hough Transform for example. In spite of the simple structure 
of RANSAC algorithm, it is known to be efficient.  
 
Firstly, subsets are randomly selected from the input data and 
model parameters are computed so that they fit the sample. The 
size of the sample depends on the mathematical model (line, 
plane, cylinder, sphere…) one wants to find. Typically, the size 
of the sample is the “smallest” number of points sufficient to 
determine the model parameters. For example, to find a plane in 
the dataset, one has to select a set of three points, since three 
points are required to determine the parameters of a plane 
(normal vector and distance of plane to origin).  
 
In a next step, the quality of the model will be evaluated. 
Typically, an error tolerance determines a volume around the 
geometric primitive within which all compatible points must 
fall in. Then, a cost function computes the quality of the model, 
the standard one being the number of inliers, i.e. points which 
agree with the model within an error tolerance. But other quality 
criteria could be used such as a standard deviation of distances 

from points to model for example. Therefore, the plane 
containing more points is considered to be the best plane. The 
process terminates when the likelihood of finding a better model 
becomes low.  
The minimum number (m) of trials needed to reach a 
probability (p) to find at least one good set of observations -
assuming a certain percentage (w) of observations to be 
erroneous - is given by relation (1). 
 

                      
))1(1log(

)1log(
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−
=                            (1) 

 
where (S) is the minimum number of points necessary to 
calculate the parameters of the model (in the case of a planar 
model, S=3). Demonstration of the equation mentioned above 
can be found in (Fischler and Bolles, 1981). 
 
The next part explains the methodology used and refined in 
order to segment a 3D point cloud of a facade into multiple 
planes. 
 
 

4. SEGMENTATION METHODOLOGY 
 

The segmentation proposed in this work starts with the 
decomposition of a 3D point cloud into many planes. After data 
description, a facade segmentation algorithm based on 
RANSAC procedure is presented. Then the step of plane 
extraction is explained. It must be noted that in this context, a 
“segment” means a set of 3D points belonging to the same 
surface.  
   
4.1 Data description 
 
The point cloud used for testing the segmentation approach 
covers the facade of the Graduate School of Science and 
Technology (INSA) of Strasbourg. It is composed of many 
planar surfaces containing different elements (windows, planar 
wall, balconies) and characterized by different materials 
(concrete, pane, stone). A photograph of the facade is presented 
in Fig. 1. 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Photograph of the building under study  
 
The dataset used in this study is a point cloud acquired by a 
Trimble GX laser scanner. The technical specifications of this 
kind of TLS are depicted in Table 1. Generally, a cloud is 
composed of 3 dimensional points defined by their Cartesian 
coordinates. The point cloud used as sample contains 47710 
points acquired with a horizontal and vertical resolution of 150 
mm at 50 m. Other properties assigned to the points provided by 
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the laser scanner such as colour properties are voluntarily not 
used in this study.  
 
 

Technical specifications 
Distance accuracy 7 mm at 100 m 
Position accuracy 12 mm at 100 m 
Angular accuracy 

 
60 µrad (Horizontal) 

70 µrad (Vertical) 
Grid Resolution 

over 360° 
3 mm at 100 m with no restriction 

on number of points in a scan 
Spot size 3 mm at 50 m 

Speed up to 5000 points per second 
 
Table 1. Technical specifications of Trimble GX laser scanner. 

 
The points captured through glass and returned by parts located 
behind the facade have easily been manually removed using the 
RealWorks Survey software (Trimble). Fig. 2 shows the point 
cloud of the facade presented in Fig. 1, acquired by Trimble 
GX.  
 

 
Figure 2. Point cloud describing the facade sample under study. 

 
4.2 Facade segmentation using RANSAC algorithm 

 
The RANSAC algorithm is used here in order to detect and 
extract planes describing planar parts of the facade. Practically, 
a plane is a row of four values [a b c d]. The first three define 
the unit normal vector (a² + b² + c² = 1); the fourth is the 
distance of the plane to the origin. Thus, all points (x, y, z) 
fulfilling the Equation 2 belong to the same plane. 
 
                            a.x + b.y + c.z = d                                        (2) 
 
The basic RANSAC approach is limited by the assumption that 
a unique model accounts for all of the data inliers. The term 
inliers means points which agree with the model according to an 
error tolerance.  
However, one would like to extract all potential planes from the 
data. To do this, it is suggested to apply sequentially RANSAC 
algorithm and to remove the inliers from the original dataset 
every time one plane is detected. This constitutes the first 
adaptation of RANSAC algorithm in our context. The 
sequential process guaranties that each point belongs to one 
unique segment (plane) and that there is no intersection between 
two segments. Thus, a point contributes only to the fitting of the 
plane it belongs to.  
 
To determine the points belonging within some tolerance to the 
given plane, the Euclidian distance between a point P (x,y,z) 
and a plane PL(a,b,c,d) is calculated (see Equation 3).  
 

                       d  c.z b.y  a.x ),( =++=PLPd                        (3) 
 

In reality, data acquired by terrestrial laser scanning are not 
immediately compatible with mathematical models. In other 
words, no planar walls, no straight edges, no right angles are 
directly provided in the digital model. Therefore, to obtain 
planes representing walls, one tolerance value describing the 
authorized thickness of a plane is imposed. Thus, the researched 
plane is considered to be a parallelepiped, but this is necessary 
at first to get meaningful segments. 
 
In this process, different planes are detected one after the other. 
It is obvious that the number of planes detected depends 
strongly on the tolerance value chosen as input. The more this 
value is low, the more the number of detected planes is large. 
This is because each segment is a parallelepiped firstly, and 
tends to become a planar surface when tolerance value tends to 
zero. Therefore, the threshold value must be carefully chosen.  
 
After many experiments, it turns out that the tolerance value 
used to get significant planes has to be set between t = 20 mm 
and t = 40 mm. For instance, with threshold t = 5 mm, the 
segments obtained are too numerous and not significant (Fig. 3). 
The main characteristic of these planes is to contain an 
insufficient number of points. It becomes clear that this kind of 
result is unusable for a later modelling process. 
 

 
 

Figure 3. Detection of meaningless planes when data are 
segmented using t = 5mm. Each colour represents one plane. 

 
On the other hand, the threshold should not overcome some 
tolerance (in our case t <=40 mm). Over this value, two or more 
different planes are considered as one unique plane (Fig. 4).  
 

 
 

Figure 4. Detection of only two planes when data are segmented 
using t = 350 mm. 

 
Logically, the threshold value must be close to the thickness of 
the cloud. The thickness is usually generated by noise coming 
from the surface roughness, the object colours and the TLS 
resolution capacities. In the point cloud under study, it reaches 
about 2 to 4 cm.  Thus, with t = 40 mm, the expected planes are 
correctly detected and extracted (Fig. 5). However, it is 
necessary to underline that an optimal tolerance value can only 
be obtained in an empirical way depending heavily on the 
objects under investigation, on the data characteristics and the 
objective of the study.  
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Figure 5. Successful segmentation with t = 40 mm. 
 
The minimum number of trials needed to get the best plane is 
given by Equation (1). Considering a value of 0.2 for w, a 
probability of 99% should theoretically be reached after 1000 
trials.  
 
4.3 Planes extraction 
 
Once the main planes are determined by automatic 
segmentation, each plane is extracted and displayed separately. 
Fig. 6 shows four different planes containing points belonging 
to the same planar facade. The first segment is composed of 
points belonging to windows (Fig.-6a); the second one describes 
horizontal and vertical beams (Fig.-6b); the third is composed 
by balconies (Fig.-6c). The last one is a principal planar wall 
(Fig.-6d). 
 
 

 
 a) 
 

 
 b) 

 
 c) 
 

 
 d) 

Figure 6. Four planes displayed separately; a) windows; b) 
beams; c) balconies; d) principal wall. 

 
In the plane composed of windows, some windows are filled by 
points and others are empty. This is because either no return is 

measured (due to specular reflectance), or the available points 
refer to curtains. In principle, such holes in a point cloud can 
also result from shadows generated by objects located between 
the laser and the facade. However, this phenomenon is avoided 
by using several point clouds acquired from different points of 
view. 
 
It can be remarked, that the extracted planes are coherent and 
correspond to a specific planar part of the facade. Now the 
results must be evaluated in detail, regarding the geometric 
accuracy, as well as the semantic coherency.  
 

 
5. RESULTS EVALUATION 

 
In order to evaluate the accuracy of the plane detection obtained 
by the presented approach, a reference model is necessary. For 
this purpose, a manual segmentation has been performed on the 
same point cloud and provided the planar surfaces composing 
the facade under study. These planes are then compared to their 
homologous, extracted automatically in the previous part. Only 
the results of the evaluation performed on a successful 
extraction (plane of Fig.-6b) and a less successful extraction 
(Fig.-6d) are presented in this section.  
 
Fig. 7 presents with two colours, the same plane extracted 
automatically (in blue) and manually (in red). This 
superimposition enables to compare the results of the proposed 
approach to the reference data.  
 

 
Figure 7. Superimposition of two layers: plane extracted 

manually (red points) and his homologous detected 
automatically (blue points). 

 
A qualitative analysis of the superimpositions lead to the 
conclusion that both layers (automatically extracted plane 
against manually extracted plane) are similar. The planes 
extracted automatically are satisfactory, since their form and 
aspect are almost identical to those of the planes extracted 
manually. 
 
The quantitative analysis consists in comparing two 
homologous planes. For this purpose, operators like intersection 
(∩) and difference (/) are applied on the two layers to be 
compared. Considering that each plane is composed of a set of 
points defined by their Cartesian coordinates, let’s denote (A) as 
the set of points belonging to the automatically extracted plane 
and (M) the set of points belonging to the manually segmented 
plane.  
 
Table 2 shows the results of the comparison of the automatically 
and manually segmented planes corresponding to Fig.7. 
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Plane Number 
of points 

Description 

A 4658 Points extracted automatically 
M 4888 Points extracted manually  

A∩M 4406 Points common to both A and M 
planes. 

A/M 482 Points of (A), not present in (M). 
M/A 252 Points of (M), not present in (A). 

 
Table 2. Comparison between automatically (A) and manually 

(M) extracted planes. 
 
In proportion, 4406 among 4658 points of the automatically 
extracted plane (A) are correctly detected. In terms of 
percentage, they represent 94.6 % of points. Indeed, only 252 
points are lost by the proposed algorithm.  
On the other hand, 482 points are in excess of the expected 
points. This can be explained by the fact that a plane determined 
by RANSAC algorithm is defined by its mathematical equation 
(Equation 2). Thus, all points fulfilling this equation are 
considered belonging to the plane, regardless of the 
architectural constraints describing a plane. Fig.8 shows the 
geometrical constraints characterizing the plane extracted in 
Fig.7. 
 

 
 
Figure 8.  Part of the facade corresponding to the detected plane 

in Fig.7 (contours digitized in red) 
 
Actually, manually extracted planes correspond to well-defined 
walls. Moreover, the architectural or semantic constraints are 
quite present in the manual segmentation. On the other hand, an 
automatically detected plane is based only on the mathematical 
criterion of flatness. This explains the presence of points 
randomly dispersed outside the expected wall (Fig.9-b), which 
are absent in Fig.9-a. In consequence, the percentage of points 
common to both planes ((A) and (M)) does not overcome 87.8% 
(A∩M). 
 
This problem can be attenuated by adding constraints of 
topological and geometrical nature to the proposed algorithm. 
Indeed, from a topological point of view, a criterion of vicinity 
(characterized for example by a tolerated number of neighbours 
around each point within a given radius), enables to eliminate 
points lying outside the expected planar surface.  From a 
geometrical point of view, a criterion of surface enables to keep 
only the significant objects. This can be done for example by 
converting the set of points into an image and applying image 
processing tools, like region growing algorithms in order to 
remove the meaningless points (points of (A) that are absent in 
(M)).  

 
 
 

 
 

Figure 9. Representation of a planar wall, extracted in two 
ways; a) manual extraction; b) automatic extraction. 

 
 
Moreover, the plane parameters estimated by RANSAC 
algorithm are not very accurate, since they are established based 
on three initial points only. They will be recomputed and 
adjusted, for example by a least-square fitting, to all points 
assigned to the detected plane.  
 
Nevertheless, considering purely the segmentation and 
extraction approach proposed in this study, it can be concluded 
that the method is reliable. Indeed, 90% of the points composing 
the complete sample of the facade are correctly extracted. 
 
 

6. CONCLUSION AND FUTURE WORK 
 
The approach described in this paper aims to segment 
automatically and extract planar surfaces from a building facade 
captured by TLS. Firstly, the point cloud is segmented into 
several planes using sequential RANSAC algorithm. The results 
obtained are satisfactory, because they are produced based on 
the unique assertion that the best plane is the plane containing a 
maximum of points. Thus, considering that no additional 
constraint is needed, the global accuracy is better than expected. 
Therefore, the proposed methodology enables reliable facade 
segmentation with weak processing time, using TLS data. It 
constitutes a first and primordial step in the generation of 
complete 3D building models. 
 
Future work will focus on the enhancement of segmentation 
operation. In order to avoid problems discussed above and 
increase the global and relative accuracy of the results, 
additional geometrical and topological constraints will be 
considered. Moreover, further investigations regarding the 
empirical parameters of RANSAC algorithm will be carried on.  
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ABSTRACT:

There is a growing body of literature that points to the value of using the intensity measures of the backscattered laser light in addition to 
the pulse range measurements for studying a range of environments, including forests. However, there is a lack of literature that has 
validated the lidar intensity values captured in a campaign, and therefore limited understanding in the full utility of these data. This paper 
presents preliminary analyses of lidar intensity values captured over an area of woodland in the UK in comparison with concurrently 
acquired HyMap data, which measures the passive reflected radiation at the same wavelengths. The study concludes that lidar intensity 
values are broadly representative of the NIR radiation reflected from the forested landscape and therefore could be utilised. However, 
there is a real need for calibration of intensity data, particularly if flight lines are to be merged. Furthermore, if lidar intensity values are to 
be interpolated into a raster and used in a similar way to conventional image analysis, the selected interpolation technique significantly 
affects the resultant lidar values.

1. INTRODUCTION

1.1 Background
Airborne lidar systems are able to record the intensity of the 
backscattered laser light, with intensity measured either as the 
maximum of the returned pulse or signal integration over the 
returned pulse width. This is in addition to the pulse range 
measurements (Wehr and Lohr, 1999). Intensity data thus 
provide a record of the backscattered intensity of reflection for
each laser pulse, supplying information about the reflecting 
surface or object at sampled points across the landscape. This 
ability to capture backscattered reflectance from returning 
pulses has proved useful for the identification of broad land 
cover types (e.g., Brennan et al., 2006) and as ancillary data for 
post-processing (e.g., Liu et al., 2007). This intensity 
information within lidar echos is a function of the wavelength 
of the source energy (often within the near infrared spectral 
region (NIR: 0.7 – 1.5μm) for terrestrial applications), path 
length and the composition and orientation of the surface or 
object which the pulse has hit. For any data capture project, the 
system specific factors are known (but may be unavailable), 
whilst those that are site specific are typically unknown. 
However, tabulated values of reflectances of materials are 
available through endeavours of spectroscopy (e.g., Clark et al., 
2003 - http://pubs.usgs.gov/of/2003/ofr-03-395/ofr-03-395.html) and 
suggest that there is scope in using lidar intensity for 
applications common place in remote sensing. 

The potential in the exploitation of lidar intensity has recently 
being realised and been demonstrated in a number of 

application areas. These include the identification and mapping 
of the age of lava flows from active volcanoes (e.g., Mazzarini 
et al., 2007); glacial features (e.g., Arnold et al., 2006; 
Kaasalainen et al., 2006); features of archeological interest such 
as palaeochannels (e.g., Carey et al.., 2007); and vegetation 
types (e.g., Farid et al., 2006). Within forestry, lidar intensity 
has been used to estimate forest volume and biomass in a 
temperate forest of coniferous, deciduous, and mixed stands
(van Aardt et al., 2006); to filter lidar-height to estimate the 
basal area of northern hardwood forests (Lim et al., 2003). and 
as a predictor in tree species classification (Holmgren and 
Persson, 2004). Hudak et al. (2006) concluded that lidar 
intensity was more useful than the EO-1 Advanced Land 
Imager multispectral data acquired concurrently for predicting 
basal area and tree density of coniferous forests. All these 
studies illustrate that lidar intensity values are being utilized in 
ways beyond perhaps originally intended. The emergence of 
full-waveform laser scanners may well increase this trend. 

1.2 Factors determining lidar intensity
There are a number of factors that determine the lidar intensity 
values captured by a system and can be conveniently grouped 
into system variables and target variables, with the effect of 
exhibiting co-dependency. The system variables include target-
emitter distance, beam divergence (there is a loss of intensity 
with the diverging beam), the laser footprint size, angle of 
incidence, atmospheric attenuation and signal processing. 
Target variables include target reflectivity, surface roughness 
and bidirectional properties and the size of the target (Wagner 
et al., 2006). Within forests this is mainly a function of leaf 
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area, leaf inclination, species type, and tree density. Another 
factor to consider, if the data are converted from a point cloud 
into an interpolated 2-dimensional surface, is the post-
processing procedure. Interpolation technique and selected 
output cell size will influence the nature of the resulting 
surfaces. All of these factors need to be considered and 
understood if lidar intensity values are to be used optimally. 

Limitations in the effective use of lidar intensity values are the 
lack of calibration techniques (Kaasalainen et al., 2005) and the 
lack of validation of the lidar intensity values obtained over a 
particular environment. Much progress has been made to 
calibrate intensity both under laboratory and field conditions 
(e.g., Coren and Sterzai, 2006; Ahokos et al., 2006). Validation 
of lidar intensity by means of comparison with a similar 
product derived by more “conventional” means should lead to a 
better understanding of the parameters within which lidar 
intensity values can be employed. The challenge for validating 
lidar intensity data is the lack of reference data at appropriate 
spatial, spectral and temporal resolution to compare with lidar 
intensity values. In this study, HyMap data have been acquired 
concurrently with small-footprint lidar data over a woodland 
area in the UK, thus enabling an exploration of the lidar 
intensity across a landscape.

2. STUDY AREA

The study area focuses on two woodland sites, Monks Wood 
and Bevill’s Wood, and their immediate agricultural vicinity, in 
Cambridgeshire, UK (52° 24’ N, 0° 14’ W). Monks Wood, 
covers 157 hectares and is a National Nature Reserve 
comprising broadleaf forest. Monks Wood is divided up into 30 
compartments for management purposes. It is a complex 
woodland environment and extremely heterogeneous in terms 
of the woody species comprising the canopy and understorey, 
their relative proportions in any area, canopy closure and 
density, tree height and stem density (Hill and Thomson, 2005). 
The dominant tree species are ash Fraxinus excelsior L., oak 
Quercus robur L., field maple Acer campestre L., elm Ulmus 
carpinifolia Gleditsch. and aspen Populus tremula L., while the 
dominant shrub species are hawthorn Crataegus monogyna 
Jacq., hazel Corylus avellana L., blackthorn Prunus spinosa L., 
dogwood Cornus sanguinea L., and wild privet Ligustrum 
vulgare L. The majority of overstorey trees are 70–80 years old. 
The soils are gleyed brown calcareous and surface water gley 
resting on impervious clay. To the south of Monks Wood, 
separated by a minor road, is Bevill’s Wood, a 36-hectare site 
that was almost entirely clear-felled and replanted in the 1950s–
1960s. Bevill’s Wood has stands dominated by beech Fagus 
sylvatica L., Scots pine Pinus sylvestris L. and Norway spruce 
Picea abies L.. These patches of woodland have a relatively 
homogeneous structure and tend to lack an understorey. There 
are, however, stands of pine and spruce that have areas of ash 
and scattered beech intermingled. The edges of stands inside 
Bevill’s Wood are ringed with ash or willow trees. Both Monks 
Wood and Bevill’s Wood have an outer fringe comprising ash, 
oak, field maple, hazel, hawthorn and blackthorn, and 
throughout both woods are open areas of herbaceous vegetation 
with scattered shrubs. 

The woods are divided up into compartments. Within the 
compartments are stands and in July 2000, five contrasting 
stands in Monks Wood were surveyed. These covered the 
species composition and structure present within Monks Wood, 
providing a representative sample of the composition of the 
broadleaved woodland area. For further information on the 
stands refer to Table 1 in Patenaude et al., 2003 and Hill 2007.

3. REMOTELY SENSED DATA

3.1 Airborne Lidar data
An Airborne Laser Terrain Mapper (Optech ALTM 1210—see 
http://www.optech.on.ca) was flown over the study site in a 
east-west direction in June 2000. Laser pulses were emitted by 
the ALTM with a NIR wavelength of 1.047 μm. By scanning in 
sweeps perpendicular to the flight-line, the forward motion of 
the aircraft generated a saw-toothed pattern of point sample 
elevation and intensity recordings. A small scan angle range of 
±10° was selected to minimize the influence of varying 
incidence angle on the penetration into the canopy of each laser 
pulse (Leckie, 1990) and thus the effect of incidence angle on 
intensity (Ahokas et al., 2006). The parallel flight lines had 
overlapping swaths of data acquisition, resulting in an irregular 
distribution of points. On average, one point was recorded 
every 4.83m2 across the study site. Both first and last return 
range and intensity data were recorded for each laser pulse, 
which generated a circular footprint on the ground surface with 
a diameter of approximately 0.25m at nadir. Based on the 
instrument specifications supplied by the manufacturer and the 
flying altitude, the lidar data had a horizontal and vertical 
accuracy of approximately 0.6m and 0.15m respectively. The 
Lidar data acquired by the ALTM were supplied by the 
Environment Agency of England and Wales as an ASCII file of 
x-, y- and z- British National Grid co-ordinates for the first and 
last significant return of each laser pulse and the associated 
intensity values. The intensity values themselves are unitless as 
no method was applied to calibrate them. The individual flight
lines of point sample data were supplied merged together into a 
single point cloud.

3.2 Hymap image data
The HyMap sensor records reflected radiation in 126 
wavebands, for pixels with a 4-m spatial resolution (see 
http://www.hyvista.com). The Hymap provides a signal to noise 
ratio (>500:1) and image quality that is setting the industry 
standard and thus provides a reliable validation dataset for use 
in this study. Moreover, the sensor operates close to backscatter 
providing similarity to the laser scanner which operates 
practically at exact backscattering (Kaasalainen et al., 2005). 
This sensor was flown over the study site at a time coincident 
with the lidar and the acquired data were supplied as a 126-
waveband raster image with DN values converted to radiance.
The HyMap data were geo-registered to British National Grid 
co-ordinates with a 4-m spatial resolution using the aircraft 
telemetry from the time of data acquisition and a plug-in 
routine for ENVI software supplied by the HyVista 
Corporation. A subsequent comparison with the lidar data 
showed geometric accuracy to be within 1 pixel (i.e. 4-m) in the 
x- and y- directions. Here the reflected radiation in waveband 
42 (band centre 1.0475 μm, width 0.0188 μm) were used as the 
validation data for the lidar intensity values. 
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4. DATA PROCESSING AND ANALYSIS

4.1 Data processing
Since comparisons were being made with the HyMap Band 42 
data, only the first return intensity values were processed; over 
a wooded landscape it is most likely that the first returning 
pulse is from the top part of the canopy (leaves or branches), 
similar to that of the passive NIR radiation reflected from a 
canopy recorded by the HyMap sensor (Gaveau and Hill, 2003).
The point-sample intensity data were interpolated into three sets 
of raster images, at 4-m and 1-m spatial resolution using three 
interpolation routines; Delaunay Triangulation (DT), Inverse 
Distance Weighting (IDW) and Ordinary Kriging (OK) for 
direct comparison with the HyMap data. Previous studies have 
used the lidar range data for Monks Wood to produce a digital 
terrain model (DTM) for the site which was then used to extract 
canopy height from the first-return lidar data as a grid-based 
digital canopy height model (DCHM). Both the DTM and 
DCHM have a 1-m spatial resolution (Patenaude et al., 2004). 
These were also available for use in the analyses.

4.2. Preliminary assessment of intensity rasters
A qualitative visual assessment of all the intensity images was 
undertaken. A grainy texture is evident in the intensity raster 
and this speckle is similar to that seen in radar images and a 
function of echo fading. Despite this, similar landscape features 
were visible in both the HyMap (Figure 1a) and lidar intensity 
data (Figure 1b), and this was most evident in the krigged 
intensity data. Particularly evident are the different crop types 
and management, the rides between compartments, clearings in 
the woodland, as well as areas of shrub. Also strongly evident 
in the interpolated lidar intensity data are the differences 
between individual flight lines. This demonstrates that lidar 
intensity data could be useful for visualisation purposes and 
developing an understanding of the area of interest, but that for 
more detailed analyses some form of calibration within each 
flight line is required prior to interpolation to a raster. 

Figure 1a. HyMap sensor image of the study site (displayed in 
band 42).

Figure 1b. First return lidar intensity image derived through 
ordinary kriging of the study site.

Landscape features such as deciduous and coniferous forest 
stands, shrubs, grassland and crops were examined for their 
intensity characteristics and compared with corresponding 
Hymap reflectances. Generally, intensity values are as expected 
(e.g., bare soil has low intensity and shrub a high intensity). 
These plots illustrate large variance in lidar intensity from each 
landscape feature in relation to the HyMap values. 
Additionally, lidar intensity from coniferous forests are high, 
such that there is no radiometric separability between this 
feature and deciduous forest and shrubs (Figure 2). This was 
was not the case for Hymap reflectances illustrating that the 
mature forests have a complex returning echo causing a similar 
backscatter despite structural and physiological differences 
between them. These results illustrate the complexity of factors 
that influence the lidar intensity data, further work is required to 
fully understand the data prior to its optimal use. 

4.3 Stand analysis of intensity values
Per pixel analysis was conducted that compared the intensity 
and HyMap data at 4-m spatial resolution for all three 
interpolation methods for the five sampled stands in Monks 
Wood. The focus on these five stands should provide a range of 
NIR values from both the HyMap and lidar sensors for a forest 
of this type. Table 1 documents the regression equations 
computed for each stand and for each interpolation method, 
while Figure 3 illustrates the plots obtained for stand 5, as an 
illustrative example. Both the table and plots of Figure 3 show 
that correlation coefficients are small (although in the case of 
stand 4 significant at p<0.01) and that a large degree of scatter 
exists in the relationships between HyMap and lidar intensity 
data. This scatter may be a function of pixel mis-alignment 
where the geometric correction of the HyMap data was not 
absolute and the lack of calibration applied to the intensity data. 
Moreover, the intensity values for stands 1 to 3 were from areas 
where flightlines over lap and thus interpolated values were 
calculated from a double set of intensity data. 
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Figure 2. Characteristics (mean and ±1 standard deviation) of 

lidar intensity and HyMap reflectances for landscape features 
(1) stand 4 (Ash dominated); (2) stand 5 (Elm dominated); (3) 
coniferous forest; (4) coniferous forest; (5) beech; (6) shrub; (7) 
bare soil; (8) crop and (9) grass. 

Stand 1 (N = 1747)
DT y = 0.0013x + 15.736; r2 = 0.01
IDW y = 0.001x + 16.169; r2 = 0.01
OK y = 0.0013x + 15.064; r2 = 0.03

Stand 2 (N = 2088)
DT y = 0.0001x + 17.845; r2 = 0.0001
IDW y = 0.0004x + 16.963; r2 = 0.002
OK y = 0.0007x + 15.54; r2 = 0.012

Stand 3 (N = 2010 )
DT y = 0.0005x + 16.424; r2 = 0.003
IDW y = 0.003x + 17.729; r2 = 0.002
OK y = 0.0004x + 17.245; r2 = 0.005

Stand 4 (N = 3131 )
DT y = 0.0018x + 13.259; r2 = 0.01
IDW y = 0.0017x + 13.808; r2 = 0.014
OK y = 0.0017x + 14.003; r2 = 0.032

Stand 5 (N = 430)
DT y = 0.0024x + 9.7862; r2 = 0.09
IDW y = 0.002x + 11.483; r2 = 0.08
OK y = 0.0021x + 10.832; r2 = 0.19

Table 1. Regression equations computed between HyMap data 
and lidar intensity data derived using each interpolation method 
for each of the five stands. 

5

10

15

20

25

30

35

2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000

HyMap NIR reflected radiation

Li
da

r i
nt

en
si

ty
 

Figure 3a. Plot of Hymap NIR data against lidar intensity data 
derived using DT for stand 5
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Figure 3b. Plot of Hymap NIR data against lidar intensity data 
derived using IDW for stand 5.
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Figure 3c. Plot of Hymap NIR data against lidar intensity data 
derived using OK for stand 5.

Further examination of the per pixel stand data focused on the 
differences in the plots between HyMap and lidar intensity data 
apparent as a function of interpolation method. Figure 4
illustrates the histograms of intensity values derived using each 
interpolation method for stand 5 and the three plots between the 
three pairs of interpolation methods. It is evident that there are 
differences in the lidar intensity values, with Fisher’s Z test 
calculations showing that each relationship is significantly 
different from the other (p<0.01). This demonstrates the 
significance of the selected interpolation technique if lidar 
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intensity values are to be interpolated into a raster and used in a 
similar way to conventional image analysis. The full 
implications of this require further investigation and will be a 
function of point support characteristics. Similar findings can 
be found in the literature pertaining to the derivation of DSMs 
from lidar range values (e.g., Lloyd and Atkinson, 2002).

1 0.0 0 20.00 3 0.0 0

DT

10

20

30

40

C
ou

nt

10.00 20.00 30.00

IDW

10

20

30

40

C
ou

nt

15.0 0 2 0.0 0 2 5.00

OK

0

10

20

30

C
ou

nt

y = 0.8768x + 2.9609
R2 = 0.2877

y = 1.0444x - 0.8284
R2 = 0.4945

y = 0.4238x + 12.34                                                           
R2 = 0.1415

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35 40

Lidar intensity

L
id

a
r 

in
te

n
si

ty

Figure 4. Illustrating the differences in lidar intensity values 
derived from three interpolation methods (stand 5 data): 
Histograms and plots of lidar intensity from OK against lidar 
intensity from IDW (●); lidar intensity from OK against lidar 
intensity from DT (■) and lidar intensity from IDW against 
lidar intensity from DT (▲).

4.4. Per parcel analysis of intensity values
To overcome the uncertainty in the per pixel analysis, further 
analysis focused on using parcels of pixels sampled from 
compartments within Monks Wood and Bevill’s Wood.. Here 
plots were drawn for the OK derived lidar intensity values
against HyMap data for 28 broadleaved parcels and 11
coniferous parcels (Figure 5a and b respectively). 
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Figure 5a. Plot of HyMap NIR against lidar intensity values for 
broadleaved forest.

An initial examination of the plots in Figure 5, revealed  
insignificant relationships between HyMap data and lidar 

intensity values. However, on further examination of Figure 5 
there is evidence of an effect of different flight lines. Within a 
flight line plots exhibit strong relationships between HyMap 
data and lidar intensity values. This is illustrated using the 
broadleaved compartment data. Within a flight line strong 
(significant at 0.01 level; two tailed) relationships exist between 
HyMap data and lidar intensity values (Figure 6). This suggests 
a real need for calibration of intensity values of different flight 
lines of an area of interest, if they are to be used to produce one 
raster for subsequent analysis. In particular there is a need to 
correct for observation angle (Ahokas, 2006).
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Figure 5b. Plot of HyMap NIR against lidar intensity values for 
coniferous forest.
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Figure 6. Plot of HyMap data against lidar intensity values for 
28 compartments of broadleaved forest for each flight line.

5. DISCUSSION AND CONCLUSION

This paper reports on analyses into the validity and utility of 
lidar intensity values for a woodland environment. A number of 
factors influencing lidar intensity values have been explored, 
including interpolation methods to derive a two dimensional
surface and the effect of merging flight lines on the resulting 
lidar intensity values to be used as an image in direct 
comparison with a “conventional” remotely sensed image 
(HyMap data). The results show that lidar intensity values 
correspond strongly with the HyMap data, however, there is a 
real need for calibration of the intensity values on an individual 
flight line basis so they can be used readily. The limiting factor 
here are a lack of calibration techniques that can be applied to a 
lidar dataset of this nature, in particular one that has been 
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provided with flight lines merged. Furthermore, the lessons 
learned in using the lidar range values via interpolation to a grid 
should be heeded when using the intensity values. There is 
potential in using lidar intensity values, but there is still much 
to do to explain some of the lidar intensity values obtained. One 
specific query relates to the intensity from coniferous forest. 
Once a full understanding of the lidar intensity values obtained 
is achieved, it may be that future lidar campaigns need to 
consider the specification for mapping classes of interest via 
intensity in addition to the specification for terrain mapping 
(Reutebuch et al., 2005). 

Two main conclusions can be drawn from this study: (i) lidar 
intensity values are broadly representative of the NIR radiation 
reflected from the landscape, though there are some features, 
such as coniferous forest, that require further analysis to 
understand their backscatter (ii) there is a real need for 
calibration of intensity data, particularly if flight lines are to be 
merged and interpolated.
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ABSTRACT:

Similar datasets (inventory plots, stand maps and lidar data) were available for study sites in the USA and Germany. These datasets
are grouped or hierarchical in that several sample plots are located within a stand and the stands are located within two study sites.
Fixed-effects models and mixed-effects models with a random intercept on the stand level were fit to each dataset. Mean lidar raw
data return height and its interaction term with canopy cover as well as its interaction term with the coniferous proportion were found
to be the most influential predictor variables. The mixed-effects models significantly improved the estimates and especially reduced
the bias which was present for numerous stands in the estimates of the fixed-effects models. This resulted in a slight increase of the
variance within the stands. The RMSE for the German study site was higher (34.7% and 29.7% for fixed- and the mixed-effects model
respectively) than on the US study site (19.2% and 16.8% for fixed- and the mixed-effects model respectively). A mixed-effects model
with random effects on the study site and stand level was fit to the combined dataset. It showed almost the same errors as the local
mixed-effects models (17.6% and 29.8% for the US and the German study site respectively). Hence a single model is sufficient to
make estimates for both datasets. The study shows the potential of mixed-effects models in this context. It illustrates that the common
practise of fitting different models for different strata may be unnecessary.

1 INTRODUCTION

Height and density metrics, derived from lidar (light detection
and ranging) point clouds can be used as predictor variables in
statistical models to estimate forest parameters at the stand or plot
level (Næsset, 2004; Andersen et al., 2005, among others). Such
models are usually fit using sample plots where both lidar (co-
variates) and ground-truth information (response) are available.
To map the variable of interest, the entire lidar dataset is gridded
into tiles having the same size as a sample plot. Then the predic-
tor variables are computed and the regression models are applied
to every tile. Compared to plot-based inventories, estimation er-
rors can be significantly decreased for the area of interest (e.g.
a single forest stand), since the number of observations (i.e. the
tiles) is usually much higher than the number of sample plots
within a stand.

The predictor variables derived from lidar data are mainly related
to the vegetation height and structure (e.g., height- and density
metrics, crown cover). The vegetation cover can, under certain
circumstances, also be classified into broadleaf and coniferous
trees. However, information about the site quality or tree species
cannot be derived without additional data. Therefore, predictions
for stands with rare site index classes or tree species compositions
might deviate from the mean model, resulting in a bias.

If the grouping structure (i.e., the stand boundaries) is known, the
deviation from the mean model of plot estimates within a stand
can be utilized to reduce the bias using mixed-effects models
(mixed models). From the statistical point of view, the group-
ing structure has to be considered since the observations are not
independent. In a mixed model, the effects of the variable that
indicates the level of grouping (i.e. the stand-ID) are assumed
to be a random sample of a larger population that vary randomly

around a population mean. This is referred to as random effects.
Mixed models with forestry application were discussed by Lappi
and Bailey (1988). An in-depth description of mixed models is
given for example by Pinheiro and Bates (2002).

In a mixed model, the variance is split into within and between
group variance. The coefficients and standard errors for predic-
tor variables that vary less within than between the groups are
therefore more accurate. Another advantage of a mixed model,
compared to a fixed-effects model with the grouping level as a
dummy variable, is that predictions can also be made for individ-
uals with grouping levels that did not exist in the dataset used to
fit the model (e.g., in our case those stands without sample plots).
In a forest inventory context, a mixed model provides an addi-
tional advantage. A model can be fit to a large dataset (e.g., to
a well inventoried public forest) and subsequently be calibrated
with just a few sample plots for a new forest area (e.g., a small
private forest). (A new model would need to be fit, if a fixed-
effects model were used.)

Publications regarding the estimation of volume and biomass on
the plot level include these of Næsset (2002) who created separate
models for different ages and site qualities and achieved R2 be-
tween 0.80 and 0.93 in a boreal forest and Means et al. (2000) for
Douglas fir stands in the Cascade Mountains (Oregon, USA) who
reported R2 between 0.93 and 0.95. In a study by Packalén and
Maltamo (2006) in a Finnish boreal forest, plot volume was as-
signed to tree species by using the k-MSN method. They report
a RMSE of roughly 24% for estimates of total volume. Aardt
et al. (2006) segmented homogeneous forest units first and used
the lidar vegetation height distribution and the field data for the
units to calibrate prediction models. They report R2 between 0.58
and 0.79 for their study which was located in Virginia (temperate
mixed forests).
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The objective of this research was to develop a single statistical
model for estimates on study sites located in the USA and Ger-
many. Furthermore, we wanted to find out if information about
the stand-level grouping of sample plots can be used to further
improve the regression models. The datasets contain several lev-
els of grouping or random effects: (i) The study sites are two ran-
dom samples of all potentially existing study sites, (ii) the stands
are grouped within the study site and are a random sample of the
stands within each study site. Due to this structure, the resulting
model is referred to as a multi-level or hierarchical model.

2 MATERIAL AND METHODS

2.1 American Dataset

The study site in the USA is part of Capitol State Forest and
is managed by the Washington State Department of Natural Re-
sources. The terrain is moderate with elevations varying from 300
to 425 meters and ground slopes up to 30◦. The forest is com-
posed primarily of Douglas-fir (Pseudotsuga menziesii (Mirb.)
Franco; 81%) and western hemlock (Tsuga heterophylla (Raf.)
Sarg.; 13%). Additional species present include western red
cedar (Thuja plicata Donn ex D. Don; 2%) and few deciduous
hardwoods such as red alder (Alnus rubra Bong.; 3%) and maple
(Acer spp.; <1%). The height of dominant trees in the study area
was approximately 50 meters (table 1). As part of a forest man-
agement study (Curtis et al., 2004), the canopy of the 70-year-old
forest stand was partially harvested in 1998, resulting in four dif-
ferent residual canopy density classes.

A total of 98 fixed area field inventory plots were established
over a range of stand conditions in 1999. Plot sizes ranged from
0.02 to 0.2 ha. Measurements acquired at each plot included
species and diameter at breast height (DBH) for all trees greater
than 14.2 cm in diameter. In addition, total height was mea-
sured on a representative selection of trees using a hand-held laser
rangefinder. A detailed description of the plot measurement pro-
tocol can be found in Curtis et al. (2004). Inventory plot locations
were surveyed with a Topcon ITS-1 total station and are accurate
to within 1 m.

The Saab TopEye lidar system mounted on a helicopter was used
to map approximately 5.25 km2 of the study area in the spring of
1999 (before foliation). Table 2 summarizes the flight parameters
and instrument settings for the data acquisition. Data for each
return included the pulse number, return number for the pulse (up
to four returns were recorded per pulse), X, Y, elevation, off-nadir
angle and intensity.

2.2 German Dataset

The 49 km2 study area is located approximately 60 km north of
Freiburg. Elevations range between 400 and 1050 m above sea
level. The average gradient across the site is approximately 12◦

with some slopes of up to 35◦. The average forest stand is approx-
imately 1.2 ha in size. Tree heights within the study area range
from 5 to 47 m, with an average height of 23 m. Norway spruce
(Picea abies (L.) Karst.; 65%), silver fir (Abies alba; 17%), beech
(Fagus sylvatica L.; 9%) and Scotts pine (Pinus sylvestris; 6%)
are the most common tree species. The forest is managed using
a group selection system, where the regeneration phase may take
several decades (clearcuts are not common in Germany).

A regular forest enterprize inventory was conducted in the second
half of 2003 in the state forest of the study area, using plots po-
sitioned on the intersections of a 100 x 200 m sample grid. The
horizontal accuracy of the inventory plot locations is estimated to

be better than 10 m. Forest characteristics were recorded within
sample plots consisting of four concentric circle plots (i.e. they
have the same centre) with radii of 2 m, 3 m, 6 m and 12 m.
Trees with a diameter at breast height (DBH) greater than 7 cm,
10 cm, 15 cm and 30 cm, respectively, were recorded within the
four circle plots. The heights of the two tallest trees per species
were measured in each plot using a Vertex angle measurement in-
strument. The height of the remaining trees within a plot were
estimated using forest stand height curves and the DBH. Single
tree volumes were calculated using DBH and height as param-
eters for taper and volume functions of the Baden-Württemberg
state forest service (Kon-Allan et al., 2004). Plots intersecting
stand or forest borders were excluded for this study. A total of
1061 inventory plots, with an overall area of 48 ha, were used
as terrestrial reference data for the remotely sensed data. Stand
boundaries were digitized from orthophotos in 2003 and were ad-
justed to meet operational purposes during the field work. Ad-
ditional information describing the stands that could be used as
covariates were not available for this study.

Lidar data were acquired in spring 2003 (before foliation) using
the Optech ALTM 1225 airborne laser scanner. Adjacent swaths
overlapped about 50% (table 2). First and last return laser data
were automatically classified into ground and vegetation hits by
the data provider (TopScan).

2.3 Computation of predictor variables

A digital terrain model (DTM) and a digital surface model (DSM)
was computed for both test sites using the software TreesVis
(Weinacker et al., 2004) for the German and Fusion 2.0 (Mc-
Gaughey et al., 2004) for the American study site. An evalua-
tion of the American DTM, presented in Reutebuch et al. (2003),
found an average lidar elevation error of 22 cm. For the German
study site, a DSM was derived from the first (DSMF) and the last
return (DSML) vegetation returns. Canopy height models (CHM,
CHMF, CHML) were computed by subtracting the DTM from
the according DSMs. The lidar vegetation height was determined
by calculating the difference between the elevation of the lidar
vegetation data (raw data) and the corresponding DTM raster bin
elevation.

Circular subsets of the same radius as the corresponding sample
plot were created from the lidar raw data. The 0th , 25th, 50th,
75th and 100th percentiles and the mean of the lidar vegetation
heights were calculated for each subset to characterize the vegeta-
tion height distribution. Vegetation density metrics were derived
by dividing the range between the highest and lowest measure-
ment into 10 classes and determining the proportion of measure-
ments within each class. Fusion 2.0 was used for the raw data
manipulation.

Since broadleaf trees in leaf-off condition had only a few vege-
tation returns in the last return data, they do not show up in the
CHML. Therefore, a classification of the pixels into those belong-
ing either to coniferous or broadleaf trees was possible by sub-
tracting the CHML from the CHMF. The result was normalized
with the CHMF. By comparison with orthophotos, a threshold of
0.3 was found to separate coniferous and broadleaf pixels well
(equation 1). It should be noted that Larches (Larix spp.) are a
potential problem for this classification approach, since they are
deciduous conifers. However, few Larches were present in the
study area so we felt the classification approach was applicable.

Pi

�
1 (CHMF,i − CHML,i)/CHMF,i ≤ 0.3
0 (CHMF,i − CHML,i)/CHMF,i > 0.3

(1)

78

ISPRS Workshop on Laser Scanning 2007 and SilviLaser 2007, Espoo, September 12-14, 2007, Finland



Parameter German study site American study site
Mean Max Mean Max

Trees per ha [ha−1] 411.10 2255.00 309.10 1093.00
Mean heights [m] 23.07 42.56 36.42 51.97
Volume [m3 ha−1] 347.10 1265.00 567.90 1167.00

Table 1. Summary of forest attributes derived from sample plot data for the study sites.

Parameter Characteristic
German study site American study site

Laser pulse frequency 25,000 Hz 7,000 Hz
Scan angle ± 20◦ ± 10◦

Swath width 500-600 m 70 m
Laser pulse density 0.51 m−2 4 m−2

Flying height 900 m AGL 200 m AGL
Flying speed 80 m sec.−1 25 m sec.−1

Beam divergence 0.25 mrad 2 mrad
Vertical accuracy 0.15 m n.a.
Horizontal accuracy 0.45 m n.a.

Table 2. Operating parameters of the Lidar sensors (n.a. = not available).

The ith pixel P will have a value of 1 if it is classified as conifer-
ous and 0 if classified as coming from a broadleaf tree.

The proportion of coniferous trees (coniferous proportion = CP)
at a plot, which is assumed to be equal to the proportion of pix-
els classified as coniferous, was calculated as the sum of conif-
erous pixels divided by the overall sum of pixels within a sam-
ple plot. For numerical reasons, this 0...1 distributed variable
was then stretched between -infinity and infinity using the logit-
transformation (log( p

1−p
)). Since the lidar dataset of the US

study site was not separated into first- and last return data, a com-
putation of CP was not possible.

The percentage of canopy cover (CC) on a sample plot was com-
puted as the number of pixels in the CHM (CHMF for the German
data set) greater than 1 m divided by the total number of pixels
within the plot. As for CP, a logit transformation was applied to
this variable.

2.4 Modeling

Modeling consisted of two steps: (i) Select adequate predictor
variables, (ii) fit mixed models by adding random effects. To
select predictor variables, scatter plots and correlations of the re-
sponse variables over the height metrics were analyzed for the
German study site. The mean vegetation height measured by li-
dar data (mean.l) was found to be the most influential predictor
variable. Since the variance increases as the response variable in-
creases (heteroscedasticity), mean.l was also used as a predictor
variable for the variance function. More precisely, a generalized-
least-squares (GLS) regression was used with weights based on
mean.l2δ where δ was estimated during the fitting of the model
(Pinheiro and Bates, 2002, p. 208).

Since the height metrics vary depending on the canopy structure,
we wanted to know if the model improves as interaction terms
between mean.l and the canopy cover and between mean.l and
the crown shape (expressed as conifer proportion) are considered
(equation 2). We also explored whether or not density metrics
further improved the model. The selected model (fixed-effects
model for the German study site) was then re-fit using data for
the American study site and the coefficients were compared. As
it was not possible to compute the coniferous proportion for the

US study site, this variable was not included in the fixed effect
model for the US data.

The fixed-effects model can be written as

yk = β0 + β1mean.lk + β2CCk + β3CPk+

β4CCk ·mean.lk + β5CPk ·mean.lk + εk,
k = 1, ..., n, εk ∼ N(0, σ2mean.l2δ

k ),

(2)

where yk is the response variable for the kth sample plot, β0..β5

are the coefficients, εk is an independent error term with a vari-
ance model depending on mean.l and δ and n is the number of
sample plots.

In the second step, random effects for the intercept on the stand
level were introduced for the local models (equation 3). Their
results were compared to a global model with random effects for
the intercept on the study site as well as on the stand level. For
the global model, we checked if it was necessary to have a ran-
dom effect for the coefficients. To do this, models with a random
intercept on the study site and the stand level as well as a random
effect for either one of the coefficients (equation 4) were com-
pared with the global model with the random effect only for the
intercept using a F-test.

The following equation is the general form of a local mixed
model

yjk = β0 + b0,j + β1x1,jk + .. + βmxm,jk + εjk

k = 1, ..., nj , bj ∼ N(0, σ2
1),

εjk ∼ N(0, σ2mean.l2δ
k )).

(3)

Here yjk is the response variable for the kth sample plot in the
jth stand, x1,jk..xm,jk are the m fixed effects, β0..βm are the co-
efficients thereof and nj is the number of sample plots within a
stand. The stand random effects b0,j are assumed to be indepen-
dent for different j and the within-group errors, εjk are assumed
to be independent of different j and k and to be independent of
the random effects.

If the response variable of the kth sample plot in the jth stand
within the ith study site is denoted as yijk i=1,2; j=1,...,li;
k=1,...,nj , with li as the number of stands in the ith study site
and b0,i; b0,ij are random effects for the intercept on the study
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site and stand level respectively, an example for the global model
including a random effect on the study site level for the coeffi-
cient of the first fixed effect (b1,i) can be expressed as

yijk = β0 + b0,i + b0,ij + (β1 + b1,i)x1,ijk + ..+

βmxm,ijk + εijk.
(4)

The random effects are, technically speaking, not parameters of
the statistical model. Nevertheless, their values (Best Linear Un-
biased Predictors, BLUPs) can be estimated. Details on the esti-
mation of BLUPs can be found in Pinheiro and Bates (2002).

A leave-one-out cross-validation procedure was used to check for
potential overfitting of the data. A close similarity of the RMSE
and the RMSE of the cross-validation (RMSE.CV) indicates that
the model is not overfitting the data (Andersen et al., 2005). All
statistical analysis were carried out with the software package
R (R-Development-Core-Team, 2006) including the library nlme
(Pinheiro and Bates, 2002) for the fitting of mixed-effects mod-
els.

3 RESULTS

3.1 Selected models

Canopy closure and coniferous proportion as well as their inter-
action with mean.l significantly improved the linear model for the
German study site. The addition of density metrics seemed to en-
hance the model fit significantly but improved the R2 less than
1%. They were therefore not included in the model in order to
keep the amount of predictor variables to a minimum. The se-
lected model of the German study site explains about 70% of the
variance and leads to an RMSE of ca. 35%.

The model including the same predictor variables as the model
for the German study site showed better goodness-of-fit measures
(R2 of 0.86 and RMSE of ca. 17%) for the US study site. Never-
theless, it was also tested, if the model improves as other height
metrics (e.g. the median or the 75th percentile) serve as predic-
tor variables instead of mean.l. But none of the models including
those variables was significantly different from the model includ-
ing mean.l. We concluded that the same predictor variables can
be used for the German and for the US study site. Additional
model attributes and RMSE can be found in tables 3 and 4.

3.2 Mixed effect models

Random effects on the stand level improved the models for both
study sites significantly. In general, it can be observed that the
median residual per stand is closer to zero, while the variance
slightly increases. This also means that the prediction for some
observations gets better, while the opposite is true for others. In
other words, the mixed models lead to a decreased bias with a
trade-off of higher variance. This of course, is most present in
stands where the bias of the fixed effect model was large. How-
ever, the variance within the stands is relatively high, especially
for the German study site. Therefore, the bias will not be elimi-
nated completely (figure 1 and table 5).

For the global model, besides the random effects on the stand
level, only a random effect for the coefficient of the interaction
between the canopy cover and mean.l significantly improved the
model. This suggests, that the other coefficients do not differ
significantly between the study sites. Interestingly, the RMSE
does not increase very much, meaning that this model can be used
for predictions at both study sites.

The global model can be expressed as

yijk = β0 + b0,i + b0,ij + β1mean.lijk + β2CCijk+

β3CPijk + (β4 + b1,i)CCijk ·mean.lijk+

β5CPijk ·mean.lijk + εijk.

(5)

The other models can be written the same way without b0,i and
b1,i for the local models with random effects, without b0,i, b1,i

and b0,ij for the local models with fixed effects only and without
CP for the US models.

3.3 Characteristics of the regression models

The slope of mean.l is slightly higher for the US study site than
for the German site. This is also true for the coefficient of canopy
cover. The models will predict higher volumes with an increase
of canopy cover or an increased number of coniferous trees per
plot. The global model produces almost the same predictions for
given mean.l but differs slightly more from the local models given
canopy cover (figures 2 and 3).
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Figure 2. Comparison of predictions of local fixed-effects mod-
els (FE) with the global mixed model (Ger.=Germany). mean.l
alters, CC and CP are fixed at 100%.

4 DISCUSSION

In this study, we compared fixed-effects models with mixed-
effects models containing random effects on the stand level and
on the study site level. The grouping information was used to
calibrate the mixed models on the stand level using the variance
information of sample plots located within a stand. A drawback
of this method is that this information can only be used reliably
for stands that contain several sample plots if the within stand
variance is high as it was the case in this study.

Reasons for bias in some stands, besides rare tree species and
site indices, might be uncommon taper shapes, varying density of
small trees in the understory (i.e. two layers of trees, which prob-
ably does not change mean.l explicitly) or other incidents that
change the canopy structure but are not reflected in the selected
covariates.
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Coefficients FE model (Ger.) FE model (US) RE model (Ger.) RE model (US) Global model
Est. p-val. Est. p-val. Est. p-val. Est. p-val. Est. p-val.

Intercept -10.12 0.42 77.24 0.24 -3.93 0.74 57.47 0.39 -82.04 0.33
mean.l 15.44 <0.01 9.15 <0.01 14.98 <0.01 10.48 <0.01 14.48 <0.01
CC -11.86 <0.01 -50.00 <0.01 -13.02 <0.01 -35.56 0.01 -13.69 <0.01
CP 5.45 0.14 3.52 0.24 5.86 0.06
mean.l · CC 1.64 <0.01 5.27 <0.01 1.74 <0.01 4.31 <0.01 2.68 <0.01
mean.l · CP 0.57 <0.01 0.59 <0.01 0.36 0.04
δ 0.46 0.34 0.58 0.44 0.46

Table 3. Attributes of the fitted models (Est. = Estimate, p-val. = p-value).

German models American models Both
FE model RE model FE model RE model Global model

RMSE [m3 ha−1] 120.33 103.12 108.96 95.51 103.00
German study site

RMSE [%] 34.67 29.71 29.76
RMSE.CV [%] 34.90 34.40 34.43

American study site
RMSE [%] 19.19 16.82 17.58
RMSE.CV [%] 19.95 18.49 18.69

Both
RMSE [%] 28.16
RMSE.CV [%] 32.35
R2 0.70 0.78 0.86 0.89 0.81

Table 4. RMSE, RMSE of the cross-validation (RMSE.CV) and R2 for the fitted models (FE = fixed effect, RE = random effect).

Stand-ID FE model RE model Global model
SD Bias SD Bias SD Bias

9 117.59 96.24 126.85 95.13 110.91 95.61
8 46.82 49.75 48.97 31.25 50.17 32.24
6 145.39 115.49 128.37 98.74 127.78 96.67
5 90.34 82.60 94.41 75.50 96.20 77.60
4 105.32 86.24 119.01 96.46 120.77 99.31
3 117.69 102.09 123.99 100.16 123.83 98.40
2 50.51 94.66 50.45 40.64 51.27 58.44

Table 5. Standard deviations (SD) of the residuals and bias for the stands on the American study site.
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Figure 1. Residuals of a leave-one-out cross-validation for selected stands at the German study site. Stands with a mean residual > 100
and at least 3 observations were selected for this graph.
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Figure 3. Comparison of predictions of local fixed-effects models
(FE) with the global mixed model (Ger.=Germany). CC varies,
mean.l is fixed at 30 m and CP at 100%.

We assume that differences in the model coefficients for the study
sites can be attributed to variation in the vegetation cover and the
lidar parameters:

1. The US study site is highly productive (high site index) and
is stocked mainly by Douglas-fir, which is one of the fastest
growing tree species in temperate forests. In comparison,
the German study site encompasses a range of productivity
classes, a broader range of elevations and a more diverse mix
of tree species. In addition, the main coniferous tree species

(Norway spruce) does not accumulate as much volume as
Douglas-fir.

2. Although both lidar systems produced small footprint data,
return density, footprint size and flying platforms were sig-
nificantly different. This could influence the penetration
rates through the canopy, amount of shadowing, etc.

However, whether vegetation or lidar parameters have a larger
influence in these study results could not be determined. The
same is true for possible interactions between lidar parameters
and vegetation.

Interestingly, the predictor variable canopy cover improved the
model more on the American study site than on the German study
site. This improvement is likely related to the extensive changes
in the canopy structure resulting from the silvicultural treatments
carried out on the American study site. These treatments resulted
in a wider range of canopy densities than was present on the Ger-
man dataset.

The coefficients of the coniferous proportion indicate that the vol-
ume increases with an increasing amount of coniferous trees on
a plot. This is consistent, since mean.l tends to be smaller for
conifer dominated plots compared to plots dominated by decid-
uous species but having the same mean tree height due to the
conifer crown shape (Breidenbach et al., 2007). Another rea-
son for this effect is probably that the amount of usable timber
is higher for most coniferous species, since the ratio of stem to
branch volume is higher for coniferous trees. Therefore, similar
heights correspond to more volume for conifer dominated sample
plots.

The observed errors for the US study site (∼ 17%) are compa-
rable to those reported by Næsset (2002), but somewhat higher
than those reported by Means et al. (2000) (73 m3 ha−1 opposed
to∼ 95 m3 ha−1). The errors for the German study site are much
higher which is probably due to the wider range of tree species

82

ISPRS Workshop on Laser Scanning 2007 and SilviLaser 2007, Espoo, September 12-14, 2007, Finland



and stand types. Another reason could be that the horizontal accu-
racy of the field plot positions for the German study site is worse
than for the US study site. Aardt et al. (2006), whose study site
is probably more similar to the German site, report smaller abso-
lute RMSE (∼ 40-68 m3 ha−1) than we observed for the German
site. However, since the range of stand volumes in their data is
significantly smaller than in this study, the relative errors seem to
be larger.

5 CONCLUSIONS AND FUTURE WORK

A mixed-effects model was fit to data from the USA and Ger-
many. The goodness-of-fit metrics indicate, that the model fit
to the combined data is almost as good as models fit to data for
each site, although the stand conditions and lidar properties var-
ied greatly between the study sites. It should be emphasized that
the random effects at the stand level were able to significantly
reduce the bias that was found at the stand level. The relatively
expensive field data were consequently used twofold: (i) To fit
prediction models, (ii) to reduce the bias by calibrating random
effects and utilizing the information that they provide at the stand
level. Therefore the effectiveness of the money spent to collect
field data was increased using mixed models.

The results of this study indicate that other researchers that strat-
ified their data and used different models for each stratum could
potentially enhance their models with random effects on the level
of these strata. An additional benefit would be that the amount of
data for modeling is then larger.

Future work will strive to better understand the bias observed at
the stand level. The stands, represented as polygons, on the Ger-
man site were delineated based on operational considerations.
Hence, small groups of trees were included with adjacent but
different (in terms of species composition and age) stands to
avoid creating small stands. We speculate that stand delineations
that result in more homogeneous conditions within each stand
will lead to lower within-stand variance and larger between-stand
variance which could further improve the models. Furthermore
it seems to be interesting to determine the contribution of the
different lidar acquisition parameters (e.g. return density, foot
print size) to the coefficients of the regression models. The use of
mixed models can also reduce the number of sample plots needed
for new study areas once a basic model exists. This issue will be
discussed in an other study.
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ABSTRACT:

The relative orientation of independently acquired terrestrial laser scan point clouds is an important task. If good starting values are
available, well-known iterative algorithms exist to determine the required transformation. In this paper, we describe a method to obtain
such starting values fully automatically, which is applicable to scenes containing planar elements. Our method first extracts planar
patches in each scan individually and then assigns patch triples across scans in order to compute the rotation and translation component
of the relative orientation. We assess the performance of our approach using a set of 20 terrestrial scans acquired systematically at
increasing distance. For each scan, we automatically extract the 50 largest planar patches. We show that, although there are 1.15
billion possible patch triple assignments, we are able to compute efficiently a ranked list of possible transformations where the correct
transformation is usually within the first few positions. For our test data and three test runs, it has been among the first 53 positions,
even for scans with little overlap. Thus, instead of 1.15 billion candidate solutions, the score function needs only to evaluate on the
order of 100 candidate solutions, which is an improvement by a factor of 107.

1 INTRODUCTION

In terrestrial laser scanning, an important problem is to find
the relative orientation of independently acquired datasets, also
called range image registration. This is a very well-known prob-
lem dating back to the first investigations on range images. It
can be divided into two subproblems, coarse registration, which
assumes no previous knowledge about the relative orientation of
the two scans, and fine registration, where the assumption is that
an initial orientation is known and the goal is to refine this in
order to find the most accurate transformation parameters. Fine
registration can be achieved using iterative techniques, usually
based on the iterative closest point (ICP) approach. There is ex-
tensive literature on this subject. Originally described by Chen
and Medioni (1991) and Besl and McKay (1992), many variants
were proposed in the sequel, differing in the selection, match-
ing, weighting and rejection of correspondences, e.g. (Zhang,
1994; Kapoutsis et al., 1999; Greenspan and Godin, 2001; Jost
and Hügli, 2002; Sharp et al., 2002). An overview is given by
Rusinkiewicz and Levoy (2001) and Gruen and Akca (2005). The
ICP algorithm is nowadays also widely available in commercial
software.

Any relative orientation based on the data itself requires two
steps, (i) finding corresponding features in both datasets, and
(ii) determination of the relative orientation which aligns those
features. Iterative schemes like the ICP solve the correspondence
problem by assuming that, applying the known coarse transfor-
mation, any point in the first scene is already close to his coun-
terpart in the second scene. This allows to define corresponding
features solely based on vicinity, with no or only limited interpre-
tation of the scenes.

As for the coarse registration, finding the relative orientation of
two overlapping scans without previous knowledge of the trans-
formation is a hard (and mainly combinatorial) problem. For
practical purposes, it is often solved in software by letting the user
define a number of corresponding point pairs manually, which al-
lows to compute the 3D Euclidean transformation. Automation

of this step is not only interesting in terms of improvement of
laser scan software. It also is related to fundamental problems
such as object recognition (where one of the scans is replaced
by a known model) and the problem of the ‘kidnapped robot’ in
robotics (where the robot has to find its initial pose by determina-
tion of the relative orientation of its scan data and a known map).

Establishing correspondences between datasets without any pre-
vious knowledge requires features ‘stronger’ than points. Fea-
tures should be stable with respect to partial occlusion, and
should carry enough information to recover position and orien-
tation (Faugeras and Hebert, 1986). In this paper, we investi-
gate a coarse registration technique using correspondences of pla-
nar patches. We chose this feature since planar faces are often
present in the vicinity of man-made structures. Furthermore, pla-
nar patches are relatively easy to extract from laser scanner data.
We extend our previous work on that topic (Brenner et al., 2007)
by an improved method to find patch correspondences.

This paper is organized as follows. In section 2, we present the
mathematical background, in section 3 the basic problem and our
approach are stated, and section 4 introduces our test data. Then,
section 5 and 6 introduce and evaluate our solution for the deter-
mination of the rotation and the translation, respectively. Finally,
section 7 draws conclusions and gives an outlook.

2 MATHEMATICAL FORMULATION OF THE
PROBLEM

This section is based on the notation used in (Brenner et al.,
2007), briefly repeated here to keep the paper self-contained.
Two scenes (point clouds) S1 and S2 are given, each consist-
ing of a set of points in 3D space. Any two corresponding points
x1,x2 ∈ IR3 with x1 ∈ S1, x2 ∈ S2, are related by an Euclidean
(rigid) transformation

x1 = Rx2 + t, (1)
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where R is a 3 × 3 rotation matrix, and t ∈ IR3 is the transla-
tion vector. Usually, due to errors, the transformed point of x2,
denoted as x′

2 (i.e., x′
2 = Rx2 + t), and its counterpart x1 from

S1, do not exactly coincide. Then, the transformation parameters
for R and t can e.g. be found by (least-squares) minimization
of
P

‖x1 − x′
2‖2. Given three or more point correspondences,

closed form solutions exist to compute R and t (Sansò, 1973;
Horn, 1987).

If no previous information is available, point correspondences
cannot be established easily, since single points do not carry
enough information. One way to solve this problem is to define
descriptors (Johnson and Hebert, 1999). In contrast, we use a fea-
ture based approach which relies on planar patches. We assume
the patches are given by their plane equations

〈ni,x〉 − di = 0 (2)
〈mi,x〉 − ei = 0 (3)
〈pi,x〉 − fi = 0 (4)

where ni, mi, pi are normal vectors of unit length, di, ei, fi are
the plane distances from the origin, and for each of the equations,
i = 1 (plane in scene S1) and i = 2 (plane in scene S2) form a
pair.

Three such plane pairs suffice to determine all six degrees of free-
dom of R and t in two steps. First, R can be found in closed-form
by eigenvector analysis (actually part of the solutions in (Sansò,
1973; Horn, 1987)). Then, assume that scene S2 has already been
rotated, so that only the translation component t in Eq. 1 has to
be determined. From Eq. 2,

〈n1,x〉 − d1 = 0

〈n′
2,x− t〉 − d2 = 0.

Since n′
2 is already rotated, n1 = n′

2 = n, and x can be elimi-
nated to obtain 〈n, t〉 = d1 − d2. Doing the same for Eqs. 3 and
4 and stacking the equations yields

2
4 nT

mT

pT

3
5 t =

2
4 d1 − d2

e1 − e2

f1 − f2

3
5 (5)

from which t can be determined.

Note that the determination of the full transformation is done in
two steps, first the rotation, then the translation. While at least
three plane pairs are required to obtain the translation, only two
plane pairs are sufficient to determine the rotation. This will be
exploited below to reduce search space. In fact, a plane normal
vector (of unit length) has two degrees of freedom, so that two
plane pairs fix four degrees of freedom, one more than what is
required to determine R. As a result, given two corresponding
normal vector pairs n1, m1 from S1 and n2, m2 from S2, due
to measurement errors, the angle ∠(n1,m1) and ∠(n2,m2) are
usually slightly different. Then, one can choose to determine R
such that either n1 and n2 or m1 and m2 align perfectly. Using
the eigenvector solution mentioned above, a preferable rotation
R is found, which distributes the angle error equally to both cor-
responding vectors.

Noting that the determination of the rotation is a time-critical op-
eration, the following alternative can be used, which achieves the
same result without the need for an eigenvector analysis (based on
(Horn, 1987)). Using n1 and m1, a Cartesian coordinate frame
{u1,v1,w1} is constructed by

ũ1 = n1 + m1, u1 = ũ1/‖ũ1‖ (6)

ṽ1 = m1 − 〈m1,u1〉u1, v1 = ṽ1/‖ṽ1‖ (7)
w1 = u1 × v1,

where Eq. 7 uses standard Gram-Schmidt orthonormalization.
Due to Eqs. 6 and 7, u1 and v1 span the same plane as n1 and
m1. Then, M1 = [u1v1w1], writing u1, v1, w1 as column vec-
tors, is an orthogonal matrix by construction. Doing the same for
M2, one can see that

R = M1MT
2 (8)

is orthogonal and in fact is the desired rotation matrix (since
MT

2n2 gives the components of n2 along the axes {u2,v2,w2}
and M1 maps this back to the first coordinate frame). Adding n1

and m1 in Eq. 6 ensures that the angle error is equally distributed
to both corresponding vectors.

3 FUNDAMENTAL PROBLEMS AND APPROACH OF
THIS PAPER

The foremost problem of coarse registration is the combinatorial
complexity. If p plane patches are extracted in S1 and S2 in-
dependently and then all possible transformations are evaluated
based on plane triples (k = 3), as described above, there are

�
p
3

�
·
�

p
3

�
· 3!/2 (9)

possible combinations. The first two terms are due to picking
three planes (the triple) out of p, while the last factor reflects the
possible permutations when assigning the triple from S1 to S2,
reduced by a factor of two, since only triples of the same chi-
rality need to be considered (i.e., a right-handed normal vector
triple from S1 can only match a triple in S2 which is also right-
handed). For p = 50 planes, which we use regularly, this yields
1.15 billion possible combinations which need to be tested.

Noting the positive effect of chirality in Eq. 9 (reduction by
a factor of two), one may wonder if picking more planes
may have a positive effect. If k = 4 planes are picked,
the chirality can be computed for any sub-combination of
3 planes picked out of those four. That is, for k = 4
planes, four ‘chirality numbers’ ±1 are obtained. Any
pick of k = 4 planes in S1 is thus one case in the set
{(+1, +1, +1, +1), (+1, +1, +1,−1), . . . , (−1,−1,−1,−1)}
(all of which may occur). Instead of all 4! = 24 permutations
of a plane quadruple picked from S2, only those with the same
four chirality numbers need to be considered. Depending on
the actual sign combination, either 3 (8 cases), 4 (6 cases) or
12 (2 cases) permutations need to be considered, which yields
an expectation of 1.5 cases on average (which is also obtained
from 6!/24). Thus, comparing the cases k = 3 and k = 4, one
sees that k = 4 has an advantage only if the number of planes is
relatively small (p < 9), in which case the computational cost
is anyhow so low that one would not consider using the more
complex approach. In summary, increasing k does not reduce the
number of cases (for practical p), even if chirality is considered.

The second important problem is the rating of a solution. Ideally,
a score function would be desirable which attains its maximum
when the correct solution is found. If exhaustive search would
be possible, the best solution would then be obtained by simply
picking the transformation with the highest score. A candidate
for this score function is the overlap of S1 with the transformed
S2, for example based on counting the points in S1 with close
neighbors in S2. While this works well when the scene contents
of S1 and S2 are similar (e.g., scan positions are close together),
it usually fails when they are very different (e.g., scan positions
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far apart, occlusions, tilted scan). In the latter case, the score of
the true transformation is low, and it may well be that a larger
score can be achieved by using a wrong transformation.

Using additional criteria (such as point normals) to make the
score function more selective is possible, however comes at an
additional computational cost. While it is practicable to compute
the score for hundreds of cases, it is usually not feasible to do so
for 1.15 billion cases. Thus, the main idea is to build up a hier-
archy of tests which cuts down search space and has the property
that (i) the most inexpensive tests are applied first, (ii) the more
expensive tests are only applied after a large number of false solu-
tions has been ruled out already, and (iii) the tests, though simple,
do not erroneously rule out the correct solution.

The goal of this paper is not to elaborate on the score function, but
on this test hierarchy. Thus, we do not show that our algorithm
finds and indicates the correct transformation (which requires a
search and a score function which has a maximum at the correct
transformation). Instead, we show that we are able to reduce the
set of solution candidates substantially, while still retaining the
correct solution in this set.

4 THE TEST DATA SET AND INITIAL PROCESSING

We selected an area called ‘Holzmarkt’ in the historic district of
Hannover, Germany, for the evaluation of our algorithms. Twenty
scans were acquired, of which 12 were taken (approximately) up-
right, another 8 with a tilted scan head. Throughout the text, the
scan positions and datasets are denoted by ‘SP01’, ‘SP02’, etc.
for the upright and ‘SP03a’, ‘SP05a’, etc. for the tilted scans.
Fig. 1 shows all 12 scan locations in a cadastral map. The scan
positions were chosen systematically along a trajectory with a
spacing of approximately 5 meters. All scans were acquired us-
ing a Riegl LMS-Z360I scanner, which has a single shot measure-
ment accuracy of 12 mm, field of view of 360°×90° and a range
of about 200 m. Reference orientations for the scans were ob-
tained by placing artificial targets in the scene, which were man-
ually identified in the scans. The procedure yields errors in the
range of a few millimeters, thus the reference is considered to
be sufficiently accurate for our tests on coarse registration. We
used the reference orientations to compute an approximate value
for the overlap of scan pairs, ranging from 83.1% for scan pair
SP01-02 down to 2.3% for SP01-12a, see (Brenner et al., 2007).
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Figure 1: Placement of scan positions along a trajectory, shown
in a cadastral map. Tilted scans are marked with an ‘a’ suffix.

For the extraction of planar patches, we used standard region
growing, working on the regular raster of scan points. Region
growing iterates the two steps of seed region selection and region

expansion. Seed regions are prioritized according to their local
planarity, which is computed using the residuals of a local best-
fit plane. Once a seed region is selected, scan points along the
region border are added if they lie in the plane (within a thresh-
old of 6 cm), and the plane equation is updated. Fig. 2 shows an
example segmentation.

Figure 2: Planar segmentation of SP01, using random colors for
the segments.

5 DETERMINATION OF THE ROTATION
COMPONENT

5.1 The triple product and pairwise enclosed angles

For our test scene, we exhaustively computed all 1.15 billion
plane triple combinations and the resulting transformations (this
took several hours on a standard PC for each scan pair). Trans-
formations were considered to be correct if the deviation from
the reference is less than 5° in rotation and 1 m in translation.
From table 1, one can see that at most, 0.212h of the triple
combinations lead to a correct transformation, and this number
even decreases rapidly with increasing distance between the scan
standpoints.

Triples with 
compatible 

angles
# ‰ # # ‰

SP 01-02 244635 0,212 1022507 42945 42,00
SP 01-03 208970 0,181 1020667 38947 38,16
SP 01-03a 153111 0,133 684729 20283 29,62
SP 01-04 147045 0,128 1091474 19043 17,45
SP 01-05 55116 0,048 698353 9681 13,86
SP 01-05a 41353 0,036 557906 4955 8,88
SP 01-06 48721 0,042 949832 8361 8,80
SP 01-06a 47843 0,042 1041477 8562 8,22
SP 01-07 14776 0,013 880668 3034 3,45
SP 01-08 15576 0,014 791156 2609 3,30
SP 01-08a 11372 0,010 840829 1048 1,25
SP 01-09 6306 0,005 605209 1125 1,86
SP 01-09a 11545 0,010 513071 778 1,52
SP 01-10 13372 0,012 754447 1357 1,80
SP 01-10a 4584 0,004 438870 596 1,36
SP 01-11 4232 0,004 758084 593 0,78
SP 01-11a 11160 0,010 653320 1572 2,41
SP 01-12 0 0,000 552271 0 0,00
SP 01-12a 0 0,000 402779 0 0,00

Triple assignments 
leading to correct 

transformation

Triples with compatible 
angles leading to 

correct transformation

Table 1: Triple assignments leading to the correct transformation,
angle compatible triple assignments, and angle compatible triple
assignments leading to the correct transformation (for all scan
pairs).

In order to raise this percentage, we used in (Brenner et al., 2007)
the triple product to only consider plane triples above a threshold.
A large triple product is desirable, since it leads to a good matrix
condition number on the left hand side of Eq. 5. However, it
is also problematic, since the appropriate value depends on the
scene contents. If the scene does not contain planes leading to
triple products above the threshold, no candidates are found. In
this case, the threshold has to be lowered, which however quickly
increases the number of false combinations as well.

In order to form a more selective and scene independent criterion,
we investigated the use of the three angles enclosed by the three
normal vectors instead of their triple product. To evaluate how ac-
curate the angles between any two pairs of plane normal vectors
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Figure 3: Histogram and cumulated histogram of the angle dif-
ferences of manually selected plane pairs.

are, we manually identified a small set of corresponding planes
between scans. For any possible plane pair in one scan S1, we
computed the angle between the plane normal vectors. Knowing
the corresponding vectors in S2, we computed the enclosed angle
as well and derived the difference. In total, 328 pairs were con-
sidered. From Fig. 3, one can see that for more than 90% of the
normal vector pairs from S1, the corresponding pairs in S2 form
the same angle within a 1° tolerance. This leads to the conclu-
sion that tight bounds can be imposed on the angles when search-
ing for corresponding plane triples. Table 1 shows that out of the
1.15 billion triple combinations, only between 400,000 and 1 mil-
lion compatible combinations remain. The rate of triple combi-
nations which lead to correct transformations is as high as 42h.
Thus, for SP01-02, by using angle constraints, we can reduce the
amount of search required by a factor of 42h/0.212h ≈ 200.
This is also the average factor over all scans.

5.2 Searching for the correct orientation

As noted in section 2, the rotation is fully determined by two nor-
mal vector pairs, using Eq. 8. Thus, only p over 2 pairs need to
be picked, and (c.f. Eq. 9 for k = 2) a total of p2(p−1)2/2 plane
pair combinations exist. For p = 50, this yields 1,225 pairs in
each scan, and 3 million combinations. If only vector pairs in-
cluding the same angle (tolerance 1°) are regarded, this reduces
to 140,000 compatible combinations, or 4.8%, on average. From
table 2 one can see that the number of compatible normal vector
pairs is relatively stable. However, if the rotation matrix is com-
puted for each of the compatible combinations and compared to
the (known) reference orientation (allowing a 2° tolerance), one
can see that the number of those pairs leading to a correct orienta-
tion decreases with increasing scan numbers, from 8,034 (5.5%)
down to almost zero. Thus, even scans far apart yield a large num-
ber of compatible normal vector pairs, but the percentage leading
to the correct transformation decreases. Note that there is no need
to test the 3 million cases by exhaustive enumeration. Instead, all
1,225 angles between pairs in S2 can be sorted into angle bins
(we used 1° bins for this purpose). Then, for each plane com-
bination in S1, the subset of candidates in S2 can be retrieved
quickly.

In the next step, the goal is to pick a correct orientation from the
approximately 140.000 candidates – or more precisely, to rank
the candidates in such a way that the correct solution is among the
first few proposals. Since the percentage of correct solutions can
be around only 1% (for the cases we wish to be able to succeed),
random picking would imply that we can expect only one correct
solution among (the first) 100 picks.

In order to improve this rate, we computed the rotation matrix for
all compatible combinations. Note that using Eq. 8, this does not
require matrix inversion or eigenvalue analysis, so it is computa-
tionally inexpensive, even for 140.000 candidates. For each can-
didate rotation matrix, we recovered the three rotation angles ω,
φ, κ. Fig. 4 shows a plot of all rotation candidates, in (ω, φ, κ)

Pair Compatible % Correct %

SP01-02 145202 4,84 8034 5,53
SP01-03 147944 4,93 7497 5,07
SP01-03a 115260 3,84 5566 4,83
SP01-04 164200 5,47 5852 3,56
SP01-05 145098 4,83 3496 2,41
SP01-05a 121400 4,04 2885 2,38
SP01-06 166238 5,54 4218 2,54
SP01-06a 165922 5,53 4414 2,66
SP01-07 173934 5,80 2513 1,44
SP01-08 167550 5,58 2639 1,58
SP01-08a 168050 5,60 2728 1,62
SP01-09 141868 4,73 1651 1,16
SP01-09a 140498 4,68 926 0,66
SP01-10 157464 5,25 2115 1,34
SP01-10a 113540 3,78 1007 0,89
SP01-11 138768 4,62 929 0,67
SP01-11a 147310 4,91 1642 1,11
SP01-12 105978 3,53 2 0,00
SP01-12a 94758 3,16 148 0,16

Table 2: Angle compatible normal vector pairs, percentage rela-
tive to total number of combinations (3 million), number of cor-
rect rotations computed from the pairs, and percentage relative to
the compatible cases.

space, for the scan pair SP01-02. For the figure, the rotations
were normalized using the known reference orientation, so that
the correct rotation is at (ω, φ, κ) = (0, 0, 0). At this point (cen-
ter in Fig. 4), one can see a dense point cloud (according to ta-
ble 2, 5.53% of the points should be located there). In order to
test this, we sorted all candidate rotations (ω, φ, κ) into bins (us-
ing a bin size of 2°). After this, the bins are extracted highest
count first. Similar (ω, φ, κ) values are merged during this step if
they differ in all angles by less than 2° (this operation is similar
to histogram smoothing considering neighboring cells).

Figure 4: Plot of all rotation candidates for the scan pair SP01-
02, in (ω, φ, κ) space. Each orientation is represented by a point.
The correct orientation is at the center of the figure, where the ω
and φ axes can be seen. The κ axis points upward.

As a result of this procedure, we obtain a list of orientations,
sorted in descending order of bin hits. Fig. 5 shows the num-
ber of hits for the 20 bins with highest count, for the scan pair
SP01-02 and SP01-09a. In the case SP01-02, the first bin (8,034
hits) has a much higher count as the second bin (1,752 hits). In
fact, the first bin represents the correct orientation and the bin
count is equal to the value in table 2. This situation is not always
as clear. For example, in the case SP01-09a, the counts are gen-
erally lower and there is no clear peak at the first bin. In this case,
the correct orientation corresponds to the 8th largest bin.

To give a better overview, Fig. 6 shows a plot of the 20 bins with
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Figure 5: Histogram of the first 20 (orientation) bins with largest
bin count for the scan pairs SP01-02 and SP01-09a.

highest count, for all scan combinations. As can be seen, for low
scan numbers, there is a clear peak at bin 1, which is also the
reference orientation. For SP01-04 and up, the peak gets wider,
but still the correct orientation is at the first bin. The first ex-
ception to this is SP01-07 (which has 51% overlap), where the
correct transformation is in the second bin (count 2,332). Closer
examination reveals that the first bin (similar count of 2,362) rep-
resents a turn by κ=180° around the up- (Z-) axis with respect
to the reference orientation. SP01-09a (29% overlap) is the first
case where the correct orientation is not among the first two bins.
SP01-11 is still worse, but note this pair has only 9.9% overlap.
SP01-11a has 12.2% overlap and the correct solution is in bin 1.
For SP01-12 and SP01-12a, the reference orientation was not part
of the first 100 bins, however their overlap is only 4% and 2%,
respectively.
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Figure 6: Bins with highest count for all scan combinations.
White corresponds to a count of 3,000 or more, black is 0. The
small rectangles indicate the bin which corresponds to the refer-
ence rotation. For example, the lowest line represents the first
20 bins for scan pair SP01-02 and is the equivalent of Figure 5.
It has a clear peak (white) at the first (leftmost) bin, which also
represents the true rotation (small rectangle).

6 DETERMINATION OF THE TRANSLATION
COMPONENT

The translation is determined according to Eq. 5, using three
plane pairs. Note that it is not necessary to actually rotate S2,
because Eq. 5 requires only d2, e2, f2 from S2, the plane dis-
tances from the origin, which are not affected by rotation. Also,
instead of picking all triple pairs, one can work on the rotation

candidates one after the other, so that not only the rotation matrix
is known, but also a set of combinations of two plane pairs which
led to this rotation (i.e., a quadruple of plane indexes). For ex-
ample, for SP01-02, the first rotation considered corresponds to
a bin with 8,034 hits, meaning that 8,034 cases of assigned plane
pairs are known already. This compares favorably to the 140,000
compatible (and the 3 million total) pairs.

Both pairs, of S1 and of S2, need to be extended by a third plane,
picked from the remaining p − 2 planes. For example, for the
mentioned case, this would mean on the order of 8,034·48·48 =
18,510,336 possible picks. However, when imposing angle con-
straints (of 1°) for the angles between the already picked pair and
the newly picked plane, and considering chirality, a much smaller
number remains. In the example, only 188,732 picks are left.

However, we chose a conceptually simpler approach. Instead of
picking a third plane, we simply pick pairs of quadruples from the
bin. Thus, for each pick, we have 4 plane pairs, and solve Eq. 5
for the translation in a least squares manner. Fig. 7 shows the
translations corresponding to 100,000 of such picks, where each
translation vector is represented by a point in 3D space. The cor-
rect translation vector is at the center of the figure, where several
‘linear structures’ intersect. There are many candidates along the
Z axis, indicating a correct lateral position, but a varying height.
Perpendicular to this, there are several linear structures which we
believe are due to the arrangement of the facades in the ‘Holz-
markt’ scene: if one moves the point cloud SP02 further apart
from SP01, the distance between the right and left building fa-
cades increases and there are two choices for the translation, ei-
ther matching the ‘right’ or the ‘left’ facades.

Figure 7: Plot of all translation candidates for the first orientation
bin of the scan pair SP01-02. Z axis points upward.

Picking two quadruples from the bin yields 8,034·8,033/2 possi-
ble picks for the example bin (way too many). Instead, we apply
the RANSAC principle at this point (Fischler and Bolles, 1981).
We only pick a subset of m pairs of quadruples. For each pick,
we compute the translation and then count the number of planes
in S1 for which a matching plane in S2 exists. Planes were con-
sidered to match if their normal vectors agree within 1° and their
distance from the origin agrees within 1 m. Note this compari-
son is computationally inexpensive, since it uses only the plane
parameters, rather than original scan points.

To derive the necessary number of picks m, we picked 10,000
quadruple pairs and determined the percentage of picks which
lead to the correct translation (within 1 m along each axis).
We found that for close scan positions, such as SP01-02, this
is around 20%, decreasing with increasing scan position dis-
tance, for a minimum of 3% (not considering SP01-12 and SP01-
12a). Following Fischler and Bolles (1981), if we want to ensure
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SP01- 02 03 03 04 05 05 06 06 07 08 08 09 09 10 10 11 11 12 12
a a a a a a a a

Run 1 1 1 1 1 1 2 3 2 2 15 23 11 5 12 33 14 12 - -
Run 2 1 1 1 1 1 2 6 5 12 4 20 53 6 35 15 13 12 - -
Run 3 1 1 1 2 1 2 2 5 12 7 28 13 5 27 13 21 11 - -

Table 3: Ranking of correct transformations. The value ‘1’ in row
‘Run 1’ and column ‘02’ means that for the scan pair SP01-02,
and the first run, the first transformation returned by the algorithm
also was the correct one.

with probability z to find at least one correct solution among m
picks, where the probability to draw a correct solution is b, then
m = log(1 − z)/ log(1 − b). For z = 99%, b = 3%, it follows
that m ≈ 150 picks are required.

The number of corresponding plane pairs is also used to rank the
entire transformation (rotation and translation). Table 3 shows
the results obtained for three separate runs of the algorithm. The
rankings indicate at which position in the result list the algorithm
returned a correct transformation (defined by as most 2° off in
rotation and 1 m off in translation, for each axis). As one can see,
for most of the close scan pairs, the algorithm returned the correct
solution in the first place or within the first few ranks. For all runs
except SP01-12 and SP01-12a, the solution was ranked among
the first 53. For SP01-12 (overlap 3.6%) and SP01-12a (overlap
2.3%), we obtained no solution. However, for those cases, we
were even unable to manually select suitable plane pairs.

7 CONCLUSIONS AND OUTLOOK

In this paper, we addressed the problem of finding good initial
values for the relative orientation of two laser scans when no pre-
vious information is available. Our method is based on the auto-
matic extraction and assignment of planar patches. For a set of
terrestrial laser scans, with 50 extracted planar patches per scan,
we showed that there is a large number of 1.15 billion possible
assignments, however only 0.2h or less (one in 5000) of them
lead to a correct transformation. Thus, it was our goal to devise
an efficient method which cuts down search space and produces
a ranked list of possible transformations, where the correct trans-
formation is among the top entries. The general idea behind this
is to built a hierarchy of tests, where the most elaborate test (the
score function) needs only to be performed for very few cases.

We showed that the relative angles between patch normal vectors
are a good (and scene independent) criterion to eliminate false
assignments. For the determination of the rotation matrix, we
started from the assignment of two patch pairs. Using a cluster-
ing of orientations by way of bins, we obtained a ranking, where
the correct solution is at the top for the majority of scan pairs and
ranked among the first 18 in all cases. As for the translation, we
used a RANSAC based approach, where the sampling consists of
picking two patch pairs, and the consensus set is the total number
of compatible patch pairs. Overall, we obtained an efficient algo-
rithm which computes a ranked list of transformation candidates,
where the correct transformation is at rank one for scans with
a high overlap, and ranked among the first 53 for all scan pairs
with an overlap larger than 3.6%. We conclude that the number
of candidates for which a more elaborate score function needs to
be evaluated is on the order of 100, which is, compared to a total
of 1.15 billion possible cases, a massive reduction by a factor of
107.

In the future, we plan to test the algorithm on other scenes as well,
and to work on an efficient yet selective score function.

ACKNOWLEDGEMENTS

This work has been supported by the VolkswagenStiftung, Ger-
many.

References

Besl, P. J. and McKay, N. D., 1992. A method for registration
of 3-D shapes. IEEE Transactions on Pattern Analysis and
Machine Intelligence 14(2), pp. 239–256.

Brenner, C., Dold, C. and Ripperda, N., 2007. Coarse
Orientation of Terrestrial Laser Scans. ISPRS Jour-
nal of Photogrammetry and Remote Sensing (in press,
doi:10.1016/j.isprsjprs.2007.05.002).

Chen, Y. and Medioni, G., 1991. Object modeling by registra-
tion of multiple range images. In: International Conference on
Robotics and Automation, pp. 2724–2729.

Faugeras, O. D. and Hebert, M., 1986. The representation, recog-
nition, and locating of 3-D objects. International Journal of
Robotics Research 5(3), pp. 27–52.

Fischler, M. A. and Bolles, R. C., 1981. Random sample con-
sensus: a paradigm for model fitting with applications to im-
age analysis and automated cartography. Comm. ACM 24(6),
pp. 381–395.

Greenspan, M. and Godin, G., 2001. A nearest neighbor method
for efficient ICP. In: Proceedings of the Third International
Conference on 3D Digital Imaging and Modeling, Quebec
City, Canada, pp. 161–168.

Gruen, A. and Akca, D., 2005. Least squares 3D surface and
curve matching. ISPRS Journal of Photogrammetry and Re-
mote Sensing 59(3), pp. 151–174.

Horn, B. K. P., 1987. Closed-form solution of absolute orienta-
tion using unit quaternions. Optical Society of America 4(4),
pp. 629–642.

Johnson, A. E. and Hebert, M., 1999. Using spin images for ef-
ficient object recognition in cluttered 3D scenes. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 21(5),
pp. 433–449.
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ABSTRACT: 
 
The Wadden Sea is an almost untouched area with a size of about 7300 km2 along the German, Dutch and Danish coast. Because of 
tide the area is flooded two times a day, creating a very special and sensitive ecosystem. In order to protect the Wadden Sea up-to-
date Digital Terrain Models (DTM) of high accuracy are needed to detect morphological changes. Lidar is an adequate method to 
obtain an accurate DTM. However Lidar is not able to penetrate water regions. Thus, raw Lidar data contain several water points, 
which do not belong to the terrain surface, leading to a wrong DTM. 
In this paper we present a supervised classification method to detect water regions from Lidar data using a fuzzy logic concept. 
Starting with raw data points of one strip, the points are grouped into scan lines. Based on training areas for the classes water and 
mudflat the features height, intensity and 2D point density are analysed. The significance level of the assumption that each feature 
differs for both classes is determined. Then, individual weights are derived from this significance level for every feature taking into 
account systematic feature changes depending on the angle of incidence of each laser pulse. A fuzzy logic classification is used to 
distinguish all points into water and mudflat points. Several additional steps are performed in order to refine and improve the 
classification result. Two meaningful examples are presented, which show the capability of this supervised fuzzy classification. 
 
 

1. INTRODUCTION 

The Wadden Sea is a very special and sensitive ecosystem. Two 
times a day the area is flooded and falls dry afterwards. The 
area reaches from Esbjerg, Denmark to Den Helder, 
Netherlands. Almost 60 % of the 7300 km2 is situated in 
Germany. The Wadden Sea represents a unique and protectable 
wildlife habitat. Many plants and animals have developed in 
accordance to the tidal influence and their future depends on the 
existance of the Wadden Sea.  
In order to monitor morphologic changes of the Wadden Sea, 
Digital Terrain Models of high accuracy are needed. Lidar 
proved to deliver high accurate spatial data of mudflats (e.g. 
Brzank et al., 2005). However, Lidar is not able to penetrate 
water. Due to the fact that water still remains in tidal trenches 
and depressions even during low tide, water points are parts of 
the captured Lidar data. In order to calculate a DTM, which 
describes the mudflat surface accurately, water points have to 
be detected and removed, and additional correct height data 
have to be introduced. 
Depending on the available data sources different approaches 
are possible. Two general cases can be distinguished. In the first 
case simultaneous acquisition of Lidar and multispectral image 
data is assumed. In this case, the images can be used to classify 
water with standard classification methods. Lecki et al. (2005) 
pointed out that high-resolution multispectral imagery and 
appropriate automatic classification techniques offer a viable 
tool for stream mapping. Within their analysis, especially water 
was classified accurately. Mundt et al. (2006) demonstrated that 
the accuracy of classification significantly increases by 
combining images and height data.  
Considering the rapid change of water-covered region caused 
by a fast changing water level, Lidar and multispectral data has 
to be captured simultaneously. Taking into account that the 
flight has to be performed during low tide and the weather 
conditions must be adequate for multispectral data capturing, 

available time windows are rather rare and small. This leads to 
much higher costs forcing many customers to order only Lidar 
data. Thus, in the second case, only the Lidar data is assumed to 
be available. Typically, Lidar data providers deliver irregularly 
spaced 3D points and intensity values, which correspond to the 
strength of the backscattered beam echo. Up to now, only a few 
approaches using exclusively the intensity of Lidar data for 
classification were published. Katzenbeisser and Kurz (2004) 
emphasized the fact that classification methods used for remote 
sensing images need to be adapted to intensity data. They 
pointed out that the intensity has only a useful information 
value within open areas where only one echo was detected. 
Hence, other criteria have to be considered in order to filter 
water points from Lidar data. 
In this paper, we extend the previous approach of Brzank and 
Heipke (2006). First, we summarize important physical 
characteristics of Lidar data and previous approaches, which 
were carried out to separate water and land points in Lidar data. 
Then, a new supervised method is presented for classification of 
Lidar data into water and land points. 
First, the raw data points are grouped into scan lines. Based on 
training areas for the classes water and mudflat the significance 
of the difference of the features height, intensity and 2D point 
density is calculated. Then, individual weights are calculated 
using the significance level for these three features, which also 
take into account systematic changes of intensity and 2D point 
density depending on the angle of incidence. Afterwards, a 
fuzzy classification is performed. All required parameters are 
obtained from training areas. Finally, the classification result is 
revised and improved by applying several tests. To illustrate the 
capability of the algorithm, two examples with different 
characteristics regarding Lidar scanner system, point density, 
point distribution etc. are presented. Finally, this paper 
concludes with a summary and an outlook on further 
development issues. 
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2. STATE OF THE ART 

2.1 Physical characteristics of Lidar data within coastal 
areas 

In order to develop a suitable algorithm, which is capable to 
classify Lidar data (raw 3D Lidar points and their intensity 
values), the physical characteristics of common Lidar systems 
as well as the reflection of water and land areas have to be 
considered. Generally, Lidar systems operate in the near 
infrared range. Wolfe and Zissis (1989) describe the absorption 
of infrared radiation depending on the illuminated surface 
material and the wavelength. They point out that the absorption 
for water is significantly higher than the absorption for soil. 
This leads to the fact that the intensity of water points is 
normally lower than the intensity of land points. 
Additionally, as a result of the Rayleigh Criteria, calm water 
surfaces behave like a mirror. Thus, specular reflection occurs. 
Often, a distance measurement can not be accomplished 
successfully because the received radiation energy is not 
distinguishable from background noise. Hence, the point 
density of Lidar data within water areas is normally 
significantly lower than within land areas. 
 
2.2 Systematic changes of intensity and point density 

depending on the angle of incidence 

As pointed out in the previous chapter, intensity and point 
density depend on the characteristics of the illuminated area. 
The reflectance of water is lower in case of near infrared light 
than the reflectance of mudflat. However, also mudflat has quite 
a smooth surface yielding in similar specular reflection 
behaviour of the laser beam. Thus, intensity and 2D point 
density are systematically influenced depending on the angle 
between the laser beam and the surface normal.  
 

Figure 1. Specular reflection in case of (left) horizontal and 
(right) tilted area 
 
Figure 1 illustrates how the laser beam is deflected depending 
on the angle of deflection (α) and the angle of incidence (β), if 
specular reflection occurs. Assuming that the area of interest is 
horizontal (which can be stated approximately for large parts of 
the Wadden Sea) α equals β. In case of tilted regions the surface 
orientation has to be taken into account in order to calculate β. 
Practically, the reflectance behaviour of the laser beam hitting 
water or mudflat is not exactly equal to specular reflection but 
similar. Hence, intensity values of points increase, if β 
decreases. Additionally, more points are measured correctly, if 
β decreases because the intensity is strong enough to trigger a 
correct measurement. In order to obtain accurate classification 
results using intensity and point density, the different 
reflectance properties of water and mudflat, but also the 
systematic changes depending on the angle of incidence, have 
to be taken into account. 
 

2.3 Previous approaches to extract water areas from Lidar 
data 

Brockmann and Mandlburger (2001) developed a technique to 
extract the boundary between land and river water, and applied 
it to data from the German river “Oder”. Based on Lidar data, 
the planimetric location of the river centre line as well as 
bathymetric measurements of the riverbed, the boundary was 
obtained within a two-stage approach. First, the height level of 
the water area was derived by averaging the Lidar points in the 
vicinity of the river centre line. Afterwards, a DTM of all Lidar 
points (including also points of the water surface) was 
calculated. Then, the 0 m contour line of the difference model 
of the Lidar DTM and the water height level was derived. This 
contour line is called “preliminary borderline”. Within step two, 
the bathymetric points of the preliminary water area were 
combined with all Lidar points outside the preliminary water 
area. Then, a DTM representing the riverbeds instead of 
waterlevel was calculated. Afterwards, the final borderline was 
obtained by intersecting this DTM including the riverbeds and 
the height level of water area. 
Mandlburger (2006) proposed another method based on the 
same input data, which also detects the borderline of a river. 
First, the Lidar points are transformed into the river-axis 
system. Then, segments with a fixed length in flow direction are 
created. All points for each segment are used to create a profile 
across flow direction. After removing all outliers (vegetation 
and water points etc.), bank slopes of both sides are generated 
by an adjusted line. Then, one border point for each side is 
calculated by intersecting these lines with the prior known 
water height. Finally, all border points are transformed back 
into project coordinate system and linked. 
Brzank and Lohmann (2004) (see also Brzank et al., 2005) 
developed another algorithm which separates water regions 
from non-water regions based on a DSM calculated from Lidar 
data. The main idea is to detect reliable water regions and 
expand those using height and intensity values. For that 
purpose, local height minima were extracted from the DSM, 
which represent potential seed zones of water areas. This step 
was followed by a region growing procedure using height and 
intensity data of the DSM grid points. In comparison to the 
previously mentioned algorithms, no additional information, 
such as water height or river axis is necessary. However, results 
were not satisfying, because systematic changes of intensity 
were not modelled. 
 
2.4 Fuzzy classification concept  

In order to classify water points from Lidar data in the Wadden 
Sea, the first two concepts described in section 2.3 are not 
sufficient. The algorithm of Brockmann and Mandlburger 
(2001) as well as Mandlburger (2006) require additional data, 
such as water height, approximate position of water and 
bathymetric data. However, these data are not available for the 
Wadden Sea. Moreover, the algorithms do not use further 
available information such as intensity and point distribution. 
The method of Brzank and Lohmann (2004) is also not 
sufficient, because systematic changes of intensity are not 
modelled. Furthermore, the method is not capable of dealing 
with different water heights within one water region. This 
remarkable effect occurs, because water height changes over 
time because of tide. Data of several flight strips are linked 
together in order to calculate a DSM. The time difference in 
capturing flight strips can lead to different height levels within 
one and the same water region. 
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Hence, Brzank and Heipke (2006) developed a new algorithm 
which focuses on classifying water points in Wadden Sea using 
only raw Lidar data. In contrast to previous approaches, 
classification is carried out for each flight strip separately in 
order to avoid different water heights within one region. The 
classification uses a fuzzy logic concept. A membership value 
for the class water μi(x) is calculated for every point based on 
its feature values and their weights. Six different features are 
used: height, intensity, slope, missed points, segment length and 
1D point density. While height and intensity are measured 
directly for every point, all other features are defined based on 
points of the same scan line. 
The classification is performed for each scan line using a 
hysteresis threshold method. After classification, several 
additional routines are performed in order to control and 
improve the classification result. 
Brzank and Heipke (2006) proved that this method is capable to 
classify water regions. The algorithm has many advantages:  
 

- All feature values can be obtained either directly from the 
measured point or in connection with other points of the 
same scan line. 

- The classification is carried out for each scan line 
separately, making the classification very fast. 

- The classification is done for every flight strip avoiding 
height changes due to time differences. 

- The classification uses a certain weight for every feature 
taking into account the individual benefit of this feature for 
the classification. 

 
However some facts are not taken into account: 
 

- Systematic changes of intensity and point density across 
the flight direction are not be modelled. 

- The needed classification parameters are not derived 
from data. The user has to set these values. 

- The features missed points, segment length and 1D point 
density refer to one scan line, leading to a more noise 
depended classification result. 

- The features missed points, segment length and 1D point 
density are correlated, which is not considered in the 
classification process. 

 
3. CLASSIFICATION OF WATER POINTS WITH 

SUPERVISED FUZZY LOGIG CONCEPT 

Based on the evaluation in chapter 2.4, fuzzy classification 
(Brzank and Heipke, 2006) was improved. First, the number of 
features was reduced to height, intensity and 2D point density. 
The features missed points, segment length and 1D point 
density were replaced by the new feature 2D point density. 
Thus, for every point the number of Lidar points inside a given 
polygon is determined. The centre of the polygon is given by 
the point of interest. Then, the number is divided by the size of 
the polygon. Furthermore, the feature slope was removed. 
In order to tackle systematic changes of intensity and 2D point 
density their weights depend on the angle of deflection of the 
measured point. This leads to a new formula to calculate the 
entire membership value of class water (equation 1). 
 
 
 
       (1) 
 
 

h, i, p, α individual height, intensity, 2D point 
density and angle of deflection 

δH, δI(α), δP(α) weight for features height, intensity, 2D 
point density 

μH(h), μI(i,α), μP(p,α) membership value water of features 
height, intensity, 2D point density 

μ(h,i,p,α) entire membership of class water 
 
3.1 Determination of classification parameters from 

training areas 

In order to classify Lidar data into water and mudflat with the 
proposed fuzzy logic concept several classification parameters 
are needed. Table 1 shows these parameters and their function. 
As pointed out earlier, all parameter are to be derived 
automatically from training areas. 
 

classification parameter function 
two thresholds to limit the 
application range of the 
membership function, 
(intensity and 2D point 
density) 

transforms crisp height value 
into fuzzy membership value 
for height (intensity and 2D 
point density) 

constant weight for height describes how useful the 
feature height is evaluated for 
the selected data set 

individual weight for 
intensity (2D point density) 

describes how useful the 
feature intensity (2D point 
density) is evaluated for the 
selected point 

water thresholds - low and 
high 

classification of fuzzy 
membership value of every 
point into class water or 
mudflat 

Table 1. Classification parameters and their function 
 
First, training areas for the classes water and mudflat are 
determined. Typically, prior knowledge is used to define these 
areas. Then, all Lidar points inside these areas are extracted. 
Afterwards, the mean height and the corresponding standard 
deviation for all water and mudflat training areas are calculated. 
Due to a systematic dependency of intensity and 2D point 
density on their angle of incidence, the mean values and 
standard deviations are not significant. Hence, the mean 
intensity (2D point density respectively) must be referenced 
either with the angle of incidence β or the angle of deflection α. 
For reason of simplicity, we use in this paper only α. In order to 
calculate α, the flight trajectory must be available. Based on the 
actual position of the plane for each scan line α can be 
calculated for every point. If β should be used, the difference 
between the angle of deflection and the corresponding surface 
normal must be determined. For this purpose, the DTM is 
needed. Afterwards, the feature values of intensity and 2D point 
density of every point can be associated with the corresponding 
angle. These value pairs are used to fit a monotonically 
decreasing function for both classes. Generally, every function, 
which describes the systematic dependency correctly, can be 
used. We chose a function with 4 parameters (see equation 2), 
which was formerly used as weight function in linear prediction 
with robust filtering (Kraus and Pfeifer, 1998). 
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Figure 2 shows a typical result of function fitting for intensity 
of both classes. It can be seen that intensity decreases, if the 
angle of deflection increases.  
 

 
Figure 2. Intensity for both classes as a function of the angle of 
deflection α 
 
3.1.1 Determination of membership function and their 
corresponding thresholds 
 
In order to transform a crisp feature value into a fuzzy 
membership value, a membership function and two thresholds, 
which limit the application area of the membership function, are 
needed. We define a straight line as membership function. In 
case of the feature height the determined mean value of class 
mudflat is used as lower threshold with membership value 0, 
while the mean value of class water is used as upper threshold 
with membership value 1. In case of intensity and 2D point 
density, the adjusted functions are used. The individual 
threshold low (high) of every point equals the adjusted value of 
function mudflat (water) using the certain angle of the point of 
interest. 
 
3.1.2 Determination of individual weights 
 
In order to calculate the entire membership value of every point 
individual weights have to be determined. We define the weight 
to be in the range of 0 up to 1, where 0 means that the feature is 
not suited and 1 means that the feature is most useful for 
classification. For the feature height, only one constant weight 
is determined, because the height values do not depend on the 
angle of deflection. In case of intensity and 2D point density an 
individual weight depending on the angle at the point of interest 
is obtained. In order to calculate the constant weight of the 
feature height, all training areas for water are combined and the 
mean⎯x and standard deviation⎯s is computed. The training 
areas of mudflat are processed in the same way. Then, the 
values are used to create the Gaussian distribution of the 
probability density (Figure 3). 
 

 
Figure 3. Probability density function of feature height for 
classes water and mudflat  

It can be stated that the higher the overlapping rate of both 
distributions the less useful the feature height is to separate 
between water and mudflat. Based on this conclusion, the level 
of significance for the assumption that both distributions are 
different (H0: ⎯xwater ≠ ⎯xmudflat) is calculated using a statistical 
test. Equation 3 displays the used test statistics tf. Then, the 
corresponding weight is derived from the level of significance 
by linear interpolation. For that purpose, two constraints are set. 
If the level of significance is 50% the weight amounts to 0. In 
case of 100% the weight is 1. 
 
 
     (3) 
 
 
 
For intensity and 2D point density the determination of the 
individual weight is very similar. The adjusted values for 
mudflat and water are calculated using the estimated features of 
equation 2. The residuals of all observations of one class are 
used to calculate the standard deviation. Again, both Gaussian 
distributions are derived and the level of significance is 
determined leading to the individual weight depending on the 
angle of deflection of the point of interest. 
 
3.1.3 Determination of water thresholds  
 
After determination of weights the entire membership value of 
every training point can be calculated using equation 1. Then, 
the mean of all entire membership values of class water and 
mudflat as well as the standard deviation are derived. Now, the 
two Gaussian distributions of the entire membership value are 
created. To find the low and high water thresholds the user 
defines two specific ratios (we normally use 1/10 and 10) of 
probability density water and probability density mudflat. The 
values that match these ratios are used as low and high 
thresholds. 

 
Figure 4. Determination of water threshold low and high 
 
Remark: Generally, a membership value can only lie in the 
range of 0 to 1. For that reason (see chapter 3.1.1) two 
thresholds are used in order to limit the use of the membership 
function. In case of classification all points with feature value 
below threshold low get a membership value of 0, while all 
points with feature value above threshold high get a 
membership value of 1. However, in the analysis of training 
areas the use of the membership function is not limited leading 
to membership values below 0 and above 1. This is necessary in 
order to create normal distributions of the entire membership 
value water (see Figure 4). 
 

4. EXAMPLES 

In order to demonstrate the ability of the algorithm, two 
examples are presented in the section. The first example 
contains a part of a flight strip of the campaign “Friedrichskoog 
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2005”, which is situated at the coast of the North Sea next to the 
estuary of the river Elbe. The flight was carried out by the 
German company Toposys using their Lidar system Falcon II. 
The second example is a part of a flight strip of the campaign 
“Juist 2004”. The flight was carried out by German company 
Topscan using an ALTM2050 from Optech in order to capture 
Lidar data of the East Friesian island Juist and its surrounding.  
 

 
Figure 5. Orthoimage of Lidar campaign “Friedrichskoog 2005” 
(left) and  Lidar points of a part of a flight strip – intensity 
coded (right) 
 

Figure 5 (left) shows an orthoimage (size: 1.5km length, 1.3km 
width) of the campaign “Friedrichskoog”. In the image some 
tidal trenches filled with water as well as a huge water covered 
swale can be seen. Figure 5 (right) displays captured Lidar 
points of a part of a flight strip. The points are coded in relation 
to their intensity (low intensity – bright colour, high intensity – 
dark colour). It can be seen that the intensity values in the 
middle of the strip are significantly higher than at the border. 
Hence, a systematic dependency of the deflection angle exists. 
 

  
Figure 6. Orthoimage of Lidar campaign “Juist 2004” (left) and 
Lidar points of a part of a flight strip – intensity coded (right) 
 
Figure 6 displays an orthoimage (size: 4km length, 2.6km 
width) of campaign “Juist”. There is a huge tidal trench situated 
south of the island. Again, intensity values are significantly 
smaller for water than for mudflat. However, a systematic 
dependency of intensity is not obvious. 
Based on the orthoimage a training area for each class was 
manually selected. Afterwards, all classification parameter were 
derived from automatic analysis of the training areas. Figure 7 
and 8 show the dependency of both classes from angle of 
deflection for features intensity and point density. The blue 
(pink) line marks the average feature value of class water 
(mudflat), while cyan (ochre) area indicates the single standard 
deviation of all residuals. As was already obvious from Figure 
5, intensity of points from campaign “Friedrichskoog” is 
systematically influenced by the angle of deflection. Intensity 
of water and land differ strongly in case of a small angle of 
deflection. The more the angle increases, the more the 
intensities for both classes resemble each other. At the border of 
the flight strip the intensity of water and land do not differ 
significantly. Hence, the intensity weight within the 
classification has its maximum for α = 0 and decreases, if α 
increases. At the border of the flight strip, intensity is not 
considered in the classification. In contrast to the intensity, the 
point density only differs marginally between classes water and 

mudflat. The scan pattern has almost no holes for both training 
area. Hence, the individual weight of point density is always 0. 
 

Figure 7. Determination of systematic changes of intensity (up) 
and point density (down) depending on the angle of deflection - 
Friedrichskoog 
 
The intensity and point density of Lidar points from the 
campaign “Juist” only slightly depend on the individual angle 
of deflection. However, intensity and point density of both 
classes significantly differ from each other for all angle of 
deflection. Thus, both features are effective within 
classification. 
 

Figure 8. Determination of systematic changes of intensity (up) 
and point density (down) depending on the angle of deflection - 
Juist 
 
Based on automatically determined classification parameters, 
the classification of both datasets was performed. Afterwards, 
classification discrepancies were detected and removed. Finally, 
every classification result was smoothed in order to suppress 
classification noise. Results are displayed in Figure 9 and 10. 
Figure 9 (left) shows the classification result of campaign 
“Friedrichskoog”. Based on a visual comparison of the 
classification result with the orthoimage it can be stated that the 
overall correctness is satisfying. However, some points within 
tidal trenches are misclassified due to waves and noisy intensity 
values. Most highly noisy misclassified points were supressed 
by performing additional checks and smoothing leading to the 
result displayed in Figure 9 (right). 
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Figure 9. Water (blue) and mudflat (yellow) points after 
classification (left), additional checks and smoothing (right) - 
Friedrichskoog 
 
The classification result of campaign “Juist” is visibly slightly 
better. There are only a few misclassified points due to waves 
and intensity noise. 
 

 
Figure 10. Water and mudflat points after classification (left), 
additional checks and smoothing (right) – Juist 
 
In order to evaluate the overall correctness, water and mudflat 
areas were manually digitized from aerial images and the 
resulting areas were used as reference for the automatically 
derived classification. Table 2 lists the results. The correctness 
of campaign “Juist” is higher than for “Friedrichskoog”. Two 
reasons can be found. On one side, intensity does not differ 
significantly for all points while point density is not used for the 
classification “Friedrichskoog”. In case of “Juist”, all features 
differ significantly. Furthermore, height increases very slowly 
at the transition zone from water to mudflat in case of 
“Friedrichskoog” making it very difficult to derive correct 
results. For campaign “Juist” height changes are larger at the 
transition zone leading to a more accurate classification. 
 

 Friedrichskoog 2005 Juist 2004 
Number of 

classified points 1.257.518 1.469.405 

Classified water 
points 592.577 517.858 

Classified land 
points 664.941 951.547 

 Water Land Water Land 
Classified water 

points 
527.641 64.936 510.339 7.519 

Classified land 
points 

4.127 660.814 5.886 945.661 

Correctness [%] 89.0 99.4 98.5 99.4 

Table 2. Evaluated classification results 
 

5. CONCLUSION AND OUTLOOK 

A supervised fuzzy classification approach to separate Lidar 
points into the classes water and mudflat is introduced. The 
algorithm is based on the original Lidar data and classifies 
every flight strip. For the analysis the features height, intensity 
and 2D point density are used. The classification is based on the 
fuzzy logic concept. All necessary classification parameters are 
derived from training areas. Two different examples are 
presented to illustrate the capability of this algorithm. They 
demonstrate that the classification algorithm is able to deliver 
accurate results for different Lidar scanner types. 

Future work will focus on the determination of highly precise 
DTMs for the whole investigated areas. Fur this purpose, 
bathymetric data has to be included in the calculation in order 
to fill areas, which are classified as water. 
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ABSTRACT: 
 
Fluxes of carbon dioxide (CO2), water, and energy measured using the eddy covariance method (EC) will vary spatially and 
temporally within the catchment area of the EC system, especially if parts of the forest are structurally heterogeneous. This is 
important because within site vegetation structural and topographic heterogeneity may tip the balance between an ecosystem being a 
net sink or source of CO2 within a given year. Further, if wind directions are non-varying, the EC method may possibly either over- 
or under-estimate energy and mass fluxes if source locations are not representative of the entire ecosystem. The following study will 
use airborne lidar assessments of canopy structure, a simple flux footprint parameterisation, and EC estimates of net ecosystem 
productivity (NEP), ecosystem respiration (Re), and gross ecosystem productivity (GEP) to test the hypothesis that vegetation 
structural heterogeneity has some influence on CO2 fluxes within a mature jack pine forest in Saskatchewan, Canada. The results 
found in this study indicate that vegetation structural variability (canopy height, depth, and foliage amount) within the site have 
significant influences on the variability in CO2 flux estimates of uptake and respiration made using the EC method. However 
structural heterogeneity is not more important than meteorological driving mechanisms. The influences of structure may therefore 
become more influential in more heterogeneous ecosystems. Variability in vegetation fractional cover (a proxy indicator for foliage 
amount) and height, observed from airborne lidar, have the greatest influences on NEP and GEP, where increased fractional cover is 
directly related to increased CO2 uptake on most days studied.  
 
 

                                                                 
*  Corresponding author.   

1. INTRODUCTION 

Fluxes of CO2, water vapour, and energy vary spatially and 
temporally due to changes in solar radiation, soil and air 
temperature, soil type, the photosynthetic capacity of vegetation 
and foliage density (e.g. Baldocchi et al. 1997; Griffis et al. 
2003). Therefore, it is likely that variability in the conditions 
required for the transfer of CO2 into the ecosystem, via 
photosynthesis, and fluxes of CO2 out of the ecosystem, via 
ecosystem respiration, may be manifested in the vegetation 
structural and topographic heterogeneity within the ecosystem. 
Canopy structural and ground surface topographic variability 
are important considerations when examining the annual carbon 
balance of forests, especially if these affect the differences 
between annual net CO2 uptake and release. Ecosystem 
respiration (Re) plays an important role in the carbon balance of 
many climatically sensitive boreal forests (e.g. Lindroth et al. 
1998) because Re may alter the ecosystem from being a sink for 
atmospheric CO2 to a source. For example, Griffis et al. (2003) 
determined that 46% of net ecosystem productivity resulted in 
CO2 loss through respiration at a mature jack pine site, 
indicating the importance of ecosystem Re to the carbon 
balance. At OJP, CO2 uptake and respiration processes are often 
dependent on canopy foliage cover and solar heating of the 
ground surface, whereby interception of solar radiation by 

greater numbers of leaves results in increased photosynthesis 
and CO2 uptake as well as decreased warming of the soil 
surface, and possibly, decreased Re (Baldocchi et al. 1997). 
Further, within canopy radiation scattering during sunlit (direct 
radiation) and cloudy (diffuse radiation) periods will also affect 
the efficiency with which light is used for photosynthesis, 
especially when the canopy becomes isotropic (Baldocchi et al. 
1997). If water stress is a limitation to vegetation growth, then a 
positive feedback may result whereby productivity (and leaf 
area) will decrease or remain low, and penetration of radiation 
through the canopy will increase causing soils to warm and the 
possibility of respiration increase (Baldocchi et al. 1997).   
 
Airborne lidar, in combination with a spatially and temporally 
varying flux footprint model parameterisation and the eddy 
covariance method (EC) offer one method for which mass and 
energy exchanges can be assessed within complex vegetated 
ecosystems. Footprint parameterisations of the upwind 
distribution area can be used to examine the sources and sinks 
of fluxes such that the relative contributions of elements from 
different places within the ecosystem diffuse with atmospheric 
turbulence to the EC measurement system (Schmid, 1994). 
Particle diffusion is strongly dependent on wind direction, wind 
velocity, the height of the EC system, atmospheric stability, 
roughness length, and land surface heterogeneity (Kljun et al. 
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2004). Flux footprints, therefore, plot the shape in x and y 
coordinates of the source/sink area as well as the probability 
density function (PDF), defined as the probability of the 
distribution of flux throughout the site by continuous sampling 
of that flux, via relative frequency. Airborne lidar can be used 
to determine the relative variability of vegetation structural 
characteristics and topography within an individual flux 
footprint or source/sink area per unit time. The combination of 
source/sink area defined by the footprint model 
parameterisation, flux exchanges measured using the EC 
method, and detailed structural and topographic information 
from lidar will continue to become important mechanisms for 
understanding some of the physical mechanisms associated with 
temporal and spatial variability in CO2 uptake and respiration 
within vegetated environments. 
 
In this study, we use airborne lidar to characterise vegetation 
structural heterogeneity within the contours of half-hourly flux 
footprint maximum area PDFs (approximately 80% of flux 
contribution area) in order to quantify the magnitude of 
influence that within-site canopy structural variability has on 
CO2 uptake and respiration estimated using the EC method. A 
simple footprint climatology parameterisation of Kljun et al. 
(2004) is applied at a naturally regenerating, mature jack pine 
forest in Saskatchewan, Canada. 
 
 

2. METHODOLOGY 

2.1 Study Area 

The study site consists of a fairly homogeneous mature jack 
pine (Pinus banksiana Lamb.) forest (OJP) located near the 
southern edge of the boreal forest in Saskatchewan (520230 E, 
5974262 N, zone 13). The site is maintained by Environment 
Canada for the Fluxnet-Canada Research Network 
(www.fluxnet-canada.ca) and is part of the Boreal Ecosystem 
Research and Monitoring Sites (BERMS). BERMS contains 
multiple chronosequence, fire, and a fen sites for which flux, 
meteorological and mensuration data have been collected 
consecutively since 2005 (Table 1).  
 

Plot 
# 

Elevation 
(m) 

DBH 
(cm) 

Tree 
height 
(m) 

Canop
y depth 
(m) 

LAI Stem 
density 
(m-1) 

1 494.3 15.9 14.9 6.3 1.36 0.12 
2 495.1 14.6 13.6 6.1 1.54 0.08 
3 494.1 11.7 13.0 5.9 1.06 0.17 
4 492.5 12.9 13.3 5.2 1.26 0.15 
5 489.5 17.5 15.7 8.8 1.35 0.09 
6 491.9 16.1 14.9 8.1 1.44 0.1 
7 487.0 11.8 11.4 6.2 1.00 0.14 
8 492.4 23.6 13.4 11.2 1.76 0.04 

Table 1. Average stand characteristics measured at eight plots. 
DBH = diameter at breast height, LAI = Leaf area index. 
Corrections for canopy clumping, woody-to-total area ratios 
and needle-to-shoot area ratios were used to adjust LAI 
according to Chen et al. (2006). 
 
Elevation within the EC catchment area at OJP (1000 m radius) 
varies between 482 and 494 m, and cross-site variability in tree 
heights range from approximately 13 m and 18 m. Mensuration 
data were collected at eight plots during the growing season of 
2005, coincident with the airborne lidar survey (Table 1). 
Mensuration plots (11.3 m diameter) were set up and 
georeferenced using survey-grade (differential, post-processed) 

GPS such that four plots were located within 100 m of the flux 
measurement tower, and four plots were located within 500 m 
of the tower for spatial representivity. Understory vegetation 
consists of alder (Alnus crispa Ait.), reindeer lichen (Cladina 
spp.), and bearberry (Arctostaphylos uva-ursi L.).  Soils within 
the site tend to be sandy and dry with little nitrogen content 
(Baldocchi et al. 1997).   
 
2.2 EC Flux Estimates 

Three, approximately one to two week periods of flux and 
meteorological data were examined during the dry growing 
season of 2002. CO2 observations were excluded during periods 
of rainfall and low wind speed. Average tree height growth 
since 1996 was approximately 1 m, therefore growth between 
2002 and 2005, when the lidar survey was performed, is 
minimal and within the range of error of the lidar system used. 
Vegetation growth likely has an insignificant influence on the 
results of the analysis. 
 
Above canopy CO2 fluxes were measured at approximately 30 
m above the ground surface using the eddy covariance method 
at 10 Hz and aggregated to 30-minute periods. EC 
instrumentation and methodology are discussed in Barr et al. 
(2004). In this study, net ecosystem productivity (NEP) 
(μmol⋅m-2⋅s-1) is directly measured by the EC system where 
NEP = net ecosystem exchange (-NEE) (μmol⋅m-2⋅s-1). 
Therefore, a positive NEP indicates that the ecosystem uses 
more CO2 for photosynthesis than it releases. Re (μmol⋅m-2⋅s-1) 
is modelled via the relationship between night-time respiration 
and soil temperature (Barr et al. 2004). Gross ecosystem 
productivity (GEP) (μmol⋅m-2⋅s-1), defined as the uptake of CO2 
by the ecosystem for photosynthesis, is calculated from NEP 
and Re whereby GEP = NEP + Re. It is important to note that 
NEP is the most direct estimate of CO2 flux measured using the 
EC. GEP and Re, on the other hand, are modelled based on soil 
temperature relationships and may possibly be over- or under-
estimated. Fluxes have been averaged over coincident 30-
minute periods during daylight conditions. Daytime is defined 
as the above-canopy incoming shortwave radiation >0.5 W⋅m-2 
to avoid errors in EC measurements, occasional condensation 
on radiation sensors, and footprint model parameterisation 
during generally stable nocturnal atmospheric conditions. 
Uncertainties in measuring carbon fluxes occur because, during 
calm and stable conditions, the transfer of carbon dioxide by 
non-turbulent exchanges is not detected by the EC system 
(Griffis et al. 2003). Further, early morning and late afternoon 
periods were not examined due to CO2 storage and ‘flushing’ of 
CO2 out of the ecosystem, not related to canopy structure. 
 
Variability in CO2 fluxes caused by meteorological influences 
such as soil moisture, soil temperature, air temperature, relative 
humidity, incoming photosynthetically active radiation (PAR), 
and vapour pressure deficit have been removed using residual 
analysis (not shown) (e.g. Chen et al. 2002).  Therefore, 
influences of vegetation structure on CO2 fluxes are examined 
after all meteorological driving mechanism influences have 
been removed. Average 24-hour energy balance closure for 
each day and each period studied was determined using the 
Energy Balance Ratio method (Wilson et al. 2002). Average 
energy balance closure during the first period of study was 
~88% (standard deviation = ~10%), during the second period 
was ~83% (standard deviation = ~8%), and during the third 
period was ~85% (standard deviation =~14%).    
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2.3 Lidar Data Collection and Processing 

Lidar data were obtained at OJP using a small-footprint, 
discrete pulse return ALTM 3100 (Optech Inc., North York, 
Ontario), owned and operated by the Applied Geomatics 
Research Group, Nova Scotia on August 12, 2005. Up to four 
laser pulse returns were obtained per laser pulse emitted, at a 
rate of 71 kHz and at a flying height of 950 m a.g.l. The scan 
angle was set at ± 19o with 50% overlap of adjacent flight lines. 
This enabled penetration of the laser pulses through to the base 
of the canopy, whilst also obtaining returns on all sides of 
individual tree canopies (Chasmer et al. 2006). Cross-track and 
down-track resolutions, with the 50 percent overlap of scans, 
are 35 cm (“post spacing”). 
 
Percentile distributions, frequently used to estimate average tree 
canopy heights using lidar data (e.g. Magnussen and Boudewyn 
1998) were used to approximate average tree heights and base 
of live crown height (used to determine live canopy depth, 
where depth = canopy height – canopy base height) at the plot 
level and also within-footprint probability density function 
(PDF) contours using a canopy height model (CHM). Height 
and live canopy base height percentile distributions were 
calculated on individual laser pulse returns greater than or equal 
to 2 m above the ground surface so that laser pulse returns from 
the ground surface would not influence and shift the percentiles 
downwards. Also, the 2 m threshold was used to receive pulses 
from the canopy only, as opposed to stems and understory. 
Percentile distributions were also compared at eight individual 
plots to determine the most accurate and descriptive percentiles 
to use. The 90th and 8th percentiles were most appropriate for 
determining average tree heights and base of live crown height 
at the plot level at OJP. Accuracy in predicting tree heights and 
base of live crown height were 0.94 and 0.77 (coefficients of 
determination) for the 90th (corresponding to canopy height) 
and 8th (corresponding to base of live crown height) percentiles, 
respectively. Differences between average measured canopy 
height, canopy height derived from airborne lidar (L90 = 90th 
percentile), and average canopy base height, canopy base height 
derived from airborne lidar (L8 = 8th percentile) are shown on a 
per plot basis in Table 2.  These were then applied to laser pulse 
returns within the 30-minute footprint 80% PDF contour lines.  
 
A proxy for plant area index (PAI) has been created from laser 
pulse returns within the canopy and the total number of laser 
pulse returns, following a simple methodology discussed in 
Morsdorf, et al. (2006) for gap fraction and fractional cover. 
Gap fraction increases when gaps within the canopy increase, 
thereby resulting in increased radiation passing through the 
open canopy without intercepting foliage. The inverse of this is 
“fractional coverage” or fcover whereby gaps are represented 
by a foliage cover of zero, and increased radiation interception 
results in increased fractional coverage of foliage. Laser pulses 
can exhibit similar properties to solar radiation as they pass 
through the canopy. Laser pulses that are returned from within 
the canopy have been effectively ‘blocked’ by the canopy from 
reaching the ground. Laser pulses that reflect from the ground 
surface likely passed through gaps within the canopy. 
Therefore, the ratio of the laser pulses returned from within the 
canopy to those returned from the ground surface is a 
reasonable proxy for the gaps within the canopy and the 
fractional coverage of leafy and woody material intercepting 
radiation.  
 
To obtain spatial estimates of fcover, laser pulses have been 
classified using “canopy” and “non-canopy” pulse returns 

within Terrascan (Terrasolid, Finland) such that all laser pulses 
located 1.3 m above ground level were classified as “canopy” 
and all pulses located below 1.3 m, including ground were 
classified as “low vegetation and ground”, coincident with the 
height of the digital camera, and photographs. Vegetation 
fractional coverage from lidar has been determined by counting 
the total number of “canopy” laser pulse returns and then, by 
counting the total number of “low vegetation and ground” laser 
pulse returns within corresponding 1 m x 1 m x 30 m columns. 
Counts were performed within Surfer (Golden Software Inc., 
Golden, Colorado) and fcover was determined for the entire 
area within the EC catchment using the SAS statistical package 
(SAS Institute Inc., Cary, North Carolina). fcover is calculated 
as:  
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⎝

⎛
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∑
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where Pcanopy is the total frequency of laser pulse returns 
within the canopy, and Pground is the total frequency of laser 
pulse returns for low vegetation and ground within each 1 m x 1 
m x 30 m column (Figure 1) throughout the catchment area of 
the EC (approximately 750 m radius). Fcover has been 
compared with estimates of gap fraction (1-fcover) and 
effective leaf area index (LAIe) for 9 of 10 analus rings 
determined from digital hemispherical photography (DHP) (r2 = 
0.68) (Leblanc et al. 2005). This indicates that fcover is a 
reasonable estimate of leaf area at this site, when compared 
with DHP. In order to correct LAIe obtained from DHP, the 
needle-to-shoot area ratio, woody-to-total area ratio, and 
clumping index from Chen et al. (2006) were used.  
  

Plot 
# 

Ave. 
height 
(m) 

L90 
(m) 

Diff. 
(m) 

Ave. canopy 
base height 
(m) 

L8 
(m) 

Diff. 
(m) 

1 14.9 14.8 -0.1 6.3 6.1 -0.2 
2 13.6 14.1 0.4 6.1 5.9 -0.2 
3 13.0 13.0 0 5.9 6.1 0.2 
4 13.3 13.7 0.4 5.2 5.3 0.1 
5 15.7 14.7 -1.0 6.9 7.0 0.1 
6 14.9 14.7 -0.2 6.8 6.5 -0.3 
7 11.4 12.0 0.6 5.2 6.1 0.9 
8 13.4 14.9 -1.5 5.2 6.0 0.8 

Table 2. Average canopy height and canopy base height 
measured on a per tree basis within individual 11.3 m radius 
mensuration plots compared with lidar estimated canopy 
heights and canopy base height determined using percentile 
distributions (L90 and L8, respectively).  
 
The amount of vegetation fractional cover (fcover) is illustrated 
at OJP in Figure 1. The site tends to be relatively homogeneous, 
with fcover ranging between 0.2 and 0.5. The area immediately 
surrounding the EC flux station tends to have the lowest fcover, 
on average. Areas to the north and south tend to have large gaps 
within the canopy and little foliage cover. Interestingly, low-
lying areas, which often contain alders, tend to correspond with 
areas of higher fcover and tree height (not shown) due to the 
nitrogen fixing capabilities of alder and increased resources for 
jack pine growth (Vogel and Gower, 1998). 
 

98

ISPRS Workshop on Laser Scanning 2007 and SilviLaser 2007, Espoo, September 12-14, 2007, Finland



 

 
Figure 1. Vegetation fractional cover mapped at 1 m resolution 
at OJP. White circles represent field mensuration plot locations, 
and the central white circle represents the location of the EC 
flux station. All plots were located using survey-grade, post 
processed GPS with base and rover within 4 kms of each other 
at all times. 
 
2.4 Footprint Parameterisation 

The footprint parameterisation used in this study follows that 
discussed in Kljun et al. (2004). The parameterisation was 
chosen because a) the cross-wind integrated footprint is 
considered; b) it incorporates variables that are easy to derive 
from measurements obtained from EC; c) it is neither 
computationally difficult nor time-intensive; and d) it has been 
thoroughly applied and tested using a variety of meteorological 
(e.g. varying stability, roughness length, etc.) and technological 
(instrument measurement height) applications.  
 
Briefly, the crosswind-integrated footprint ( yf ) as discussed in 
detail in Kljun et al. (2004), is scaled based on the along-wind 
distance from the receptor (x), the receptor height (zm), 
roughness length (z0), and the height of the planetary boundary 
layer (H). Directionality and origin of the flux is also 
determined from wind direction. Particle advection and 
diffusion is accounted for in the surface friction velocity (u*), 
whereas buoyancy and the formation and size of eddies within 
the planetary boundary layer are described as the standard 
deviation of the vertical velocity (σw). These parameters create 
the non-dimensional form of the cross-wind integrated footprint 
F* based on four dimensionless contributions and a function of 
the non-dimensional along-wind distance X* (see Kljun et al. 
2004). Dispersion in the y direction (the cross-wind distance 
from the centre-line) has been estimated using a Gaussian 
function (e.g. Amiro, 1999). Roughness length (z0) at OJP has 
been calculated from Choudhury and Monteith, (1998) based on 
the height of the canopy, soil surface roughness, LAI, the height 
of the understory and zero-plane displacement. Therefore z0 for 
OJP, using an average measured tree height of 14.16 m is 1.93 
m and varies between 1.55 m and 2.23 m for averaged shortest 
and tallest trees within measured plots (11.4 and 16.4 m, 
respectively). The location of maximum flux varies between 
200.2 m and 175.8 m from the flux tower for footprints 
containing shorter trees to footprints containing taller trees, 
respectively. The 80% origin of the flux area varies between 
438 m (short trees) to 384 m (tall trees). Therefore the along 
wind distance (and subsequent error in footprint extent) may 
vary by as much as 50 m or approximately 10% of the total 
footprint (≥ 80%) in the x direction. However, variable wind 
speed and boundary layer height will also alter the length of the 
footprint (not shown). Finally, Richardson number (Ri) is used 
to determine approximate stability of the atmosphere (Monteith 

and Unsworth, 1990) using air temperature and windspeed at 
30-minute periods during relatively unstable conditions when u* 
is >0.2 ms-1. Ri can therefore be used to approximate the height 
of the planetary boundary layer (H). Measured boundary layer 
heights were found to sometimes exceed 1.75 km during the 
growing season at OJP. A flux footprint example with 
maximum and 80% contour lines is provided in Figure 3 
overlaid onto a canopy height model at OJP on June 13, 2002 at 
10:00 (LST). The 80% contour (outer) line is used to extract 
within footprint canopy structural information for each 30-
minute period throughout the day. 

 
Figure 2. 30-minute flux source contour lines at 80% (outer 
contour) and maximum (inner contour) total integrated footprint 
on June 13, 2002 at 10:00 LST. The footprint has been overlain 
onto the lidar CHM at OJP. The arrow represents average wind 
direction during the 30-minute period. 
 

3. RESULTS AND DISCUSSION 

3.1 Vegetation Structural Influences on CO2 

In this study, the maximum part of the footprint is plotted such 
that a PDF of CO2 flux ≥ 0.001 m-1, and is within 500 m of the 
EC system (limited to the upwind areas only). The remaining 
parts of the footprint often extend up to and beyond the 1 km 
radius of the EC system, especially during stable conditions. 
Parts of the footprint that are outside of the 80% PDF tend to 
contribute relatively little compared to the maximum source of 
flux area. As such, canopy structural variability within the 
footprint (e.g. tree height, canopy depth, and fcover), play an 
important role on the residual variability in CO2 fluxes after 
accounting for meteorological influences. Topography also 
plays an important role, but is not examined here. Table 3 
provides summary results on remaining (residual) variability in 
30-minute fluxes due to structural variability after accounting 
for meteorological driving mechanisms. 
 
NEP at OJP is significantly influenced by within site canopy 
structural heterogeneity (vegetation height, canopy depth, and 
fcover) on 16 of 22 days examined (p<0.1) (Table 3). Further, 
the magnitude of influence tends to vary on a daily basis, often 
with respect to variations in meteorological driving mechanisms 
and likely, resource use. On five days, average structural 
variability accounts for 25% of the total variability in NEP, but 
does not play a more significant role than meteorological 
driving mechanisms on any given day. Meteorological driving 
mechanisms account for 74%, 75% and 52% of the variability 
in NEP, on average, during the periods studied (June, July, and 
August, respectively). Throughout the three periods of study, 
structural variability accounts for ~16% of the total variability 
in NEP on average during 18 of 22 days or 81% of the time 
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period. In most cases, increased biomass associated with 
increased tree heights, base of canopy height, and increased 
fcover were positively related to increased CO2 uptake used for 
photosynthesis. However, during three of the days studied, the 
opposite was found to be true, especially in June, and one day 
in August, when the source was located within upland areas. 
This may be related to cooler air temperatures, lower incoming 
PAR and reduced carbon uptake on June 11, 2002, and 
increased air temperatures and respiration on June 13, and 
August 10 2002, leading to a reduction in NEP. 
 

Date 
(2002) 

Tree 
Height 
(r2) 

Canopy 
Depth 
(r2)  

fcover 
(r2)  

% of total  
varia-
bility in 
NEP  

# of 
days 
affec
ted 

June 10 
June 11 
June 13 
June 14 

0.03 
-0.41 
-0.05 
0.08 

0.06 
-0.36  
-0.05 
0.05 

0.07 
-0.36 
-0.2 
0.03 

4 
-29 
-8 
4 

4 of 
6  

July 6 
July 7 
July 8 
July 10 
July 12 

0.11 
0.2 
0.06 
0.021 
0.7 

0.18 
0.001 
0.09 
0.09 
0.57 

0.04 
0.45 
0.22 
0.013 
0.43 

8 
16 
9 
3 
43 

5 of 
9   
 

Aug. 7 
Aug. 8 
Aug. 9 
Aug. 10 
Aug. 11 
Aug. 12 
Aug. 13 

0.26 
0.02 
0.09 
-0.09 
0.18 
0.16 
0.27 

0.1 
0.04 
0.05 
-0.06 
0.12 
0.02 
0.24 

0.18 
0.16 
0.07 
-0.02 
0.09 
0.35 
0.1 

26 
11 
10 
-8 
19 
25 
29 

7 of 
7  
 

Table 3. Coefficients of determination of the residual of NEP 
flux variability for individual canopy structural components, as 
well as the percent of the total variability in NEP accounted for 
by canopy structure. Negative signs indicate that NEP is 
negatively correlated with increases in biomass (e.g. via height, 
depth, or fcover) per day studied. Missing days indicate 
relationships that were not significant (p<0.1). 
 
In the case of GEP, estimated as the total CO2 used for 
photosynthesis, it is expected that footprint areas containing 
taller trees and increased fcover, as well as greater depth of 
canopy will be positively related to increased CO2 uptake for 
photosynthesis. During 14 of the 22 days studied, structural 
variability in vegetation characteristics have a significant 
influence on GEP (p<0.1) (Table 4), but also does not have a 
greater influence than meteorological driving mechanisms, 
which account for 74.5%, 47.5%, and 82% of GEP variability 
during the three periods of study (June, July, and August, 
respectively). On average, ~12% of the total variability in GEP 
is influenced by vegetation structural characteristics. Positive 
and significant increases in GEP with increased fcover tend to 
correspond during certain days with greater average incoming 
photosynthetically active radiation (PAR), especially in July 
and to a lesser extent, in August. Canopy height and fcover 
have the most significant influence on NEP and GEP flux 
variability. Canopy depth, although correlated with vegetation 
height, tends to have a lower influence on CO2 uptake.  
 
Within footprint average structural heterogeneity has a lower 
influence on modelled Re because atmospheric and 
hydrological driving mechanisms play more of a key role in 
ecosystem respiration (Table 5). Meteorological driving 
mechanisms account for more than 80% of the variability in Re. 
On 13 of 22 days studied, structure has a significant influence 
on Re, and on 10 of these days, structural influences are ≥ 5% 
of the total variability in Re. Average structural influences 

throughout the 13 of 22 days studied account for ~9% of the 
total variability in Re. It is likely that ground surface 
topography also plays an important role in GEP, NEP, and Re, 
and will be examined in a future study. 
 

Date 
(2002) 

Tree 
Height 
(r2) 

Canopy 
Depth 
(r2)  

fcover 
(r2)  

% of total  
varia-
bility in 
GEP  

# of 
days 
affect- 
ed 

June 11 0.28 0.26 0.2 20 1 of 6  

July 6 
July 7 
July 8 
July 10 
July 11 
July 12 

0.14 
0.16 
0.23 
0.02 
0.008 
0.7 

0.10 
0.0002 
0.03 
0.12 
0.17 
0.6 

0.05 
0.35  
0.17 
0.007 
0.03 
0.014 

7 
13 
11 
4 
5 
33 

6 of 9  
 

Aug. 7 
Aug. 8 
Aug. 9 
Aug. 10 
Aug. 11 
Aug. 12 
Aug. 13 

0.24 
0.02 
0.14 
0.001 
0.09 
0.09 
0.02 

0.08 
0.04 
0.09 
0.17 
0.05 
0.04 
0.03 

0.23 
0.15 
0.11 
0.06 
0.16 
0.28 
0.11 

14 
5 
9 
11 
14 
20 
8 

7 of 7  
 

Table 4. Coefficients of determination of the residual GEP flux 
variability due to within-footprint variations in canopy structure 
after the influence of meteorological driving mechanisms have 
been removed. Negative signs indicate that GEP is negatively 
correlated with increases in biomass. Missing days indicate 
relationships that were not significant within p<0.1. 
 

Date 
(2002) 

Tree 
Height 
(r2) 

Canopy 
Depth 
(r2)  

fcover 
(r2)  

% of total  
varia-
bility in 
Re 

# of 
days 
affect- 
ed 

June 10 
June 11 
June 13 
June 14 
June 15 

-0.34 
-0.15 
0.46 
-0.12 
-0.15 

-0.34 
-0.12 
0.42 
-0.10 
0.07 

-0.025 
-0.014 
0.53 
-0.11 
0.003 

-13 
-5 
25 
-6 
-4 

5 of 6 
days 

July 5 
July 7 
July 8 
July 13 

-0.35 
-0.11 
-0.16 
-0.26 

-0.38 
-0.0008 
-0.19 
-0.28 

0.08 
-0.26 
-0.28 
-0.29 

-13 
-6 
-10 
-13 

4 of 9 
days  
 

Aug. 7 
Aug. 8 
Aug. 12 
Aug. 13 

-0.38 
0.001 
-0.31 
0.07 

-0.46 
0.008 
-0.26 
0.05 

-0.17 
0.15 
-0.23 
-0.13 

-12 
2 
-10 
-3 

4 of 7 
days 
 

Table 5. Coefficients of determination of the residual Re flux 
variability due to canopy structural variability as well as the 
total variability in Re accounted for by canopy structure. 
Negative signs indicate that variability in Re is negatively 
correlated with canopy structure (e.g. increased Re is associated 
with locations with decreased biomass). 
 
3.2 Potential Uncertainties and Future Research 

The results from this study corroborate results from other 
studies, with respect to canopy structural influences on CO2 
fluxes, however, in this study, we have also quantified the 
magnitudes of influence that canopy structure has on CO2 
fluxes. Despite this, some potential uncertainties may slightly 
alter the results of the analysis and could be examined in the 
future. We will discuss each of these in turn. 
Within footprint canopy height, depth and fcover will likely 
depend on the configuration of the lidar survey, especially 
where the calculation of fcover depends on a ratio of canopy to 
below canopy laser pulse returns. Changing lidar survey 
specifications will slightly alter the canopy structural 
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characteristics (e.g. Chasmer et al. 2006). Because a ratio is 
used, it is likely that lower densities of laser pulse returns will 
yield the same results as higher densities, so long as the 
probability of distribution of laser pulse returns between the 
canopy and the ground surface does not change. Tests on the 
influence of changing lidar survey specifications, etc. may be 
the focus of future research or a flux footprint sensitivity 
analysis.  
 
In this study, we also assume that the canopy is non-varying 
throughout the growing season, and therefore ignore periods of 
needle flush in June, which will alter the photosynthetic 
capacity and uptake of CO2 at this site.  
 
The flux footprint parameterisation used in this study, like all 
models, is a simplification of the processes that are believed to 
be occurring within the EC catchment area. It therefore has 
assumptions that may alter the size and accuracy of the location 
of the footprint. By using 80% of the footprint probability 
density function, we have effectively reduced the error to the 
most probable location of the footprint, if wind directions are 
not highly variable within the period. Another source of error 
may be caused as a result of temporal lag effects of turbulent 
transfer of fluxes to the EC system. Further, variability in the 
spatial distribution of vegetation heights associated with 
roughness length, leaf area, photosynthetic capacity, and 
elevation will influence the extent and probability of flux in x 
and y directions. Geographic information systems are now able 
to include complex layers of data, as well as a variety of 
indices, such as topographic wetness index, vegetation indices, 
spectral characteristics, and so on. These can be integrated to 
form more complete and operational flux footprint 
parameterisations for individual sites.  
 

4. CONCLUSIONS 

The results of this analysis indicate that CO2 fluxes within this 
relatively homogeneous ecosystem are frequently related to 
differences in vegetation structural heterogeneity within the 
site. Variability in structure and fluxes of CO2 and H2O 
throughout the EC catchment area will also have influences on 
spatial and temporal variability in light use efficiency (LUE) 
and water use efficiency (WUE) frequently used in ecosystem 
and remote sensing-based ecosystem models. CO2 fluxes within 
heterogeneous forests may have increased dependency on 
canopy structure and topography (not examined), and these may 
be a deciding factor in whether the annual carbon balance of a 
vegetated ecosystem is a net sink or a net source.  
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500, rue J.F. Breton 34093 Montpellier Cedex 5, France - firstname.lastname@teledetection.fr

3 Laboratoire LIRMM, UMR CNRS 5506, Université Montpellier II
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ABSTRACT:

Unlike airborne multi-echo laser scanner systems, full-waveform systems are able to digitize and record the entire backscattered signal
of each laser pulse. It has been demonstrated that decomposing the return waveforms into a mixture of Gaussian components was
suitable. In this paper, we focus on the improvement of peak detection and of raw signal modelling. Refined peak detection greatly
increased the number of detected targets as well as their positional accuracy. Models more complex than the Gaussian model, such
as the Lognormal or generalized Gaussian functions, were introduced and their contribution to waveform processing was studied. In
this way, fitting of asymmetric, peaked or flattened echoes located both in urban and forested areas could be improved. Moreover,
introduction of new echo parameters allowed the extraction of additional information on the target shape. This should make easier the
decorrelation of geometric and radiometric influences on the signal and, as a consequence, the improvement of point cloud classification
algorithms.

1 INTRODUCTION

Airborne laser scanning is an active remote sensing technique
providing range measurements between the laser scanner and the
Earth topography. Well-known direct georeferencing processes
turn such distance measurements into 3D point clouds with high
accuracy and relevancy. Even for small footprints, there may be
several objects of different range within the travel path of the
laser pulse that generate individual backscattered echoes. Conse-
quently, conventional lidar systems measure the first echo of the
incoming signal (”first pulse”) and the last echo (”last pulse”).
Some are able to measure up to six pulses and more advanced
systems also provide signal intensity.

During the last decade, a new generation of airborne laser scan-
ners that are able to digitize and record the entire backscattered
signal of each emitted pulse has appeared. They are called full-
waveform (FW) lidar systems.
Historically, the first FW lidar systems were designed in the 1980s
for bathymetric purposes (Guenther and Mesick, 1988). The first
operational topographic system, developed by the NASA, ap-
peared in 1999. The LVIS sensor (Laser Vegetation Imaging
Sensor) was an improved version of a former satellite system,
SLICER, developed in 1994 (Blair et al., 1999). SLICER was
designed to describe the vertical structure of the canopy over
extensive areas (Harding et al., 2001). LVIS data processing
demonstrated the potential of recording return waveforms to char-
acterize woodland areas and to measure the Earth topography,
even ground beneath the canopy. First algorithms for classifying
ground points by analysing the return waveform were developed
and then resumed for the following system, GLAS, carried by the
ICESAT satellite (2003-2006) (Zwally et al., 2002).
The first airborne commercial full-waveform lidar system has been
operational since 2004 (LiteMapper-5600 lidar system based on
the Riegl LMS-Q560 laser scanner) (Hug et al., 2004) and several
features are now available for cartographic purposes.

Full waveform data hold large potentialities since it may over-
come many drawbacks of classical multi-echo lidar data. More

control is given to an end user in the interpretation process of
the physical measurement. FW lidar data yield more than a ba-
sic geometric representation of the Earth topography. Instead of
3D point clouds, more detailed and additional information are
provided about the structure of the illuminated surfaces with off-
line processes. Thus, in addition to single range measurements,
further physical properties of the objects included in the diffrac-
tion cone may be found with a backscattered waveform analy-
sis. For example, in vegetated areas, more 3D points may be
extracted, low vegetation can be separated from ground and both
canopy and ground heights can be measured with higher accuracy
(Dubayah and Blair, 2000).

Many studies have already been carried out to perform full wave-
form lidar data processing and analysis. Return waveform (1D
signal) processing to extract more information than a single range
measurement is the first main step. Non-linear least-squares (NLS)
methods (Hofton et al., 2000, Reitberger et al., 2006) or maxi-
mum likelihood estimation using the Expectation Maximization
(EM) algorithm (Persson et al., 2005) are typically used to fit the
signal to a mixture of Gaussian functions to detect and parametrize
the peaks. It was found in general that small-footprint lidar wave-
forms can be well modelled with a sum of Gaussian pulses (Wag-
ner et al., 2006).
Geometric and radiometric influence of the hit targets have not
been yet decorrelated. Therefore, point cloud segmentation algo-
rithms using peak intensity and width still lead to a certain rate of
misclassification without a good theoretical understanding of the
waveform response for different targets (Ducic et al., 2006).

The aim of this study is to investigate further lidar return wave-
form processing. First, a raw signal modelling is proposed with
Gaussian, Lognormal and generalized Gaussian functions. In-
deed, waveforms can be very similar to an ideal Gaussian func-
tion (Wagner et al., 2006) whereas other laser impulse responses
are slightly asymmetric (Hofton et al., 2000, Jutzi and Stilla,
2006). Consequently, approximating the waveforms using a sum
of Gaussians may not be an accurate representation depending on
the application and the target.
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Figure 1: Amplitude image of the first echoes detected by the embedded real-time system, displayed in the sensor geometry.

A NLS algorithm is then performed with robust initial parameter
estimates to improve usual approaches.
Finally, the contribution of proposed functions is discussed as
well as the potentialities of new echo parameters for both urban
and vegetation area mapping.

2 FULL-WAVEFORM LIDAR DATA

The data acquisition was performed in September 2006 with
the RIEGL LMS-Q560 system over the city of Biberach (Bade
Wutermberg, Germany). The main technical characteristics of
this sensor are presented in (Wagner et al., 2006). The lidar
system operated at a pulse rate of 100 kHz. The flight altitude
was about 500 m and the footprint size was 0.25 m. RIEGL full-
waveform system allows to determine the vertical distribution of
targets within the diffraction cone with a temporal resolution of
around 1 ns. The target resolution of the system is close to 0.6 m
and the spatial resolution (i.e. the distance between two samples)
is 0.3 m. The surveyed area includes both residential, industrial
and dense vegetated areas (figure 1). The point density is about
2.5 pts/m2.

Each return waveform is composed of one or two sequences of
60 samples that is to say an altimetric profile of 18 m (or 36 m).
For each emitted pulse, the emitted signal (60 samples) and the
echoes found by the embedded real-time detection algorithm are
given as well as their amplitude and width (figure 2).
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Figure 2: Example of a measured waveform for RIEGL LMS-
Q560 system. Dashed lines indicate the position of the echoes
detected by the system. The background noise is relatively low
within the observed waveforms.

3 WAVEFORM PROCESSING

Waveform processing consists in decomposing the waveform
into a sum of components or echoes, so as to characterise the dif-
ferent targets along the path of the laser beam. It is a parametric

approach to estimate a mathematical model. The aim of wave-
form processing is therefore to extract as many peaks from the
signal as possible, but also information for each echo. It consists
in two main steps : first, the number of components and initial
values are estimated. Then the parameters are optimized. The
optimization process is well-known and it has been demonstrated
that either the Expectation-Maximization algorithm (Maximum
Likelihood estimates) (Persson et al., 2005) or the Levenberg-
Marquardt algorithm (non-linear least-squares method) (Hofton
et al., 2000, Wagner et al., 2006) give good results. Nevertheless,
optimization relies strongly on initial parameters. They therefore
must be estimated very carefully to avoid erroneous results. In
this study, an improvement of usual peak detection has been first
performed. Then a new waveform modelling has been proposed
with different functions to improve signal fitting.

3.1 Methodology

A full waveform extracted from the RIEGL LMS-Q560 system is
composed of one or two sequences of 60 points uniformly-spaced
{(xi, yi)}i=1,..,N sampled at 1 GHz. We aim at decomposing
each sequence into a sum of components representing the targets
located within the travel path of the laser beam as

y = f(x) =

n∑
j=1

fj(x) (1)

where n is the number of components, fj a given function that
may be a Gaussian, Lognormal or a generalized Gaussian (see
section 3.3).

For each sequence, the background noise is first thresholded.
Then, a basic detection method is used to estimate the number
and the position of the components. Other function parameters
are fixed with constant values. A first fit is computed, using a
non-linear least-squares method. A fine detection using the fitting
result is then performed to find missing peaks (cases of complex
overlapping echoes, see figure 3). If new peaks are detected, a
second fit is processed with the same method.

3.2 Peak detection and initial parameters estimation

The basic detection method is based on the zero crossings of
the first derivative on the thresholded version of the waveform.
The detection algorithm takes into account a minimal number of
samples separating two detected peaks (spatial resolution of the
system). A non-linear least-squares method with the Levenberg-
Marquardt algorithm implemented in the GSL (GNU Scientific
Library) is then used to compute the fit. The quality of the results
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is evaluated by

ξ =
1

N − p

N∑
k=1

(yk − f(xk))2 (2)

where the numerator is the sum of the residual differences be-
tween the observed waveform and the fitting function, N is the
number of samples and p is the number of parameters of the fit-
ting function.

In case of complex overlapping echoes, zero crossings of the
first derivative are not sufficient to detect all real peaks. Indeed,
a finer peak detection is needed when two overlapping echoes
are so close that a single maximum is found, but three inflexion
points (instead of two for a standard echo) exist. One solution is
to perform a second pulse detection on the thresholded difference
between the observed waveform and the previous fit. If a peak is
detected, a new fit is run with the new component. The resulting
ξ value is compared to the previous one and this step is repeated
until the ξ factor stops decreasing.
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Figure 3: Example of complex waveform. The RIEGL system
data is in red colour (continuous line) and the fitted result in blue
(dashed line). Data is first thresholded to the value of 4 before
pulse detection. Top: Fit with only a coarse pulse detection. Bot-
tom: Fit with a fine detection. Two echoes are now found.

3.3 Modelling functions

Each laser output pulse shape is assumed to be Gaussian, with
a specific and calibrated width. The collected pulse is therefore
a convolution between this Gaussian distribution and a ”surface”
function, depending on the hit objects. It has been shown that if
the vertical height distribution of the elements within the diffrac-
tion cone follows a Gaussian law, the reflected waveform can be
approximated by a sum of Gaussians (Zwally et al., 2002). Wag-
ner (Wagner et al., 2006) has shown that more than 98% of the
observed waveforms with the RIEGL system could be fitted with
a sum of Gaussian functions.

Nevertheless, this assumption is not always satisfactory. De-
pending on the lidar system, the transmitted signal is not always
Gaussian but can be slightly distorted (asymmetric, flattened or
peaked). For the LMS-Q560 waveforms, a steeper ascending part
as well as a longer but weaker descending one than the Gaussian
model can be noticed. Moreover, the Gaussian height distribution

of the targets has only be statistically shown for large-footprint li-
dar systems (Carabajal et al., 1999). For small-footprint systems,
there is no assuming that the height distribution is Gaussian, even
over vegetated areas. Therefore modelling full-waveform lidar
data with a sum of Gaussian functions can be inaccurate. It is
of interest to extend waveform processing capabilities by using
more complex parametric models. It enables to both improve
signal fitting and extract more information from the raw signal.
Standard extensions of Gaussians are Lognormal and generalized
Gaussian functions. The detected peaks can be asymmetric and
modelled with a Lognormal function (see figure 4a). Besides,
some symmetric waveforms are observed to be distorted over
forested areas and over some building roofs. Using the gener-
alized Gaussian model (see figure 4b) can improve signal fitting
for complex waveform shapes.

Gaussian (G), Lognormal (L) and generalized Gaussian (GG)
models have the following analytical expressions (see figure 4
for plots) :

fG,j(x) = aj exp

(
− (x− µj)

2

2σ2
j

)
(3)

fL,j(x) = aj exp

(
− (ln (x− sj)− µj)

2

2σ2
j

)
(4)

fGG,j(x) = aj exp

(
−|x− µj |α

2
j

2σ2
j

)
(5)

The observation of data on the whole survey area shows that
most of the asymmetric peaks are in fact so close overlapping
echoes that the third inflexion point is hardly visible. As a con-
sequence, with the coarse pulse detection, fitting the waveform
with a mixture of Lognormal results in a better quality of fit (i.e.
a lower value of ξ) than fitting with a sum of Gaussians. How-
ever, improving the peak detection as presented before leads to
the detection of two echoes. Gaussian fitting is then better.

Figure 4: Left: Comparison between Gaussian (continuous line)
and Lognormal (dotted line) functions. Right: The generalized
Gaussian function: α=1 = Laplace function (dashed line), α=

√
2

= Gaussian function (continuous line) and α=2 (dotted line).

The generalized Gaussian model enables to simulate both Gaus-
sian shapes when α =

√
2, peaked shapes when 1 ≤ α <

√
2

(α = 1 gives the Laplace function) and flattened shapes when
α >

√
2 (see figure 4b). Therefore it should improve the quality

of the fit in most of the cases. But with a simple NLS algorithm,
it will also increase the number of fits that do not converge, just
like the Lognormal. It is due to the increasing number of degrees
of freedom of the function and also to the more complex expres-
sion of the gradient (Aiazzi et al., 1999).
The generalized Gaussian is also used to model SAR amplitude
(Moser et al., 2006), image texture or even outliers in image
matching (Hasler et al., 2003). The α parameter is yet very in-
teresting for waveform analysis because it provides another piece
of information about the shapes of the echoes, in addition to their
width, and it could be useful for classification purposes (see sec-
tion 4.3).
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Figure 5: Difference of last pulse altitude between post-processing algorithm and real-time process. Only height differences greater
than 2 m has been displayed.

4 RESULTS AND DISCUSSION

4.1 Point extraction

Lidar waveform post-processing allows to densify the final point
cloud up to 50 % on forested areas (see table 1). The Gaussian fit
was successful for about 99.3% of waveform profiles. A wave-
form was considered to be well fitted if the quality factor ξ < 0.5.
It has been observed that ξ < 0.1 on urban areas with a single
pulse of Gaussian shape and that ξ ≤ 0.5 even for complex tar-
gets consistently fitted.

Analysing the differences between fitted waveforms and the de-
livered point cloud, one can notice that weak and overlapping
echoes are now detected. As expected, the additional points are
located near the tree canopy and in low ground vegetation areas.
Only few points are additionally detected on the ground beneath
the canopy, due to the survey low point density and the small
laser footprint. Finally, more echoes are also detected on artifi-
cial objects in urban areas, because of multiple pulse reflections
at building edges.

The fine peak detection performed after the first two steps (coarse
detection and signal fitting) allows to detect up to 10 % more
points than a unique coarse echo detection. Low intensity echoes
close to strong ones are henceforth extracted (figure 3). The qual-
ity of the fit is therefore improved: figure 6 shows a significant
decreasing of ξ median value. The fine peak detection enhances
the stability of NLS method whatever the fitting function. Indeed,
when providing relevant estimates of echo positions as input data,
the fitting procedure finds a solution for almost all return profiles
(99.99 % for the Gaussian, 99.8 % for the the generalized Gaus-
sian and 99.05 % for the Lognormal function).
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Figure 6: Histogram of ξ values for the Gaussian model : coarse
detection (black) and fine detection (grey).

As expected, full-waveform lidar data enables to penetrate
deeper in forested areas. Nevertheless, there is still no assuming

the last detected pulse is the ground. Figure 5 shows the differ-
ence of last pulse altitude between post-processing algorithm and
real-time method. It illustrates that extracted points are signif-
icantly closer to the ground over vegetated areas (until 10 m).
Moreover, the first pulse detection is also bettered over vege-
tated areas. Statistical results are summarized in table 1 where
the mean difference ∆Height between post-processing detected
pulse height and real-time one is always positive for the last pulse
(e.g. +1.58 m for dense vegetation) and always negative for the
first pulse (e.g. −0.42 m).

Area
Whole Dense

Vegetation Residential DowntownArea Vegetation

Nb profiles 2027547 70074 23368 93690 66264

Non fitted (%) 0.01 0.004 0.008 0.01 0.02

Nb points extracted 2903976 147218 46246 120813 85520

Additional points (%) 24 55 51 9 10

∆Height first (m) -0.13 -0.42 -0.34 -0.04 -0.04

∆Height last (m) 0.36 1.58 1.36 0.07 0.05

Table 1: Statistics on point extraction on different test areas. The
figures of non-fitted profiles and difference of height measure-
ment are given for the Gaussian model.

4.2 Comparison between modelling functions

As mentioned in other publications (Reitberger et al., 2006, Wag-
ner et al., 2006), the Gaussian decomposition of lidar waveforms
is a good approximation of the signal (ξ < 0.5 for 99.3% of the
processed waveforms).
ξ > 0.5 means that the Gaussian model is not appropriate for
modelling complex waveform. Such values are particularly ob-
served on forested areas. Even for small ξ values, the Gaussian
decomposition can be inaccurate. Indeed, for high and narrow
echoes as well as for weak and large ones, Gaussian fitting could
be improved. Such cases are difficult to quantify.

Modelling raw signals with the Lognormal function does not
improve the waveform fitting for the whole survey area but lo-
cally. ξ values are globally higher than for the Gaussian model.
Besides, inconsistencies are found for more than 5 % (i.e. ξ > 5)
and the NLS algorithm diverges more often than for other func-
tions (1 % compared to 0.01 % for the Gaussian model).
Nevertheless, in very few cases, ξ values are lower for the Log-
normal decomposition than for a sum of Gaussians. It shows that
some backscattered echoes are asymmetric. Such cases are ob-
served on streets and some building roofs. Further experiments
have to be carried out to draw more conclusions.
It seems that a high value of ξ only means that the lidar wave-
form is not well modelled with Lognormal functions. But it does
not mean that all the waveform echoes are inconsistently mod-
elled. Thus modelling waveforms with a sum of different func-
tions could be appropriate.
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The generalized Gaussian function allows to model flattened,
narrow and high pulses. ξ values are lower for such model than
for the Gaussian function. Figure 7 shows the ξ histograms of
Gaussian and generalized Gaussian models. The latter improves
the global fitting quality. Still a higher number of inconsistent
fitting results is noticed (about 0.4%). Theoretically the general-
ized Gaussian should always fit at least as well as the Gaussian
function. But in practice, this is due to a minimization problem
in the NLS method.
In the streets (asphalt or pavement), the fitting procedure works
as well as for the Lognormal function. Indeed, the observed
pulses have a high intensity and a low width (α→5), what can be
well modelled with the Lognormal function. But for asymmetric
echoes, the generalized Gaussian model is not suitable.
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Figure 7: Histogram of ξ values for Gaussian fit (black) and gen-

eralized Gaussian fit (grey) using fine detection.

4.3 Contribution of the generalized Gaussian function

As expected, the generalized Gaussian model improves signal
fitting. Furthermore, a new parameter α is estimated giving in-
formation about the sharpness of the detected echo. The para-
metric description of the targets given by the signal processing
step contains significant information on the roughness, slope and
reflectivity of the target surface. The main issue is that geometric
and radiometric influences are correlated in one single shape. It
seems difficult to decorrelate them with only return intensity and
pulse width estimation.
A close observation of the data gives some hints on an empirical
classification based on α:

• α > 1.9 (rare) concerns pulses belonging to building edges
and both to the top of the canopy and below the canopy.
Simulations have to be performed to investigate whether
echoes in forested areas concern low ground vegetation or
bare ground;

• 1.6 < α < 1.9 is typical of vegetated areas (first echoes
more than the other ones) but also of artificial planar areas
(asphalt streets for example);

• 1.3 < α < 1.6 (associated to Gaussian shape) is found on
natural ground (beaten-earth floor, grass) and building roofs;

• α <1.3 (very rare) concerns tree canopy and building
boundaries.
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Figure 8: Histogram of α values over three homogeneous test ar-

eas (more than 15000 waveforms each) : building roofs (black),

asphalt streets (dark grey) and dense vegetation (grey).

Figure 8 shows the distribution of α values over three test ar-
eas. The three mean values are all close to 1.55, meaning that the
general shape of the backscattered echoes is close to a slightly
flattened Gaussian. Extreme values (< 1.3 and > 1.9) are found
on forested areas where, for small-footprint lidar systems, there is
no assuming the value of the shape parameter. For urban areas, it
can help to segment building and artificial ground areas. Further
work have to be done to perform such classification algorithm,
maybe with the help of both intensity and width pulse values.

The potentialities of the scale parameter α of the generalized
Gaussian model can be shown on terrain areas. On flat areas,
α seems less sensitive to radiometric changes than the two other
ones. For example, intensity and width values are affected by
the presence of zebra-crossings on the streets, of tracks on car
parks, of moisture on natural surfaces, whereas α parameter is
estimated almost constant. It could therefore be useful to clas-
sify geometrically similar areas as shown in figure 9. Although α
values images are very noisy, α could be a discriminative param-
eter if associated to other variables in a supervised classification
framework.

Figure 9: Comparison between the amplitude (a), α (b) and width

parameters (c) on artificial (tracks on car park, top) and natural

(moisture on tennis courts, bottom) ground areas.
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5 CONCLUSIONS AND FUTURE WORK

The problem of modelling full-waveform lidar data has been in-
vestigated in this paper. It is known that the decomposition of an
observed lidar waveform into its components not only improves
the ranging accuracy of the measurement but also enables the
determination of the heights of various reflecting surfaces within
the laser diffraction cone. The traditional Gaussian fitting gives
in general good results for all kind of areas. Providing the in-
tensity and the width for each echo is however not sufficient for
classification purposes.

We introduced the mixture of Lognormal functions to fit asym-
metric echoes, especially on streets and roofs. Nevertheless, such
model is not suitable for eclectic landscapes. The main limitation
is that return bumps are not always of the same nature: it can be a
mixture of Lognormal, Gaussian and other functions. We finally
introduced the generalized Gaussian model to fit distorted peaks
and still enables to fit Gaussian shapes. The modelling method-
ology is thus improved compared to the Gaussian adjustment. A
practical limitation has however been observed since the fitting
procedure gives inconsistent results for several waveforms due to
optimization problems in the NLS method. But the contribution
of this function is all the more significant since a new parameter
is estimated for each peak, providing new information about its
shape. A first visualization shows its potentialities for classify-
ing extracted point cloud especially in urban areas. Waveform
simulations have to be carried out to understand its global contri-
bution.

Improving peak detection was shown in this paper to be very
successful to extract additional targets in the return waveforms.
However, for classification purposes, it could be more interesting
to fit a wide flattened echo with only one generalized Gaussian
instead of two basic Gaussians: parameter α would provide in-
formation to classify the group of two overlapping echoes that
otherwise would not be available. Depending on the application,
two approaches are conceivable. On the first hand a coarse pulse
detection with a suitable model can be used for classification. On
the other hand, an improved point detection with just a Gaus-
sian model can be performed to describe accurately 3D vegeta-
tion structure.

Both Lognormal and generalized Gaussian functions contribute
to improve lidar waveform modelling but not in the same way.
Consequently, the three functions have to be gathered to take ben-
efit from their specific advantages. Besides, other suitable func-
tions have to be tested in order to best describe the return wave-
form. As the Gaussian fitting is already almost successful all the
time, new modelling functions with different parameters have to
be found. They could provide new information about the peaks
and therefore contribute to lidar point cloud segmentation.
A combination of several suitable functions have therefore to be
performed to assess this solution. A Reversible Jump Monte
Carlo Markov Chain (RJMCMC) method could, for example, be
implemented thanks to its high flexibility. Jumps between models
of different dimensions (the number of parameters) are possible
and consequently each raw signal can be segmented by different
functions.
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ABSTRACT:

Since 2003 the spaceborne laser altimetry system on board of NASA’s Ice, Cloud and land Elevation Satellite (ICESat) has acquired
a large world-wide database of full waveform data organized in 15 products. In this research three products are evaluated over The
Netherlands. For this purpose the raw full waveform product, the derived Gaussian decomposition product and the global land evalua-
tion product are compared to laser data from the Dutch national airborne laser altimetry archive AHN. Using the CORINE land cover
2000 database allows us to compare ICESat to AHN elevation profiles with respect to the land cover classes forest, urban, bare land/low
vegetation and water. This comparison shows that a large average height difference of 5.7 m occurs over forest, while much smaller
differences of 1.24 m over urban areas, of 0.43 m over bare land/low vegetation and of 0.07 m over water are found. The reason for
this large difference over forests is that the standard processing of NASA does not take the position of the last Gaussian mode of the
waveform into account. Incorporating results from a full waveform processing procedure allows us to determine improved ICESat
profiles. Comparing the improved profiles shows that the average difference with the AHN profiles over forest is reduced to -0.38
m, while the average differences for the other land cover classes do not exceed -0.75 m. Encountered limitations are discussed in the
conclusions.

1 INTRODUCTION

The Ice, Cloud and land Elevation Satellite (ICESat) was launched
in January 2003 to observe the cryosphere, the atmosphere and
also to measure land topography profiles and canopy heights (Zwally,
2002). These objectives are accomplished using the Geoscience
Laser Altimeter System (GLAS) in combination with precise or-
bit determination (POD) and altitude determination (PAD). Since
2003 ICESat has acquired a huge database of raw and processed
data, organized in the 15 data products GLA01, . . . , GLA15 (Bren-
ner et al., 2003). The GLA01 level 1A product contains the raw
full waveform data. The GLA05 level 2 altimetry product con-
tains the centroid location of the full waveform as a result of
NASA’s waveform fitting method. The GLA14 product is also
a level 2 product, consisting of global elevation data for non po-
lar land regions.

The ICESat GLA14 elevation data are obtained by combining the
GLA01 ICESat full waveform data with the precise position data
as obtained by the POD/PAD system. The full waveform data are
sampled as relative intensities in 200 bins for sea and 544 or 1000
bins for land, depending on which of the three lasers is used. A
time stamp pair of each transmitted pulse and consecutively re-
turned pulse (the full waveform) is recorded by the GLAS system
and is used to calculate a travel time or range. This range is then
used to compute the elevation of the area illuminated by the laser
pulse. Moreover, the time stamp of the returned waveform can be
measured at some typical bin positions of the waveform like the
beginning, the centroid and the end. Consequently, the elevation
will vary according to the variations in the range. The GLA14
elevation product is obtained on the basis of the range as derived
from the centroid of the waveform. This elevation is therefore
also called the mean elevation (Harding and Carabajal, 2005).

The accurate digital elevation model of the Netherlands (AHN)
was acquired between 1996 and 2003 and is based on airborne
laser altimetry, with a point density of at least 1 point per 4m×4m

area in leaf-off conditions. There are four levels of detail: raw
point cloud, and interpolated grid data of 5m×5m, 25m×25m
and 100m×100m (Heerd et al., 2000). The raw point cloud is
separated into vegetation points and ground surface points. It has
to be noted that the filtering of the entire point cloud concentrated
especially on vegetation, building points may therefore remain in
the set of ground surface points. All data is in ASCII format files
with XYZ coordinates given in the RDNAP coordinate system
(Rijksdriehoeksmeting and Normaal Amsterdams Peil) (RDNAP,
2007).

In this paper, we first compare elevation profiles derived from
ICESat GLA14 data to profiles derived from AHN ground sur-
face data. Second, we will propose and evaluate a method to
determine the bare earth elevation on the basis of a combina-
tion of GLA14 data, waveform centroid data of GLA05 data and
processed full waveform GLA01 data. As most improvement is
expected for waveforms over complex terrain, comparison results
are differentiated with respect to land cover type. Four classes are
distinguished: forest, urban, bare land and water. Waveforms are
divided into these land cover classes according to the CORINE
Land Cover 2000 database (CLC2000, 2006). It will be shown
how to use the obtained profiles to find individual waveforms
showing particular behaviour. This is illustrated in detail in three
examples of waveforms over forest.

2 STUDY AREA AND DATASET

2.1 Study area

The area of study is the Netherlands, bounded approximately by
30E to70E longitude and500N to540N latitude which contains
a large variety of land cover types. Figure 1 shows a map of
the digital elevation model (AHN) of the Netherlands, colored by
height.
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Figure 1. Study area: ICESat ground tracks (magenta) displayed
with the actual height model of the Netherlands (AHN). The up-
ward arrows indicate ascending tracks and the downward arrows
descending tracks. In the bottom right corner two ICESat foot-
prints filled with AHN points are shown.

2.2 CORINE Land Cover 2000 database (CLC2000)

The CORINE Land Cover 2000 database (CLC2000) was initi-
ated by the European Environment Agency (EEA) and the Joint
Research Centre (JRC). The CLC2000 database originated from
the year 2000 but was actually obtained during a 3-year period
from 1999 to 2001, with a horizontal geolocation accuracy of
25m based on satellite images of Landsat 7 ETM+ with 25m pixel
resolution. The CLC2000 data product was obtained from the
Landsat data via a computer-assisted visual interpretation of the
satellite images, under the requirements of a scale of 1:100 000,
a minimum mapping unit of 25 hectares and a pixel resolution
of 100m (Perdig̃ao and Annovi, 2006). The CLC2000 classifi-
cation was hierarchical and distinguishes 44 classes at the third
level, 15 classes at the second level and 5 classes at the first level.
Detailed information of land cover levels can be found at the
metadata section of the CLC2000 on the European Environment
Agency website (CLC2000, 2006). The total thematic accuracy
of the CLC2000 database was almost 95%. The database was
geo-referenced in the European reference system (Hazeu, 2003).

2.3 ICESAT/GLAS

GLAS uses a laser altimeter to measure the distance between the
satellite and the earth surface. The instrument time stamps each
laser pulse emission, and measures the echo pulse waveform from
the surface. GLAS acquires elevation profiles of the entire earth
along tracks that are revisited in a 183-day repeat cycle, with 70m
diameter footprints spaced every 175m. A waveform, recording
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Figure 2. Principal of ICESat geolocation and surface elevation
determination.

laser back-scatter energy as a function of time, is digitized in
544 consecutive bins at a temporal resolution of 1ns over land
for each footprint (NSIDC, 2005). The land waveform of 15cm
vertical resolution yields an 81.6m height range (544 waveform
bins×15cm/bin) for laser L1 and 150m (1000 bins×15cm/bin)
for laser L3 (Harding and Carabajal, 2005). GLAS carries three
different laser altimeters, L1, L2 and L3. Laser 1 was turned off
shortly after the Spring 2003 campaign, to be replaced by Laser
2. Laser 2 operates in both height ranges.

2.3.1 ICESat data overview: Among 15 GLAS data prod-
ucts, we investigate the products of GLA01, GLA05 and GLA14.
The data sets we consider were acquired in the period from 2003-
09-25 to 2003-11-18 and are all from release 26. There are six
tracks with 6594 waveforms in total (Figure 1). The footprints of
these waveforms are elliptical, its power distribution has a central
maximum, while energy decreases towards the boundary. The
size of the ellipse is 95m×52m on average (Harding and Caraba-
jal, 2005).

The GLA01 is a raw level 1 product that contains the full wave-
form data. The GLA14 is a level 2 product of land surface eleva-
tion. Due to the potential complexities of land returns including
possibly combined influences of slope, roughness, vegetation and
cultural features, this level 2 land product was obtained by using
a land-specific range1. The land-specific range is defined as the
travel time from the GLAS sensor to the centroid of the received
waveform signal (see Figure 2) and stored in the GLA05. This

1land-specific range means not in polar or ocean regions
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land-specific range is then used for the computation of geolocated
latitude, longitude and footprint elevation after all instrumental,
atmospherical and tidal corrections have been applied (Brenner
et al., 2003).

2.3.2 Principal of determination of geolocation and surface
elevation: A geolocated surface elevation,S, is determined as
a sum of a laser altimeter vector,L, and a ICESat/GLAS geo-
centric vector,G, with respect to the center of mass of the earth
(see Figure 2). The laser altimeter vector includes the GLAS laser
pointing angle and a range,ti, between the GLAS instrument and
the surface as identified by measuring a travel time of a transmit-
ted pulse until its return as a waveform. The range is then cal-
culated as a half-travel time multiplied with the speed of light.
The geocentric vector represents the orbit position of the ICESat
satellite with respect to the center of mass of the earth. There-
fore the laser spot or geolocation is inferred by the sum of these
two vectors. The surface elevation is obtained by converting the
geocentric laser spot position (r, ϕ, λ) to ellipsoidal height and
geodetic latitude and longitude (h, ϕg, λ).

In Figure 2, the land-specific range from GLAS to the ground
surface can be calculated based on different waveform parameters
like the waveform centroid or the height of the first or last mode
of the waveform. Using the first mode gives a shorter range and
results in a higher elevation point. The first mode results from
elevation points of trees, forest or artificial features like buildings.
Using the centroid of the waveform gives an average elevation
while the last mode potentially represents the ground surface.

3 METHODOLOGY

A flowchart of the methodology is shown in Figure 3. For com-
parison between ICESat and AHN, both data sets need to be avail-
able in the same georeferenced coordinate system, for which RD-
NAP is chosen. The GLA14 data are first converted into RDNAP
coordinates. Next those AHN ground data are extracted whose
horizontal position is within the given GLA14 footprint ellipses.
Because the ICESat footprint has an approximate diameter of 70
meter, the AHN points within the footprint need to be interpo-
lated to a representative elevation point. For ICESat two profiles
are determined, one based on the GLA14 ‘mean’ surface eleva-
tions only, the other derived from combining the GLA14 eleva-
tions with the results of the processing of the GLA01 waveforms
and the centroid of GLA05. Both profiles are compared to the
same profile of the corresponding interpolated AHN elevations,
leading to the two results to be compared and discussed.
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Figure 3. A methodology flowchart.

3.1 Interpolation of AHN data

A 70m-diameter ICESat footprint contains approximately 700
AHN data points. Therefore it is necessary to compute a mean
AHN elevation for the purpose of comparing elevation profiles of
AHN and ICESat data. To avoid effects of clusters in the spatial
distribution of the AHN points, the AHN points are first interpo-
lated to a regular grid, prior to the calculation of a mean AHN
height. Based on the average point density of the AHN data of
0.20 point/m2, a grid cell size of 4m×4m is chosen. Figure 4
shows a typical distribution of raw AHN points together with the
regular grid points.
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Figure 4. Raw AHN ground points (gray) and interpolated grid
points (blue).

3.2 Height difference between GLA14 and interpolated AHN

A mean AHN elevation is obtained from interpolating the reg-
ular grid points within an ICESat footprint ellipse. This mean
elevation is then subtracted from the ICESat GLA14 elevation of
that footprint to obtain an AHN-GLA14 height difference. In this
study, six ICESat tracks or six elevation profiles are used. Com-
pare Table 1 and Figure 1 for an overview of the ICESat tracks.
The differences over the total of the six tracks are averaged to
obtain the final results as shown in Table 2.

3.3 Derivation of GLA01-based elevation data

The georeferenced waveform is decomposed into a maximum
of six Gaussian components which allows to derive waveform
parameters as amplitude, width and location of each Gaussian
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Figure 5. A waveform (black curve) is georeferenced by match-
ing the waveform centroid (horizontal dotted line) to a GLA14
elevation point (black triangle). The GLA01-derived elevation is
the centroid of the last peak (red circle).
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Figure 6. Top: Elevation profiles based on ICESat GLA14 data (red line), AHN data (black squared line) and ICESat GLA01 data
(cyan line). Bottom: height differences between AHN and GLA14 (red) and AHN and GLA01 (blue). This profile corresponds to the
red box in Figure 1.

mode (Duong et al., 2006). The first Gaussian refers to the high-
est point in the illuminated footprint which typically corresponds
to a tree top or building roof. The centroid of the complete wave-
form corresponds to the average height of the objects in the foot-
print, while the last Gaussian mode is resulting from the lowest
elevation in the footprint. Over flat terrain the lowest elevation
mostly corresponds to the elevation of the ground surface. As
Dutch topography is in general flat, the last Gaussian or last mode
will be used in this research to obtain a ground surface elevation.

In Figure 5, the ICESat GLA14 elevation is represented by a
black triangle; the black square represents the mean AHN el-
evation within the 70m-diameter footprint. For georeferencing
the waveform (black curve), the waveform centroid (horizontal
dotted line, black) is matched with the GLA14 elevation point.
Therefore, the last mode is the most suitable representation of the
ground elevation in the ICESat data (red circle). Finally the ‘last
mode elevation‘ of the ground surface is extracted by subtracting
the distance between the centroid and the peak of the last mode
from the GLA14 elevation.

4 RESULTS AND COMPARISON

4.1 Waveforms used

The waveforms from six ICESat tracks are assigned to different
land cover classes based on the CLC2000 land cover database.
On average, 97% of the ICESat measurements to the ground were
successful, whereas in the remaining 3% percent, no data was ac-
quired. One possible reason is the weather (e.g. cloud cover, data
acquisition was in September-November). A number of 6594
waveforms is used, 595 waveforms are over vegetation, 790 over
urban areas, 3472 over bare land and 149 over water (Table 1).
About 20% of the waveforms was removed from analysis due to
one of the following reasons:

• Some noisy waveforms could not be decomposed by the
Gaussian fitting algorithm.

• No AHN points are available within the waveform footprint.

• Many ICESat pulses of the 24-10 track along 100km, see
Figure 1, coincide with a cloud layer (our assumption) of at
least 200m height and are therefore not considered reliable.

Number of ICESat waveforms
Track Date F U B W Total Lost

1 30-09 72 158 456 28 795 81
2 14-10 89 316 933 16 1534 180
3 16-10 305 88 777 36 1515 309
4 23-10 8 54 351 42 584 129
5 24-10 2 17 361 0 979 599
6 10-11 119 157 594 27 1187 290

Total 595 790 3472 149 6594 1588

Table 1. Number of ICESat waveforms used: F (Forest), U (Ur-
ban), B (Bare land) and W (Water). The column ‘Lost’ gives the
number of waveforms that were discarded because of e.g. high
noise level, large height differences (200m) between the GLA14
and the AHN elevation or missing AHN data.

4.2 Height differences AHN–GLA14 vs AHN–GLA01

GLA14 – AHN terrain, (m)
Tr. F U B W
1 4.68±4.5 2.01±3.2 0.26±1.4 −0.66±1.2
2 6.62±2.9 1.81±2.5 0.79±2.1 0.59±1.4
3 6.76±3.5 1.44±3.5 0.57±1.7 −0.13±0.9
4 7.47±5.7 0.85±1.5 0.48±1.1 0.21±0.7
5 4.52±1.0 1.12±1.3 0.35±1.2 N/A
6 3.89±3.1 0.19±2.0 0.14±1.8 −0.35±1.4

Total 5.66±3.5 1.24±2.3 0.43±1.5 −0.07±1.1

Table 2. Height differences and its standard deviation between
GLA14 and AHN

In Tables 2 and 3 the average height differences between the AHN
elevation profiles and the GLA14 ‘mean elevation’ (Tables 2) and
the GLA01 ‘ground elevation’ (Tables 3) are given. As expected,
it shows that the average height difference between the ‘mean
elevation’ and the AHN profiles is maximal over forested areas
(5.66m). The differences are smaller over urban (1.24m) and bare
land (0.43m) and minimal over water (0.07m). This is further il-
lustrated in Figure 6. where a profile of 22.5km is shown along
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GLA01-derived – AHN terrain, (m)
Tr. F U B W
1 −0.75±1.2 −0.84±3.0 −0.86±1.4 −1.81±1.8
2 −0.29±1.4 −1.11±2.3 −0.48±0.9 −0.49±0.7
3 −0.25±1.5 −1.73±2.0 −0.53±1.0 −1.54±1.4
4 −0.33±0.7 −0.58±0.8 −0.33±0.8 −0.22±1.0
5 −0.18±0.1 −0.45±0.8 −0.29±0.5 N/A
6 −0.49±1.8 −1.42±2.5 −0.58±1.1 −1.25±1.2

To. −0.38±1.1 −1.02±1.9 −0.51±0.9 −1.06±1.2

Table 3. Height differences and its standard deviation between
GLA01-derived elevation data and AHN

the ICESat track of October 16, 2003. Clearly, large differences
of up to 20 m occur in forested areas. The difference between the
waveform centroid, giving the GLA14 ‘mean elevation’ and the
surface elevation as given by the AHN points is larger in case of
a wide spread multi-modal waveform. These multi-modal wave-
forms occur in urban and certainly in forested areas. The width of
the waveforms is further increased in case the terrain is not flat.

Table 3 shows the differences between the ICESat last mode or
‘ground elevation’ profile and the AHN profile. The average
height difference over forest is significantly reduced from more
than five meter to less than half a meter, while the spread in height
difference is reduced by about 70% as well. For the other three
land cover classes no significant improvement is found. The im-
provement over forest is visualized in Figure 6. The bottom im-
age shows that the ICESat ‘ground elevation’ profile (in cyan) is
always closer to the AHN profile than the ICESat ‘mean eleva-
tion’ profile. It is also visible that the ICESat ‘ground elevation’
profile is sometimes even lower than the AHN profile. This can
be explained as follows. If the terrain is curved, interpolation of
the AHN laser points within the ICESat footprint will result in a
mean AHN elevation value higher than the lower terrain points.
Meanwhile the height of the peak of the last mode can be po-
sitioned below the mean AHN elevation, resulting in a negative
offset. Moreover, building points still remain in the set of the
AHN ground points therefore it also results a height difference in
a negative value.

4.3 Waveform examples

The profile in Figure 6 allows to look for specific examples that
give insight in the differences between the three heights that are
considered, the ICESat ‘mean elevation’, the ICESat ‘ground el-
evation’ and the AHN mean of the ground points. Below three
typical examples are discussed. The first example is an ‘out of
the book’ forest example, in the second case the canopy thickness
is so large that the visible ICESat ground return is ignored by the
decomposition algorithm while in the third example the ICESat
ground return is totally absent due to the high canopy thickness.

4.3.1 Regular canopy thickness example: Figure 7(a) shows
a case were taking the ICESat ‘ground elevation’ gives clearly a
better value than the ICESat ‘mean elevation’, when compared
to the mean AHN ground elevation. The AHN vegetation points
(green) and ground points (black) precisely match to the ICE-
Sat raw full waveform (red) and to the fitted waveform (dashed
black). The peak of the last Gaussian mode at 10m height cor-
responds to the average height of the AHN ground points within
the ICESat 70m footprint. The peak of the second-last Gaussian
mode corresponds to the average height of the low vegetation at
10m–15m that is also represented by the AHN points. The first
Gaussian peak represents the average height of the canopy. The
width of the first Gaussian gives a measure for the canopy depth.
This example illustrates, that spaceborne full waveform altime-
try can be a possible method for extraction of vegetation height
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Figure 7. Three waveforms over forest. Good agreement between
AHN and GLA14 is obtained for the top panel but insufficient
results were found for the middle and bottom panel.

and vegetation characterization on single shot basis. The return
energy, which is also recorded by GLAS, is about 20 fJ. This is
well above the threshold of 5fJ (Fricker et al., 2005), under which
the measurement noise increases. These high noise levels can be
caused by atmospheric forward scattering and degradation of the
laser transmitted power over time. Both effects lead to a decrease
in received energy (and therefore SNR).

4.3.2 Higher canopy thickness: (i.) Figure 7(b) shows a raw
waveform (red) with two dominant peaks. It agrees with the AHN
data in the sense that it has one peak corresponding to the AHN
ground points and one larger peak corresponding to the dense
vegetation points. The last peak is ignored however by our wave-
form decomposition step due to the high noise level in the wave-
form. However, the distance between the lower and the higher
peak of the raw waveform corresponds very well to the vegeta-
tion height whereas the absolute height may not be correct. Com-
paring Figure 7(b) and Figure 7(a) shows that the noise level is
about three times higher in the lower example. In this case, the
return waveform energy of 1.58 fJ which is very low compared to
the threshold of 5 fJ (Fricker et al., 2005).
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4.3.3 High canopy thickness: Figure 7(c) shows a case where
the ICESat waveform shows only one mode, and where we need
the AHN data to tell us that in fact this one mode corresponds to
an unpenetratable forest canopy. In this case the ICESat ‘mean
elevation’ and the ICESat ‘ground elevation’ are equal, but both
higher than the AHN ground point elevation. This shot is a direct
neighbor (175m) of the shot shown in Figure 7(b). The return
energy is 3.40 fJ. This value is also below the 5fJ threshold.

4.3.4 ‘Glowing’ effects: In Figure 8, a series of waveforms
with systematic underestimation of the (surface) height is shown.
Although the Gaussian components of the waveforms could be
reconstructed, all but the first mode are weakly determined. Ap-
parently these erroneous modes demonstrate some kind of ‘glow-
ing‘ effect. This assumption is supported by considering the or-
thophoto of the footprint locations: in most cases the footprints
cover flat terrain which should result in one waveform mode only.
Possible error sources for this behaviour are foreward scattering
by cloud cover or problems with the signal detection at the GLAS
receiver unit for very low energy returns. In this case, the return
energy ranges between 0.29 fJ to 2.72 fJ. Such waveforms could
be automatically removed by increasing the requirements in the
waveform decomposition step or by imposing a threshold on the
minimal return energy.
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Figure 8. Elevation profiles (top) and height differences (middle)
of ICESat, GLA14 and GLA01-derived elevations for some bad
cases. At the bottom the ICESat footprints overlaid on a Google
Earth image are shown.

5 CONCLUSIONS

In this paper we have compared three laser altimetry profiles.
One based on ground return points from airborne laser data of
the Dutch national height product AHN, and two based on ICE-
Sat data. NASA provides height data in the GLA14 product that
are based on the centroid of the returned ICESat waveform. By
considering the position of the last mode in ICESat’s raw return
waveforms a more realistic ground surface profile can be obtained
from the ICESat data that is on average -0.38m below the mean
AHN height, with an average standard deviation of±1.1m.

Study of the three profiles gave us examples where the high for-
est canopy block almost all ICESat laser energy. This gives one

explanation for the remaining differences between ICESat ground
elevation’ profiles and the AHN ground surface profiles. Neglect-
ing the terrain slope may be another error source that should be
corrected for in future. Further research should focus on two di-
rections: those footprints were the ICESat waveform shape match
the shape of a waveform built up out of AHN points can be used
to assess the accuracy of ICESat georeferencing. On the other
hand, analysis of the height difference in the three profiles will
lead us to further examples were current waveform processing
still fails and should be improved.
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ABSTRACT: 
 
A simple simulator was developed to test whether airborne laser scanning can be used as a strip sampling tool for forest inventory 
purposes. The simulator is based on the existing two stages, grid based laser inventory procedure. A population of trees was created 
using an existing forest stand structure generator. Each tree was represented by means of its 3D-crown model derived from airborne 
laser scanning measurements and field measured parameters, i.e. total tree height, height of crown base and average crown diameter. 
Monte Carlo simulations were run to assess the efficiency of volume estimates obtained from airborne laser scanning and ground 
based inventory. The lowest RMSE for the laser based estimates was 5.1 m3ha-1 (2.0%) and the highest was 8.4 m3ha-1 (3.3%), while 
RMSE for the ground based estimates varied between 13.7 m3ha-1 (5.4%) and 18.4 m3ha-1 (7.2%). The LIDAR based estimation was 
on average 6.3 times more efficient in terms of MSE than ground based sampling. The RMSE of the volume estimates increased with 
increasing plot size, for a given sampling intensity. The results indicated that forest surveys over large areas carried out using 
airborne laser scanning as a strip sampling tool can provide accurate estimates, and can be more effective than traditional systematic 
ground plot based inventories. 
 
 

1. INTRODUCTION 

During the past two decades, remote sensing techniques have 
proven to meet some of the demand for environmental related 
data at fairly low cost. Among these techniques, small footprint 
LIDAR (LIght Detection and Ranging) has become one of the 
most common remotely sensed data sources for analyzing the 
canopy structure at the scale of operational forest management 
(Wynne, 2006). 
 
Research has shown that profiling LIDAR can provide reliable 
biomass sampling based estimates at low costs (e.g. Nelson et 
al., 2006). The LIDAR based procedure consists of a two stage 
sampling scheme. LIDAR transects are taken by flying parallel 
fight lines separated by many kilometers over the area in 
question. Systematically distributed ground plots or ground 
transects are measured along the LIDAR transect. Ground based 
estimates are regressed against LIDAR measurements, and the 
resulting regression equation are used for prediction along the 
LIDAR transects across the entire sampled area (Nelson et al., 
2004). 
 
In contrast to profiling LIDAR systems which only collects a 
narrow line of data on the ground, commercial airborne laser 
scanners provide an accurately geolocated cloud of 3-
dimensional observations, which can be related to ground 
measurements such as plots of various shapes and sizes. 
Scanning LIDAR is today used operationally for stand-based 
“wall-to-wall” inventories of forest stands in Norway (Næsset, 
2004). For larger regions such as counties or nations, “wall-to-
wall” inventories are not feasible. However, even scanning 
systems can be used in regional forest inventory, considering 
the flight lines as part of a strip sampling design by flying 
parallel, equally spaced strips over the study area and collecting 
sample plots only within strips, using for example systematic 
sampling schemes. Sampling applications are often relevant in 
areas with a size where it is not feasible to establish a ground 

truth reference value. Consequently, designing an optimal 
inventory system has to rely on some kind of simulation, where 
different combinations of field and airborne data collection can 
be explored. 
 
The aim of this study was to develop a prototype of a simple, 
small-scale simulator in order to assess the efficiency of laser 
scanning based volume estimates relative to the corresponding 
ground plot based estimates, when airborne laser scanning was 
used as a strip sampling tool. This simulator was based on the 
two stages, grid based sampling procedure developed and tested 
by Næsset & Bjerknes (2001) and Næsset (2002, 2004). 
 
 

2. MATERIAL AND METHODS 

Forest stand data and combinations of ground measurements of 
single tree parameters and airborne laser data were used to build 
3D crown models for Norway spruce trees. Then, existing forest 
stand generator software and these models were employed to 
obtain a virtual forest as input for the simulations. 
 
2.1 Stand data  

The empirical stand data and single tree parameters were 
comprised in two datasets.  
 
The first dataset (see Bollandsås & Næsset, 2007; Solberg et al., 
2006) was collected in summer 2003. Twenty circular plots of 
0.1 ha were collected from a boreal nature reserve located in 
south-eastern Norway. The forest was multilayered with a broad 
range of tree sizes and stand ages, and dominated by Norway 
spruce [Picea abies (L.) Karst.] and Scots pine (Pinus silvestris 
L.). The plots were establish in subjectively selected spruce 
dominated sites. On each plot, all trees with height (dbh) ≥ 3cm 
were callipered and tree heights were measured on trees 
selected with probability proportional to stem basal area. Mean 
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diameter was defined as diameter corresponding to mean stem 
basal area (dBA) and mean height was defined as the average 
basal area weighted (Lorey’s) height (hL). 
 
Both Global Positioning System (GPS) and Global Navigation 
Satellite System (GLONASS) were used to determine the 
planimetric coordinates (Euref89) of the plot centers. The 
average estimated accuracy of the plot coordinates was 10 cm.  
 
For the first dataset, polar coordinates from the plot centre were 
registered for all trees with dbh ≥ 3 cm. Total tree height, height 
of crown base, crown radius in four cardinal directions, and 
average crown diameter were measured on trees selected from 
each plot. The final coordinates for all single trees were 
computed in Euref89, using plot centre coordinates and plot-
wise polar tree coordinates. 
 
The second dataset (see Næsset, 2004) comprised 60 large plots 
located in a productive forest area of approximately 5000 ha in 
the municipality of Krødsherad, south-eastern Norway. The 
forest composition was dominated by Norway spruce and Scots 
pine, while younger stands were dominated by deciduous 
species, mainly birch (Betula pubescens Ehrh.). The plot areas 
were from 3121 to 4219 m2, with an average of 3739 m2. Within 
each plot, all trees with diameter at breast height dbh ≥ 4 cm and 
dbh ≥ 10 cm were callipered in young and mature stands, 
respectively, using 2 cm diameter classes. Height measurements 
were taken from trees selected with probability proportional to 
stem basal area at breast height. For each plot, the mean height 
corresponding to Lorey’s height was computed from the mean 
height of the individual diameter classes, weighted by total plot 
basal area for each diameter class.  
 
2.2 Laser data 

Laser scanner data were acquired during June 2005 (leaf-on 
canopy condition) from the same area as the first dataset, with 
an Optech ALTM 3100 sensor operating at 100 kHz laser pulse 
repetition rate and 70 Hz scanning frequency. The aircraft was 
flown approximately 750 m above ground with an average 
speed of 75 ms-1. The maximum half scan angle was 10°, and 
the corresponding swath width was about 264 m. Pulses 
transmitted at scan angles that exceeded 8° were excluded from 
the final dataset. The average footprint size was about of 21 cm, 
with an average point density of 5.09 m-2. First and last echo 
were recorded. 
 
2.3 Laser-derived single tree models  

Laser data and the ground measurements collected in summer 
2003 from 0.1 ha stand plots comprised into the first dataset  
were used to obtain crown representation of Norway spruce 
trees. Laser pulse hits were related to tree crown projections by 

the mean of planimetric coordinates, and then the resulted laser 
point clouds were considered as spatial crown models for 
Norway spruce trees. Laser pulses with heights below 2 m were 
considered as ground points. 
 
The relationships between field and laser measurements were 
established for a total of 435 spruce trees. Hence, each of these 
trees were represented as unique combinations of diameter (dbh), 
height (h), crown height (ch), crown projection radius (cr), stem 
volume (v) (Table 1), and the associated 3D crown models. For 
each of these trees, the volume was calculated by the means of 
functions for Norway spruce with bark (Vestjordet 1967). 
Further in this study, the trees were called “single tree models”.  
 
 

a dbh-diameter; h-height; ch–crown height; cr–crown radius; 
 v-volume; S.D.-standard error 
 

Table 1. Descriptive statistics for individual tree model 
parameters a. 

 
2.4 Virtual forest 

The program package SILVA 2.2 (Pretzsch et al., 2002) was 
used to generate a virtual forest. The stand generator provides a 
tree list with associated parameters. For each tree, the following 
information was recorded: tree species, diameter at breast 
height, total height and height of crown base, crown diameter 
and tree coordinates (x, y). To generate the tree lists, the input 
parameters were tree species, dBA (cm), dmax (cm), hL (m), and 
N, obtained from ground measurements. Only 13 plots from the 
first dataset and 25 plots from the second dataset provided 
acceptable combinations of input parameters which could be 
used to obtain tree lists by means of SILVA 2.2 (Tab. 2). The 
other plots were rejected due to inadvertencies between the test 
plot reference data and model calibration of the stand generator. 
Totally, a number of 38 tree lists were obtained and each of 
them was considered as a possible realization of a forest stand, 
given the ground-measured input parameters. 
  
The virtual forest study area was defined in a 2D-local 
coordinate system with axes being multiples of 100 m, and the 
terrain was assumed to be flat. The frame of study area was 
considered to be a two-dimensional array, where each (i, j) 
position is a squared area representing a forest stand of 1.0 ha. 

 
 

 
 

 Stand parameters 
 First dataset (0.1 ha plots) Second dataset (large plots) 
 dBA s dmax s hL s Ns dBA s dmax s hL s Ns dBA p dmax p hL p Np dBA b dmax b hL b Nb 

Max 30.1 60.6 28.9 1040 27.6 51 22.2 904 36.3 49 23.6 622 23.9 47 20 286 
Min 19.9 39.6 17.7 650 12 17 8.4 13 18.7 35 12.7 10 11.5 13 10.8 5 

Mean 17.2 37.3 17 671 17.4 32.1 14.9 360 21.6 35.5 14.4 229 12.6 21.7 10.6 82 
a dBA=basal area mean diameter (cm); dmax=maximum diameter (cm); hL=basal area weighted mean height (m);  
N=stem number per ha; s=Norway spruce; p=Scots pine; b =deciduous trees (assimilated with birch). 

 
Table 2. Summary of stand metrics for 13 selected plots from the first dataset and 25 plots from the second dataset a.  

 
 
 

Metrics Mean S.D. Min Median Max
dbh (cm) 19.8 10.4 3.2 18.8 51 

h (m) 15.8 6.1 3.6 16 29.5
ch(m) 3.4 2.4 0.2 3.1 13.5
cr (m) 1.3 0.4 0.6 1.3 2.9 
v (m3) 0.38 0.41 0.003 0.22 2.46
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To create the population, one of the 38 virtual forest stands of 
1.0 ha generated by means of SILVA 2.2 was randomly 
allocated to each (i, j) array position, and then the stand 
coordinates for each tree were translated according to the new 
location within the array. The neighborhood effects among 
forest stands were ignored. Thus, the spatial structure of each 
cell was supposed to be independent of the position in the array. 
The study area was defined as a square of 36 km2. 
 
Further, each tree from the tree list was substituted with a 
diameter-equivalent single tree model. Because of the relatively 
small number of single tree models (i.e. 435 trees) which could 
be derived from available dataset, only dbh was used as key. The 
rest of the single tree model parameters, i.e. height, crown 
height, crown radius, laser pulse heights, and stem volumes, 
were then transferred to the corresponding diameter-equivalent 
trees from the tree list positioned at (xi, yi) coordinates in the 
study area. The matching results often consisted of more than 
one single tree model with equal diameters. In this situation, 
only one of these tree models was randomly selected to replace 
the tree at the position (xi, yi) from the generated forest stand. 
For the situations when diameter matching did not occur- which 
means that some trees from generated forest stands have 
diameters that were not among the diameters of single tree 
models, a single tree model with diameter closest to the missing 
value, either larger or smaller, was selected instead. Thus, the 
study area was re-populated with laser derived tree models, and 
the volume of the entire population was calculated as the sum of 
individual trees. 
 
For other species than Norway spruce, i.e. Scots pine and birch, 
there were no available laser data for building 3D crown 
models. For this reason, diameter matching was done regardless 
of species, which means that trees of different species could be 
matched if they had the same diameter.  After diameter 
matching, trees from the tree list generated by means of forest 
stand generator were replaced with diameter equivalent Norway 
spruce single tree models, regardless tree species. 
 
Laser scanning data consist of clouds of laser hits related to tree 
crowns. In this study, each laser hit (first echo) has known x, y 
and z-coordinates, but in this analysis, the (xi, yi) coordinates of 
each laser hit were discarded. It was assumed that laser hits 
related to trees inside a grid cell fall inside the same cell where 
these trees are located, and that all the hits inside a tree crown 
projection belong only to that tree. 
 
2.5 Simulator 

The strip sampling simulation was based on the two-stage 
procedure described by Næsset & Bjerknes (2001) and Næsset 
(2002, 2004) and follows the approach proposed by Gobakken 
et al. (2006). In parallel, an estimation of mean volume by 
means of ground plot systematic sampling was done, as a kind 
of conventional inventory. The sampling units consist of equal 
strips containing the same number of grid cells. The total 
volume was estimated as the sum of predicted volume for all 
grid cells over all strips. Monte Carlo (MC) estimates of 
population mean volume and sampling error were derived 
running 50 iterations for each sampling scheme. Bias, standard 
deviation and RMSE for estimated mean values were used to 
assess the sampling estimates against the reference volume of 
the predefined population. The systematic samples of laser 
scanning strips and ground plots were treated as random 
samples. Relative efficiency of regression based estimates 
obtained from laser scanning strip sampling against ground 

based systematic plot sampling estimates was assessed for each 
sampling scheme. 
 
Computations 
Multiple regression analysis was used to establish stratum-
specific relationships between field measurements and laser 
derived metrics. Based on previous findings (e.g. Magnussen & 
Boudewyn, 1998; Næsset, 1997, 2002, 2004), two independent 
variables derived form first laser pulse returns were used for 
volume prediction within each grid cell: the percentile 
corresponding to the 9th quantile of laser canopy height (h90) 
considering the lowest canopy height (≥2m), and the canopy 
density corresponding to the proportion of the first pulse laser 
hits (d0). Canopy density was defined as the proportions of first 
pulse laser hits above 2 m to total number of first pulse returns. 
To calculate the canopy density, it was necessary to find the 
total number of laser hits within each grid cell. Because the last 
echoes from initial laser scanning data were not available, it was 
assumed that each grid cell had a uniform coverage of laser hits. 
Thus, the total number of laser hits within a grid cell could be 
linearly extrapolated from the number of hits that fall inside the 
crown projection. Laser hits with heights below 2 m were 
considered as ground points as well.  
 
The full second order regression model based on these variables 
was subject to stepwise variable selection to develop final 
models for prediction. Exploratory regression analysis was run 
to detect possible deviations from model assumptions. Various 
variance stabilizing transformations of the dependent variable 
(sample plot volume) were analytically assessed by the means 
of the Box-Cox method. Five regression models were finally 
proposed: (1) a multiplicative model, (2) a linear model without 
transformations, and three different models with transformed 
response variable: (3) log(y), (4) sqrt(y), and (5) asin(sqrt(y)). 
For the multiplicative model, only two independent variables 
(h90 and d0) were used, and consequently this model was not 
subject to stepwise selection. 
 
For the other regression models, an empirical approach was 
used to obtain regression equations. Before each simulation, a 
number of 20 iterations were used to select the final regression 
models. First, a stripe sampling scheme was randomly generated 
over the study area, and the location of each stripe and 
correspondent sample plots were hold fixed. Initial sampling 
trials were run, and for each iteration a new population outcome 
was generated and sampled. Stepwise regression (pin = 0.05, pout 
= 0.10) was used for model selection, and each resulted subset 
model was registered. After running all iterations, the most 
frequently used model form for each regression model was 
selected as final model to be used for prediction during 
sampling simulations. Since serious muliticollinearity problems 
occurred, best subsets regression models were also derived and 
compared to the stepwise regression subsets, in order to select 
unbiased regression models. 
 
To estimate the population volume, Monte Carlo experiments 
were run to derive laser scanning and ground-based mean 
volume estimates. Initial tests showed that cumulated mean 
volume estimates over 50 iterations converged towards the 
value of MC estimates, while the sampling error decreased 
asymptotically. However, the number of iterations should vary 
with the study area, sample design, and population variability. 
 
Squared sample plots of 200, 400, and 600 m2 were used to 
provide ground estimates. Using squared plots significantly 
improves the computational performance during simulation.  
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Parallel laser strips with widths of 160, 180, and 200 m spaced 
at 1500 m were generated. The sampling intensity for different 
plot sizes was held almost constant around 0.6% of stripe 
sampling area, and the sample size varied with plots size. 
Compared to sampling intensities in ongoing research studies, 
which typically are less than 0.003% (Gobakken et al., 2006), 
the sampling intensity at stand plots level is much higher, but 
necessary to reach ground samples large enough to get reliable 
regression estimates. 
 
Finally, the MC estimates for both laser strip and ground based 
systematic sampling were assessed by the means of a two-tailed 
t-test against the population value. Bias, standard deviation, and 
RMSE for the MC estimates of mean volume were then used to 
assess the sampling designs and regression models. Relative 
efficiency of regression based laser scanning estimates against 
corresponding ground based estimates was calculated as ratio of 
their respective MSE. 
 
 

4. RESULTS 

Except the multiplicative model, final regression equations were 
built using stepwise regression. A number of 45 mean volume 
estimates and their RMSE values were derived using five 
regression models (Table 4). In addition, for each sampling 
scheme, an estimate of mean volume and the corresponding 
RMSE were derived by ground based systematic plot sampling 
(Table 4). The reference value of mean volume per ha was 254 
m3, i.e., total population volume of 914,400 m3 divided by the 
size of the study area of 3600 ha. The simulated study area 
included over 2.7 million trees. The number of iterations used 
for each simulation ensured convergence for both regression 
and ground plot based estimates. For mean timber volume 
estimates, the convergence occurred after ca 40-45 iteration for 
sampling schemes using ground plots of 200 m2, ca 20-30 
iterations for plots of 400 m2, and after ca 15-25 iterations for 
plots of 600 m2. As the number of iterations increased, the 
sampling error decreased asymptotically (Figure 1).  
 
The regression models comprised two to five predictor 
variables. The most frequently used prediction variable was the 
interaction term, followed by squared height percentile and 
canopy density. Generally, the R2 ranged between 0.79 and 
0.96. The bias of mean volume estimates during iterations in 
each simulation ranged between -16.6 m3ha-1 (6.5%) and 10.2 
m3ha-1 (4.0%) for regression estimates, while the bias of ground 
based estimates ranged from -34.1 m3ha-1 (13.4%) to        
31.8 m

     
3ha-1 (12.5%). MC estimates of mean volume derived by 

regression ranged between -5.7 m3ha-1 (2.2%) and 0.3 m3ha-1 
(0.1%), and standard error between 5.0 m3ha-1 (2.0%) and 7.4 
m3ha-1 (2.9%). For plot-based MC estimates, the range of bias 
was between -2.6 m3ha-1 (1.0%) and 3.9 m3ha-1 (1.5%), with a 
standard error between 13.7 m3ha-1 (5.4%) and 18.4 m3ha-1 
(7.2%). The lowest RMSE for regression based MC estimates 
was 5.1 m3ha-1 (2.0%) and the highest was 8.4 m3ha-1 (3.3%). 
RMSE for ground plot MC estimates varied from 13.7 m3ha-1 
(5.4%) to 18.4 m3ha-1 (7.2%). Among all regression models, 
only the multiplicative and linear models gave unbiased 
estimates (p > 0.05) under all sampling schemes. Ground based 
systematic plot sampling derived estimates provided unbiased 
estimates (p >0.05) for all sampling designs. Relative efficiency 
of laser based estimates relative to ground plot estimates varied 
between 0.11 and 0.28, with an average of 0.16, which indicates 
efficiency in average 6.3 times higher for laser scanning strip 
sampling method (Table 5). 
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Figure 3. Example of sampling error estimation, for 
multiplicative regression model and ground plot base estimates 

using strip width of 180 m and plot size of 400 m2. 
 
 

5. DISCUSSION 

The major findings of this study indicated that: 
1) Laser scanning-based stripe sampling forest inventory can 
provide accurate and precise estimates of mean volume for 
relatively large forest areas. The LIDAR based estimation was 
on average 6.3 times more efficient in terms of MSE than 
ground-based sampling. 
 
2) For both inventory methods, the inverse relationship between 
plot size and sample size seemed to be the dominant factors that 
led to a general increase of RMSE as the plot size increased.  
 
3) For the ground-based systematic plot sampling method, the 
plot size was the dominant factor which led the overall trends 
for the MC estimates of mean volume. The RMSE of volume 
estimates increased by increasing plot size. 

However, generalizations cannot be drawn from this study, 
since many assumptions were not realistic compared to real-
world applications, i.e. small size of target area and small 
population variability. Another important issue is that all 
metrics derived from the population were considered to be 
“error free” and the effects of error propagation were neglected. 
As possible error sources could be mentioned errors concerning 
ground location of trees and ground plots, laser sampling and 
field measurements. 
 
Nevertheless, we believe development and application of this 
first small-scale simulator has provided useful insight into some 
of the challenges we will have to face in the continued work to 
develop simulators that can operate on larger model forests 
where also spatial correlation and regional trends in the 
population value may be accounted for. Furthermore, a forest 
stand generator calibrated for Norwegian conditions should be 
developed, and there is also a need for building up an empirical 
database of laser derived individual tree models for all main tree 
species in Scandinavia. 
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a significance level: *  p < 0.05;  not significant: ns > 0.05; 
Models: 1–multiplicative; 2–log(y); 3–sqrt(y); 4–asin (sqrt(y)); 5-linear. 
 
Table 4. Bias, standard error (S.D) and RMSE of mean volume estimates (m3ha-1).
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Strip                                                               Plot area 
 width Model 200 m2 400 m2 600 m2

(m)  bias S.D RMSE bias S.D RMSE bias S.D RMSE
Laser scanning based estimates (m3ha-1) 

 1 -0.8ns 5.5 5.6 -0.8ns 5.7 5.8 -0.2ns 6.4 6.4 
 2 -2.2* 6.2 6.6 -1.3ns 6.4 6.5 -0.8ns 7.4 7.4 

160 3 -1.5* 5.2 5.4 -1.6ns 5.7 5.9 -0.9ns 6.5 6.5 
 4 -5.5* 5.6 7.8 -3.6* 6.1 7.1 -4.3* 7.2 8.4 
 5 -0.6ns 5.5 5.5 -1.0ns 5.7 5.8 -0.5ns 6.3 6.4 
 1 -0.7ns 5.5 5.6 -0.7ns 5.0 5.1 -0.5ns 5.6 5.7 
 2 -3.0* 6.2 6.9 -0.4ns 5.7 5.8 -0.8ns 7.1 7.1 

180 3 -1.4ns 5.3 5.4 -1.3ns 5.1 5.3 -1.4ns 6.0 6.2 
 4 -5.7* 5.6 8.0 -3.6* 5.7 6.7 -4.1* 7.0 8.1 
 5 -0.5ns 5.4 5.4 -0.8ns 5.0 5.1 -0.9ns 5.5 5.6 
 1 -0.2ns 5.4 5.4 -0.1ns 5.1 5.1 -0.2ns 6.0 6.0 
 2 -2.5* 5.7 6.2 0.3 s 5.9 5.9 -0.7ns 7.2 7.2 

200 3 -0.9ns 5.3 5.4 -0.7ns 5.0 5.1 -1.2ns 6.3 6.4 
 4 -5.2* 5.7 7.7 -3.2* 5.5 6.4 -3.1* 7.1 7.7 
 5 0.0ns 5.4 5.4 -0.2ns 5.2 5.2 -1.0ns

Wynne, R. H. 2006. Lidar remote sensing of forest resources at 
the scale of management. Photogramm. Eng. Remote Sensing, 
72:1311-1314. 

6.0 6.1 
Ground plot based inventory (m3ha-1) 

160 - -0.7ns 13.7 13.7 3.9ns 14.9 15.4 1.8ns 18.4 18.4 
180 - -2.1ns 14.8 15.0 2.2ns 14.1 14.3 2.2ns 17.5 17.6 
200 - -2.6ns 14.5 14.8 2.2ns 14.5 14.7 2.2ns 18.2 18.4 

Strip  (MSEa / MSEb) 
width Model Plot size (m2) 
(m)  200 400 600

 1 0.17 0.14 0.12
 2 0.23 0.18 0.16

160 3 0.16 0.15 0.12
 4 0.32 0.21 0.21
 5 0.16 0.14 0.12
 1 0.14 0.13 0.10
 2 0.21 0.16 0.16

180 3 0.13 0.14 0.12
 4 0.28 0.22 0.21
 5 0.13 0.13 0.10
 1 0.13 0.12 0.11
 2 0.18 0.16 0.15

200 3 0.13 0.12 0.12
 4 0.27 0.19 0.18
 5 0.13 0.13 0.11

a  MSE of laser-based estimates 
b MSE of laser-based estimates 
Models: 1–multiplicative; 2–log(y); 
3– sqrt(y); 4–asin (sqrt(y)); 5-linear.

 
Table 5. Relative efficiency of laser 
based against ground plot estimates.
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ABSTRACT: 

Building reconstruction from LiDAR data offers promising prospects for rapid generation of large-scale 3D models in an 
autonomous manner. Such reconstruction requires knowledge on a variety of parameters that refer to both the point cloud and the 
modeled building. The complexity of the reconstruction task has led many researchers to use external information, mostly in the 
form of detailed ground plans to localize the buildings and usually assume that buildings consist of only planar parts. These 
assumptions limit the reconstruction of complex buildings specifically when curved surfaces exist. We present in this paper a model 
that considers the point cloud as the only information source and analyzes the roof shapes. We extend the standard models to support 
free-form surfaces and reconstruct their shape. Since many of the buildings are still composed of planar faces, we maintain the planar 
based partitioning whenever possible but detect if non-planar surfaces exist and apply free-form surface models there. In such way, 
the standard models are extended to support general shape roofs without imposing an artificial model if not needed. In addition to the 
extension into non-planar roofs, our reconstruction involves the aggregation of the point set into individual faces, and learning the 
building shape from these aggregates. We show the effect of imposing geometric constraints on the reconstruction to generate 
realistic models of buildings. 

 
1. INTRODUCTION 

Three-dimensional reconstruction of buildings becomes a 
fundamental part in a growing number of applications. Among 
the data sources available for such reconstruction, airborne laser 
scanning has emerged in recent years as a leading source for 
that purpose (see e.g., Brenner and Haala, 1998; Wang and 
Schenk, 2000; Brenner, 2000; Voegtle et al. 2005; Rottensteiner 
2005), particularly due to the direct measurements of the 
surface topography both accurately and densely.  

Reconstruction of buildings from LiDAR data involves their 
detection in the point cloud, extraction of primitives that 
compose the building shape, and an agglomeration of the 
primitives into a geometric building structure. The detection 
will usually wear the form of object to background separation, 
e.g., via filtering, surface discontinuities analysis, segmentation, 
or with the support of external information, like ground plans 
(Vosselman and Dijkman, 2001; Haala et al. 2006). For the 
extraction of roof primitives, a segmentation of the data into 
planar faces will be applied in most cases. In Hoffman (2004) 
and Alharthy and Bethel (2004) a gradient based analysis is 
applied as a means to find roof planes. Voegtle et al. (2005) use 
classified data as an input, where the extraction of the roof 
planes is region growing based with a homogeneity predicate. 
Rottensteiner (2005) describes a roof delineation algorithm 
where the classified data is segmented in a similar fashion as in 
Voegtle et al. (2005). The boundaries of the detected planes are 
determined using the Voronoi diagram and the resulting edges 
are then grouped together into polyhedral models. The 
reconstruction of the roof model that follows, will usually 
involve modeling via geometrical representations such as, 
boundary representations, parametric models, or CSG trees. 

Despite the large body of research into building reconstruction, 
many challenges are still remaining. One such challenge 
concerns the general planar roof-face assumption that is 

common to almost all reconstruction models. While planar roof 
buildings are still the majority, buildings with general shape can 
be found in almost every scene. Using planar-based models for 
general curved or free-from surfaces, will lead to a wrong 
partitioning and a failure in the reconstruction process as the 
common outcome. Therefore, to increase the reliability of the 
building detection and modeling process, an extension of the 
reconstruction model to support a general shapes is a desired 
improvement. Nonetheless, as many of the buildings are still 
composed of planar faces, a planar based partitioning is an 
appealing concept to maintain whenever possible. An optimal 
reconstruction model will therefore not only involve finding a 
representation for curved surfaces but also deciding when 
planarity fails to hold and a more elaborate model is of need.  

To support any form of reconstruction that deviates from the 
planarity assumption, the utility of turning into a curved surface 
description should be weighted. In this paper, we address the 
problem of identifying curved roof faces when such exist. The 
motivation is limiting such detection only to those cases where 
non-planarity is needed while avoiding over-parameterization 
elsewhere. We then demonstrate the reconstruction of non-
planar roofs structures using data with moderate point density 
(< 1 p/m2). In the following Section we outline the roof face 
extraction model and then describe alternative methods for 
identifying deviations from planarity by looking into internal 
and external characteristics. We then study their applicability to 
the detection of curved segments and show the results of the 
surface reconstruction. 

2. FEATURE EXTRCTION AND MODEL 
EVALUATION 

As noted, a reconstruction framework that assumes no prior 
information from external sources requires, i) the detection of 
buildings in the point cloud, ii) segmentation of the roof into 
faces and analysis of the results, and iii) geometric adjustment 
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for the building primitives. Our focus here is on the 
segmentation and segment analysis part. An assumption is 
made here that buildings have been detected in the point cloud, 
and that following the roof face extraction and analysis, 
geometric/topological adjustment of the roof faces will take 
place.  

2.1 Segmentation 

Surface segmentation is the core of the primitive extraction 
process. It is aimed at identifying planar patches in the roof 
structure, which then allows learning about the roof shape and 
structure, and reconstructing its shape. The segmentation we 
apply here is based on cluster analysis that uses local surface 
parameters as attributes. With those attributes, solid surfaces as 
roofs tend to cluster as they share slope parameters. Clusters 
that share common surface properties constitute "surface 
classes" (all points that share similar surface parameters) that 
may consist of more than one physical segment. Therefore, 
following the "surface class" extraction, physical segments in 
object space are extracted by linking points according to 
proximity measures. The identified surface segments are 
validated via surface fitting, which involves testing whether the 
segment is homogeneous and composed of only one actual 
plane, and if that is the case, validating that all points in the 
cluster belong to the same class. The elemental segments are 
then extended, if possible, by adding unsegmented points and 
by merging segments that share similar surface properties. 
Merging of segments is decided by testing whether neighboring 
segments share similar mean (the estimated surface parameters) 
and standard deviation. The size of the segments is controlled 
by std. thresholds. An upper bound limit σmax that reflects 
physical surface accuracy is set to avoid over-segmentation. 
Additionally a lower bound limit, σmin, which is set in 
accordance with the expected accuracy of the laser points, is 
applied to avoid under-segmentation. When a segment is 
extended and its std. falls below the minimum threshold, σmin is 
used instead. 

2.2 Segment Analysis 

When planar-surface based models are applied to non-flat 
surfaces, the reconstruction is likely to provide fractured 
segments (made of small/narrow) or a sporadic set of patches. 
From a geometric standpoint, all segments will conform to the 
segmentation guiding rules like minimum size and adequate std. 
as was defined with the segmentation. Therefore, the decision 
whether surface patches form a curved face, should not 
necessarily rely on segment accuracy but rather on internal, or 
external characteristics.  

Internal characteristics – Segments can be considered 
potential parts of a curved surface if some shape properties 
indicate so and if the segment does not cover a large area within 
the building or included within a larger segment (as with 
dormers, chimneys, etc.). Shape properties can be linked with 
the arrangement of the offsets among the laser points 
composing the surface and the adjusted plane. According to 
adjustment theory, the observations taken should be statistically 
independent (namely, E{εi, εj}=0  ∀i≠j), with E the 
expectation, and ε, the random errors). Nonetheless, if a plane 
is fitted to a bended surface, offsets from the plane will tend to 
cluster and exhibit spatial correlation with offsets of nearby 
points sharing sign and magnitude. Figure 1.a shows a side 
view of a curved surface with its corresponding laser points, the 

true surface passes among the points with random distribution 
of points above and below the surface. Figure 1.b shows the 
segmentation results which led to two planes that approximate 
the actual surface. As Figure 1.c, shows, the offsets have now 
some pattern. While the two detected plans have a std. that is 
limited by the segmentation, the residuals do not behave 
randomly. 

 

a c b 

Figure 1: residual analysis, a) curved surface, b) segmentation 
results, with two planes detected, c) blowup of the left segment 
showing the spatial order in the residual distribution 

Measures to quantify spatial correlation can be found in the 
literature, e.g., via autocorrelation analysis for time series, or 
variograms in the two dimensional case. The appealing 
variogram concept for segment analysis is costly, however, and 
therefore ineffective. Instead, we turn to non-parametric 
analysis of the error distribution via a quantitative analysis of 
the offsets variation. Generally, when a cluster of points will 
share the same residual sign, each point within this cluster will 
provide evidence to the non-planarity, and due to the minimum 
l2 norm of the least-squares plane adjustment, positive and 
negative residual regions will be formed across the segment. 
Therefore, for the evaluation, our hypothesis is that the residual 
distribution can indicate potential curved segment. To translate 
this notion into a measure, we analyze the consistency of the 
residuals signs around a given point, so that 
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with N the neighborhood around a point pi within the queried 
segment and tp a threshold value that defines the ratio above 
which a point is considered correlated with its surrounding. 
Then, a segment is considered curved if 
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i
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threshold ratio. The evaluation of the residual distribution has a 
very clear dependency on N, the neighborhood function toward 
which the pi is evaluated. Filin and Pfeifer (2005) evaluate a set 
of neighborhood definitions for airborne laser scanning data 
and opt toward a slope adaptive neighborhood that adapt to a 
local fitted surface. However, as surfaces are given here by the 
segmentation, this model has little relevance to the current 
problem. For neighborhood definition we consider the 
following set of models: 
1. Euclidean neighborhood – in which all neighboring points 
located within a given radius around a point are defined as 
neighbors, see Figure 2.a. 
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2. Topological neighborhood – in which the topological 
closest points within the maximal planar graph are considered 
neighbors. For the graph definition the pointset is triangulated 
using the Delaunay criterion; see Figure 2.b. 
3. Selective neighbors – to maintain equal contribution in all 
direction around the point, a subdivision of the surrounding 
area is applied. Four quadrants are defined and the closest 
points in each sector are selected, see Figure 2.c. Around the 
edges of the segment, where a quadrant partitioning cannot be 
performed, this approach is maintained, but instead of 
quadrants the two halves covered by points are evaluated, see 
Figure 2.d (in narrow segment edge parts this evaluation is not 
performed, the information that can be drawn there is 
questionable from the outset). 

 

 
Figure 2. Neighborhoods a) Euclidean, b) topological, c) 
selective along quadrants, d) selective along edge points 

External characteristics – Contrasting the internal 
characteristics evaluation that studies shape properties via laser 
points deviation from the surface, the evaluation of external 
characteristics concerns deciding which segments should be 
joined together into one curved surface and examining the 
utility in this. Neighboring planar segments can be grouped 
together by fitting a high degree parametric surface (e.g., cubic 
surface), and given the two models deciding which model is 
preferable. The measure we consider here is the Akaika 
Information Criterion (AIC) (Akaike, 1974; Boyer et at. 1994) 
that takes both model complexity and modeling accuracy into 
consideration, and is advantageous because of its simplicity. 
Under the reasonable assumption of normal distribution, the 
AIC values can be computed for each model using Equation (7) 

n
nkAIC σln2 +=       (2) 

with k, the number of parameters in the model, n, the number of 
points, σ, the sum of the square errors. Errors here are the 
offsets of each point from the surface.  

The evaluation is performed in a pair-wise manner, where for 
each pair of neighboring segments the AIC value is tested for 
the two individual segments against the merit of using one 
polynomial surface. Experimenting with polynomial surfaces of 
degrees 2÷5 has shown that locally, bi-quadratic surfaces (six 
parameters) are sufficient to decide if the two surfaces are part 
of a curved surface. The ability to maintain a low-degree 
polynomial for the test is due to the local pair-wise evaluation. 
We note that such test can also be applied to evaluate internal 
characteristics, and refer to it in the following.  

 

 

 
Figure 3: Curved roof datasets, top) a dome like shape, middle) 
a cross hip roof with curved end, bottom) a nearly flat roof 

 

 

 

 

 

 

   

 

 

 

Figure 4: Segmentation results, top) the dome structure with 
top and isometric view, bottom) the hipped roof 

3. RESULTS AND ANALYSIS  
For the analysis of the metrics we use three datasets, a synthetic 
one with a dome like shape (see Figure 3 top), a hip roof with 
one facet having a cone like shape, (see Figure 3 middle), and a 
nearly flat roof with no distinct features (Figure 3 bottom), thus 
making it more challenging for the analysis. The choice of the 
synthetic dataset is driven the possibility to evaluate the 
robustness of the proposed methods, particularly to the increase 
of noise. Noise level ranging from 5 cm as an optimal case to 
30 cm as a more extreme end, are applied to study the effect of 
noise on the surface evaluation model. We study the synthetic 
and winged roof examples and then analyze the nearly flat roof 
where further tests are applied. We point that other than the two 

r

a b c 
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Noise: 5 cm Noise: 10 cm Noise: 20 cm Noise: 30 cm 
Method 

Curved Not Curved Curved Not Curved Curved  Not Curved Curved Not Curved 

90 2 86 3 74 4 1 57 
Euclidean 

97.8% 2.2% 96.6% 3.4% 96.1% 3.9% 1.7% 98.3% 

83 9 40 49 6 71 0 58 
Topological  

90.2% 9.8% 44.9% 55.1% 7.8% 92.2% 0% 100% 

92 0 88 1 77 0 53 5 
Selective 

100% 0% 98.9% 1.1% 100% 0% 91.% 8.6% 

Table 1. Results of the segment analysis for different noise and neighbourhood methods 

real world examples further tests were applied on other building 
datasets, both flat and free-forms. 

The segmentation results for the first two datasets are given in 
Figure 4. In both cases σmax=±15cm and a minimal segment 
size of 5 points were used as parameters. For the hipped roof, 
the two side wings were segmented as planes but the curved 
parts (the whole structure in the dome, and the front of the 
hipped roof) are broken into parts. Some holes in the point 
clouds can be noticed; these are small regions that fell outside 
the extent of the segments as they exceeded the accuracy 
threshold, but were too small to form an individual segment. In 
the overall roof reconstruction scheme, those holes will be 
"completed" when neighboring planes will be extended to 
intersect one another. In this regard, because of the actual non-
planar shape of the roof, some topological inconsistencies may 
arise in the reconstruction. We point that for the dome structure 
some variations in the segmentation as a function of the noise 
increase can be seen but as they share more or less a similar 
structure, they are not presented here. 

 
Figure 5: Residual distribution over the individual segments 

As for the hip roof, Figure 5 shows the residual distribution 
over the segments, with green points as positive residuals and 
red points as negative ones. In all three curved segments a clear 
clustering of the errors can be notices while the planar roof 
exhibits more or less random variations. 

The application of the internal measures as a means to analyze 
the shape of the segment is now studied. The results are listed 
in Table 1 and illustrated graphically in Figure 6. For the 
experiment, noise level of 5, 10, 20, and 30 cm were applied to 
the data. For the case of 5 cm noise level all three models 
appear to perform well, with the Euclidean evaluation having 
only two misses out of 92 segments and the topological 
neighborhood giving rise to nine misses from the same amount 
of segments. The selective neighborhood scheme offers the best 
performance with no misses at all. As the noise level increases, 
the dissimilarity in results between the different measures starts 
growing. The Euclidean neighborhood system offers slight 
decrease in correct detection up to the 20 cm noise level, but 
then completely breaks apart at the 30 cm level. This behavior 
can be attributed to the noise level that exceeds by a factor of 
two the accuracy threshold of the segmentation. The 

topological neighborhood shows a much weaker performance 
with more the 50% misses already at the 10 cm level and 
breaking apart from then on. Compared to the two others, the 
selective scheme appears to have the best performance, with a 
negligible miss up to the 20 cm level and five misses at the 30 
cm level. This result can be attributed to the emphasis on the 
distribution of the evaluated points while maintaining a 
proximity criterion to the evaluated point. As Figure 6.b shows 
those misclassifications occur with the relatively small and 
narrow segments where the collection of a set of well 
distributed points is harder.  

 

 
Figure 6: Classification of segment types (light tone – correct, 
dark tone – wrong) 

An analysis of the results leads to the realization that one of the 
more affecting factors is the size and shape of the evaluated 
segments. Usually, with curved structures the resulting 
segments will tend to  be small in size, and, depending on the 
surface geometry, narrow. Therefore, neighborhood models that 
try covering a relatively broad region, as the Euclidean model 
or the topological one, will exhibit greater sensitivity to the 
segment shape and size and as the level of noise increases lose 
the dominance of the residual distribution. Compared to them, 
the selective method shows, to some degree, less sensitivity as 
it weights in both point distribution and proximity in a more 
controlled manner.  

For the segment characterization on the hipped roof the 
classification results based on the neighborhood systems are 
listed in Table 2 (for segment numbering see Figure 8). 
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Generally, both the Euclidean and the selective models 
classified correctly the three curved related segments, with the 
topological model misclassifying one of them. The more 
interesting result however is the classification of the two wing 
segments, where both the Euclidean and selective based models 
misclassified one segment. This result is due to the overlap 
between two different scans over the roof and a systematic 
scanning error that led to two sets of offsets. In term of the local 
analysis, it has led both surfaces, under different neighborhood 
schemes, to be classified as curved.  

Table 2: Results of the segment analysis for the hipped roof 

External evaluation 

The external evaluation of the segments' shape operates on a 
different level by assessing the utility in joining two 
neighboring segments into a one. The connectivity between the 
segments is established by identifying border points of each 
segment (those points that neighbor not only points with the 
same segment ID but such with others). When applying the AIC 
measure on the dome structure, the results yield correct 
classification for all segmentation under different noise levels. 
The successfulness of the AIC measure can be understood by 
the direct incorporation of noise level into the information 
criterion and to the fact that segments that are originally part of 
a curved object tend to show better results when joined. 

When turning to the hipped roof that features both planar and 
curved part, the model should distinguish between curved parts 
that should be linked together and planar parts that should be 
kept as such. Table 3 lists the AIC values for the joining of the 
roof segments, with Figure 8 showing the resulting connectivity 
graph between the detected curved segments.  

Segment AIC Values 

I II I II I + II curve 

1 -3102 -3337 -6439 -1675 

3 
0 

-1002 -3337 -4338 -2125 

0 -3337 -3102 -6439 -1675 

4 
1 

-419 -3102 -3521 -1646  

3 -1002 -1482 -2484 -2688 

4 
2 

-419 -1482 -1901 -2256 

0 -3337 -1002 -4338 -2125 

2 
3 

-1482 -1002 -2484 -2688 

1 -3102 -419 -3521 -1646 

2 
4 

-1482 -419 -1901 -2256 

Table 3: AIC values - the best model to be selected is the one 
with the smallest AIC value 

The results show that applying the AIC measure when 
evaluating the utility in joining the three curved segments has 
managed identifying them as part of a curved segment but when 
joining the flats with either one another or the curved ones, kept 
them as they are. We note that the systematic offsets due to the 
laser strips overlap have no effect on the results as with the 

internal characteristics evaluation. This can be explained, again, 
by the global evaluation of the fitting accuracy and the model 
complexity that does not evaluate the individual points but 
rather the merit in joining surfaces. 

 
Figure 8: The connectivity graph between curved segments 

Segment Number 
Method 

0 1 2 3 4 

Euclidean Flat Curved Curved Curved Curved 

Topological  Flat Flat Curved Flat Curved 

Selective Curved Flat Curved Curved Curved 

 
Figure 9: Outline of the segments of the nearly flat roof 
 
Turning to the nearly flat surface, the segmentation results are 
shown in Figure 9. Even though the accuracy level was raised 
to σmax=±25cm the roof was segmented into two separate 
segments indicating its actual deviation from planarity. Here, 
internal measures are measured by the offset based analysis and 
by using the AIC as a means to assess flatness of the individual 
segments. Additionally, the external evaluation was performed. 
As the offsets distribution in Figure 9 show, the bigger segment 
was indeed classified as curved, but the smaller one as flat. 
Using the AIC measure to evaluate the two individual segments 
(flat vs. curved) identified, again, the big segment as curved but 
the other as flat. This can be explained by the segment size and 
dimensions that are small and elongated. Contrasting both 
internal evaluations, the global AIC measure that linked the two 
parts of the nearly flat roof showed higher gain by joining them 
into one curved segment. These results indicate that the merit of 
using the external evaluation lies not only in the information 
measure, but also in having a more global view of the surface 
joining utility. 

3.2 Global Surface Approximation 

Reconstruction of the curved roof shape can be in the form of a 
high order polynomial or a free-form surface. We demonstrate 
the application of a Non Uniform Rational B-Spline (NURBS) 
surface for the reconstruction (Cohen et al., 2001). The results 
can be seen in Figure 9. Using NURBS allows a mathematical 
representation that can accommodate and accurately describe 
surfaces of general shapes, ranging from simple 2D curves to 
complex 3D free-form surfaces or solids. In addition to the 
compact representation that NURBS geometry offers, NURBS 
can be graphically rendered in an efficient and accurate way. 
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Figure 10 (top) shows that NURBS surface that was fitted to the 
three curved surfaces, following their boundaries as extracted 
from the segmentation of the point cloud. Attempting to fit a 
high order polynomial to the joining of the three surfaces (that 
appear to be having a cone structure) did not yield satisfying 
results in terms of appearance and fitting accuracy. The result 
in Figure 10 (top) that follows the geometric shape of the roof 
face lacks the form of an actual building shape. In Figure 
10(bottom) the application of geometric constraints and 
leveling the roof boundary is added to form the complete shape 
of the roof structure. This structure is composed now of two 
planar and one free-form surfaces. Finally, Figure 11 shows the 
effect of reconstruction when relying on flat surface based 
segmentation. It shows the clear role of free-form surfaces for 
building reconstruction, even for gentle deviations from 
planarity as the current building offers. 

 

 
Figure 10: Reconstruction of the curved part and the roof shape 
via free-form surface 
 

 

 
Figure 11: Reconstructing the nearly flat roof, with an example 
(top) of the effect of not using a free-form representation 

 
4. CONCLUSIONS 

Detection of curved roofs becomes an important component in 
building reconstruction over large areas, where some buildings 
are likely to wear such shapes. Such detection should be able 
identifying them while still maintaining the planarity of other 
roof faces, which still set the majority. In this paper, we 
evaluated methods to identify curved surfaces. The results have 

shown that internal measures can be reach correct detection in 
most cases under a given neighborhood system. However, the 
dependency on the segments shape and laser scanning 
properties, like systematic offsets between strips, may lead to 
misclassification. In contrast, the external use of AIC criterion 
appears more robust to noise and to scanning artifacts, as the 
three examples show. The ability to distinguish correctly 
between planar surfaces and segments of a fractured curve are 
of great value in this regard. We note that other external 
measures may prove suitable as well. 

Finally, the application of free-form surface coupled with 
geometric adjustment of the surface into a building shape has 
led to an optimal reconstruction of the building model, one that 
composed of three surfaces for the hipped roof, and of one 
global surface for the dome and the nearly flat one.  
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ABSTRACT: 
 
Terrestrial lidar measurements with the Leica HDS 4500 laserscanner (Imager 5003 from Z+F) were executed in a structurally 
highly diverse, at least 200-year-old natural 11-species forest with typical characteristics of an old growth forest in order to assess 
the species-specific differences of tree canopy structures growing in a forest stand. Accuracy of the method and completeness of the 
canopy measurement is evaluated based on independent height measurements and visual inspection of single tree canopies. 
While canopy structure could be captured completely in the lower half of the canopies, the upper parts of the virtual canopies 
exhibited partly gaps along the axis of branches. Virtually executed vertical canopy projections could better represent indentations in 
the canopy borderline than field measurements – both measurements yielded comparable canopy projection areas (root mean square 
error, RMSE = 11.1m²). Lidar-derived heights of tree canopy base were in better agreement with field measurements than lidar-
derived tree heights.  
 

                                                                 
*  Corresponding author.   

1. INTRODUCTION 

The terms “old-growth forest” and “primeval forest” stand for 
undisturbed forests that were able to develop all features 
occurring in a forest within the natural life-span of its 
constitutive tree varieties, including those unique features that 
make the forest ecologically valuable as habitat for rare species 
depending on these features. Therefore, the typical 
aboveground characteristics of old growth forests comprise 
(Zenner 2004, Hunter and White 1997): 

• large and old trees 
• dead trees and wood, standing and on the ground 
• standing, leaning, and fallen trees 
• trees in all different ages due to natural regeneration 
• high spatial complexity, e.g. several layers of 

vegetation 
• naturally high tree species diversity 

 
Out of these, spatial complexity of forests is a difficult and not 
satisfyingly defined feature that has not yet directly been 
measured. While it is recognized that species-specific 
differences in tree canopy structure exist (Hagemeier 2002), are 
ecophysiologically significant (Fleck et al. 2004), and 
contribute to structural complexity (Zenner 2004), they have 
not been quantified due to a lack of reliable and complete 
structure data of trees growing in competition with other trees 
in a forest. 

 
Though terrestrial lidar principally provides an efficient tool to 
measure tree canopies in a forest, old-growth forests belong to 
the most difficult objects for laser-scanner measurements due to 
characteristics associated with structural complexity and size:  

 
1. Inaccessibility of the canopy for the instrument leads 

to an unfavourable scanning geometry with all 
scanner positions on one side of the scanned object 
and in a considerable distance from it. 

2. Irregularity of the geometrical shapes in old-growth 
forests (e.g. noncircular stems covered with moss or 
bulges from wound occlusion and hidden by twigs or 
epiphytes) limits the utility of semi-automated 
registration procedures (e.g. Henning and Radtke 
2006) based on geometrical features of the scene, 
resulting in an unfavourable registration geometry 
with all control points lying on one side of the object. 

3. Occlusions depend on the density of canopy elements 
per canopy volume, which is usually high. They make 
it difficult to completely capture the structure of the 
upper part of the forest canopy. 

4. Instability of the objects due to wind and growth 
movements causes additional concerns about 
reliability and repeatability of the measurements.  

 
This paper presents multiple laser-scanner measurements of 
single trees standing in a dense, species-rich old-growth forest 
and evaluates the reliability of these data for further steps in 
species-specific structure analysis. 
 

2. MATERIAL AND METHODS 

2.1. Study site  
 
All measurements were executed on the 10th of March 2006 in a 
mixed broad-leaved forest in the Hainich national park, study 
site 3a (51.089° North, 10.523 ° East) of the collaborative 
research project Graduiertenkolleg 1086 “The role of 
biodiversity for biogeochemical cycles and biotic 
interactions in temperate deciduous forests” at the University 
of Göttingen (see http://www.forest-diversity.uni-
goettingen.de). Average wind velocity on this sunny day was 
11.5 km/h and the main wind direction was west. 
 
The study site is a 65m x 55m fenced section of the natural 
forest with 11 different tree species inside the fence: small-
leaved lime (Tilia cordata), large-leaved lime (Tilia 
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platyphyllos), common ash (Fraxinus excelsior), Norway maple 
(Acer platanoides), European hornbeam (Carpinus betulus), 
pedunculate oak (Quercus robur), sycamore maple (Acer 
pseudoplatanus), field maple (Acer campestre), European beech 
(Fagus sylvatica) European field elm (Ulmus minor), and wild 
cherry (Prunus avium) in the order of stem numbers. The total 
number of 161 trees comprises 9 standing dead trees and equals 
392 trees per ha (trees with diameter at breast height (DBH) 
>7cm). Due to natural regeneration there were trees in all 
different ages and sizes in the forest: patches of shrub-like 
young trees (mainly ash and lime trees), suppressed trees in the 
lowest canopy layer, up to approximately 200-year-old large 
trees, and large decomposing dead trees lying on the ground. 
Tree stems in the fenced area had a maximum DBH of 85cm. 
Leaning stems were inclined to up to 39° from vertical, the 
average stem inclination was 7°.  

 
2.2 Measurement set-up 

The measurements were set up in order to cope with the 
mentioned difficulties for terrestrial lidar measurements in an 
old-growth forest. 25 scans were performed with a Leica HDS 
4500 laser-scanner produced by Zoller + Fröhlich, Germany. 
Scanning positions about 1.5m above ground level were chosen 
irregularly in order to take advantage of larger canopy gaps and 
to increase the measurement density in thickets (Fig. 1). The 
HDS 4500 scanner measures distances up to 53.5m (ambiguity 
interval) based on the phase-shift of a frequency modulated 
laser beam. The laser spot size is 3mm leaving the instrument 
and 8.5mm in a distance of 25m. Range measurements in a 
distance of 25m have a root mean square error of 9mm on dark 
grey surfaces.  
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Fig. 1: Horizontal cut through the point-cloud in a height of 2m 
above ground-level, showing stem positions (grey spots), valid 
scan positions (filled stars), and the positions of elevated targets 
providing additional control points for the registration (open 
squares). 
 

The scanning resolution was set to an angle of 0.036° in both, 
horizontal and vertical direction and to a total scan angle of 
360°, resulting in a point spacing of 15.7mm in a distance of 
25m. 
The multiple scans were transformed into the same co-ordinate 
system based on 39 artificial chessboard pattern targets fixed to 
tree stems in a height up to 2m above the ground. Twelve 
elevated targets in a height between 8m and 10m on tree stems 
surrounding the forest stand were added in order to improve the 
registration geometry. They were directed towards the centre of 
the plot and fixed using a forest ladder of 10m length, which is 
equipped for leaning against stem surfaces and for stability on 
smooth ground. Geometric registration was performed using 
Z+F-LaserControl 6.8 (Zoller + Fröhlich, Germany). Single 
trees were extracted based on recognizable canopy elements 
using Cyclone 5.6.1 software (Leica Geosystems, Switzerland). 
Virtual canopy projections were performed on 20 trees viewing 
the single tree point-cloud in z-direction and keeping the 
actually surveyed part of the canopy in the zenith. Tree height 
was extracted of 45 single tree point-clouds as the vertical 
distance between the highest point and stem base (visually 
selected point at the bottom edge of the stem). A point 
representing canopy base was selected on 60 trees as the lowest 
point of the insertion area of the lowest main branch to the 
stem.  
 
2.3 

3.1 

Forest Inventory data 

8-point canopy projections were performed in January 2006 
using a sighting tube equipped with a 45° mirror and cross-hairs 
to ensure vertical view of specified canopy elements from the 
ground (Johansson 1985). Eight points along the border of the 
canopy where chosen in order to approximate the canopy 
projection with a polygon and markers were set on the ground 
at each polygon corner point. Distance and direction of each 
point from the stem base were measured with a compass and a 
meter tape. 
 
Height measurements in the stand were performed with the 
Vertex sonic clinometer and transponder (Haglöf, Sweden), 
aiming first to the stem at breast height (transponder height 
1.30m a.g.l.) and then to the base and top of the canopy. Base of 
canopy was defined as the origin of the lowest main branch. 
Main branches were defined as branches with at least 10% of 
the cross-sectional area of the stem at this position. 

 
3. RESULTS 

Registration and Segmentation 

Three scans were excluded from the evaluation due to target 
positions with offsets of more than 5cm in comparison to the 
grid of target positions represented by the other scans. The 
maximum positional deviation of control points in the 
remaining 22 scans was 2.1cm. 
The extraction of single tree canopies based on visual 
recognition of canopy elements was safely possible for all 
branches with diameters of 4cm or more, but also smaller 
branches were usually well distinguishable due to the 
possibility to look at the point-cloud from many different 
viewpoints. Though the knowledge of species-specific tree 
habit accelerated the process of visual segmentation, this 
knowledge was not essential to distinguish tree canopies from 
each other.  

m 
m 

Branches of adjacent tree canopies were visibly apart with gaps 
of more than 20cm between them. Gaps between canopies 
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could in less than 10% of all cases not safely be distinguished 
from the gaps between measured points on a branch. For these 
cases it was necessary to separate the tree point-clouds by an 
equidistant plane to those branches of the trees that could safely 
be identified. It cannot be excluded that this had a smoothing 
effect on the irregular form of the canopy surface due to 

wrongly assigned points filling indentations of a neighbouring 
canopy. The result of this segmentation may be inspected in 
Fig. 2, 3, and 4. The point-clouds had up to 2 million points per 
tree. Point densities along branches were lower in the 
uppermost part of the canopy, but branches could still be 
identified. 

 

 

Fig. 2: Single tree point clouds of pedunculate oak #1 (south and east view), sycamore maple #2 (south and east), and common ash 
#3 (south view) 

 

Fig.3: Single tree point clouds of European hornbeam #5 (south and east view) and small-leaved lime #12 (south and east view). 
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Fig. 4: Single tree point clouds of common ash #3 (east view), European beech #2 (south and east view), and field maple #15 (south 
and east view). 
 
 
3.2 Virtual canopy projections 

The 8-point canopy projections of 3 trees could not be 
evaluated due to obvious deviations from the virtual canopy 
projections. The area of 8-point canopy projections of 17 
more trees ranged from 9m² to 112m² (mean = 47m²). The 
area of virtual canopy projections was well correlated with 
this measurement, yielding an r² of 0.90 and a root mean 
square error of 11.1m². 
 It was obvious from the measurement procedure that virtual 
canopy projections may capture indentations of the projected 
canopy surface line much better due to the higher number of 
polygon corner points, which were between 100 and 150. 
 

Es3

 
Fig. 5: Canopy projections of common ash #3: Contour lines 
of the 8-point canopy projection (thick line), the virtual 
canopy projection (inner thin line), and convex hull of the 
virtual canopy projection (outer thin line). 
 

Both sorts of canopy projection were therefore compared to 
the area of their 2-dimensional convex hull (Fig.5): While 8-
point-canopy projections were practically identical to their 
convex hull with an average area of 97% of their convex hull 
area (range: 87% - 100%), virtual canopy projections had on 
average 69% of the area that their convex hull would have 
(range: 56% to 79%). Virtual canopy projections were, thus, 
better suited for the representation of indentation-rich canopy 
shapes. While all virtual canopy projections represented a 
significant amount of canopy indentations, 53% of the 8-
point projections did not. 
The correlation of the 8-point-canopy projection area with 
the convex hull area of virtual canopy projections was even 
better than in the direct comparison of both projections 
(r²=0.95, RMSE=11.1m²). 
 
3.3 Height of canopy base and tree height 

Vertex measurements and lidar-measurements of height of 
canopy base were well correlated (r²=0.99), with a root mean 
square error of 0.52m, the mean height of canopy base being 
9.18m. 
The correlation of both measurement methods for absolute 
tree height was with an r² of 0.82 a bit weaker, RMSE being 
2.41m and average tree height was 24.88m. 
 

4. DISCUSSION 

The segmentation of point clouds representing dense forest 
canopies into sub-clouds for each tree was visually not 
possible without a certain amount of insecurity at the canopy 
contact zones that lead to partly smoothed canopy surfaces.  
The indentation-rich, irregular canopy surface of trees is on 
the other hand mostly well represented in its visual 
appearance (compare Figs. 2, 3, and 4). 
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Fig. 7: Height measurements of top of the tree (open squares, 
n=45) and canopy base (black dots, n=60) as measured with 
the Vertex instrument (x-axis) and by terrestrial lidar (y-
axis). 
 
The low ratio of virtual canopy projection area to their 
convex hull area shows that this feature of tree canopies is 
well represented in lidar-measured point-clouds, while it 
cannot be captured by 8-point canopy projections.  
Since 8-point canopy projections are a cheap and frequently 
used method to characterize forest composition, it needs to be 
specified that the arbitrary choice of corner points with the 
goal to approximate the projected canopy surface line with 
straight lines is essential for the accuracy of the method: The 
alternative use of the outermost points of the canopy 
projection would in many cases result in the convex hull 
area, which overestimates canopy cover up to 79% when 
compared with lidar data.  
The slighter overestimation (23%) that was found comparing 
8-point projections and virtual canopy projections may rather 
be explained by canopy indentations not represented than by 
branches that were not scanned due to occlusions or wrong 
segmentation, since the general shape of projected canopies 
was similar between both methods (compare Fig. 5) and 
completely missed branches would have been visible as gaps 
between canopies in the segmentation process. This 
interpretation is also supported by the better correlation of 8-
point projection areas with the convex hull areas than with 
virtual canopy projections themselves. 
A big practical advantage of virtual canopy projections is the 
possibility to view canopy contact zones from all necessary 
viewpoints before decisions on point-cloud segmentation are 
taken. This possibility does not exist when measuring 
projections with a vertical sighting tube which may have 
contributed to the deviation between both methods. 
The agreement between Vertex measurement and lidar 
measured tree heights was much better for height of canopy 
base than for total tree height. This may have several causes: 
First, the canopy base is easily visible for both, the laser-
scanner as well as the operator of the Vertex instrument. 
Second, canopy base and stem base are more probably in the 
same horizontal distance to the operator than the top of the 
tree would be. Though stems may be inclined a few degrees, 
same horizontal distance is a presupposition for correct 
measurement with the Vertex instrument. The highest point 
of the tree not necessarily has to be on the elongation of the 
stem axis. Third, branches in the uppermost part of the 
canopies had lower densities of lidar-measured points than 
below the canopy. It may, therefore, be that the tree top and 
its neighbouring points directly beneath have not been 
detected in some cases, though this is not likely in the visual 

representations. Since both measurement methods may have 
contributed to these errors, it is difficult to judge the accuracy 
of tree height measurements without independent 
measurements. The data do show a reasonable agreement 
where the error sources for both methods are less severe, i.e., 
for measurements of height of canopy base. 
 

5. CONCLUSIONS 

(1) Not yet developed automated segmentation procedures 
for tree canopies in a forest will likely have the same 
problems as the visual segmentation of trees in a point-cloud 
with the consequence of partly smoothed canopy surfaces, 
unless the point density is even higher than in this example. 
(2) Terrestrial lidar measurements provide a tool to validate 
the performance of canopy projection methods. The arbitrary 
choice of border points of canopy projections leads to more 
accurate results than using the outermost points. (3) The 
validation of lidar-derived tree height measurements in a 
forest is not possible based on Vertex measurements, since 
these depend too much on visibility limitations.  
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ABSTRACT 
 
Filtering non-terrain points from raw laser scanning data is the most important goal to improve productivity in DTM generation. 
Filtering algorithms are built on assumptions about what discriminates terrain points from points on other objects (e.g. buildings and 
vegetation). In most cases, a single measure is used to accept or reject points. In this paper a three-stage raw data classification 
algorithm is presented. After a preliminary interpolation to a grid, a region growing based on height differences is applied. Segments 
from the region growing are classified as terrain, building or vegetation, based on their geometric and topological description. 
Terrain grid cells are conditionally low-pass filtered, to remove low vegetation. A piece-wise approximation of the terrain surface is 
computed, built from the grid cells classified as terrain. Finally, raw data are accepted as terrain within a given distance from the 
surface. Results obtained on a ISPRS filter test data set are shown to illustrate the effectiveness of the procedure.  
 

                                                                 
1 Currently visiting professor at Delft University of Technology, Dept. of Earth Observation and Space Systems 

1. INTRODUCTION 

Airborne laser scanning is today the most effective data 
acquisition technology for the production of high resolution, 
high quality DTMs (Digital Terrain Models). The only 
competing technique might be aerial photogrammetry with 
direct camera orientation by GPS/INS (Inertial Navigation 
Systems) and DTM generation by digital image correlation; 
with aerial digital cameras the automation of the workflow 
should not be far from that of the laser scanner. Nevertheless, 
the preference for the laser scanner is clear and unlikely to be 
reversed. Because of its characteristics (first and last pulse, 
penetration rate in forested areas, narrow field angles, 
independence on shadows and object texture), laser scanning is 
indeed better suited and more versatile than photogrammetry 
for DTM production in urban areas as well as in forested areas. 
Penetration of pulses under the canopy provides a key 
advantage over photogrammetry, since it gives the filtering 
algorithms a chance to succeed in getting rid of spots on 
vegetation while retaining terrain hits.  
Due to the scanning mechanism and aircraft movement, laser 
spots are scattered on terrain, vegetation, buildings and on 
whatever target that, hit by a pulse, reflects back enough energy 
to be detected. The result is a point cloud that must be filtered 
according to the survey purpose to get rid of unwanted echos: 
vegetation and buildings in DTM generation, vegetation in 3D 
city models, both the terrain and the buildings in tree counting 
and modeling.  
To reduce production costs and processing time, filtering is 
performed automatically; in addition to visual inspection of the 
results for quality control, manual editing is still necessary, 
depending on the reliability of the filtering algorithms and on 
the complexity of the site. 
 

2. PREVIOUS WORK 

Many filtering algorithms have been proposed in the last 
decade; witnessing the difficulty of the task, none performs 

equally well on any kind of landscape, because assumptions on 
terrain characteristics or the threshold values used do not 
always match reality.  
A first group of algorithms looks for the lowest point in a 
neighborhood and label it as a terrain point. This is achieved 
mostly by applying morphological filters (Kilian et al., 1996; 
Vosselman, 2000; Sithole, 2001) where the structuring element 
is based e.g. on height difference or slope. Wack and Wimmer 
(2002) use grid data in a hierarchical scheme where non-object 
points are detected by using a Laplacian of Gaussian. 
A second group fits an interpolating surface to the data and 
accept individual points measuring their distance to the surface. 
For instance, using linear prediction Kraus and Pfeifer (1998) 
iteratively get rid of points above the interpolating surface, so 
that it gets closer and closer to the lowest data points; 
Axelsson’s (2000) algorithm works the other way around, i.e. a 
minimal set of (lowest) terrain points is progressively densified 
in a TIN structure by slope thresholding; Brovelli (2002) 
analyses the residuals from spline interpolation to detect objects 
contours.  
A third group aim first to segment the data based on one or 
more criteria and then try to classify them: Filin (2002) clusters 
points in feature space, based on curvature and height 
difference, classifying low and high vegetation, smooth and 
planar surfaces; the neighbourhood used in feature evaluation is 
adaptively adjusted to the slope  (Filin and Pfeifer, 2006); 
Roggero (2002) clusters points based on connectivity and a 
principal component analysis using geometric descriptors; 
Nardinocchi et al. (2003) segment data in regions bordered by 
discontinuities, retrieve their geometric and topological 
relationships and apply a rule-based scheme to classify the 
segments.  
Recently proposed algorithms stress the need of segmentation 
and of context information to improve filter robustness: Sithole 
and Vosselman (2005) aim to separate objects (natural or man-
made) from the terrain by extracting regions raised above their 
surroundings and classify them using geometric and topological 
relationships. Tóvári and Pfeifer (2005) group points in 
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segments based on consistency of normal vectors, distance to 
the fitting plane and distance from seed point; robust filtering of 
the surface is then applied, where the same  weights are applied 
to group of points, rather than to single points. 
In this paper a strategy for the classification and filtering of raw 
laser scanning data is presented. The main building blocks of 
the strategy (namely, data segmentation by region growing and 
region classification) have already been presented respectively 
in (Nardinocchi and Forlani, 2001) and (Nardinocchi et al, 
2003). In (Forlani et al, 2006) the capability of the method in 
building detection was demonstrated, in the context of building 
reconstruction from laser data. In the following, Section 3 
presents the main features of the strategy; Section 4 reviews the 
segmentation and the classification, pointing to the changes 
now introduced to earlier versions and showing the 
improvements. Section 5 presents the raw data filtering, that 
was just sketched in the previous papers. Finally, Section 6 
reports on the results. Examples and results refer to site 5 of the 
ISPRS laser scanning test dataset (Sithole and Vosselman, 
2003). 
 

3. OUTLINE OF THE METHOD 

The classification strategy comprises three-stages (see Figure 
1). In the first one, raw data are interpolated to a grid, taking the 
lowest elevation in the cell as grid value.  
In the second stage, grid data are segmented by a region 
growing algorithm with adaptive threshold. The geometric 
characteristics and the topological relationships among the 
segments are reconstructed and, based on a set of rules, the 
segments are classified as outliers, vegetation, building or 
terrain. Although each cell was assigned to a class, the raw data 
it contains must still be classified individually.  
In the third and last stage of the procedure, the whole set of raw 
data is examined. For the former, consistency is measured with 
respect to the elevations of the neighbouring terrain cells. For 
the latter, a piecewise approximation of the terrain with a 
continuous surface is estimated using data from cells classified 
as terrain; consistency is measured thresholding the distance 
from the surface.  

Grid Data Classification

Slope-based Segmentation
Gradient Orientation 

Segmentation

Raw Lidar Data

Cells classified as terrainSurface Interpolation

Point-based filtering of 
high vegetation

Point-based filtering of low
vegetation and noise

Knowledge base

High Vegetation Building Terrain

Adaptive region growing 
segmentation

Geometrical and 
topological relationships 

Re-sampling to a grid

 
Figure 1. Components and main relationships of the framework for 

LIDAR data filtering. Solid lines refer to processing of grid 
data; dashed lines to processing of raw data 

 
Aggregation of raw data in segments enables a richer 
description of geometric properties and the establishment of 
topologic relationships. This makes it possible reasoning about 

their relationships and provides the contextual information 
essential to increases the probability of correct classification of 
single data point in the final stage. This is not to claim that the 
method is error free, but rather that a segment-based approach 
(as in feature-based matching) is more robust that just relying 
on point-to-point comparison in a local neighborhood (as in 
signal-based matching). Effective filtering cannot be separated 
by some sort of object recognition and identifying terrain 
patches or trees should not be seen as different from detecting 
buildings. 
The final stage relies completely on the correctness of the 
classification of the cells labeled as terrain, since the overall 
approximation of the terrain is obtained only from cells 
classified as terrain. Some classification errors can be tolerated: 
small patches of low vegetation labeled as terrain are filtered 
out; buildings labeled as terrain, on the contrary, will not. 
On the other hand, the further a cell is from the nearest terrain 
region (or the less the terrain cells), the smaller the probability 
that the approximating surface will truly follow the terrain and 
so actually will help to correctly discriminate the point class.  
Data interpolation, segmentation and classification have to find 
the best compromise between correct labeling of the terrain 
regions and the attempt to extend them as much as possible, in 
order to penetrate into the high vegetation areas and to reduce 
the number of small patches of terrain that, if completely 
surrounded by vegetation, would be much more difficult to 
classify reliably.   
 

4. DATA INTERPOLATION, SEGMENTATION AND 
CLASSIFICATION 

In the following paragraphs the three stages of the strategy are 
reviewed, highlighting the changes introduced with respect to 
earlier versions and the improvements obtained. Attention is 
also paid to using First and Last pulse and how positive and 
negative outliers are dealt with.  
The behaviour of the procedure is exemplified on the Site 5 
dataset of the ISPRS Laserscanning test which offers a great 
variety of environments, with step edges in the terrain, slopes 
with different orientation, high vegetation on a steep hillside 
and a built up area with vegetation with a relatively low density 
of raw data. 
 
4.1 Grid Data Interpolation 

Grid cells are assigned the elevation of the lowest raw point in 
the cell (see Figure 2). The larger the grid size, the more likely 
this prevents the noise (such as cars, low trees and so on) to 
affect the aggregation process.  On the other hand, increasing  it 
 

 
(a) 

 
(b) 

 
Figure 2.  (a) Raw data Points; (b) Grid data Points  

 
too much will affect the extraction of detailed information 
(slope, aspect, …) from the grid, which may hamper the 
effectiveness of further steps. The best grid size should be 
between one or two times the raw data point spacing.  
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Empty grid cells are treated as no data, unless all 8-neighbours 
are non-empty: in this case, the cell value is set to the median of 
the 8-neighbours. 
Figure 3 shows the TIN representation of the raw data (left) and 
of the grid data (right) in a smooth forest area. It is apparent 
that, due to the high penetration rate, in such cases the grid 
representation already constitutes a good, although noisy, 
approximation of the terrain. 

  
 

Figure 3. TIN of the raw data e TIN of the grid data on a wooded area.  
 
4.2 Grid Data Segmentation 

The region growing is the first step in data segmentation.  
From a seed pixel, every of the 8-connected neighbours with a 
height difference from the central pixel less than a threshold is 
enclosed in the region and becomes in turn a seed point for that 
region. The process goes on, until no points are added (i.e. the 
region border will feature a discontinuity larger than the 
threshold).  
Although the result may depend on the cell size and the 
threshold, the region growing separates most of the high 
vegetation and of the buildings from the terrain: buildings raise 
above the terrain by well defined discontinuities (edges), larger 
than the threshold; laser spots on high vegetation get spread 
over many very small regions.  
Unless some terrain patches are completely bordered by dense 
vegetation or, in case of bare earth, by a slope so steep that the 
threshold is exceeded, the whole terrain may end up all in a 
single region. This is because, from the seed point, the 
algorithm looks for a smooth path across all the 8-neighbours: 
therefore, even if in some area the terrain is steeper than the 
threshold would allow, the region growing may include it by 
“sneaking through” along a smoother path.  
In the original implementation neither the choice of the seed 
points nor the threshold for the region growing were tied to the 
morphological features of the grid data. The threshold was set 
to 0.5 m (i.e. about two times the height error of the data), 
independently of cell size and terrain slope. The drawback was 
that, in steep roofs or in steep terrain, several narrow regions 
may be created,  affecting the success rate of building and 
terrain identification. Figure 4 illustrates the problem that arose 
with a fixed threshold on a very steep roof.  
 

  
 (a) (b) (c) 

Figure 4. Steep roof segmentation. (a) Gradient orientation image; (b) 
region growing with fixed threshold: the roof is fragmented in several 
regions; (c) region growing with slope adaptive threshold: the house is 

included in one single region bordered by discontinuities. 
 

For a given roof slope, the larger the cell size or the lower the 
point density, the likelier was a fragmented segmentation.  
The same may happen with very steep terrain although, as 
already pointed out, in such cases the aggregation may come 
from a smoother adjacent terrain area.  
Indeed, the region growing threshold should be coupled to the 
grid cell size and should also take into account evidence of 
surface continuity in the neighborhood. Several changes have 
been made to the original implementation of the method to 
address this problem. The region growing algorithm is now 
steered by both the gradient orientation of the grid heights and 
the slope. The seed pixels of the region growing algorithm are 
chosen from regions larger than 30 m2 with homogeneous 
gradient orientation while the threshold value is adaptively 
adjusted to the slope of the region. Morevor, the process starts 
from the regions with the lowest threshold value. 
In large regions with homogeneous gradient orientation the 
computation of the threshold will not be affected by vegetation.  
 

 
Figure 5. Gradient Orientation of the heights at Site 5. The orientation 

space is divided in 8 partitions.   
The threshold value T for the segmentation based on height 
differences is computed, in each region obtained from the 
gradient orientation segmentation, as: 

))2,max(,min( 222
minmax HPLssTTT σσ ++Δ=  

where:  Tmax = 2Δ; Tmin = 0.5 m s = the 75th percentile of the 
slope distribution; Δ = cell size in m; σPL and σH  are 
respectively the planimetric and height accuracy of laser data in 
m. With this modification the primary segmentation of the grid 
data becomes in fact a (bounded) slope based segmentation.  
Figure 5 shows the gradient orientation (cell size = 2m). Large 
areas with the same colour correspond to regions having the 
same aspect (orientation intervals are 45° large). Data holes and 
flat areas are rapresented in white. Figure 6 shows the color 
coded threshold values T for the same dataset. 
The seed points for the region growing based on height 
difference are taken from segments of the gradient orientation 
segmentation larger than 50 m2, from the lower threshold values 
on. The 0.5 m fixed threshold value is applied to the remaining 
regions: in this way, areas with vegetation, that exhibit different 
gradient orientation, or very small patches with the same 
orientation, get separated in small regions. 
Figure 7 shows the most significant segments with different 
colors. The red spots are very small regions (less than 3 pixels) 
that will be labeled as outliers or vegetation if several small 
regions are contiguous. Notice that segments from the region 
growing may encompass several regions with different gradient 
orientation or with different slopes. 
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4.3 Data Classification 

Geometric characteristics of the regions and their topological 
relationships are computed and stored in a knowledge base. A 
rule-based scheme is applied to classify the regions: the 
outcome of the process labels each region as vegetation, 
building, terrain, outlier or unclassified (the last item tipically 
being 1÷3% of the area size). Actually, each class may have 
sub-classes (e.g. courtyard as part of terrain); among 
unclassified regions, narrow regions are defined as those 
slender in shape. Points on high rise chimneys, towers, power 
line poles, etc may be classified as outliers or buildings, 
depending on shape, point density and cell size. Currently, no 
rules discriminate bridges, that are therefore included in the 
terrain. 

 

 
Colour        
T (dm) <5 5-7 7-9 9-11 11-14 14-16 16-20 

Figure 6. Color plot of the threshold values for the region growing 
 

 
Figure 7. The most significant regions of the grid data segmentation by 

the adaptive threshold 
 

The current set of rules has been drawn from simple models of 
characteristics and relationships between terrain, building and 
vegetation. The complexity of the task means that robustness of 
the rule set cannot be taken for granted and that more rules 
might have to be invoked in new scenarios. Most 
misclassification errors occur with trees labeled as buildings, 
buildings as terrain and terrain as buildings. The worst 
misclassification error is a building included in the terrain, 
because it will not be corrected in the next stage; on the 

contrary, terrain pixels erroneously labeled as building might be 
recovered in the last stage. Figure 8 shows the result of grid 
data classification.  

4.4 Using First and Last Pulse 

Almost every laser scanner today provides first and last (F&L) 
pulse returns; the pattern of their difference is of great help in 
identifying vegetation. This is very important to improve both 
data classification as well raw data filtering: the percentage of 
grid points in a region where F&L pulse elevations differ is 
used to help the identification of terrain; raw data filtering (in 
terrain as well as non-terrain areas) can be robustified by this 
information (see Section 5).  
 

 
Figure 8. Grid Data Classification. Yellow: terrain; white: 

building; orange: narrow regions; grey: unclassified. 
 

In the previous implementation of the strategy, cells with 
different height in the F&L pulses were classified as vegetation 
before applying the region growing and were not passed to the 
region growing. This led to more fragmentation of the terrain; 
now a terrain region penetrates much further into areas with 
high vegetation, because the (lowest) last pulse of the cell may 
have an acceptable height difference to nearby terrain cells 
(whether the pulse indeed hit the terrain or rather the 
vegetation, is to be clarified, of course).  
Grid data under high vegetation are more noisy than those on 
bare Earth; together with F&L information, this can be used in 
the final filtering of raw data. 
 
4.5  Outliers 

Outliers in laser data are either “negative” (i.e. points below the 
surface, mostly due to multi-path) or “positive” (i.e. points 
above the surface, such as hits on birds, power cables, etc). The 
segmentation makes the classification insensitive to single cells 
with positive or negative outliers in two ways: if the outlier is 
the only point in the cell, it will be put in a 1-pixel region and 
classified as outlier. If there are several points in the cell, some 
outliers some not, the positive outliers will be recognized in the 
final filtering stage, because they are higher than the 
neighbourhood, whatever the class the cell was assigned. With 
negative outliers, the pixel has been labeled as outlier from the 
grid classification; other points of the cell may be assigned to 
terrain or vegetation, depending on the distance from the 
approximating surface.  
Even in case several contiguous cells contain outliers, it is very 
unlikely that they end grouped in a region, because this would 
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happen only if they have similar gradient orientation or very 
small height differences. 
  

5. EXTRACTING TERRAIN POINTS FROM RAW 
DATA 

The output of the grid classification can be divided in two 
classes: terrain and non-terrain pixels (i.e. pixels classified as 
building, vegetation, outliers and pixels in unclassified regions). 
Each raw data in a grid cell is now examined to label it as 
terrain or as non-terrain point, comparing its distance from a 
reference surface with a threshold ts depending on terrain slope 
and sensor error tolerance in horizontal and elevation.  
The reference surface is computed from the local neighborhood 
for the former class, from a global approximation of the terrain 
for the latter. The reason for differentiating between the two 
classes is to allow more flexibility and fine-tuning for the 
terrain cells.  
Some of or all the raw data points of a cell classified as terrain 
may in fact be low vegetation or noise. To check against this 
possibility, a reference value href is computed from the 
neighborhood using a conditional averaging filter. Let mn be the 
mean of the neighbouring terrain cells, hc the elevation of the 
current cell and t = 0.5 m a threshold value for low vegetation: 
 

if  (hc > mn + t )  href =  mn 
else    href  =  hc 

 
Cells unclassified or classified as non-terrain may nevertheless 
contain raw data points that are in fact terrain points. 
Comparing the elevation of the raw data with the predicted 
elevation from a surface approximating the terrain, a decision 
will be made on the point class. To this aim, the most reliable 
information available (i.e. the raw data labeled as terrain points) 
is used to compute the approximating surface. The acceptance 
threshold is computed for each cell as a function of the slope of 
the surface.  
Currently, the approximating surface is computed using bilinear 
splines with relatively short spacing (3÷4 times larger than the 
cell size); this may change in the future, to cope in a better way 
with discontinuities (see below).  
Points in cells classified as building do not need filtering; a 
consistency check of the classification is performed, though: no 
point in such regions should fall in the acceptance band. If 
terrain points were erroneously identified as building, they 
might now be recognized as terrain, if close enough to the 
interpolating surface. 
 

6. RESULTS ON ISPRS SITE 5 

Figure 9 shows the behaviour of the raw data filtering in the 
forested hillside of Sample51 (ISPRS Site5). The cross-section 
(a) shows the reference data: terrain (pink) and vegetation (light 
blue). In (b) the red points are input to the spline, while the 
predicted value of the terrain in all cells classified as vegetation 
or in unclassified regions is shown in green. The approximation 
of the terrain is good and the ensuing raw data classification is 
correct. On the other hand, if the terrain shows step edges, as in 
the quarry in Sample53, the interpolation function tipically 
undershoots at the bottom and overshoots at the top (see figure 
10 (a)). This smoothing of sharp edges leads to rejection of true 
terrain points. 

 
(a) 

 
(b) 

Figure 9.  Cross-section of a forested area on an hill side; (a) 
Reference data: terrain: pink; vegetation or buildings: light 

blue. (b) Terrain surface approximation: spline input: red; spline 
prediction: green. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 10.  Cross-section of terrain with step edges; (a) 
Reference data: terrain: pink; vegetation: light blue. (b) Terrain 
surface approximation: input: red; spline prediction: green.     
(c) Filtering: accepted terrain points (pink), rejected points 
(light blue). 

Figure 11 shows a cross-section in an area with buildings and 
vegetation (Sample54) with the same color coding as Figure 10. 

 
(a) 

 
(b) 

 
(c ) 

Figure 11. Cross section of an area with buildings and 
vegetation. (a) Reference data: terrain: pink; vegetation or 

buildings: light blue. (b) Terrain surface approximation: spline 
input: red; spline prediction: green; (c) Filtering: accepted 

terrain points (pink), rejected points (light blue). 
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Table 1 shows the overall results for the Samples available at 
Site 5; performance and correctess of the cell classification are 
measured respectively by the percentage of true terrain points 
with respect to the total number of terrain points in the Sample 
and by the percentage of misclassified points with respect to the 
number of cells labelled as terrain. Filtering errors are given 
according to the Laserscanning Test definitions.  
 

 Terrain grid 
classification  

Raw data filtering 
errors 

TP: Terrain 
Points; 
TG: Grid cells 
class. Terrain 

#TrueTP in 
TG wrt 
#True TP in 
Sample (%) 

#FalseTP in 
TG wrt #TG 
cells (%) 

Type I 
 

Type II 
 

Sample 51 85.1 6.4  8.3  8.6
Sample 52 80.8 2.2  8.5  9.6
Sample 53 77.8 1.0 10.7 14.3
Sample 54 85.5 7.5  4.4 12.0
Table 1. Correctness of grid classification and terrain filtering 

for Site 5 Samples 

Correctness of the terrain grid classification is normally high, 
taking into account that if a cell contains more than one 
TrueTP, the others were counted as errors. Classification errors 
on the grid are higher with high vegetation and buildings 
(Sample 51 and Sample 54) but filtering improved the results 
by more than 10% in both cases. With rough terrain, both types 
of filtering performed less effectively, especially the spline 
interpolation.   
As far as raw data classification is concerned, Type I errors are 
good and better than most Test participants, Type II are among 
the largest.  
 

7. CONCLUSIONS AND PERSPECTIVES 

A strategy for classification and filtering of raw LIDAR data 
has been presented. The core of the procedure, i.e. the 
classification of data segments based on their geometric and 
topological relationships looks sound enough. On the ISPRS 
Laser Test Site 5, grid data classification led to the reliable 
identification of a percentage of true terrain points varying 
around 80%. Based on that information, a good approximation 
of the terrain surface can be computed. Terrain raw data close 
enough to the surface are also recognized as terrain, improving 
the percentage of success by up to 10%.  
Problems arise with step edges in the terrain, because of over- 
and undershoot of the spline functions: alternative interpolation 
techniques will be tested soon (in this respect, our last stage 
needs a pre-filtered input as REIN (Kobler et al., 2007). 
New approaches to rule definition in the grid classification are 
also being tried: an attempt is currently underway to automate 
the search for patterns in the data, using classification trees 
(Sutton, 2005) such as the AdaBoost algorithm.  
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ABSTRACT:  
 
Site Index (SI), a key inventory parameter, is traditionally estimated by using costly and laborious field assessments of tree height 
and age. The increasing availability of reliable information on stand initiation timing and extent of planted, even-aged stands 
maintained in digital databases suggests that information on the height of dominant trees suffices for assessing SI. Light Detection 
and Ranging (LiDAR) is a technology proven capable of providing reliable estimates of tree height even at the individual-tree level. 
A rigorous evaluation of LiDAR-enabled SI estimation performed on coniferous stands of the coastal U.S. Pacific Northwest 
indicates that where stand structure and topographic conditions support a high-fidelity assessment of ground elevation, accurate 
(R2_=_0.88) estimates of SI should be anticipated. In more challenging conditions the accuracy of the estimates lessens substantially. 
A limited evaluation of spatial SI predictions indicates that the distribution of the index might not always conform to the 
expectations commonly held by forest managers and planners. 
 
 

1. INTRODUCTION 
 
Site index (SI) is the most commonly used indicator of site 
productivity (Hägglund, 1981), forms the basis for many forest 
management activities (Zeide and Zakrzewski, 1993), and it is 
an integral component of forest inventory systems (Hanson et 
al., 2002). It is calculated as a function of the height of 
dominant trees at some reference age, usually in even-aged 
stands (Monserud, 1984; MacFarlane et al., 2000). The 
formulation of the function can differ between species or eco-
regions. Assessment of SI is typically performed at selected 
locations within the forest where estimates of tree height and 
age are obtained via standard forest field mensuration 
techniques. To avoid bias in SI estimates, it is essential that 
trees participating into its calculation, sometimes referred to as 
site trees, meet certain selection criteria (Nigh and Love, 1999), 
including dominant status, absence of injuries or growth 
suppression, and a preferred range of age.  
 
Obtaining reliable estimates of individual tree height and age is 
a laborious and costly process often inhibited by visibility 
constrains, wood density that does not allow tree trunk boring 
to determine age, etc. Because of these limitations, SI estimates 
have traditionally been restricted to locations hosting inventory 
plots, and spatial predictions of SI have been rare. Recent 
efforts to assess the spatial distribution of SI have relied on 
relating multiple environmental variables in a geographic 
information system via regression tree analysis, geostatistics, 
and multiple regression (Iverson et al., 1997; Gustafson et al., 
2003; McKenney and Pedlar, 2003). There has been speculation 
(Louw and Scholes, 2002), however, that the multiple-variable 
approach will be gradually replaced by superior, in terms of 
predictions accuracy, physiologically based simulation models 
such as 3-PG (Landsberg and Waring, 1997) or PROMOD 
(Battaglia et al., 1999). A recent implementation of the 3-PG 
spatial model in Oregon, USA, that used monthly averaged 
climatic data, estimates of soil attributes, and Forest Inventory 
and Analysis (FIA) data from thousands of plots in national 
forests to produce SI maps of Douglas-fir (Pseudotsuga 
menziesii (Mirb.) Franco) showed promising results (R2 = 0.55), 
despite issues related to plot size, density and georeference 
precision (Swenson et al., 2005). The coarse resolution of the 

3-PG model’s prediction (1 km2) in Oregon, or of comparable 
multivariate models implemented elsewhere, limits their utility 
to forest planning and decision making at the strategic level 
only. The often substantial SI variability within a stand or 
tactical management units remains unknown.  
 
The parsimonious parameterization of standard SI models 
indicates that where even-aged is the preferred or common 
forest stand structure and stand age is known, information on 
the height of dominant trees is sufficient for obtaining local 
estimates on forest productivity and SI. Because spatial 
predictions of tree height and other forest inventory parameters 
are restricted by financial and logistical constraints (St-Onge et 
al., 2004), forest managers and inventory specialists have long 
been regarding remote sensing as perhaps the only feasible 
alternative to field measurements for obtaining spatial 
predictions that meet established accuracy standards over entire 
management units (Turner et al., 2004). Remote-sensing-
derived estimates of tree height are typically obtained via the 
classic parallax method. Applied either on stereopairs of analog 
aerial photographs (Worley and Landis, 1954) or more recently 
(and more efficiently) on digital high-resolution imagery 
(Korpela, 2004) the method was found to produce unbiased tree 
height estimates only where a precise the ground-level 
elevation could be assessed correctly at, or near, the base of 
trees, a prerequisite rarely met in closed-forest canopies (St-
Onge et al., 2004). 
 
Unlike aerial photography and other forms of optical remote 
sensing, Light Detection and Ranging (LiDAR), sometimes 
referred as airborne laser scanning (ALS), is capable of 
penetrating the forest canopy, and hence is well suited to 
describing the vertical structure of forests. Owing to the 
capacity of small footprint laser pulses emitted from the 
airborne scanning instrument to propagate through small 
canopy openings and echo at ground level, LiDAR is also 
capable of assessing ground elevation (Kraus and Pfeifer, 
1998). Small-footprint scanning data comprise a set of points, 
sometimes known as ‘returns’, accurately and precisely 
georeferenced in three dimensions (Baltsavias, 1999). 
Assuming adequate return density (> 4 points / m2), processing 
of the point cloud data allows individual trees to be detected 
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(Brandtberg et al., 2003), and digital models of the vegetation 
canopy surface (CSM) and (bare-) ground surface (GSM) to be 
generated (Hodgson et al., 2003; Clark et al., 2004). Estimates 
of height for individual trees are obtained by subtracting from 
the CSM value, at selected locations believed to represent tree 
crown apexes, the corresponding, in two-dimensions, GSM 
value. Variants of this approached have yielded height 
estimates for individual trees that rivaled the accuracy of those 
acquired in the field (Hyyppä, 2000; Persson et al., 2002; 
Andersen et al., 2006). 
 
Because the estimates of tree height depend on the fidelity of 
the LiDAR-derived forest canopy and bare-ground models, 
vegetation and topographical conditions that promote 
uncertainty, and perhaps bias, in model values became sources 
of error in tree height estimation. Choices of parameter values 
and assumptions embedded into the algorithms used in 
generating the models can also contribute uncertainty or bias 
(Kobler et al., 2007). Canopy models derived from LiDAR data 
tend to underestimate the true vegetation surface. The negative 
bias has been attributed to the laser pulse not always hitting the 
tree apex (Næsset and Økland, 2002) and having to penetrate 
the canopy surface before reflecting the first significant return 
(Hill et al., 2002). GSMs are generated under the assumption 
that enough pulses penetrate thoroughly through the stand 
profile to enable an accurate assessment of bare-ground 
elevation. Ackermann (1999) reported that 20 to 40 percent of 
pulses may reach the ground under dense forest canopies. 
Reutebuch et al. (2003) found that even in dense coniferous 
stands the density of ground returns enabled construction of a 
GSM with root-mean-square-error (RMSE) of only 0.31 m. 
Other studies have reported though that in increasingly complex 
vegetation, multiple-scattering reflection or absorption of the 
energy carried by a pulse reduces the number of ground returns 
or causes returns from understory vegetation or tree trunks to be 
erroneously labeled as representing the ground (Harding et al., 
2001; Raber et al., 2002, Hodgson et al., 2003). In forest stands 
with complex profiles, GSM overestimation of at least 1.5 m is 
common (Hodgson et al., 2003; Clark et al., 2004) and bias 
should be expected to increase further with even moderate 
slopes (Kobler et al., 2007). 
 
Although many studies have investigated the fidelity of 
LiDAR-derived estimates of tree height (Næsset, 1997; 
Popescu et al., 2002; Maltamo et al., 2004), very few were 
performed in dense forests or in terrain characterized by steep 
slopes (Clark et al., 2004). The paucity of studies were laser 
scanning is used for estimating tree heights in forests that are 
both dense and situated on steep slopes is  likely due to the fact 
that, in such conditions, it is logistically and financially 
exceedingly difficult to obtain reliable field measurements of 
tree height necessary for evaluating the height estimates derived 
from LiDAR data. The challenge is further intensified where 
precise height estimates are needed over an area, a prerequisite 
for assessing inventory parameters with spatial support such as 
SI, instead of only at selected locations. The objectives of this 
study that address these challenges were a. to evaluate the 
fidelity of LiDAR-derived estimates of SI, and b. to investigate 
potential patterns in the spatial distribution of Site Index in the 
structurally complex temperate rainforest growing on the steep 
terrain of the coastal U.S. Pacific Northwest. The evaluation is 
based on rigorously calibrated field data obtained by using 
survey-grade equipment on plots established specifically for 
this study. 

2. METHODS 
 

2.1. Study area 
 
The 9500-ha study area is on the coastal mountains of Lincoln 
County, in the State of Oregon, USA (Figure 1), and centered 
approximately at 44o 32’N, 123o 39’W. More than 90 percent of 
the area is temperate rainforest, with mean annual precipitation 
of 2005 mm. Forty seven percent of the forests are privately  

Figure 1. Study area 
 

owned and under very intensive, timber-oriented management. 
1550 ha are owned by the State of Oregon and 3850 ha are part 
of the Siuslaw National Forest where management has been 
limited to occasional non commercial thinnings, very few of 
which occurred after 1984. Prevalent species in the study area 
include Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), 
bigleaf maple (Acer macrophyllum Purgh), and red alder (Alnus 
rubra Bong.), with the hardwoods dominating buffer zones 
around the drainage network. Elevation ranges from 66 to 
1123_m above sea level and terrain is characterized by steep 
slopes. Over the forest area the mean slope is 61 percent, and 
the 75th slope percentile is 84. 
 
2.2. Field data 
 
Forty five fixed-area plots of 15-m radius were established in 
the study area in summer 2005 stratified across classes of cover 
type (conifers, hardwoods, and mixed), tree size, and stand 
density. A three-member, veteran FIA crew visited each plot 
tallying all trees with diameter at breast height (DBH) 
exceeding 12.7 cm or of dominant or co-dominant status 
regardless of DBH. For each tree, the species and DBH was 
recorded, and the projection of its crown to the ground was 
delineated using distance and azimuth measurements from the 
tree base (Figure 2). Continuous feedback from the remaining 
crew members was used to guide a person operating a 
clinometer to on-ground locations that defined the shape of the 
crown being delineated. Estimates of tree height obtained via an 
electronic clinometer / distance finder were assigned a 
precision-class code reflecting the crew’s confidence on the 
estimate. Two dominant trees in each plot were bored to 
determine age. Sketch maps depicting the presence, type, and 
height of understory vegetation were also produced. 
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Figure 2. Field-delineated crowns of a plot and corresponding 
tree bases. The dashed line represents the plot boundary. 
 
Management archives and stand maps from the Siuslaw 
National Forest and management plans or operation records 
kindly contributed by local tree farms were examined to 
determine the age of stands in nearly 75 percent of the forest 
land. After excluding all plots in uneven-aged or young (< 20 
years) stands or where records suggested past stand 
improvement activities (fertilization, etc.), a set of 21 plots, all 
dominated by Douglas-fir, was selected and used in this study. 
The age of dominant trees ranged among the selected plots 
from 27 to 74 years. Plots comprising older and larger trees 
were in publicly owned stands. 
 
The large percentage of height estimates assigned a low 
precision code in close-canopy stands confirmed skepticism 
that, in such conditions, traditional field mensuration 
techniques could not support the study’s tree height precision 
requirements. To mitigate these limitations, an alternative, far 
more complex, approach was devised. It entailed a detailed 
survey of the bare ground and calibration of the tree crown 
apexes in each plot.  
 
2.2.1. Plot registration and ground survey. For each plot a 
minimum of two locations was precisely referenced using a 
Real Time Kinematic (RTK) global positioning system 
instrument at leaf-off conditions. The instrument was set to 
record only when the expected, internally calculated, three-
dimensional precision was better than 5 cm. Because the 
operation of the RTK instrument is limited to areas free from 
overstory vegetation, in 12 of the plots the closest two locations 
successfully recorded with the RTK were in canopy openings 
well outside the plot boundary.  For those plots, transects 
connecting reference locations to corresponding plot centers 
were established and surveyed with a total station. For the 
remaining 9 plots, unobstructed, under canopy, lines of sight 
between the RTK reference locations and the plot centers 
supported direct plot georeferencing via the total station. 
Additional RTK reference locations and transects installed for 4 
of the 12 plots revealed that the location error of the plot center 
ranged from 5.3 to 11.6 cm (mean 8.4 cm). Considering the 
difficult terrain and poor visibility conditions, the error level 
was deemed acceptable. With the total station positioned and 
oriented on the plot center, terrain inflection points were 
flagged over the plot area and a 5-m buffer around it. The flag 
density was higher in portions of the plots exhibiting variations 
in micro-topography. Across plots the density of flagged points 
had an average of 0.31 per square meter. Using Delaunay 
triangulation, the coordinates of flagged locations recorded with 
the total station were processed to generate a Triangulated 

Irregular Network (TIN) for each plot, and the TINs were then 
converted to 1-m rasters via cubic convolution. Five 10-m wide 
corridors transcending the boundaries of stands with contrasting 
stem densities and structure were also surveyed in late summer 
2006, but with smaller point density. Canopy and ground 
models for the corridors were generated following the 
methodology used for the regular plots. 
 
2.2.2. Calibration of tree apexes. Tree-apex calibration was 
performed by using 14 additional plots of custom size and 
shape installed either in short (< 3 m) vegetation or along the 
edge of Douglas-fir stands exposed by recent clearcuts. The 
leader stems of the trees were surveyed during windless days 
with the total station from three reference positions in the 
clearcut area previously surveyed with the RTK instrument. 
The methodology used is similar to the one detailed by 
Andersen et al. (2006). Trees with apex measurement RMSE 
exceeding 7.5 cm were eliminated from further consideration. 
A comparison of the coordinates of the surveyed apexes to the 
coordinates of co-located (within 1 m in two dimensions) 
highest LiDAR returns for 120 trees of various sizes and ages 
revealed an elevation bias of -0.58 m (Figure 3). The calibration 
procedure was repeated at leaf-off conditions with nearly 
identical results. 
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Figure 3. Histogram of discrepancies between surveyed and 
LiDAR-derived tree apex location at leaf-on conditions 
 
2.2.3. Estimation of tree-height. To determine the heights of 
dominant and co-dominant trees in each plot, the field-
delineated crowns were first overlaid with the return cloud. The 
elevation of the highest return within a crown was recorded and 
subsequently adjusted to account for the bias mentioned above. 
The calibrated tree height was then computed as the difference 
between the calibrated elevation of the highest return and the 
value of the GSM at the base of the tree. Calibrated heights for 
a total of 313 trees were computed.  
 
2.3. LiDAR data 
 
Laser scanning data were acquired at leaf-on conditions in July 
2005 and leaf-off conditions in February 2006 using an aircraft-
mounted Optech 3100 system from an average height of 
1000_m above ground level. The LiDAR instrument operated 
on a 71 kHz laser repetition rate, captured a 20o scan width (10o 
from nadir) with adjacent flight line overlap of 50 percent, and 
yielded an average density of 9.81 returns per square meter for 
the leaf-on mission and 8.70 returns per square meter for the 
leaf-off mission. For both missions the spot spacing was 32 cm 
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with laser footprint diameter of 33 cm. Compared to horizontal, 
impermeable surfaces surveyed with the RTK, the laser returns 
sustained an RMSE of 2.6 cm during the leaf-on mission and 
3.1 cm during the leaf-off mission. The scanning data delivered 
by the vendor had been processed with proprietary software to 
eliminate path reflectance points and to identify ground returns. 
The latter was enabled by an implementation of the adaptive 
TIN model (Axelsson, 2000). The raw (pre-filtered) data set for 
both missions was also obtained. 
 
2.3.1. Canopy and ground models: For each plot, a 1-m 
canopy model was constructed by querying the returns cloud to 
determine the highest returns within the two-dimensional area 
occupied by each cell. Owing to the high return density and 
short pulse spacing, discontinuities in the canopy models were 
rare for both acquisitions and were observed only along the 
edge between adjacent crowns in plots with small canopy 
openings. GSMs were developed using the filtered returns 
classified as representing the ground via ordinary Kriging 
(Goovaerts, 1997) with a minimum of six nearest neighbors. 
Both canopy and ground surface models were co-registered to 
the GSMs generated from the survey data. 
  
2.3.2. Tree identification and assessment. Individual trees 
were identified via the local maxima method (Wulder et al., 
2000) using the LiDAR-derived canopy over the plot areas. 
After the elevation of GSM-identified tree apexes was bias-
adjusted, the height of corresponding trees was computed as the 
difference between the tree apex elevation and the value of the 
co-located cell in the LiDAR-derived ground model. The local 
maxima method identified 294 trees. It was determined by 
visual examination of stem maps, delineated crowns, and the 
identified tree apexes that the tree list contained 26 errors of 
omission and 7 errors of commission.  
 
2.4. Plot Site Index 
 
The SI estimation for each plot followed the standard FIA 
protocol for Douglas-fir-dominated forest conditions. The 
protocol uses Equation 1, known as the King’s (1966) formula, 
to compute estimates of SI for the five largest (in terms of 
DBH) or five tallest SI-eligible trees present within a 0.2 ac 
(809 m2) area. The plot SI is then computed as the mean of the 
five estimates.  
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where SI = King’s SI in meters at reference age of 50 years 
 A = breast-height age 
 H = tree height in meters 
 
Using classes of mean annual increment as reference, Equation 
1 can be translated into a family of SI curves (Figure 4), 
commonly used to classify site productivity, instead of the 
actual SI values. 
 
To investigate whether or to what extent tree selection affects 
the plot estimate, three SI versions were computed. The first 
(SID) was based on the trees with the largest, field-measured 
DBH. The second (SIH) was based on the tallest trees identified 

in the field survey. The last version (SIL) employed the tallest 
trees whose height was derived from the laser data. All versions 
used the stand age retrieved from the management records, 
adjusted for 6 years, the average time required for a tree to 
reach breast height from seed.  
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Figure 4. Douglas-fir Site Index classes for the coastal U.S. 
Pacific Northwest 

 
2.4.1. Spatial predictions of SI. Investigations on the spatial 
continuity of SI focused on six areas, approximately 1 Km2 
each, where the stands present met the age and structure criteria 
for assessing SI. Given that reliable ground information, and 
therefore tree height, was available only for a single transect 
surveyed in each of these areas, the spatial investigations of SI 
were only exploratory in nature and employed omni- and 
directional variograms, along with an evaluation of potential 
trends (first-order spatial autocorrelation) in the predictions. 
The fidelity of SI maps produced was evaluated by visual, on-
ground assessments performed while cruising the stands in the 
six focus areas. 
 
3. Results 
 
Tree age assessed by boring selected trunks was across plots, 
on average, 1.9 years (standard deviation 0.9) lower than the 
age expected from the stand history records. In the absence of 
cases showing the age determined by boring to exceed the age 
dictated by the records, and given that age underestimation for 
bigger trees where missed growth rings or failure to penetrate 
the trunk to its center is more common that in younger trees, 
there was no reason to doubt the accuracy of the stand age 
retrieved from management records.  
 
Interesting insights into the interaction of dense coniferous 
vegetation and the laser pulses are obtained by subtracting the 
surveyed from the LiDAR-derived GSMs. For 10 of the 21 
plots no macro-scale differences were observed between the 
surveyed ground surfaces and those computed from the leaf-on 
laser data. The paired discrepancies in cell values formed 
leptokurtic Gaussian distributions with means that ranged from 
-0.28 to -1.04 m. Nine of these 10 plots had little or no 
understory vegetation and the overstory had either been thinned 
in the past or contained regular canopy openings due to age 
progression. The 10th plot (Figure 5b) had a very dense 
overstory but was located on mild (51 percent) slope. For 
another five plots, the discrepancies between surveyed and 
derived surface elevation were larger, up to -2.19 m, and the 
distribution of paired cell value differences was wider than in 
the previous group. In three of the five plots the distribution 
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was bimodal. All five plots had dense multi-layer understory 
vegetation with overstory exhibiting occasional openings. For 
the remaining six plots large scale discrepancies were observed 
between the surveyed and LiDAR-derived surfaces. The 
distribution of cell value differences had Gaussian form with 
means ranging from -4.97 to -11.02 m (Figure 5a). The plots in 
this group were either located on very steep slopes or had 
dense, completely closed canopies. Substituting the leaf-on 
laser data with the leaf-off version caused a slight reduction in 
the discrepancies between the surveyed and derived ground 
surfaces for the first two groups of plots with the mean 
differences in the first group now ranging from -0.18 to -0.84 m 
and in the second from -0.46 to -1.58 m. No improvement in 
ground-surface discrepancies was observed for the third group. 
The third was also the only group of plots where returns located 
above the surveyed ground were eliminated during data 
preprocessing, an observation pertaining to both acquisitions.  
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Figure 5. Plot profiles of 1 m depth depicting laser returns 
either maintained (dots) or filtered out (hollow circles) during 
data preprocessing, and surveyed (solid lines) and LiDAR-
derived (dashed lines) ground surfaces. 
 
In the process of overlaying the field-delineated tree crowns 
with the return cloud to evaluate the fidelity of individual tree 
identification procedure a pattern emerged that involved the 
relative location of tree apexes and bases. It was determined 
that for the majority of trees, the projection of the tree apex to 
the ground was downhill from the tree base, an indication that 
the trees were leaning systematically away from the slope. By 
considering that a tree was leaning if the horizontal distance 
between its apex and base exceeded 0.5 m, it was determined 
that 165 trees (53 percent) were leaning away from the slope, 
50 trees (16 percent) were leaning in parallel to the contour 
lines, and 41 trees (13 percent) towards the slope. For the 
remaining 18 percent of the trees no appreciable leaning was 
observed. The intensity of the leaning was found to be 
positively correlated to slope and tree height, and negatively 
correlated to canopy closure, but the correlation was weak, with 
coefficients of 0.19, 0.16, and -0.17, respectively. 
 

The option of selecting the trees with the largest DBH instead 
of the tallest ones was found to have little effect on the plot SI 
estimate. A t-test of the paired differences between SI values 
computed using the two alternatives methods for tree selection 
failed to reject the hypothesis that the SI estimates were equal 
(p > 0.5). Substituting, however, either one of the alternative 
field-data-assessed SI estimates in the test with their LiDAR-
derived equivalent, rendered the test significant (p<0.001).  
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Figure 6. Plot Site Index values computed using the tallest trees 
surveyed in the field and their LiDAR-derived equivalent. 
Symbols indicate plot membership in classes of fidelity for the 
ground surface extracted from the laser data. 
 
The causality behind the t-test findings becomes evident when 
examining the information in Figure 6, which compares the 
field calibrated and LiDAR-derived plot SI. Index values 
shown by circles in Figure 6 represent plots where the LiDAR-
derived ground surfaces approximate the surveyed surfaces 
fairly well. In all but one of these plots, the predicted values 
exceeded the calibrated values, an indication that the tree height 
underestimation caused by the slight overestimation in ground 
elevation is somewhat overcompensated for by the trees leaning 
away from the slope. The values shown by crosses correspond 
to plots where the overestimation of ground elevation via 
LiDAR far exceeds the height overestimation due to leaning 
and results in index underestimation. With two exceptions, 
index values represented by triangles correspond to plots where 
elevation overestimation is somewhat balanced by tree height 
overestimation due to leaning. Note that 6 of the 11 plots in the 
last two groups (shown within a square in Figure 6) would be 
assigned an SI class of II when assessed via LiDAR and an SI 
class of I by using the calibrated field data. For the other 15 
plots, the SI class assignment would not be affected by the 
method used to predict the index. 
 
Regressions of the field-calibrated SI on the predicted values 
produced a low overall R2 value of 0.42. The R2 values 
pertaining to separate regressions computed using only the plot 
in each of the groups depicted in Figure 6 were substantially 
higher though, and for the group of plots established in medium 
density stands on moderate slopes, conditions that support 
assessment of ground elevation free from gross errors, it 
reached 0.88. Areas with conditions similar to those prevalent 
in the latter group of plot became the focus of investigations 
that evaluated the fidelity of spatial predictions of SI. 
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SI values predicted at 27-m intervals, the spacing equivalent to 
the size of field plots, were used to calculate omni- and 
directional variograms for each of the six, approximately 1km2 
areas where stand characteristics allowed computation of high-
fidelity GSMs. A variogram quantifies how the values of a 
spatially distributed phenomenon change with distance. 
Typically, the value dissimilarity (semivariance) increases with 
distance until an asymptote (sill) is reached. The distance at 
which the sill is reached is known as the range of the 
variogram. Although there were notable differences in their 
form, all SI variograms computed for the six areas failed to 
reach a sill, thereby indicating the presence of low-order spatial 
autocorrelation(s), sometimes referred to as trend, affecting the 
predictions of SI. Of the many topographical covariates that 
were examined as a potential trend source (aspect, elevation, 
slope, wetness index, local ground curvature), only two were 
found to be significant at α_=_0.05; the distance to streams, 
which explained an average 9 percent of the SI variance across 
the six areas, and a composite variate computed as the natural 
logarithm of the slope cost distance away from streams, which 
explained 19 percent of the SI variance. Surprisingly enough, 
the percentage of SI variance explained increased to an average 
31, almost a third of the total, when the variate was modified to 
be the natural logarithm of the absolute slope cost distance 
computed at 50 m from streams across contour lines. 
Variograms of the residuals of SI predictions (i.e. with the 
influence of the trend on the predicted SI values removed) 
regressed on the modified variate values did reach a sill, an 
indication that the remaining 69 percent of the SI variability is 
likely caused by genetic differences among the trees, soil 
characteristics, and variability in microclimate. 
 

 

 
 
Management 

Unit 
SI  (st.dev) 

(m) 
 Mean Height 

(m) of SI Trees 
Age (at breast 

height) 
SI Cell 
Count 

A 43.6  (2.66) 40.0 43 325 
B 44.6  (3.48) 24.7 23 366 
C 43.8  (3.43) 27.9 27 231 
D 44.0  (2.51) 40.8 44 411 

 
Figure 7. Top: Perspective view of the return cloud for a 1-km2 
area used in the evaluation of SI. Middle: Perspective view of 
SI predictions. Lighter tones indicate higher index values. The 
thick lines delineate management units; the thin lines represent 

the drainage network. Bottom: Descriptive statistics of SI 
predictions for each management unit.  
Although only a third of the variability in the SI has been 
accounted by spatial variates, the absence of discontinuities 
across management unit boundaries (Figure 7) suggests that at a 
coarser scale, LiDAR-enabled assessment of SI yields robust 
results. In the area depicted in Figure 7, the mean predicted 
value for SI is practically the same for all four management 
units despite the stand age differences. The higher variability in 
the predicted values for units B and C is likely due to the slope 
of the SI curves being much steeper at smaller reference tree 
ages (Figure 4) than at older ages. A set amount of height 
variability for a group of adjacent younger trees would produce 
a higher SI variance than for a group of older trees. 
  

4. Discussion 
 
Evidence from the surveys of ground surface in this study and 
the analyses of laser data profiles in dense, coniferous canopies 
appear to contradict the commonly held belief that, given a high 
pulse density per unit area, enough pulses would penetrate the 
vegetation profile to allow detection of the forest floor. There 
appears to be a limit in canopy density, albeit difficult to 
quantify and likely different among forest cover types, beyond 
which the percentage of pulses that manage to penetrate the 
upper canopy layers exhibit substantially higher levels of path 
reflectance compared to the pulses penetrating less dense 
canopies. The implication of this phenomenon is that the 
already small amount of returns that are indeed reflected by the 
ground surface, are perceived as originating from much below. 
In such conditions, the density of legitimate ground returns is 
too small over extended areas to support the detection of 
ground surface. 
 
Steep terrain introduces additional difficulties in ground 
detection. The algorithms used for the assessment of bare-
ground utilize, sometimes directly, sometimes implicitly via 
simulation, slope thresholds to eliminate above ground returns. 
In 100 percent slopes or higher, the search radii associated with 
the slope thresholds that are used by the algorithms to quantify 
the spatial relationships between adjacent returns become so 
large that, inevitably, cause legitimate, above ground returns to 
be eliminated. Employing a more advanced algorithm for scan 
data filtering and ground assessment might have improved 
slightly the fidelity of tree height estimates and ultimately of 
the SI estimates but only for the plots located on milder slopes 
and with non-continuous canopies. 
 
To minimize acquisition costs while maintaining high return 
density coverage, LiDAR instruments capable of increasingly 
higher pulse rates have been developed. Personal 
communication with LiDAR data vendors in the western U.S. 
has revealed that the 15-fold increase in pulse rates over the last 
few years has not been accompanied by an even near increase 
in the power the instrument outputs. Simply put, modern 
instruments emit more but weaker pulses. Studies that have 
successfully retrieved the ground surface in tropical (Clark et 
al., 2004) or in dense, coniferous forests (Reutebuch et al., 
2003) have used pulse rates much lower than the one used in 
this study. Unless the per-pulse energy could be increased, in 
laser data acquisitions where unbiased retrieval of the ground 
surface is of essence, lower pulse rates might warrant 
consideration.  
 
The decent correspondence (R2 of 0.88) between field-
calibrated and LiDAR-assessed SI in nearly half of the plots 
used in this study suggests, that in ecosystems and biomes with 
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topography and vegetation complexity less challenging than 
those in the coastal U.S. Pacific Northwest, high-fidelity index 
estimates should be expected. If the assumptions about absence 
of gross ground surface errors in the areas where spatial 
evaluations were attempted were valid, then useful information 
can be gleaned from such data at the spatial domain as well. 
The finding, for example, that a lag of 50 m from streams added 
to a spatial variate improves the percentage of variance in 
spatial SI predictions explained by that variate, challenges 
common beliefs held by local forest managers. Regulations 
limiting harvesting or other management operations to only 
outside 15 to 45 m buffers around streams and creeks are 
thought anecdotally to exclude from timber production the 
portion of the land with the highest growth capacity. This study 
hints that this in not the case. Perhaps excessive soil moisture 
near the drainage network early in the growing season may 
actually shift the most productive land at some distance uphill. 
The limited influence topography is found to exert on the 
values of the index could relate to the limited range of index 
classes present within the study area and the relatively small 
extent of the six areas evaluated. Upcoming LiDAR 
acquisitions over Douglas-fir stands growing on shallow soils 
and higher elevation might enable a more precise quantification 
of topography’s influence on SI. 
 
The applicability of the methodology used in the study to 
predict SI is limited to stands with even-aged, usually planted 
overstory and where detailed stand initiation and management 
records are available. It is also limited to species that maintain 
substantial, and hence LiDAR-discernible, height growth until 
older age classes. The study also indicates that because of 
substantial local variability in the height of dominant trees even 
within short distances, it is important that SI estimates be based 
on an adequate sample of trees. 
 

5. Conclusion 
 
The ability of LiDAR to penetrate stand profiles renders it a 
useful technology for quantifying the vertical dimension of 
forests and for assessing key inventory parameters such as SI. 
As this study has demonstrated, however, in dense forests with 
continuous, closed canopies growing on steep terrain, laser 
pulses often fail to penetrate the stands and to adequately 
sample the ground. Substantial errors in the assessment of 
ground elevation propagate through the computation of tree 
height and introduce bias in the predicted SI values. Additional, 
albeit smaller, bias is introduced by the underestimation of tree 
apex elevation and tree leaning. A better understanding of the 
mechanisms governing the interaction of laser pulses and dense 
vegetation could help predict the conditions where tree height 
and SI estimates might exhibit bias or increased levels of 
uncertainty. Extending the study area to include forest lands 
with lower SI index classes may allow detection and 
quantification of topographical gradients influencing the values 
of the index. 
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ABSTRACT: 
 
The objective of this study is to test the feasibility of nation-wide medium footprint airborne laser scanning (ALS) data for 
derivation of forest parameters. The comparison of canopy closure as one important parameter for many forest functions derived 
from ALS data and aerial photo interpretation was conducted. The present study was carried out in the framework of the Swiss 
National Forest Inventory (NFI). Three study areas of different size, topographic and forest characteristics were selected. In a first 
step, canopy height models (CHM) were obtained by subtracting the interpolated terrain altitudes of LiDAR (Light Detection And 
Ranging) DTM from the interpolated canopy altitudes (LiDAR DSM). Then a binary forest layer with CHM larger or equal 3 m was 
calculated according to the Swiss NFI forest definition. The Distinction between deciduous and coniferous forest (degree of 
composition) was performed using the surface cover classes (broadleaved tree, coniferous tree, larch) of the aerial photo 
interpretation of the NFI for 7,696 sample plots. In a second step, canopy closure derived from the aerial photo interpretation was 
compared to canopy closure calculated from binary CHM. The study reveals that the canopy closure is underestimated in the binary 
CHM from LiDAR data and highlights significant differences between coniferous and deciduous predominated forest plots and 
significant differences between compared canopy closure from winter and summer data. The study shows limitations of canopy 
closure derived from national LiDAR data but also stresses its practical relevance for many protective functions of forests in alpine 
conditions.  
 
 

                                                                 
*  Corresponding author 

1. INTRODUCTION 

The present study focuses on a comparison of national medium 
footprint LiDAR data with aerial photo interpretation for 
deriving standard forest parameters as required by the Swiss 
National Forest Inventory. 
Forests, as part of the landscape, represent an important natural 
resource for mankind and other living organisms. Exact 
information on forest extent, structure and composition is 
needed for environmental, monitoring or protection tasks 
(CIPRA, 2001; ALPMON work package 1, 1997). Especially 
alpine forests play a key role in the protection against natural 
hazards such as rock fall and avalanches. Furthermore, spatial 
extent of terrestrial ecosystems such as forests and their 
composition are a central issue in the discussion of carbon sinks 
and sources at national and continental level (Turner et al., 
1995). 
However, estimation of forest parameters for large territories 
(e.g. for national forest inventories) is either expensive if done 
in the field or imprecise when accomplished through automated 
stereophotogrammetry (Lefsky et al., 2001; St.-Onge et al., 
2004; Maltamo et al., 2004). Moreover, obtaining tree heights 
through measuring is often not feasible in dense and 
impenetrable forest stands (St-Onge and Achaichia, 2001). 
Especially the mapping of forests and the derivation of forest 
parameters is challenging when undertaken in alpine 
environments due to the specific terrain conditions (Hollaus et 
al., 2006). According to Wang et al. (2004), the costs of forest 
sampling can be reduced substantially by estimating forest and 
tree parameters directly from aerial photographs. The 
measurement of tree heights is one of the tasks that need to be 

fulfilled for an appropriate estimation of these parameters. Due 
to the fact that parts of tree crowns are shadowed, it is obvious 
that not all important forest parameters can be derived from 
aerial photographs. Especially in dense forest stands and in 
mountainous regions the shapes of trees are varying with the 
geometrical position on the stereo images (St-Onge et al. 2004). 
Because seeing the ground is of critical importance, good 
results can only be obtained in open forest covers. 
Recent progress in three dimensional remote sensing mainly 
includes digital stereophotogrammetry, radar interferometry and 
LiDAR (Hyyppä et al. 2000; Lefsky et al. 2001; Naesset 2002). 
Meanwhile, several LiDAR systems are available on the market 
(e.g. Baltsavias, 1999; Heurich et al., 2003; Hyyppä et al., 
2000), enabling the derivation of DSMs and DTMs from such 
data as well. Some studies suggest the use of DSM data to 
detect changes in the forest stands (Schardt et al., 2002; Naesset 
& Gobakken, 2005). A number of studies reveal the successful 
use of LiDAR-based techniques to estimate tree and stand 
attributes such as tree height, crown diameter, basal area and 
stem volume (Naesset, 1997, Persson 2002; Morsdorf et. al 
2004). Combining some of these attributes can be useful to 
evaluate forest stand parameters, e.g. the percentage of canopy 
cover (Ritchie et al., 1993). 
However, some studies also show an underestimation of tree 
and canopy height, a result also found by scanning LiDAR 
studies (e.g. Magnussen et al. 1999; Means et al. 2000; Gaveau 
& Hill 2003). Estimations of the mean tree height are sensitive 
to forest structure and shape of the canopy (Nelson 1997; 
Schardt et al. 2002). Often a narrow tree apex is missed by 
LiDAR hits or the top of a small tree is covered by branches of 
a tall tree. However, for large monitoring programs or national 
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forest inventories there is a growing need to develop new 
remote sensing techniques that allow deriving quantitative 
forest parameters more directly. 
The objective of this study is to compare national medium 
footprint LiDAR data with aerial photo interpretation as applied 
in the Swiss National Forest Inventory (NFI) for the derivation 
of the degree of composition and canopy closure. Canopy 
closure is one of the most important parameters to determine 
the protective functions of forest in alpine conditions, in 
particular against avalanches (Meyer-Grass and Schneebeli, 
1992). To ensure that the results are of practical relevance, only 
data and methods which are already applied and serve as 
operational applications are used (national LiDAR data and 
stereo image interpretation of NFI sample plots).  
 

2. MATERIAL AND METHODS 

2.1 Study area 

Switzerland is divided into 26 cantons. For this study three 
cantons with different topographic and forest characteristics are 
used as test sites. An overview is given in figure 1. 
The first study area is located in the northern part of 
Switzerland (approx. 47°23’ N and 8°2’ E, 350-900 m a.s.l.) 
and covers the area of the canton Aargau (AG) with approx. 
14,000 km2. The highly fragmented landscape is characterized 
by a smooth terrain, forests, agricultural and urban areas. The 
forest covers 35 % of the area (4,930 km2) according to the 
second NFI (Brassel and Brändli, 1999). The forest consists of 
mixed deciduous trees (Fagus sylvatica as dominant tree 
species) and coniferous trees (Picea abies as dominant tree 
species). 
The second study area is located in the pre-alpine zone of 
central Switzerland (approx. 47°1’ N and 9°4’ E, 400-3600 m 
a.s.l.) and covers the area of the canton Glarus (GL) with 
approx. 7,000 km2. The tree line in the area is around 1750-
1800 m a.s.l. The landscape is characterized by steep slopes 
with the exception of the main valley and its plane, forests, 
pastures, few agricultural areas and settlements. The forest 
covers 29 % of the area (2,050 km2) (Brassel and Brändli, 
1999). The forest is characterized by mixed deciduous trees 
(Fagus sylvatica as dominant tree species) in the lower parts 
and coniferous trees (Picea abies as dominant tree species) in 
the upper parts.  
 

 
 

Figure 1. Overview of the three test sites: Cantons Aargau, 
Glarus and Tessin. 

 
 

The third study area is located in the southern part of 
Switzerland (approx. 46°11’ N and 9°1’ E, 200-3400 m a.s.l.). 
It covers the area of the canton Tessin (TI) with approx. 28,100 
km2 whereas 49.4 % (13,900 km2) are forests (Brassel and 
Brändli, 1999). The landscape is mainly characterized by 
complex terrain with steep slopes, many valleys and forests 
(figure 2). The tree line in the area is around 2100-2150 m a.s.l. 
The forest consists of mixed deciduous trees (Castanea sativa 
as dominant tree species) and coniferous trees (Picea abies as 
dominant tree species).  
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Figure 2. Distribution of the deciduous forest area in relation to 
the terrain slope for cantons Aargau (left), Glarus (middle) and 
Tessin (right). For test site Aargau most of the deciduous forest 
area is located in relatively flat topography, contrary to Tessin 
and Glarus where most of the forest area is located in steeper 

terrain. 
 

2.2 National Forest Inventory Data (NFI) 

In the Swiss NFI continuous parameters are assessed by aerial 
photo interpretation at each sample plot belonging to a regular 
500 m grid. 25 raster points are distributed regularly (distance 
10 m) on the sample plot. For each raster point height and 
surface cover information is gained and a forest boundary line 
is measured. The layout of a sample plot is illustrated in  
figure 3.  

 

 
 

Figure 3. Design of the 50 x 50 m sample plot area with 25 
raster points and a forest boundary line. Canopy closure is 

obtained by calculating the number of points falling on trees 
with a minimum height of 3 m (black points) within the forest 
boundary line in relation to the total number of raster points 

within the forest boundary line. 

145

IAPRS Volume XXXVI, Part 3 / W52, 2007



 

Each sample plot comprises an interpretation area of 50 x 50 m. 
The discrimination of forest and non-forest areas is one of the 
most important attributes resulting from aerial photo 
interpretation. This requires a non-ambiguous and reproducible 
forest definition. Summarised the following aspects are crucial: 
(1) the width of the stocked part of the interpretation area has to 
measure at least 25 m, (2) the crown coverage of the stocked 
part of the interpretation area has to be larger or equal 20 %, (3) 
the stocking has to have a dominant stand height of 3 m.  
 
Stereo-measured variables were gathered on the aerial imagery 
at each of the 25 raster points within each sample plot. The 
analogue true colour photos were taken between 1998 and 2005 
covering all of Switzerland at a scale of ~1:30,000 and where 
scanned at a resolution of 14 μm. The digitised photos have a 
ground resolution of ~0.45 m and a RMS error after aerial 
triangulation of < 1 m. A photo interpreter assigned each raster 
point to one of eleven thematic surface cover classes 
(broadleaved tree, coniferous tree, larch, shrub, grass 
vegetation, rock, bare soil, paved surface, construction object, 
water, glacier) using a 3D stereo softcopy station (Socet Set 
5.0, BAE Systems). 
 
In addition to surface cover, canopy height information was 
attributed to each raster point based on the difference between 
the surface elevation measured by the interpreter and the 
interpolated (Socet Set 5.0, BAE Systems) terrain elevation 
from an existing terrain model (25 m grid) provided by 
swisstopo (Swiss Federal Office of Topography). Finally, in 
cases with a forest border, a forest boundary line is digitised in 
addition to the raster points. 
 
2.3 Airborne laser scanner data 

National LiDAR data was acquired between 2001 and 2004 by 
swisstopo, the leaves partly off (figure 4). The project was 
realised with different companies so very little metadata are 
available. No detailed information on instruments or platforms 
is available. Average flight height above ground was between 
1000 m and 1500 m. The footprint on ground varies between 
0.8 m and 1.2 m. From the raw data, both a DTM and DSM are 
generated (as raw irregularly distributed points) The average 
density of the DSM data is 0.5 points / m2 and the height 
accuracy (1 sigma) 0.5 m for open areas and 1.5 m for 
vegetation and buildings (Artuso et al. 2003). The DTM has an 
average point density of 0.5 points / m2 and height accuracy (1 
sigma) of 0.5 m (Artuso et al. 2003).  
 

 

Figure 4. LiDAR data acquisition time of the three test sites. 
White areas were flown between November and March (leaves-
off) and black areas during the vegetation season between April 

and October (mostly leaves-on). 

2.4 Interpolation: DTM and DSM 

The interpolation is based on the initial triangulation of all raw 
data points into a TIN. Depending on the expected point density 
of 0.5 points/m2, a conservative grid size of 2.5 m has been 
chosen. The interpolation of raw data revealed that the 
measured point density varies more than expected. Initial 
results show, that  
20 % of the test area in the canton Tessin has less than 0.4 
points/m2. 
 
2.5 Canopy height model (CHM) 

The Canopy height model (CHM) was obtained by subtracting 
the interpolated terrain altitudes from the interpolated canopy 
altitudes. Because only first and last pulse data is available, no 
further processing of pulse information was possible. 
 
2.6 Derivation of forest parameters 

According to the NFI forest definition the CHM was 
reclassified to a binary layer, where values >= 3 m are assigned 
to forest (1) and values < 3 m to non-forest (0). The sample plot 
area (50 x 50 m) was reduced to the actual forest area on the 
sample plot, if a forest boundary line was digitised in the aerial 
photo interpretation (see figure 5).  
 

 
 
Figure 5. Binary CHM and the reduced sample plot area, with a 

forest boundary line and 25 raster points of the aerial photo 
interpretation. 

 
As first forest parameter, the degree of composition was 
determined. The surface cover classes of the aerial photo 
interpretation were used to distinguish between plots dominated 
by deciduous trees and plots dominated by coniferous trees 
(degree of composition). Plots with more than 90 % of 
broadleaved tree raster points are assigned to the class 
'deciduous forest' and plots with less than 10 % of broadleaved 
tree to the class 'coniferous forest'. Mixed plots where not used 
further in this study. 
As second forest parameter, canopy closure was calculated as 
the sum of pixels of the binary CHM in the corresponding 
sample plot area. Canopy closure from aerial photo 
interpretation is obtained by calculating the number of points 
falling on trees with a minimum height of 3 m  within the forest 
boundary line in relation to the total number of raster points 
(see figure 3). 
 
 
 
 
 
 

50 m 
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3. RESULTS 

3.1 Degree of composition  

In total, in all three test sites 7,696 sample plots were classified 
into four classes of degree of composition using the raster 
points of the aerial photo interpretation (Table 1). 
  
 

Number of plots  Fraction of deciduous trees 
 on forest plots AG 

(n=1,998) 
GL 

(n=701) 
TI 

(n=4,997) 

Coniferous Plots (< 10%) 151 228 1565
Mixed Plots           10-50% 429 145 355
Mixed Plots           50-90% 673 165 486
Deciduous Plots (> 90%) 745 163 2591

 
Table 1. Degree of composition for the three test sites. 

 
Table 1 shows that Aargau is characterised by mixed forests 
(55 %) and followed by deciduous forests (37 %) whereas 
Tessin is characterised by either predominant coniferous plots 
or predominant deciduous plots (83 %). In Aargau only 8 % are 
dominant coniferous forest plots. In Glarus most of the forest 
plots are mixed forest (44 %) followed by coniferous (33 %). In 
the following results only predominant coniferous and 
deciduous forest plots (n=5,443) are taken into account. 
 
3.2 Canopy closure 

The focus of this study lies on canopy closure obtained by 
means of aerial image interpretation and data derived from 
LiDAR. 
 
3.2.1 Canopy closure obtained from aerial photo 
interpretation 
Table 2 shows that canopy closure obtained from aerial photo 
interpretation is high in all test sites. Three quarters of the plots 
have a canopy closure between 75 % and 100 %. Deciduous 
plots are generally denser than coniferous plots. Only 0.7 % of 
deciduous plots and 6.8 % of coniferous plots are less dense 
than 30 %. 
 
 

 Canopy closure from aerial photo interpretation 

 
Number of  

deciduous forest plots 
Number of  

coniferous forest plots 
Canopy 
Closure 

% 

AG 
n=745 

GL 
n=163 

TI 
n=2,591 

AG 
n=151 

GL 
n=228 

TI 
n=1,565 

<30 7 1 19 9 15 109 
30-50 10 4 78 3 31 239 
50-75 44 17 284 12 65 429 
75-100 684 141 2210 127 117 788 

 
Table 2. Canopy closure as obtained by aerial photo 
interpretation. Deciduous forest plots are denser than 

coniferous forest plots. Three quarter of the plots is denser  
than 75 %. 

 
Mean, median and standard deviation of canopy closure for 
both deciduous and coniferous forest plots are given in table 3. 
For deciduous trees the mean canopy closure varies between 

89.7 % (TI) and 93 % (AG). Coniferous forest plots are less 
dense and vary between 70.8 % (TI) and 88.1 % (AG). 
 
 

 Canopy closure from aerial photo interpretation (%) 
 deciduous forest plots coniferous forest plots 

 
AG 

n=745 
GL 

n=163 
TI 

n=2,591 
AG 

n=151 
GL 

n=228 
TI 

n=1,565 

Mean 93.0 90.2 89.7 88.1 71.2 70.8 
Median 100.0 96.0 96.0 100.0 76.0 76.0 

Std 13.9 15.0 15.7 23.1 23.7 23.6 
 
Table 3. Mean canopy closure from aerial photo interpretation 

on deciduous forest plots and forest coniferous plot 
respectively. 

 
3.2.2 Canopy closure obtained from LiDAR (binary CHM) 
Table 4 shows the canopy closure obtained from LiDAR data 
and table 5 summarizes the canopy closure for deciduous and 
coniferous forest plots. For deciduous trees the mean canopy 
closure varies between 50.9 % (GL) and 62.7 % (AG). In 
contrary to aerial photo interpretation, coniferous forest plots 
obtained from LiDAR are denser than deciduous forest plots – 
with the exception of Tessin. They vary between 53.7 % (GL) 
and 67.1 % (AG). 
 
 

 Canopy closure from LiDAR (CHM) 

 
Number of  

deciduous forest  plots 
Number of  

coniferous forest  plots 
Canopy 
Closure 

% 

AG 
n=745 

GL 
n=163

TI 
n=2,591 

AG 
n=151 

GL 
n=228 

TI 
n=1,565 

<30 59 40 132 21 43 312 
30-50 139 37 344 16 56 355 
50-75 301 53 1153 32 77 546 
75-100 246 33 962 82 52 352 

 
Table 4. Canopy closure from LiDAR (binary CHM). 

Deciduous forest plots are denser than coniferous forest plots. 
Only 30 % of the plots are denser than 75 %. 

 
 

 Canopy closure from LiDAR (%) 
 deciduous forest  plots coniferous forest  plots 

 
AG 

n=745
GL 

n=163 
TI 

n=2,591 
AG 

n=151 
GL 

n=228 
TI 

n=1,565 

Mean 62.7 50.9 66.2 67.1 53.7 53.8 
Median 66.3 53.0 69.5 78.0 53.1 55.5 

Std 21.0 26.9 18.6 28.7 24.6 24.1 
 

Table 5. Mean canopy closure from CHM from LiDAR on 
deciduous plots and coniferous plot respectively 

 
3.2.3 Aerial photo interpretation versus LiDAR 
Overall, canopy closure is underestimated in all three test sites 
by the LiDAR CHM in comparison to the aerial photo 
interpretation. For the statistical analysis the plots were grouped 
into plots predominated by coniferous trees or deciduous trees 
respectively. Then a Kolomogorov-Smirnov-Test (alpha=0.05) 
as implemented in SAS's UNIVARIATE procedure was applied 
on the dataset. This test revealed that the plot wise calculated 
differences in canopy closure measurements from the aerial 
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photo interpretation and the LiDAR measurement are not 
normally distributed. Therefore a non-parametric test, the 
Wilcoxon two-sample test as implemented in SAS's 
NPAR1WAY Procedure (SAS, 2000), was chosen to account 
for significant differences.  A significant difference 
(alpha=0.05) between the calculated differences in canopy 
closure measurements for coniferous forest plots and deciduous 
forest plots (p<0.0001) was found. Finally, table 6 reveals that 
this underestimation is higher at deciduous than at coniferous 
plots. 
 
 

 Difference of canopy closure (%) 
 deciduous forest  plots coniferous forest  plots 

Mean 25.7 17.4 
Median 24.0 15.0 

Std 16.9 19.2 
 

Table 6. Mean differences of canopy closure from CHM and 
aerial photo interpretation on predominated deciduous plots and 

predominated coniferous plot respectively 
 
 
3.2.4 LiDAR data acquisition: leaves-off versus leaves-on 
For this analysis the plots were grouped into plots 
predominated by coniferous trees or deciduous trees and the 
flight date (in vegetation season yes or no). Again the 
calculated differences are not normally distributed. Therefore, 
the Wilcoxon two-sample Test was chosen, to account for 
significant differences of the canopy closure measure for the 
two datasets. A significant difference (alpha=0.05) between the 
flight dates in both cases, coniferous forest plots (p=0.0007) 
and deciduous forest plots (p=0.0316) was found. 

 
4. DISCUSSION AND CONCLUSION 

ALS data covering large country wide areas is becoming more 
and more popular and is available for many countries. 
However, these data sets suffer from some limitations: First, in 
most cases these data are medium to large footprint ALS and do 
not meet the requirements for single tree detection and accurate 
derivations of relevant forest parameters as performed in many 
case studies. Second, although the acquisition time is not 
focused on single specific questions the data has to serve for 
different purposes. 
 
The present study reveals that large area application of national 
LiDAR data for derivation of canopy closure as one important 
forest parameter is challenging since time of data acquisition 
varies. Therefore the accuracy of the obtained parameters is 
only partly satisfactory. Especially in predominated deciduous 
forest plots the differences of canopy closure obtained by aerial 
photo interpretation and LiDAR measurements are high. 
Therefore, the obtained information on canopy closure is 
reliable, since most protective functions of alpine forests are 
limited to coniferous forests (lower underestimation than for 
deciduous forests) in higher regions. Nevertheless, the 
influence of data acquisition time remains evident, in deciduous 
and in coniferous cases.  
 
For a further quality assessment there is a strong need for more 
information on exact date of acquisition for each single LiDAR 
measurement. Summarized metadata for organizational units, 
like map sheets, are not appropriate. Furthermore, since both 

forest parameters strongly depend on the quality of the CHMs a 
more extensive quality check of the CHMs has to be performed. 
Further reference data (e.g. tree heights) will be obtained using 
stereo photogrammetry and field measurements. 
To summarize, the need to develop new remote sensing 
techniques for large NFIs is evident. The use of nation wide 
available LiDAR data is obvious, but further studies are needed 
to obtain more information on quality and characteristics of the 
data for forest specific questions. 
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ABSTRACT: 
 
Canopy height distributions were created from small-footprint airborne laser scanner data for mature coniferous forest in two forest 
areas in Norway. In total, 82 and 70 georeferenced field sample plots and 39 and 38 forest stands were measured in the two areas, 
respectively. The average sampling densities were 1.2 m-2 and 0.9 m-2. Height percentiles, mean and maximum height values, 
coefficients of variation of the heights, and canopy density at different height intervals above the ground were computed from the 
laser-derived canopy height distributions from the first return data. The laser point clouds were thinned to approximately 1 point per 
4 m2 (0.25 m-2), 1 point per 8 m2 (0.13 m-2), and 1 point per 16 m2 (0.06 m-2). The mean difference and the standard deviation for the 
differences between laser-derived metrics derived from the original full density laser data and thinned data for the two areas were 
estimated and compared. For all comparisons, the maximum value of the canopy height distributions differed significantly between 
the full density laser datasets and the thinned data. The effects of different laser point densities on stand predictions of three 
biophysical properties of interest were also tested. The average standard deviation for mean tree height, stand basal area, and stand 
volume predicted at stand level showed only a minor increase by decreasing point density. 

 

                                                                 
*  Corresponding author 

1. INTRODUCTION 

For economical reasons, optimal specification of fieldwork, 
sensor, and flight parameters for laser data acquisition is 
important in practical forest inventory. A number of parameters 
for specifying airborne laser data acquisition have to be decided 
upon prior to survey, and they may influence on important 
properties such as the theoretical number of points per unit area, 
the ability to derive forest structural information, and survey 
costs. 
 
In an area-based approach, i.e., individual forest stands are the 
basic units of the inventories, a large number of explanatory 
laser variables are extracted from the laser points and used to 
predict forest biophysical properties. A sampling density of 
about one laser point per square metre has shown promising 
results (Næsset, 2002b; Næsset, 2004b). The effects of point 
density have been assessed in a number of studies (e.g. 
Holmgren, 2004; Magnusson, 2006; Maltamo et al., 2006; 
Thomas et al., 2006). A study in Sweden indicated that the 
errors of predicted mean tree height, basal area, and stem 
volume did not differ much when the point density was changed 
from 0.1 to 4.3 m-2 (Holmgren, 2004). Holmgren used a 
footprint diameter of 1.8 m and the large footprint size resulted 
in overlap between adjacent footprints on the ground. 
Oversampling may therefore have infulenced on the results. In a 
Finnish study, where the point densities were 12.7, 6.3, 1.3, 0.6, 
and 0.13 m-2 and the footprint diameter was 40 cm, no effects of 
point density on stem volume prediction were found (Maltamo 
et al., 2006). Howewer, the basic dataset in the Finnish study 
was limited to 32 sample plots with size 0.09 ha. In contrast to 
the studies mentioned above, Magnusson (2006) found that the 

RMSE for tree height and stem volume estimation increased 
when the point density was redused from 2.5 to 0.004 m-2. 
Many of the variables extracted from the laser point clouds are 
highly correlated. In addition, if some of these potential laser 
metrics are more sensitive to point density, then it would be 
best to select, as independent variables, those laser measures 
that are least affected by point density. 
 
The objectives of this study were to assess the effects of 
different laser point densities on laser-derived metrics and to 
assess how laser point density may affect stand predictions of 
three biophysical properties of interest, i.e., mean tree height, 
basal area, and volume. Four different levels of laser point 
densities were assessed. The results were evaluated using an 
independent validation dataset. 
 

2. MATERIAL AND METHODS 

2.1 Study area 

Two forest areas in southeast Norway were selected for this 
study: a forest area in the municipality of Våler (59°30’N, 
10°55’E, 70-120 m a.s.l.) of about 1000 ha, and a forest area in 
the municipality of Krødsherad (60°10’N 9°35’E, 130-660 m 
a.s.l.) with size 6500 ha. The study sites in Våler and 
Krødsherad are hereafter denoted as sites A and B, respectively. 
The main tree species in the areas were Norway spruce (Picea 
abies (L.) Karst.) and Scots pine (Pinus sylvestris L.). Further 
details can be found in Næsset (2002b) and (Næsset, 2004b). 
 
The present study was based on two different field datasets 
from each area: sample plots and forest stands. The sample 
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plots were used to assess the effects of different laser point 
densities on laser-derived metrics and to develop regression 
models for the three biophysical properties of interest. The 
forest stands were used to assess the influence of laser point 
density on the stand predictions for the three biophysical 
properties.  
 
2.2 Sample plots 

In total, 82 sample plots in site A and 70 in site B were 
distributed systematically in the mature forest across the entire 
study areas according to regular grids. The areas of the sample 
plots were 200 and 232.9 m2 in sites A and B, respectively. The 
measurements were carried out during the summers 1999 
(Næsset, 2002b) and 2001 (Næsset, 2004b). On each plot, all 
trees with dbh >10 cm were callipered. The dbh was recorded in 
2 cm classes. Basal area (G) was computed as the basal area per 
hectare of the callipered trees. The heights of sample trees were 
measured by a Vertex hypsometer. Mean height of each plot 
was computed as Lorey’s mean height (hL), i.e., mean height 
weighted by basal area. Volume of each tree was computed by 
means of volume equations of individual trees (Brantseg, 1967; 
Braastad, 1966; Vestjordet, 1967), with height and diameter as 
predictor variables. Total plot volume (V) was computed as the 
sum of the individual tree volumes.  
 
Finally, to synchronize the hL, G, and V values to the date the 
laser data were acquired the individual plot values were 
prorated by means of growth functions (Blingsmo, 1984; 
Braastad, 1975; Braastad, 1980; Delbeck, 1965). The prorated 

values were used as ground-truth. A summary of the ground-
truth sample plots data is displayed in Table 1. 
 
Differential Global Positioning System (GPS) and Global 
Navigation Satellite System (GLONASS) were used to 
determine the position of the centre of each sample plot. The 
computed plot coordinates had an expected average accuracy of 
approximately 0.3 m. 
 
2.3 Stand inventory 

In site A, 39 stands were selected subjectively in order to 
represent different combinations of site quality classes and tree 
species mixtures. Field data were collected during summer 1998 
(Næsset, 2002a). The average stand size was 1.7 ha. Each stand 
was inventoried by intensive sample of plots within each stand. 
The average number of plots per stand was 20. In site B, 38 
large test plots located in subjectively selected stands were 
used. Ground reference data for the test plots were collected 
during summer 2001. Each plot was initially supposed to be a 
quadrat with an approximate size of 61× 61 m, but the actual 
size varied somewhat. On each of these plots, all trees with size 
greater than the specified limits were callipered. The large test 
plots are hereafter denoted stands. The stand data values were 
synchronized to the date the laser data were acquired by 
prorating by up to 1.5 years. The prorated values were used as 
ground-truth. A summary of the ground-truth stand data is 
displayed in Table 1. 

 
 

  Sample plots Stands 
Characteristic Range Mean Range Mean 
Site A   (200 m2, n=82)    (n=39) 
hL (m)       12.0 - 26.0 18.5 13.6 - 22.9 17.9 
G (m2ha-1)                        7.5 - 50.6 24.2 12.6 - 38.8 24.9 
V (m3ha-1)                       53.2 - 632.7 219.2 90.8 - 410.9 216.9 
Tree species distribution         
  Spruce (%)                      0 - 100 54 4 - 94 53 
  Pine (%)                        0 - 100 41 0 - 92 38 
  Deciduous species (%) 0 - 27 5 1 - 22 9 
          
Site B    (232.9 m2, n=70)    (n=38) 
hL (m)       9.9 - 26.0 18.1 12.2 - 24.4 17.9 
G (m2ha-1)                        5.6 - 57.0 28.1 12.0 - 37.7 25.4 
V (m3ha-1)                       29.6 - 674.8 251.2 83.0 - 378.9 224.5 
Tree species distribution         
  Spruce (%)                      0 - 100 38 1 - 100 50 
  Pine (%)                        0 - 100 58 0 - 98 41 
  Deciduous species (%) 0 - 29 4 0 - 40 9 
a hL=Lorey's mean height, G=basal area, V=volume. 

 
Table 1. Summary of field inventory of sample plots and stands a. 

 
2.4 Laser scanner data 

A Piper PA31-310 aircraft carried the ALTM 1210 laser 
scanning system (Optech, Canada). The laser scanner data 
were acquired 8 and 9 June 1999 for site A (cf. Næsset, 
2002b; Næsset and Bjerknes, 2001) and in the period 
between 23 July and 1 August 2001 for site B (cf. Næsset, 
2004b). A summary of the laser scanner data is presented in 
Table 2.  
 

All the first return laser points were spatially registered to the 
DTM derived from the last return echoes according to their 
coordinates. The relative height of each point was computed 
as the difference between the height of the return and the 
interpolated terrain surface height. Only these first returns 
were used for further analysis. Points that hit outside the 
plots and stands were excluded from further analysis. 
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2.5 Reduction of laser point density 

In order to investigate the effects of laser point densities on 
the laser-derived metrics and on the predicted biophysical 
stand properties, the point clouds were thinned. The point 
clouds were thinned from about 1.2 m-2 and 0.9 m-2 for site A 
and B, respectively, to approximately 1 point per 4, 8, and 16 

m2 (0.25, 0.13, and 0.06 m-2) by randomly selecting one 
point within grid cells with the respective sizes (4, 8, and 16 
m2). This thinning method was employed to insure a fairly 
regular distribution of the retained points. A similar approach 
has also been used in other studies (e.g. Magnusson, 2006). 
 

 
 

 Number  No. of transmitted pulses (m–2) No. of canopy hits (m–2) a Mean rate of 
 of obs. Range Mean Range Mean penetration (%) 
Site A           
  Sample plots 82 0.73 - 1.62 1.12 0.33 - 1.34 0.80 28 
  Stands 39 1.04 - 1.41 1.19 0.60 - 1.33 0.88 26 
Site B           
  Sample plots 70 0.40 - 2.00 1.03 0.24 - 1.62 0.80 23 
  Stands 38 0.50 - 1.71 0.89 0.31 - 1.62 0.70 22 

a Canopy hits: laser points with a height value of >2 m.  
 

Table 2. Summary of characteristics of first return laser scanner data for sample plots and stands. 
 
2.6 Computations 

For each sample plot and stand inventoried in field, height 
distributions were created for those laser points that were 
considered to belong to the tree canopy, i.e., points with a 
height value of >2 m. Percentiles for the canopy height for 
10% (h10), 50% (h50), and 90% (h90) were computed. In 
addition, also the maximum (hmax) and mean values (hmean) 
and the coefficient of variation (hcv) of the canopy height 
distributions were computed. Furthermore, several measures 
of canopy density were derived. The range between the 
lowest laser canopy height (>2 m) and the 95% percentile for 
the canopy height distribution was divided into 10 fractions 
of equal length. Canopy densities were computed as the 
proportions of laser hits above fraction #0 (>2 m), 1, . . ., 9 to 
total number of points. The densities for fraction #1 (d1), #5 
(d5), and #9 (d9) were selected for further studies.  
 
To assess how different laser point densities influenced on 
the laser-derived metrics, differences between corresponding 
metrics derived for the different alternatives were computed 
for each sample plot. The standard deviations of the 
differences were also computed to assess the stability of the 
respective metrics. Separate comparisons between laser 
scanner data with different point densities were made. 
 
To assess the accuracy of laser-based predictions of mean 
tree height, basal area, and volume based on different laser 
point densities, we followed the two-step procedure proposed 
by Næsset & Bjerknes (2001) and Næsset (2002b) by (1) 
relating the three biophysical properties of interest to the 
laser data of the sample plots in the two sites using regression 
analysis, and by (2) applying the estimated regression models 
to predict corresponding values of the test stands. In addition, 
the differences between predicted values of the biophysical 
stand properties and ground-truth values were computed. The 
standard deviations of the differences were also calculated. 
 
In the regression analysis, multiplicative models were 
estimated as linear regressions in the logarithmic variables. 
Stepwise selection was performed to select variables to be 
included in these models. No predictor variable was left in 
the models with a partial F statistic with a significance level 
greater than 0.05. The standard least-squares method was 
used (Anon., 1989).  

 
Separate predictions were made for the two sites and the 
different laser point densities. In the prediction, each stand 
was divided into grid cells. Laser canopy height distributions 
were created for each cell and the biophysical properties 
were predicted at cell level using the estimated equations and 
the derived laser metrics. Finally, predicted values at stand 
level were computed as mean values of the individual cell 
predictions. The mean differences between predicted 
biophysical stand properties and ground-truth and 
corresponding estimates of the standard deviations of the 
differences were derived. 
  

3. RESULTS 

3.1 Laser-derived metrics 

Height percentiles 
None of the mean differences for the percentiles (h10, h50, 
h90) between the full density data and the thinned data in site 
A and only one in site B were found to be statistically 
significant. In both sites and for all comparisons the standard 
deviations for the differences of the percentiles between the 
full density data and the thinned data increased by decreasing 
point densities, i.e., from 0.25 m-2 to 0.06 m-2. In general, the 
standard deviations were smallest in site A (Table 3).  
 
Height maximum, mean, and variability 
For all comparisons, the maximum values of the canopy 
height distributions (hmax) differed significantly between the 
full density laser data and the thinned data. The differences 
increased with decreasing point density for all comparisons. 
The hmax values were always highest for the full density data.  
 
Only one of the comparisons of the differences for the mean 
height values (hmean) between the full density laser data and 
the thinned data were found to be statistically significant.  
 
The variability of the canopy height distributions expressed 
by the coefficient of variation (hcv) did not differ 
significantly in any of the comparisons between the laser 
point intensities.  
 
For both hmax, hmean, and hcv, the standard deviations of the 
differences increased with decreasing laser point density for 
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all the comparisons. The standard deviations of the 
differences were smaller in site B compared to site A. 
 
Canopy density 
For both sites, the differences of canopy densities (d1, d5, and 
d9) between the full density laser data and the thinned data 

were found to be statistically significant in four of the 
comparisons. In all of the comparisons the standard 
deviations for the differences of the canopy densities 
between the full density data and the thinned data increased 
by decreasing point densities, i.e., from 0.25 to 0.06 m-2. 

 

 

Metricsb 0.25 points m-2 0.13 points m-2 0.06 points m-2 
  Mean D S.D. Mean D S.D. Mean D S.D. 
Site A         
h10 (m) 0.15 ns 1.14 -0.06 ns 1.68 0.34 ns 2.80 
h50 (m) -0.13 ns 0.81 -0.31 ns 1.29 -0.24 ns 1.94 
h90 (m) -0.10 ns 0.77 -0.06 ns 1.21 0.10 ns 1.73 
hmax (m) -0.96 *** 1.12 -1.66 *** 1.27 -2.53 *** 1.88 
hmean 
(m) -0.04 ns 0.50 -0.20 ns 0.87 0.00 ns 1.46 
hcv (m) 0.35 ns 3.42 1.88 ns 6.37 0.88 ns 11.41 
d1 (%) -1.89 ** 4.91 -1.97 ns 6.78 -1.46 ns 10.80 
d5 (%) -2.53 *** 5.11 -2.86 ** 6.54 -0.76 ns 11.59 
d9 (%) 0.22 ns 4.03 0.66 ns 4.51 4.36 *** 6.85 
          
Site B         
h10 (m) -0.06 ns 1.00 -0.08 ns 1.78 0.20 ns 2.35 
h50 (m) -0.34 ** 0.78 -0.15 ns 1.19 -0.27 ns 1.78 
h90 (m) -0.18 ns 0.55 -0.28 ns 1.10 -0.24 ns 1.62 
hmax (m) -0.93 *** 0.90 -1.30 *** 1.23 -2.06 *** 1.61 
hmean 
(m) -0.18 * 0.48 -0.22 ns 0.80 -0.22 ns 1.37 
hcv (m) 0.88 ns 3.41 1.26 ns 5.52 1.01 ns 10.72 
d1 (%) -2.51 *** 3.83 -2.74 ** 6.59 0.06 ns 10.33 
d5 (%) -2.99 *** 4.46 -2.48 * 6.47 -1.60 ns 12.57 
d9 (%) 0.08 ns 4.54 0.09 ns 6.21 1.24 ns 8.89 

a Level of significance: ns = not significant (>0.05). *< 0.05; **< 0.01; ***< 0.001.  
b h10, h50, and h90 = percentiles of the laser canopy heights for 10%, 50%, and 90%; hmax = maximum laser canopy height; hmean = 
arithmetic mean of laser canopy heights; hcv = coefficient of variation of laser canopy heights; d1, d5, and d9 = canopy densities 
corresponding to the proportions of laser hits above fraction # 1, 5, and 9, respectively, to total number of returns (see text). 
 
Table 3. Differences (D) between laser-derived metrics of different point densities and standard deviation for the differences (S.D.) 

based on data from site A (200 m2) and from site B (232.9 m2) sample plots a. 
 
 
3.2 Regression models 

To assess effects of laser point density on the estimated 
regression models used in the two-stage inventory, stepwise 
regression analysis based on the 82 and 70 field training 
plots, for sites A and B respectively, was carried out to create 
relationships between the three biophysical properties of 
interest (hL, G, and V) and the laser-derived metrics. The 
regression analysis was carried out using all points, 0.25, 
0.13, and 0.06 m-2, respectively. Separate models were 
estimated for the two sites. When all laser points were used, 
the selected log-log regression models explained 62-87% and 
80-92% of the variability inherent in the log-transformed 
responses for the two sites. 
 
However, when the lowest point density was used, the model 
fit was poor. In the model for basal area (G), only 45% and 
73% of the variability were explained by the models for sites 
A and B, respectively. The selected models, R2, and RMSE 
when using all points in sites A and B are presented in Table 
4. The selected models were slightly different for the other 
point densities. The models contained from one to three 
explanatory variables.  

 
Response     
variablea   Expl. variablesb R2 RMSE  κ 
Site A     
lnhL  lnh10, lnh90  0.87 0.07 1.6 
lnG  lnh90, lnd5 0.62 0.25 1.5 
lnV  lnhmean, lnd1 0.71 0.27 1.9 
      
Site B     
lnhL  lnh90 0.93 0.06 1.0 
lnG  lnhmean, lnd1 0.80 0.20 2.2 
lnV  lnhmean, lnd1, lnh90  0.90 0.20 6.9 

a hL=Lorey's mean height (m), G=basal area (m2ha-1), 
V=volume (m3ha-1). 
bh10 and h90=percentiles of the laser canopy heights for 10% 
and 90% (m); hmean =arithmetic mean of first return laser 
heights (m); d1 and d5 =canopy density corresponding to the 
proportion of laser hits above fraction # 1 and 5, respectively, 
to total number of first returns (see text). 
 
Table 4. Selected models for biophysical properties (response 

variables) from stepwise multiple regression analysis using 
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metrics derived using all points on the plots in site A and B 
as explanatory variables. 

 
All the models selected to be the “best” ones for G and all the 
models except one for V were based on laser-derived 
variables related to canopy height and variables related to 
canopy density. The models for hL were mainly based on 
canopy height variables. For all the 24 models developed, 
i.e., all possible combinations of point density (four 
densities) and sites (sites A and B) for each of the three 
variables (hL, G, and V), at maximum three explanatory 
variables were selected. Multicollinearity issues were 
addressed by calculating and monitoring the size of the 
condition number (κ). None of the selected models had a 
condition number greater than 6.9, indicating that there was 
no serious collinearity inherent in the selected models 
(Weisberg, 1985). All the models developed using the plots 
in site B accounted for a larger proportion of the variability 

inherent in the log-transformed responses compared to the 
models developed using the plots in site A. 
 
3.3 Stand level predictions 

The mean and the standard deviations for the differences 
between predicted mean height (hL), basal area (G), and 
volume (V) and ground-truth values for the 39 and 38 stands 
in sites A and B respectively, are presented in table 5. The 
mean difference between the full density data and the thinned 
data varied between densities. However, no clear pattern was 
found. 
 
The standard deviations for the differences increased in all 
except five cases when the point density decreased. Two of 
these five exceptions were for hL and two were for V. The 
standard deviations of hL did only increase to a minor extent 
when the point density decreased. The standard deviations 
for the differences were smallest in site B compared to site A 
in all except two cases. 

 
 

Response variablea 1.2 points m-2 0.25 points m-2 0.13 points m-2 0.06 points m-2 
    Mean D S.D. Mean D S.D. Mean D S.D. Mean D S.D. 
Site A          
hL (m)  -0.03 0.97 -0.01 0.96 -0.05 1.07 -0.06 1.15 
G (m2 ha-1)  -0.30 2.67 -0.08 2.73 0.01 3.37 -0.93 3.59 
V (m3 ha-1)  2.78 30.11 3.02 29.70 3.09 37.30 -6.01 39.10 
          
Site B        
hL (m)  -0.35 0.55 -0.33 0.61 -0.06 0.85 -0.35 0.72 
G (m2 ha-1)  1.74 3.19 1.78 2.99 1.68 3.05 0.93 3.58 
V (m3 ha-1)   8.94 27.80 7.24 26.52 12.41 28.19 2.34 38.23 

 
Table 5. Mean differences (D) and standard deviation for the differences (S.D.) between laser-derived and observed Lorey’s mean 

height (hL), basal area (G), and volume (V) in sites A and B when using all points (1.2 m-2), 0.25 m-2, 0.13 m-2, and 0.06 m-2. 
 
 

4. DISCUSSION 

The major findings of this study indicate that: 
1) The maximum values of the canopy height distributions 
(hmax) differed significantly between the full density laser 
data and the thinned data. The differences increased with 
decreasing point density. In most cases the variability of hmax 
was larger than for the intermediate and upper height 
percentiles (h50, h90). A higher variability associated with 
hmax has also been found in other studies (Næsset, 2004a; 
Næsset and Gobakken, 2005). Since hmax is seriously affected 
by point density it should be avoided in practical 
applications. 
 
2) The standard deviations for the differences for all the 
derived laser metrics increased by decreasing laser point 
density, i.e., from 0.25 m-2 to 0.06 m-2. 
  
3) For other variables than hmax, no clear pattern of the mean 
differences between the laser metrics derived from full 
density data and the thinned data could be found.  
 
4) Even if one of the prediction models only explained a 
quite low proportion of the variability (45%), the effects of 
reducing point density on the predicted mean height (hL), 
basal area (G), and volume (V) at stand level were quite 
small. 
   

When the laser point density was reduced by thinning to 
imitate data acquisitions with lower point densities, a random 
selection of points was carried out. A random selection of 
points within grid cells of size 4, 8, and 16 m2 was carried 
out in order to maintain a fairly regular spatial distribution of 
the retained points. However, the modelled ground surface 
was all the time the same. Keeping the DTM constant might 
influence the results, although other studies indicate that this 
effect probably is small. Goodwin et al. (2006) indicated that 
the predicted surface closely matched the field measured 
even when a point density of 0.18 m-2 was used. Magnusson 
(2006) found the RMSE of the terrain model to be quite low 
and unbiased up to a thinning level of 0.01 m-2.  
 
To conclude, the results of this study may indicate that the 
average point density used for the area-based operational 
forest stand inventory in Scandinavia utilizing airborne laser 
could be reduced from the current point density of around 1 
m-2 to 0.06 m-2 without seriously reducing the quality of the 
inventory results. The effects of varying the point density 
reported here should, however, be verified on different forest 
types and in other regions than those considered here.  
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ABSTRACT: 
Authorities operating in the field of coastal management require reliable area-wide height information for their responsibilities 
regarding to the safety of the coastal area. In this context the lidar technique replaces more and more traditional methods, such as 
terrestrial surveying, and is now the most important source for the generation of digital terrain models (DTM) in this zone. However, 
coastal vegetation interferes with the laser beam, resulting in a height offset for the lidar points depending on different vegetation 
types occurring in this region and their phenology. Various filter algorithms were developed for lidar data in vegetated areas, which 
are able to minimize this offset. But in very dense vegetation and hilly terrain these algorithms often fail resulting in certain 
residuals. In a previous approach the height offset was estimated based on grid data. In this algorithm the offset was linked to 
suitable features in the remote sensing data. A segment based supervised classification was performed using these features to 
partition the lidar data into different accuracy intervals. A major problem of this method arises from the fact that the accuracy 
intervals do not correspond to distinct and easily separable clusters in the feature space. Considering a single vegetation type the 
height offset exhibits a rather continuous characteristic. In a new approach this issue is tackled by modelling the offset with respect 
to the features using continuous functions. Additionally, feature extraction and classification are performed on raw data, in order to 
maintain the significance of the features by avoiding transformation artefacts and to increase the accuracy of the classification. On 
the basis of test data a comparison between the two methods is conducted to emphasize the problems and their solutions. 
 

1. INTRODUCTION 

Digital terrain models (DTM) of high accuracy are vital 
geographic information sources for various applications in 
coastal areas. For example, reliable height information is 
necessary for the calculation of flood risk scenarios, change 
detection of morphological objects and hydrographic numeric 
modelling. In former times traditional methods, such as 
terrestrial surveying, were used to acquire the data. However, in 
coastal areas with dense vegetation and frequently flooded 
terrain such measurement campaigns are very costly and time 
consuming as well as difficult to perform. Therefore, lidar 
technique is more and more used to collect the required amount 
of 3D points for the generation of the models. The advantage of 
this contactless remote sensing method leads on the other hand 
to an information loss about the measured objects (e.g., type 
and material). A serious problem for the generation of accurate 
DTM from lidar data is the influence of vegetation. The laser 
beam is not always able to fully penetrate the different layers of 
dense vegetation. Some echoes are produced by a mixed signal 
from vegetation as well as the ground and others are generated 
entirely in the canopy. This results in a positive height offset, 
because the laser beam is reflected before hitting the bare 
ground. In order to derive a DTM of high accuracy, these 
elevated points have to be eliminated from the dataset. Many 
filter algorithms were developed to remove such points. 
However, if there are only a few ground points, for example 
caused by dense vegetation, or points within low vegetation not 
significantly higher than the surrounding terrain present in the 
analysed area, the filter methods usually fail. Figure 1 
visualizes a region in the dunes on the East Frisian Island 
“Langeoog” with standings of Japanese Rose, Beech Gras, 
Creeping Willow and Sea Buckthorn. The digital surface model 
(DSM) derived from unfiltered lidar data is illustrated on the 
left side (a) and the second picture (b) shows the DTM. 
Obviously, after the filtering process some height variations 
caused by vegetation still remain in the dataset. These 
considerations motivate efforts to determine the height offset of 
the lidar points depending on the vegetation type on the basis of 
different features. 

 
 
 
 
 
 
Figure 1.  a) lidar DSM, b) lidar DTM 
 
In preliminary studies the dependencies between the height 
offset of the lidar points and vegetation attributes (type, density 
and height) were investigated. In a next step the influencing 
factors had to be connected to features extractable from the 
available remote sensing data. These features were used for a 
supervised classification of the lidar data into different accuracy 
intervals. 
In this paper, a new approach for the estimation of the height 
offset in the lidar data depending on the vegetation type is 
presented. While the previous classification algorithm was 
based on lidar data interpolated to a grid, now features are 
extracted directly from the 3D lidar raw data, in order to 
increase their significance with regard to the height offset. 
Another major problem of the former method arises from the 
aspect that the accuracy intervals, which represent the desired 
classes, do not correspond to distinguishable clusters in the 
feature space. The features describing the height offset show a 
rather continuous appearance. Thus, in this paper a relation 
between features and the height offset is established by 
continuous functions using reference data. Subsequently, the 
offset of each laser point can be determined on the basis of its 
related features and the connecting functions. 
 

2. STATUS OF RESEARCH 

In order to investigate the influence of different vegetation 
types on the accuracy of lidar measurements, understanding of 
the physical principles is essential that govern the interaction 
between the laser beam and different illuminated targets. Based 
on the radar equation Jelalian (1992) described the fundamental 
relations between the emitter, the reflecting object and the 
receiver applied to the lidar technique. Sensor and target 
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dependent parameters are separated and an object dependent 
cross section is defined. Additionally, Wagner et al. (2006) 
pointed out the dependencies between the spatial variations of 
the cross section and the amplitude as well as the width of the 
reflected echoes. Pfeifer at al. (2004) considered the influence 
of different parameters such as flying altitude, footprint size, 
echo detection and selection method as well as pulse width on 
the laser measurement in vegetated areas. 
In addition, ground truth measurements can be used in 
comparison to the lidar data to estimate the height offset caused 
by the vegetation. In this manner Oude Elberink and 
Crombaghs (2004) found a systematic upwards shift of up to 
15cm for low vegetated areas (creeping red fescue). Pfeifer et 
al. (2004) investigated the influence of long dense grass 
(+7.3cm), young forest (+9.4cm) and old willow forest 
(+11.6cm) on the accuracy of lidar data. In (Göpfert and 
Heipke, 2006) a positive offset for different coastal vegetation, 
such as Beach Grass (+19,3cm) and Sea Buckthorn (+18,4cm), 
was observed, too. 
In the approaches described above the investigation of 
vegetation parameters influencing the lidar accuracy was 
limited to certain vegetation types. However, in the research of 
Hopkinson et al. (2004) the following relationship between the 
standard deviation of pre-processed laser heights (the ground 
elevation was subtracted from the first and last pulse 
measurement) and height of low vegetation in general (<1,3m) 
was given: 

 

vegetation height = 2.7 * standard deviation. 
 

The RMSE of the predicted vegetation heights was determined 
to be 15cm. Pfeifer et al. (2004) and Gorte et al. (2005) 
described the variation of the laser heights with texture 
parameters and showed their potential for correction of the 
height shift caused by low vegetation. Göpfert and Heipke 
(2006) linked vegetation attributes to features, such as echo 
intensity, in order to classify the lidar data into different 
accuracy intervals. 
Many filter algorithms were developed to separate terrain and 
off-terrain points using geometric criteria exclusively, such as 
slope or height differences in a defined neighbourhood. Some 
methods are based on single lidar points, for example Axelsson 
(2000). Other approaches (e.g., Sithole and Vosselman, 2005), 
group the points to segments, which are classified afterwards. In 
contrast radiometric features of the lidar points are not very 
often included in standard filtering processes, if we distinguish 
between filtering and classification of objects. For example, in 
(Moffiet et al., 2005) the capabilities of the different returns 
(ground and vegetation, first, last, and single pulse) as well as 
the returned intensity were investigated to classify diverse tree 
types. Tóvári and Vögtle (2004) used the intensity values 
among other features, in order to discriminate buildings, 
vegetation, and terrain. In different studies a combination of 
height and multispectral data was proposed in order to detect 
and classify vegetation types. For instance, Mundt et al. (2006) 
explored the potential of this combination for mapping 
sagebrush distribution. 
 

3. DATA 

The research and tests are based on data of two flight missions. 
A detailed description of the reference and lidar data can be 
found in (Göpfert and Heipke, 2006). The first flight covering 
the East Frisian island Juist was conducted by the company 
TopScan with an ALTM 2050 scanner from Optech in March 
2004. At a flying altitude of 1000m the system provided an 
average point density of 2 points/m2. Unfiltered last pulse data 

with intensity values, CIR-Orthophotos, ground and vegetation 
points were delivered. Simultaneously, 696 reference points 
with ground and vegetation heights, situated within a mixed 
habitat of rose and willow, were surveyed using tachymetry and 
GPS. 
The data for the second measurement campaign were collected 
by the company Milan-Flug GmbH on the East Frisian island 
Langeoog in April 2005. The used LMS Q560 system of the 
company Riegl operating at an altitude of 600m realised an 
average point density of 2.9 points/m2 and illuminated a 
footprint of 0,3m diameter. Raw data with up to three echoes 
per emitted pulse as well as the related intensity values, RGB-
Orthophotos, ground and vegetation points were acquired. 
Supported by biologists several control areas of different 
vegetation types were surveyed. The results of this paper focus 
on coastal shrubberies including five test sites with Japanese 
rose and creeping willow. 
Finally, a biotope mapping performed on aerial photos taken in 
2002 and 2003 with a HRSC-AX and a DMC camera was used 
for the distinction of different predominant vegetation types. 
 

4. METHODS 

On the basis of previous research (Göpfert and Heipke, 2006) 
this paper introduces a new method to determine the height shift 
of lidar points in areas with typical coastal vegetation, where 
due to dense plant population no or only a few ground points 
exist and therefore standard filter algorithms usually fail. 
Initially, section 4.1 explains briefly the characteristics of 
vegetation with respect to the lidar measurement and the 
connection between vegetation attributes and features generated 
from the remote sensing data. In section 4.2 the feature 
extraction method based on irregularly spaced lidar points is 
introduced. The next section gives a short overview about our 
previous classification algorithm emphasising its restrictions. 
Finally, in section 4.4 a new method for the estimation of the 
height offset in the lidar data caused by the vegetation is 
described. 
 
4.1 Vegetation attributes and features 

The interaction of the laser beam with complex objects, such as 
vegetation of different height and density, is difficult to model. 
In the corresponding literature this aspect is mathematically 
described as a convolution of the emitted signal with the cross 
section of the extended object. Every layer of the vegetation 
contributes to the signal received by the sensor. Low vegetation 
within the range resolution of the scanner system often 
generates a mixed echo with reflection from the ground. 
Therefore, the centre of gravity of this echo is situated above 
the terrain and an upwards shift is observed in the lidar data. In 
higher vegetation several distinctive echoes per laser pulse can 
occur. For the derivation of the DTM usually the last echo is 
used. However, also the last echo can be caused by a mixed 
reflection or within very dense plant population entirely created 
by vegetation layers. Thus, at locations of higher vegetation the 
last pulse data may also be biased upwards. 
In order to assess the influence of vegetation attributes on the 
quality of the lidar height information, ground truth 
measurements were used in previous studies. For the purpose of 
comparison a DTM of the lidar data was generated and the 
heights were interpolated using the x- and y-coordinates of the 
terrestrial control points. In addition to the effect of the 
vegetation type on the lidar accuracy, the correlation between 
the height differences at the reference points and vegetation 
height and density were investigated. The vegetation density 
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was quantified by the analysis of the coverage rate of the plants 
in fish eye photos taken from the ground to the zenith.  
In the next step the evaluated dependencies between the height 
shift and the vegetation attributes had to be related to the 
observables of the available remote sensing data. The 
significance of attributes as well as features depends strongly 
on the vegetation type. Therefore, without any context 
information a classification of vegetation types has to be 
performed in addition. In order to keep all features in the 
current remote sensing data exclusively for the distinction of 
accuracy levels with regard to the vegetation height and 
density, the separation of the vegetation types was realised 
using a biotope mapping. 
The intensity value given with the data might be derived from 
the measurements in different manners by the providers. 
However, in any case it is a function of the signal amplitude, 
which is responsible for the main part of the spatial variation of 
the cross section (see Wagner et al., 2006). Reflectivity, 
directivity, and the effective area of the reflecting surface of an 
object are combined in the concept of the so-called cross 
section σ. Therefore, the amplitude of the echoes as well as the 
intensity values of the lidar points are related to the 
characteristics of the object, such as plant structure, and 
consequently to the vegetation density. In the basic case of 
normal incidence with uniform intensity, flat bare ground yields 
to a homogeneous cross section (coinciding with the circular 
beam footprint) as well as a narrow pulse width and high 
amplitude, while a mixed target consisting of terrain and low 
vegetation expands the pulse width and attenuates the 
amplitude. Considering coastal shrubberies in the leaf-off 
period, the higher the echo in the vegetation the thinner are the 
branches, which contribute to the cross section. Therefore, the 
amplitude as well as the intensity values decreases theoretically 
for elevated lidar points. 
Due to in general higher reflectivity, bare ground in the 
investigation area appears brighter than shrubberies during the 
leaf-off time in the channels of multispectral data. Hence, the 
darker the pixel, the larger the proportion of vegetation and 
therefore the plant density is. Additionally, for evergreen plant 
population or measurement campaigns during the leaf-on period 
vegetation indices (e.g., the Normalized Difference Vegetation 
Index (NDVI)) are means to quantify the vegetation density, 
because a strong correlation between the leaf area index (LAI), 
describing the vegetation structure, and the NDVI exists 
(Pandya, 2004). 
Higher vegetation areas cause larger variations in the height of 
the lidar points. Thus, the standard deviations as well as the 
contrast in the height data are correlated with vegetation height. 
Multiple echoes per laser beam can be separated by the system 
if the vegetation height is larger than the range resolution of the 
scanner. For pulsed scanner the range resolution corresponds to 
the half pulse length (e.g., LMS Q560 - 4ns . 0,6m). Another 
premise for several echoes is a certain minimum vegetation 
density in the related height, which can generate a reflection 
strong enough to be detected by the photo diodes and the 
implemented signal processing software. In general, the 
occurrence of multiple echoes indicates larger vegetation height 
and density. 
 
4.2 Feature extraction using raw data 

The previous approach relied on transformation of the arbitrary 
distributed raw data to a regular spaced grid (3d to 2.5d 
mapping) in order to use conventional image segmentation and 
classification techniques. Disadvantages of the procedure are 
interpolation and smoothing artefacts reducing the significance 

of the features related to the height offset in the lidar data. 
Additionally, the neighbourhood defined by the segments is not 
appropriate to the feature extraction especially for pixel near the 
borderline. Therefore, in this paper the features are determined 
using methods applied directly on 3D raw lidar data. A 
comparison is performed to evaluate the changes of the 
correlation between the different features, derived from grid and 
raw data, and the height shift caused by vegetation. 
The raw data of the investigation area provided by the Milan 
Flug GmbH contains up to three echoes per laser pulse. The 
points were stored with x,y,z-coordinates together with 
intensity values in chronological order of their time stamps 
corresponding to the scan pattern. The different echoes are not 
assigned to a certain laser pulse, thus a separation into first, last 
and other pulses is performed based on geometric criteria. 
Afterwards, a file for the feature extraction is prepared, which 
only consists of last pulse data with the following attributes: 
coordinates, intensity values, number of associated returns and 
vertical differences between the last and related echoes. For the 
data of the first flight mission including only last echoes (Juist 
2004) the separation step is omitted and the attributes related to 
multiple returns are not considered. 
For feature extraction the n-nearest neighbours of each laser 
point are considered. The feature values for the intensity can be 
assigned directly from the examined point or the mean value in 
the neighbourhood is used alternatively, if a smoothing of noise 
effects is desired. Two additional features are calculated using 
the distribution of multiple echoes in the vicinity of the 
considered point: the ratio of laser pulses with several returns to 
all pulses and the average height difference between first and 
last echo in the defined neighbourhood. In order to analyse the 
variation of the height in the neighbourhood of the current laser 
point, the standard deviation and the contrast derived from a co-
occurrence matrix are calculated. The influence of the terrain 
slope on the height variations is reduced by an adjusted plane 
fitted in the lidar points of the neighbourhood. The standard 
deviations of the point heights with respect to the plane are 
stored acting as features. The height values related to the plane 
are also used to determine the co-occurrence matrix. In Haralick 
(1979) the textural features were established based on grid data 
and Pfeifer et al. (2004) suggested their application to 
irregularly distributed points. The range of the height 
differences in the neighbourhood of the investigated point is 
divided into regularly spaced intervals. The number of these 
bins corresponds to the size of the square co-occurrence 
matrices. For each pair of points in the area of interest the 
horizontal distance is determined defining those pairs, which 
relate to a certain co-occurrence matrix. Afterwards, the height 
differences of the point pairs are calculated and assigned to the 
defined intervals. Like in (Pfeifer et al., 2004) all directions are 
considered, because in areas with natural vegetation, such as 
shrubberies, the direction dependency of the height variation 
should be marginal. The contrast is determined from the 
matrices using the following equation: 
 
 

(1) 
 
 
i  Number of counts in the matrix cell related to the height 
 interval 
hdiff  Related height interval 
N Number of all point pairs contributing to the values 
 of a certain matrix depending on their horizontal 
 distance 

N
hi

Contrast diff∑ ∗
=

))(( 2
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The features can be determined for lidar as well as for control 
points using the adjacent lidar points. For the purpose of 
comparison the features from the segments of the previous 
approach are assigned to the single points using their horizontal 
coordinates. 
 
4.3 Previous classification approach 

In the previous approach a supervised classification is 
performed based on different data sources (multispectral image, 
lidar data, biotope mapping), in order to divide the lidar data 
into different levels of accuracy depending on the predominant 
vegetation. For the classification a segment based algorithm 
was chosen in order to consider the local neighbourhood of the 
laser pulse and to calculate mean values and standard deviation 
as well as other texture parameters. Initially, the height and 
intensity values of the unfiltered lidar data are transformed to 
regular grids for a combined image classification with 
multispectral data. Unfiltered data are used, in order to preserve 
texture information stemming from the vegetation. The 
segmentation for the tests in this paper is performed using a 
watershed transformation applied to the low pass filtered lidar 
intensity image. Starting from the local grey value minima as 
seed points (corresponds to areas of low lidar accuracy), a 
flooding of the surface depending on the grey values is 
simulated. This procedure continues as long as water of 
different sources is only separated by the watershed lines. 
Afterwards, these lines are assigned to an adjacent segment 
using the minimum grey value difference between the segment 
and the line pixel. The significance of the features for the 
different accuracy intervals depends mainly on the vegetation 
type. Thus, the extension of the segments and, consequently, 
the area of the following classification are limited to one 
predominant vegetation type using the borderlines of the 
biotope mapping. Training areas are generated by slicing the 
height offset of the control points. For that purpose a difference 
model is calculated and transformed into an image, so that the 
grey values correspond to the height discrepancies. This image 
is segmented into different accuracy levels. These segments are 
used as training areas for supervised classification. 
In the last step the feature vectors derived for the training areas 
and the segmentation are used to classify the lidar height data 
into different accuracy levels. In this paper a Minimum 
Distance Classifier (Euclidian distance) is applied to assign the 
current segment. For this method the features are normalised to 
the same overall value considering the distribution of the 
feature values, in order to weight the features equally. 
 
4.4 New prediction algorithm 

Studies indicated that the regular spaced accuracy intervals 
related to the classes do not correspond to separable clusters in 
the feature space. Considering one vegetation type the height 
offset and the related features show a rather continuous 
characteristic. Theoretically, lidar echoes can stem from 
reflection at any level of vegetation and hence every value in 
the range of the height offset for the current vegetation type is 
possible. Therefore, a standard classification is not the most 
suitable method to estimate the shift in the lidar data caused by 
vegetation. Hence, in the new approach the connection between 
the features and the height offset is realised by continuous 
functions. Initially, the parameters of the functions have to be 
determined using the reference data. For the unfiltered lidar 
data a DSM is calculated and the heights at the control points 
are interpolated. The height offset is determined based on 
comparison of the lidar and the reference height for every point. 

Afterwards, the features for the control points are calculated 
depending on the adjacent lidar points (section 4.2). In order to 
eliminate outliers and attenuate the noise of the features a 
median filtering is performed. Subsequently, the parameters of 
the functions, which connect every chosen feature to the height 
offset, are estimated by least square adjustment. Polynomial 
functions of different order and exponential functions are 
implemented. For instance, if the lidar intensity values increase, 
the height offsets decrease implying the use of monotonic 
functions. Additionally, for high intensity values the height 
offset converges to zero. Therefore, in this case exponential 
functions are suitable to represent such dependency, while 
polynomials of higher order tend to oscillate between the 
interpolation points. For every single lidar point the height shift 
can be calculated based on its features and the estimated 
functions. Every feature and the related function generate an 
estimate of the shift. The final height shift of the current lidar 
point is computed by a weighted average of these single shifts. 
The weights are derived from the standard deviation of the 
points with respect to the fitted function for each feature 
(Equation 2) or from the correlation of the feature and the 
height shift (Equation 3). 
 
 

(2) 
 
 
 

(3) 
 
ΔHf  Final height shift derived from all features 
ΔH1...ΔHn Height shift derived from single features 
σ1…σn  Standard deviation of the points regarding to the 
  fitted function for single features 
c1…cn  Correlation of the features and the height shift 
 
The features correspond to the height offsets only for the 
vegetation type in the reference area, which is used to calculate 
the function’s parameters. Therefore, the estimation of the 
height shift is conducted for the lidar points situated within the 
same kind of vegetation, which is realised using a biotope map. 
 

5. RESULTS 

5.1 Vegetation attributes and features 

For all studied vegetation types in the coastal zone we observed 
a general upwards shift of the lidar DTM ranging from 10cm to 
23cm for several control areas. The largest height shift was 
detected for beach grass (+19cm), sand couch grass (+20cm) 
and the mixed area sea buckthorn/willow (+23cm). Without 
considering the biotope type vegetation height and density did 
not show strong dependencies with respect to the height offset. 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.  Average height shift plotted over vegetation heights 
for creeping willow (Langeoog, Riegl scanner) 
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However, a high correlation for height as well as density was 
determined observing exclusively one kind of vegetation. 
Hence, the knowledge of the vegetation type is crucial for the 
applicability of the other attributes. An example for the 
dependencies of the height shift and vegetation heights within 
an area of creeping willow is given in Figure 2. 
The vegetation attributes are connected to features extracted 
from the remote sensing data (lidar and multispectral data), 
which are used to estimate the height shift of the lidar data in 
vegetated areas. For example, Figure 3 visualises the relations 
between the intensity of the lidar echoes and the height shift for 
an area covered with Japanese rose and creeping willow 
mapped by the ALTM 2050 scanner. A strong dependency and 
a continuous characteristic of the feature and the related offset 
are obvious. Maximal two clusters could be separated in the 
diagram. Intensity values lower than 60 indicate elevated 
targets, while for higher values mixed or ground echoes are 
expected. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.  Dependencies between the height shift and the lidar 
intensity values (Juist 2004 TopScan) 
 
5.2 Feature extraction using raw data 

In order to increase the significance of the features the 
extraction is conducted using raw lidar data. Figure 4 depicts on 
the left side a part of a RGB-Image of the island Langeoog and 
on the right side the related density of multiple echoes extracted 
from the point cloud. 
 
 
 
 
 
 
 
 
 
Figure 4.  Left: RGB-photo of an area of the island Langeoog; 
Right: Density of multiple echoes (higher density is visualised 
with darker colour) 
 

Correlation between Height 
Contrast and Height Shift  Reference area  

(flight mission) 
Segments Raw Data 

Rose +Willow (2004) 0.45 0.51 
Rose + Sea Buckthorn (2005) 0.36 0,55 

Rose1 (2005) 0.38 0.48 
Willow1 (2005) 0.46 0.72 
Willow2 (2005) 0.65 0.69 

Table 1.  Correlation between the height shift and the height 
contrast extracted from the segments and raw data 
 
In Table 1 the correlation of the offset to the height contrast 
extracted from raw and grid data (values for segments) is 

compared. Obviously, the dependency of this feature to the 
height offset increases for all investigated reference areas using 
the raw data. 
 
5.3 Previous classification approach 

The previous and the new method are applied to a data set from 
the ALTM 2050 scanner covering the East Frisian island Juist 
in 2004. Figure 5 shows the terrestrial measured control points 
of the reference area, which is situated within a mixed habitat of 
rose and willow in the dunes. From the southern part of the 
points (green) the training areas are generated, which are used 
to learn the features for the classification. According to 
intensity values and height contrast the segments, created by the 
watershed transformation, are classified to five accuracy 
intervals using the minimum Euclidian distance. 
 
 
 
 
 
 
 
 
 
 
Figure 5.  Control points of the test area on the island Juist 
(background: CIR-Orthophoto) 
 
With the northern part of the reference points (blue) the 
classification result is checked. Table 2 visualises the related 
accuracy. The correctness for the different classes varies in the 
range of 54 – 75%. However, the proportion of the adjacent 
classes is quite high. These errors are caused by the arbitrarily 
chosen borders of the accuracy intervals. As shown before, the 
features and the related height offset have a rather continuous 
characteristic, which is not suitable to be modelled in clusters. 
Another reason for the errors is that the borderlines of the 
control areas and of the segments, which are classified in the 
aggregate, do not match. 
 

Proportion of 
class with 

respect to the 
training area 

Class 1 
<20cm 

Class 2 
<50cm 

Class 3 
<100cm 

Class 4 
<150cm 

Class 5 
>150cm 

Train Area 1 65,3 27,0 1,4 - - 
Train Area 2 32,7 56,9 18,7 2,01 0,3 
Train Area 3 2,0 11,7 54,3 22,1 0,2 
Train Area 4 - 4,0 22,0 54,0 24,5 
Train Area 5 - 0,3 3,5 20,6 75,0 

Table 2.  Classification result 
 
5.4 New prediction algorithm 

In the new approach the control points are used to connect the 
height offset to the extracted features with continuous functions. 
In this test a second order polynomial is chosen both for the 
intensity and the height contrast. These features are weighted 
by their standard deviation with respect to the fitted functions. 
For the parameter estimation again the southern part of the 
control points is used as training area and the height offset of 
the northern points is calculated based on the features from the 
adjacent lidar data. The diagram in Figure 6 visualises a high 
correlation between the estimated height shift and the offset 
determined by the comparison of lidar and reference heights. 
This method shows potential for the estimation of the height 
offset in different coastal vegetation, because the continuous 
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characteristic of the accuracy in these vegetated areas is taken 
into account. But the algorithm depends strongly on the 
significance of the features. 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.  True height offset vs. estimated height offset 
 
However, first tests using the lidar data acquired by the LMS 
Q560 system indicate that the correlation of the features and the 
height shift is not strong enough for some vegetation types, in 
order to fit robust functions. Therefore, the applicability of the 
features for the method has to be checked before. 
 

6. CONCLUSION AND OUTLOOK 

Starting from theoretical considerations about the interaction of 
the laser beam with different layers of vegetation, this paper 
compares two methods for the estimation of the height shift in 
the lidar data caused by coastal vegetation. Features, such as 
lidar intensity and height contrast, are connected to vegetation 
attributes, which influence the accuracy of lidar measurement. 
In a previous approach these features are used to classify the 
lidar data into different accuracy intervals. However, the 
characteristic of the accuracy of lidar data belonging to one 
vegetation type does not correspond to distinct and easily 
separable clusters in the feature space. Therefore, a new method 
is developed, which connects the feature to the height shift with 
continuous functions. The shift of a single lidar point can be 
easily calculated using its features and the parameters of the 
functions. However, this approach depends strongly on the 
significance of the extracted features, which is basically 
influenced by the scanner type and the echo detection 
algorithm. For future work upcoming scanning devices, which 
are able to record the full waveform, can provide new 
meaningful features. For instance, the pulse width can be a 
quality criterion by itself. It describes the uncertainty of the 
target surface and the range measurement for the related echo. 
Another idea combines the extracted feature with geometric 
criteria of filtering methods, in order to eliminate vegetation 
points and to generate a DTM for the vegetated coastal zone. 
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ABSTRACT: 
 
3D modeling and visualization of real world scenes is an important topic of research with applications in many areas such as virtual museums, game 
and entertainment, architecture description and restoration, virtual reality, archaeology, many industrial applications and last but not least important 
tourist applications. 3D modeling and visualization are the creation of a computer representation of real world environments that merges together data 
coming from one or more sensors. The representation of the geometric and texture information of a real scene is a very challenging task due to the 
acquisition of large-scale data, complexity of the geometry and difficulties to cope with reflectance properties of the objects and variations in the 
lighting in the scene. Two approaches, depending on the type of sensor (terrestrial laser scanner or digital cameras), are typically used to face the 3D 
reconstruction problem. Laser scanners provide 3D metric information in real time through an array of coordinates: range images. Digital cameras are 
used to acquire high-resolution images of the scenes. These images are 2D arrays of reflected light from objects but do not contain any explicit metric 
information. Further processing is necessary, to calibrate cameras and compute 3D models. This paper aims to demonstrate how active and passive 
sensors can be registered and combined through a hybrid approach to compute 3D models of complex scenes with photo-realistic quality. Particularly, 
the proposed approach tries to deal with two different images: a high-resolution image acquired with a digital camera and a range image obtained 
from a laser scanner model using collinearity condition. Our goal is to devise and implement a robust, automatic, and accurate hybrid-technique for 
registration of both sensors for efficient modeling (geometry) and rendering (radiometry) of complex environments. To this end, we have developed a 
novel application for laser scanning which allow us to test the approach developed over experimental results. 
 
 

1. INTRODUCTION: A REVIEW 

3D reconstruction of complex scenes is a very challenging task 
due to the variety of possible scenes to scan and difficulties to 
work with real data. Passive and active techniques used in 3D 
reconstruction have their limitations and, separately, none of 
these techniques can solve all the problems inherent to the 
modeling of real environments. To reinforce this need, next 
table (Table 1) illustrates a comparison based on the most 
important features with relation to laser scanner and digital 
camera. 
 

Laser Scanner Digital Camera 
↓ Inaccurate lines and joints ↑ Accurate lines and joints 
↓ Poor colour information  ↑Good colour information  
↑ Prompt and accurate metric 
information 

↓ Hard-working and slow 
metric information 

↑ Excellent technique for the 
description of complex and 
irregular surfaces 

↓ Time-consuming 
technique for the 
description of complex and 
irregular surfaces 

↓ High-cost technique ↑ Low-cost technique 
↓ The 3D model is an entity 
disorganized and without 
topology 

↑The 3D model is an 
entity organized and with 
topology 

↑ Light is not required to work ↓ Light is required to work 
 

Table 1: Comparison of features: laser vs. camera. 
 
Up to now, several approaches have been developed trying to 
register both sensors. This problem of image-to-model 
registration is closely related to the problem of camera 
calibration, which finds a mapping between the 3D world 
(object space) and a 2D image. This mapping is characterized 

by a rigid transformation and a camera model, also referred to 
as the camera’s extrinsic and intrinsic parameters. This rigid 
body transformation takes 3D points from object space to 2D 
points in the camera’s reference frame, and the camera model 
describes how these are projected onto the image plane. The 
camera calibration problem is solved by matching features in 
the 3D model with features in the image. These features are 
usually points, lines or special designed objects that are placed 
in the scene. The matching process can be automatic or user 
driven, and the number of feature pairs required depend on 
whether we are solving for the intrinsic, extrinsic or both 
parameters sets. In the context of image registration for 3D 
modeling using dense laser scanner data, several approaches 
have been developed: (Rocchini et. al., 1999) develop a new 
approach for mapping and blending textures on 3D geometries. 
The system starts from a 3D mesh which represents a real 
object and texture detail acquired via a common photographic 
process. Both datasets are integrated based on initial rough 
registration. However, this approach requires manual 
interaction and is applied to small objects; (Lensch et. al., 2001) 
develop an image registration approach based on silhouette 
matching, where the contour of a rendered version of the object 
is matched against the silhouette of the object in the image. No 
user intervention is required, but their method is limited to cases 
where a single image completely captures the object; in other 
range of methods applied to large distances, dealing with 
outdoor scenes and based on locating invariant image features, 
(McAllister et. al., 1999) suggest correlating edges common to 
the color image and the range map’s intensity component. 
However, care must be taken to place the camera’s nodal point 
at the same physical location as the laser’s center of rotation, 
and to rotate both devices about this point. This homographic 
relationship simplifies the registration to the camera’s three 
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rotations relative to the laser; (Elstrom, 1998) presents a novel 
stereo-based method for registering color and range images 
acquired from externally uncalibrated sensors. The multi-sensor 
alignment problem is solved by processing invariant features 
such as corner, edges or contours which are extracted from the 
raw data. The benefit of a feature-based approach is that it 
abstracts the data and thus simplifies the search for the 
registration parameters. Often, however, feature extraction leads 
to the loss of some information; (Stamos and Allen, 2001) 
present a semi-automatic method for image to model 
registration of urban scenes, where 3D lines are extracted from 
the point clouds of buildings and matched against edges 
extracted from the images. The method involves the utilization 
of parallelism and orthogonality constraints that naturally exist 
in urban environments. Therefore, their algorithm only operates 
in scenes which contain linear features with strong geometric 
constraints. Also a number of thresholds have to be manually be 
set by the user in order to customize the segmentation; (Ikeuchi 
et. al., 2003) in their Great Buddha work, use reflectance edges 
obtained form the 3D points and match them against edges in 
the image to obtain the camera position. They align edges 
extracted from reflectance images with those in color images so 
that the 3D position error of those edges is minimized by 
iterative calculation. Nevertheless, this approach has been 
focused on small and simple objects; (Allen et. al., 2003) 
present a novel method for 2D to 3D texture mapping using 
shadows as cues. They pose registration of 2D images with the 
3D model as an optimization problem that uses knowledge of 
the Sun’s position to estimate shadows in a scene, and use the 
shadows produced as a cue to refine the registration parameters. 
However, they still have some limitations related to view 
planning and real-time model creation and visualization. More 
recently, (Aguilera and Lahoz, 2006) exploit the power of a 
single image-based modeling method to obtain an automatic co-
registration of laser scanner and uncalibrated digital camera. 
Particularly, the problem of image registration is solved 
automatically through 2D and 3D points correspondences which 
are matched based on a search of spatial invariants: two 
distances and one angle. However, several input considerations 
such as especial targets, vanishing points and geometric 
constraints have to be taken into account; (Al-Manasir and 
Fraser, 2006) develop a strategy using a coded target placed on 
the object, which are registered by a calibrated digital camera, 
rigidly attached to the laser scanner. An automatic process is 
applied to solve the spatial position and orientation of the 
camera within the laser scanner coordinate system. The 
identified coded targets are used to apply a 3D similarity 
transformation. However, this approach needs a camera 
attached camera to laser scanner and placed some code target 
on the object; (Alshawabkeh et. al., 2006) propose a robust 
algorithm line detection within the high-resolution image, based 
on the mathematical properties of the mean which is invariant 
to arbitrary rotations and translation of surface. This 
segmentation is applied into 3D model, and can look for 
different types of edges. Finally, it uses the edge resulting to 
apply a matching between 2D and 3D datasheets. 
 
The method that we have developed (Figure 1) exhibits 
significant improvements in flexibility, accuracy, and 
completeness over the approaches remarked above. Particularly, 
some relevant tasks have been automated; new strategies and 
algorithms integrating robust estimators have been adapted in 
each step guarantying more reliability and accuracy; 
considering that both sensors have been registered, a hybrid 
modeling process has been developed which allow us to 
complete and improve geometric and radiometric properties of 

the laser model. Finally, a novel laser scanning tool has been 
developed in order to test experimental results. 
 

 
 

Figure 1. Full pipeline process. 
 
The paper presents the following structure and organization: 
after this review, Section 2 develops the matching of both 
images: range and high-resolution. Section 3 explains in detail 
the co-registration approach developed for both sensors. Section 
4 describes a hybrid modeling approach to improve and 
complete the laser model. Section 5 shows some experimental 
results using our own novel application of laser scanning. A 
final section is devoted to outline some conclusions and future 
works. 
 

2. MATCHING RANGE AND HIGH-RESOLUTION 
IMAGES  

Automated identification of image correspondences is a solved 
problem in aerial photogrammetry, since image geometry is 
more standard and relative camera rotations are small. 
However, in close range applications, each acquisition has its 
own image geometry, depending on the image scene, the 
baseline cannot be kept always constant and the rotations 
around the camera axis are significant. Moreover, more 
problems arise if we try to match two different types of images 
such as range and high resolution images. Therefore, the 
algorithm must be as robust as possible and extracted features 
should be invariant under different transformations to be re-
detectable and useful in automatic procedures.  
 
The matching strategy developed presents a robust and 
hierarchical approach with the aim of extracting and matching 
features (interest points) between high-resolution and range 
images. Firstly, an image pre-processing was applied based on 
some radiometric equalization and contrast enhancement. 
Particularly, a blue channel filter is applied in order to eliminate 
sky influence on high resolution image. With relation to range 
image, one problem is the ‘air’ or holes due to an insufficient 
density of points, so a bilinear interpolation is applied to reduce 
its influences. At last, both images are resized interactively 
based on some user information. The goal of the resizing is to 
apply a planar affine transformation to the range image to fit as 
well as possible to the high-resolution image. The resized 
images will be used in the matching process. Secondly, an 
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interest point detector method based on Förstner operator 
(Förstner and Gülch, 1987) has been applied. Many interest 
point detectors exist in the literature but only a few satisfy 
accuracy requirements. Through Förstner operator, the 
detection and localization stages are separated, into the 
selection of windows, in which features are known to reside and 
feature location within the selected windows. The windows of 
interest are computed with a gradient operator (1) and the 
normal matrix. 
 

                          (1) 
 
 
The point of interest is determined as weighted centre of gravity 
of all points inside the window. Further statistics performed 
locally allow estimating automatically the thresholds for the 
classification, like trace of inverse matrix (Q) or form of the 
confidence ellipse. The algorithm requires a complicate 
implementation and is generally slower compared to other 
detectors. 
 
Once interest points have been extracted, a hierarchical 
matching strategy based on ABM (Area Based Matching) and 
LSM (Least Square Matching) has been applied. At first, the 
cross-correlation coefficient is used to get a first approximation 
(2). Around the predicted position a search box is defined and 
scanned for searching the position which has the higher cross-
correlation value. This position is considered a first 
approximation of the correct point to be matched.  
 

(2) 
 
 
where  p is the cross-correlation coefficient, σHR is the 
covariance between the windows of high-resolution and range 
image; σH is the high-resolution image deviation and σR is range 
image deviation.  
 
Then, the approximation found with cross-correlation is refined 
using LSM algorithm (Grün, 1985), which provides precise and 
sub-pixel location of the matching elements. The cross-
correlation process uses a small window around each point in 
the high-resolution image and tries to correlate it against all 
points that are inside a search area in the range image. The 
search area is given considering the resize of both images. The 
final number of possible matches depends on the threshold 
parameters of the LSM and on the disparity between the two 
images pairs; usually it is around 40% of the extracted points. 
 

3. CO-REGISTRATION OF SENSORS 

Due to the unguided matching process, the found matched pairs 
might contain outliers. Therefore, a filtering of false 
correspondences must be performed. Taking into account the 
authors’ experience testing some robust approaches (Aguilera 
et. al., 2004), several assumptions can be confirmed: 
 
• Least squares adjustments are not robust estimation 

techniques as wrong observations (like false interest 
points) can lead to completely wrong results and might 
even prevent convergence of the adjustment.  

 
• The classical approach to detect blunders in the 

observations based on the reliability theory or data-
snooping technique, developed by (Baarda, 1968) could 

not solve some critical problems. Moreover, the blunder 
detection technique has a solid theoretical formulation but 
it is based on some hypothesis which can lead to 
unsuccessful results if not satisfied. 

 
• When a large number of observations are available, robust 

estimators such as RANSAC or M-estimators  can perform 
more efficiently to check for possible outliers. In robust 
estimations, gross errors are defined as observations which 
do not fit to the stochastic model used for the parameters 
estimation.  

  
Taking into account the assumptions remarked upon above, a 
twofold approach for co-registration of both sensors has been 
developed:  
 
I. An estimation step which allows us to obtain a first 
approximation of co-registration parameters based on Direct 
Linear Transformation (DLT) (Abdel-Aziz and Karara, 1971) 
combined with RANSAC (RANdom SAmpling Consensus) 
(Fischler and Bolles, 1981). As a result, the most important 
wrong matched interest points are rejected.  
 
II. A computation step, which applies a re-weighted least square 
adjustment supported by modified Danish M-estimator 
(Domingo, 2000). A re-projection strategy based on collinearity 
condition and supported by Danish M-estimator allows us to 
refine the DLT solution and thus to compute accurate and 
reliable co-registration parameters. 
 
In a first step, DLT is applied to solve camera orientation using 
pixel and terrain coordinates. Terrain coordinates are obtained 
from laser scanner file which relations every pixel of range 
image with its 3D point projection. This algorithm is used due 
to be a very well developed algorithm in computer vision, and it 
can obtain a first result without iterations. This process is 
upgraded with RANSAC in order to get a reliable camera 
position.    
 
RANSAC computes several registrations based on a minimal 
subset of correspondences selected randomly. For each of these 
“random registrations”, the technique searches for all 
supporting correspondences (correspondences with a DLT error 
below a given threshold). All correspondences are then used to 
compute a new camera registration. The process is repeated and 
the estimation that has the larger set of points and the minimum 
error is selected as the final registration. The algorithm needs 
three parameters: the maximum error (in pixels) to consider a 
correspondence pair as supporting a given registration (10 
pixels); the subset of points used in each trial for the first 
evaluation (11 points); the number of trials (20-30). To estimate 
this last parameter, we need to know the number of outliers in 
the data. In our case, we do not know the percentage of outliers 
in the initial data; furthermore, it will depend on the type of 
image (the error will increase in poorly textured images where 
matching algorithms performance is worse). In order to provide 
more automatism and efficiency, adaptative thresholds have 
been introduced (Hartley&Zisserman, 2000). 
 
In a second step, a final computation of the co-registration  
parameters has been obtained based on a re-projection strategy 
of range image into high-resolution image. An iterative process 
using collinearity-based approach has been applied to refine the 
DLT solution allowing us to improve the co-registration of both 
sensors. Particularly, a set of 2D range image points have been 

RH

HR

σσ
σρ =

1,1,

,1,1

'''

'''

−+

−+

−=

−=

yxyxy

yxyxx

ggg

ggg

164

ISPRS Workshop on Laser Scanning 2007 and SilviLaser 2007, Espoo, September 12-14, 2007, Finland



 

re-projected over the image based on colinearity condition 
principles and the approximated camera parameters provided by 
DLT step. Small discrepancies remain between the projected 
range points and the original extracted high-resolution image 
points. The 2D coordinates of the extracted points and the re-
projected corresponding range image points constitute the input 
to compute a new registration. This iterative process continues 
until the Euclidean distance between the re-projected points and 
the original interest points gets to a minimum (threshold 
distance). The general idea is that at each iteration the distance 
between the two datasets is reduced, allowing a better 
computation of registration parameters. To ensure the 
convergence of the algorithm and the improvement of the initial 
camera model estimation, the registration error of each 
correspondence is computed and recorded. In each new 
iteration, only matching pairs for which the registration error 
decreases are updated, and the other are kept unchanged.  
 
Particularly, the method consists of minimizing the Euclidean 
distance between the re-projected points and the original 
interest points. Nevertheless, the presence of accidental and 
“light” gross errors in observations will make that each interest 
point does not have the same degree of participation in the 
adjustment. In this way, a re-weighted least square adjustment 
supported by modified Danish estimator (3) is applied. The 
numeric solution for this adjustment follows an iterative re-
weighted approach, in which the iteration starts with some 
initial values for the weights of observations and a conventional 
least square adjustment. In the following iterations, new 
weights are calculated for each observation based on the 
residuals obtained in the previous iteration, and a least square 
adjustment with these new weights is repeated.  
 

 (3) 
 
where w represents the weight function and v the residual 
vector.    
 
The iterative process continues until the convergence is 
achieved (usually 3 to 10 iterations). After the computation of 
co-registration, a full model for the digital camera with relation 
to laser scanner is available and ready to be exploited. One of 
the most important advantages of modified Danish estimator 
regarding to RANSAC is its continuous approach without total 
loss of observations, providing more accuracy and reliability in 
the result. 
 

4. A HYBRID MODELING APPROACH 

The idea developed in this section, is based on the use of 
registered high-resolution image not only to texture mapping 
but also to complete and improve 3D laser model geometry.  
 
4.1 Geometry.  

For some modeling applications, like building reconstruction, 
where the object is mainly described with straight lines, laser 
scanner technology does not provide a final solution. 
 
The goal of surface modeling can be stated as follows: given a 
set of sample points Pi assumed to lie on or near an unknown 
surface S, create a surface model S’ approximating S. A surface 
modeling procedure based only in laser scanner dataset cannot 
exactly guarantee the recovery of S, since principal straight 
lines of the building are not provided by laser scanner. 
Sometimes additional information of the surface (e.g. 

breaklines) can be available and thus the output result S’ is 
more likely to be topologically correct and converges to the 
original surface S. A perfect scan system should be dense in 
detail area and sparse in featureless parts and performs 
automatically. But usually the measured points are unorganized 
and often noisy; moreover the surface can be arbitrary, with 
unknown topological type and with sharp features. 
 
The approach presented in this section does not extract directly 
3D information from a high-resolution image; it uses features 
detected in the high-resolution image to complete and improve 
segmentation in laser model. The process considers the laser 
model completely triangulated, and not the point’s cloud, to 
make easier the detection and matching of 3D edges. 
 
The co-registration of both sensors allows us to compute 
correspondences between 2D straight lines belonging to high-
resolution image and 3D edges belonging to laser model. The 
final step of the correction process consists in the alignment of 
the laser model edges. 
 
A first approximation to laser model has been obtained based 
on Delaunay triangulation, especially through an incremental 
strategy (Bourke, 1989). Furthermore, in order to make easier 
the process, laser model is filtered in order to isolate the main 
3D edges. Topological information, as well as normal of 
triangles are used to isolate these features. As a result, two 
different types of 3D edges are isolated: final edges, those that 
constitute the surface perimeter and breaklines edges, those 
whose normal variation is greater than a predefined threshold 
(30-40º). 
 
Afterwards, a robust straight line extraction is performed over 
the high-resolution image. Particularly, a combination of Canny 
(1986) and Burns (1986) operators is used to obtain accurate 
lines. Furthermore, a clustering of these segments based on the 
analysis of slope and orthogonal distance allow us to obtain the 
principal lines.  
 
The hybrid modeling method that we propose should infer the 
correct geometry, topology and features based on the co-
registration of both sensors. In this sense, the features extracted 
on the high-resolution image can provide geometric constraints 
as well as breaklines to model the object. 
At this point, an iterative process starts in which the 3D edges 
isolated over the laser model start to be corrected based on the 
straight lines extracted over the high-resolution image. For each 
extracted segment in the high-resolution image, the algorithm 
selects the 3D edge points that are projected to the line defined 
by the segment (the orthogonal distance and the slope variation 
are used to validate the 3D edges candidates).  
 
Finally, an algorithm corrects the 3D coordinates of points close 
to straight lines in the laser model. This is done in two steps. 
First, the parameterised equation of the 3D line is computed, 
and then 3D coordinates are modified so that the final points 
will lie in the computed line. The algorithm is applied 
iteratively with adaptative thresholds to correct as many edge 
points as possible. The algorithm stops when no correction is 
computed or when a user-defined number of iterations are 
reached. 
 
4.2 Texture.  

The visualization of a 3D model is often the only product of 
interest for the external world and remains the only possible 
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contact with the model. Therefore, a realistic and accurate 
visualization is often required.  
Through a texture mapping technique, our registered high-
resolution image is mapped onto the 3D laser model in order to 
achieve photo-realistic virtual models. Knowing the parameters 
of interior and exterior orientation of the image, for each 
triangular face of the 3D laser model the corresponding image 
coordinates are calculated. This approach is performed based on 
the Anchor Points method developed by (Krauss, 1993).  This 
method has three main steps: 
 
(i) Firstly, laser model image-coordinates are computed through 
camera model and collinearity condition. 
  
(ii) Next, a correspondence between each face of the laser 
model with each face of the high-resolution image is 
established. 
  
(iii) Finally, a projection of the photographic texture between 
the face of the high-resolution image and its homologous in 
laser model is performed. In this sense, each triangular face 
receives a specific transformation model well known as affine 
transformation. 
 
On the other hand, after the registration procedure, a full model 
for camera is available. Using this information, each 3D 
coordinate in the range image can be re-projected into the 
intensity high-resolution image according to the camera model. 
Since both images are directly registered, it is possible to 
establish an association between pixels in range and high-
resolution images, and compute a new range image based on the 
high-resolution colour values. The final image is useful to 
evaluate the quality of the registration in an easy fast way. It 
can also be used directly to map texture on the 3D models, 
giving a much more realistic impression than for a model only 
textured with the range image. The 3D coordinates when 
projected in the high-resolution image, will not correspond 
normally to an integer pixel value. To avoid distortion in the 
colors, a bilinear interpolation is used to compute the resulting 
RGB value for the re-projected image. Furthermore, due to the 
different images resolution, the interpolation is used to compute 
the “extra” 3D positions. 
 
Finally, regarding visualization, the VRML (Virtual Reality 
Modeling Language) format was the standard chosen to provide 
an interactive visualization of the results guaranteeing 
flexibility and scalability in the visualization at the same time, 
so different 3D laser models can be incorporated and managed 
easily. In this way, an automatic transformation of the 
reconstructed laser 3D model into a topological structure 
(points, lines and surfaces) sorted hierarchically in a nodes 
network was performed, allowing three different levels of 
visualization: wireframe, shaded and textured. Materials 
defined by their colours and radiometric properties 
(opaqueness, transparency, diffusion, reflection and emission) 
and high-resolution textures, are mapped through a uniform and 
continuous renderization supported internally by VRML. At 
last, in order to increase the level of realism and completeness 
of the scene, several basic primitives combined with spherical 
panoramas can be added. 
 

5. EXPERIMENTAL RESULTS 

In order to determine the accuracy, limitations and advantages 
of the hybrid approach proposed, a series of experiments are 
tested using our own tool developed. 

5.1 The medieval wall of Avila 
 
The medieval wall of Avila represents a fundamental reference 
point to the Spanish Cultural Heritage. Alfonso VI ordered the 
construction of this fortification after his conquest of Avila in 
1090. Apparently, he used Moorish prisoners to build the wall. 
 
5.1.1 Problem and goal. Two different sensors and images are 
used to put in practice the approach developed. Particularly, a 
time of flight laser scanner, Trimble GX200, is used to obtain 
range image, while a conventional digital camera, Nikon D70 is 
used to obtain high-resolution images. 
 
The workspace is situated in the north of the medieval wall, in a 
popular place known as “Arco del Carmen”. The principal 
problems with this experiment are related with its irregular 
patterns, battlements, which causes a lot of problems in 
matching phase, as well as its low density scan (about 300.000 
points). 
 
5.1.2 Methodology and results. The input data are constituted 
by a high-resolution image (3008 x2000 pixels) and a resized 
range image obtained from laser scanner point cloud and 
collinearity condition (Figure 2). 
 

 
 

Figure 2. Input data: high-resolution and range image. 
 
The Förstner detector (Figure 3) and a twofold matching 
strategy are applied to relate both images. A matching kernel of 
35x35 pixels is used at first. The final deviation of the matching 
is 0.71 pixels. 
 

 
 

Figure 3. Förstner detector applied to medieval wall. 
 
Afterwards, a robust registration of both sensors is performed. 
In a first step, DLT and RANSAC are combined to obtain a first 
approximation of camera parameters (Table 2). Then, in a 
second step, a re-projection strategy supported by Danish robust 
estimator is applied iteratively (Table 3). 
 
Sensor registration estimation: DLT + RANSAC 
 

External Parameters 
(Unit: radians, metres) 

Axis: -1.16377 X: 1.195 σA : 0.163 σX: 0.70 
Tilt: -1.0355 Y: -1.382 σT: 0.0178 σY: 1.10 
Swing: -0.3572 Z: -0.107 σS: 0.0037 σZ: 0.52 
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Table 2: Twofold registration process: estimation 

 
Sensor registration computation: Collinearity + Danish 
estimator (7th iteration) 
 

External Parameters 
(Unit: radians, metres) 

Axis: -1.1824 X: 1.607 σA : 0.0153 σX: 0.19 
Tilt: -1.0521 Y: -2.035 σT: 0.0238 σY: 0.14 
Swing: -0.1687 Z: -0.204 σS: 0.0022 σZ: 0.13 

 
Table 3: Twofold registration process: computation 

 
Finally, once a complete camera model has been computed, an 
automatic high-resolution texture mapping is applied (Figure 4). 

 

 
 

Figure 4. Mapping high-resolution textures.  
 
5.2 The romanesque church of San Pedro 
 
This romanesque church was founded on the XII century. 
The main facade is considered to have important examples of 
architectural sculpture, even though somewhat damaged. 
 
5.2.1 Problem and goal. Two different sensors and images are 
used to put in practice the approach developed. Particularly, a 
time of flight laser scanner, Trimble GS200, is used to obtain 
range image, while a conventional digital camera, Canon 
IXUS400 is used to obtain high-resolution images. 
 
The workspace is the main façade of the church. In this case, 
the scan density is high (over 1.5 millions of points), which 
allows obtain of range-image with enough texture to apply the 
matching process. 
 
5.2.2 Methodology and results. The input data are constituted 
by a high-resolution image (2272  x 1704 pixels) and a  resized 
range image obtained from laser scanner point cloud and 
collinearity condition (Figure 5). 
 

 
 

Figure 5. Input data: high-resolution and range image. 
 
The Förstner detector and a twofold matching strategy are 
applied to relate both images (Figure 6). A matching kernel of 
35x35 pixels is used at first. The final deviation of the matching 
is 0.51 pixels. 
 

 

 
 

Figure 6. Twofold matching strategy 
 
Afterwards, a robust registration of both sensors is performed. 
In a first step, DLT and RANSAC are combined to obtain a first 
approximation of camera parameters (Table 4). Then, in a 
second step, a re-projection strategy supported by Danish robust 
estimator is applied iteratively (Table 5). 
 
Sensor registration computation: DLT + RANSAC 
 

External Parameters 
(Unit: radians, metres) 

Axis: -1.429903 X: 8.048 σA : 0.0150 σX: 0.4433 
Tilt: 0.09558 Y: -2.615 σT: 0.0226 σY: 0.1928 
Swing: 0.009088 Z: 0.277 σS: 0.0055 σZ: 0.6027 
 

Table 4. Twofold registration process: estimation 
 
Sensor registration computation: Collinearity + Danish 
estimator (4th iteration) 
 

External Parameters 
(Unit: radians, metres) 

Axis: -1.451542 X: 8.456 σA : 0.0073 σX: 0.2143 
Tilt: 0.098474 Y: -2.377 σT: 0.0111 σY: 0.0981 
Swing: 0.013599 Z: 0.585 σS: 0.0025 σZ: 0.2956 
 

Table 5. Twofold registration process: computation 
 
Finally, a hybrid modeling process has been developed in order 
to complete and improve laser model. Regarding geometry, 
several structural lines related to mesh model (breaklines and 
final edges) have been corrected based on the co-registration 
(Figure 7). 
 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 7. Hybrid modeling process in San Pedro Church. 
 
The time effort required in both experimental results was 
irrelevant, only user interaction was required for providing an 
initial approximation of camera pose.   
 

Edge (laser model) 
 
Corrected edge (co-registration)  
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6. CONCLUSIONS AND FUTURE PERSPECTIVES 

The presented paper has investigated and developed the 
automatic co-registration of two sensors: terrestrial laser 
scanner and high-resolution digital camera, as well as the 
hybrid modeling approach derived from this fusion. A 
consistent and reliable full process pipeline has been developed 
and presented. It was demonstrated with different practical 
examples tested through our own software.  
 
With relation to the most relevant aspects of the proposed 
approach, we could remark on: 
 

• Automation in the matching of both images has been 
achieved. 

• No need for previous calibration. 
• A robust registration of both sensors is obtained using 

RANSAC and Danish estimator. 
• An alternative to improve and complete laser models 

is presented.  
 
As for the most critical aspects, this approach has the following 
limitations: 
 

• User interaction is required to provide a first 
approximation of the area of interest. 

• High resolution scans is advisable to obtain fine 
texture and thus good quality in matching process.  

 
We feel that we have attacked one of the most difficult 
problems in the laserscanning success. Nevertheless, several 
improvements could be considered in the next future. Focusing 
on geometry, the research could be extended to provide the 
improvement of complex geometries such as arcs and quadrics. 
Aiming on radiometry, also algorithms that allow handling the 
problem of occlusions, illumination properties and transition 
between junctions, could be developed. 
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ABSTRACT:  
 
LiDAR technology emits narrow beams of laser light that are able to exploit gaps in the forest canopy and detect sub-canopy 
surfaces. In this study, we explore the potential of airborne LiDAR to quantify understorey vegetation cover in a dense and 
structurally diverse conifer forest on Vancouver Island, British Columbia, Canada. The cover of understorey vegetation, defined 
below an arbitrary height threshold of 4 m, was recorded in the field both horizontally and vertically at 12 plots for comparison with 
LiDAR data. Results showed significant relationships between field and LiDAR-based estimates of understorey vegetation cover at 
both the plot (30 x 30 m area, r2 = 0.87) and sub-plot scale (15 x 15 m areas, n = 4 per plot, r2 = 0.68) (p < 0.05). In addition, the 
variability (coefficient of variation) of understorey vegetation cover estimated in the field and with LiDAR data was found to be 
significantly correlated (r2=0.88, p < 0.001). Overall, this work suggests that small-footprint LiDAR is sensitive to large changes in 
understorey vegetation cover which can benefit key forestry applications at the landscape scale such as examining stand regeneration 
success.  
 
 

1. INTRODUCTION 
 

Information about the forest understorey is critical for both 
ecological and forest management issues. Understorey 
vegetation provides food and habitat to a wide range of fauna 
(Fox & Fox 1984), whilst in multi-aged and mixed species 
stands, developing an understanding of regeneration success 
is important for ongoing stand management following a 
disturbance (Kozlowski 2002). Likewise the spatial 
distribution and structure of understorey vegetation (e.g. 
quantity, height, and cover) is critical to fire behaviour 
models which are difficult to parameterise over forested 
landscapes (Keane et al. 2001). For foresters, accurate and 
timely information on the understorey can also help in the 
assessment of nutrient retention and cycling (Yarie 1980), 
stand regeneration (Lormier et al. 1994), and species 
diversity (Gentry & Dobson 1987).  
 
Conventionally, the approach to collecting information on the 
understorey has involved a range of field-based techniques. 
These generally require detailed, spatially dense field 
measurements (< 1 ha) (McLaughlin 1978; Scheller & 
Mladenoff 2002) so that the high spatial variability often 
present in the understorey can be captured and the ecological 
processes which occur at fine scales can be understood. For 
example, the distribution and composition of understorey 
vegetation has been shown to vary at fine spatial scales due 
to microtopography (i.e. pits and mounds), gaps in the 
overstorey vegetation, disturbances such as harvesting and 
nutrient availability (Beatty 1984; Bengtson et al. 2006; 
Miller et al. 2002). As a result, field-based assessments of the 
understorey are likely to be an expensive, difficult and time 
consuming task.  
 
Light Detection And Ranging (LiDAR) however, has been 
recognised as a tool that might be suitable to quantify sub-
canopy vegetation structure over large geographical areas. 
Earlier studies, for example, have shown that LiDAR can 
characterise fuel bed roughness (Seielstad & Queen 2003), 
discriminate understorey discrete LiDAR returns from 
overstorey returns within a mixed conifer and deciduous two-

tiered forest (Riaño et al. 2003), and estimate the Lorey’s 
mean height of suppressed understorey trees in a boreal forest 
using regression models (Maltamo et al. 2005). Further, 
Mutlu et al. (2007) used the number of LiDAR hits within 0.5 
m vertical bins from 0 to 2 m (2.5 x 2.5 m areas) normalised 
by the total number of LiDAR hits, to improve the accuracy 
of a surface wildfire fuel classification, which also involved 
multispectral passive optical data.  
 
The focus of this work is to determine whether spatial 
estimates of understorey cover are possible within a conifer 
forest. To characterise the different types of understorey 
structure contained within a multi-use conifer forest, a 
number of sites (12 in total) were examined. The specific 
objectives were to: (1) assess whether understorey cover can 
be quantified within 30 x 30 m and 15 x 15 m areas using 
first return LiDAR data, and (2) determine whether the 
variability in understorey cover measured in the field was 
correlated to LiDAR estimates. 
 

2. MATERIALS AND METHODS 

 

2.1. Field site 

The study area is Clayoquot Sound on Vancouver Island, 
British Columbia (49o 0’ 35” N, 125o 37’ 21” W). The area is 
classified as a Coastal Western Hemlock (CWH) zone, based 
on the biogeoclimatic ecosystem classification (BEC) system 
(Meidinger & Pojar 1996). Although the Vancouver Island 
Range is adjacent to the study area, the topography is 
subdued and dominated by Pleistocene glacial deposits with 
an annual precipitation of 3306 mm  and mean daily 
minimum, average and maximum temperatures of 5.4, 9.1, 
and 12.8oC, respectively (Environment Canada 2006).  
 
Clayoquot Sound is a multi-use forested area and includes 
both recently harvested Crown land, as well as mature first 
and second growth forest in Pacific Rim National Park. 
Western hemlock (Tsuga heterophylla) is the dominant or 
codominant tree species throughout. Western Redcedar 
(Thuja plicata), Amabilis fir (Abies amabilis), Yellow-Cedar 
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(Chamaecyparis nootkatensis), Sitka Spruce (Picea 
sitchensis), Douglas-fir (Pseudotsuga menziesii var. 
mensiesii), and Red Alder (Alnus rubra) also occur within 
this forest region. Common understorey species include: 
Salal (Gaultheria shallon), Salmonberry (Rubus spectabilis), 
Thimbleberry (Rubus parviflorus), Red Huckleberry 
(Vaccinium parvifolium), Evergreen Huckleberry (Vaccinum 
ovatum), Blueberries (Vaccinium spp.), and Devil's club 
(Oplopanax horridus). Several of these understorey species 
are important economically (for the floral industry), provide 
food for local communities, and include culturally important 
medicinal plants (Clayoquot Sound Scientific Panel 1995). 
 
2.2 LiDAR characteristics 
 
Airborne LiDAR data were acquired in July 2005 by Terra 
Remote Sensing (Sidney, British Columbia, Canada) using a 
TRSI Mark II discrete return sensor attached to a fixed wing 
platform. The sensor was configured to record first and last 
returns with a pulse repetition frequency of 50 kHz, platform 
altitude of 800 m, maximum off-nadir view angle of 23 
degrees, wavelength of 1064 nm, and a fixed beam 
divergence angle of 0.5 mrad. The average pulse spacing 
equalled one laser pulse return per 1.5 m2. Ground and non-
ground returns were classified using TerraScan (Terrasolid, 
Finland).  
 

2.2. Field estimates of understorey cover 

 
Understorey cover was measured at 12 sites within a series of 
2.5 x 2.5 m quadrats (n = 144) which collectively covered an 
area of 30 x 30 m. At each of the quadrat locations, 
understorey cover was visually estimated in 4 height 
intervals: 0.5 to 1, 1 to 2, 2 to 3, and 3 to 4 m above ground 
surface. A height pole was used as an aid and cover estimates 
were taken horizontally within 20% intervals.  
 
A single integrated estimate of vertically projected 
understorey cover (UC) for each 2.5 x 2.5 m quadrat was 
then calculated using Equation 1. Given that:  
  

sGFtotaleUC −−=1  

 
(1) 

 
 

where: G refers to the G-function, the projection of leaf 
area into a given view direction (Ross 1981),  

s  is the mean distance light will travel through 
understorey material (corresponding to the vertical 
height intervals used to estimate understorey 
cover), and  
Ftotal  is the foliage area index for each understorey 
sample location.  

 
The calculation of vertically projected cover assumes 
homogenous volume of vegetation material and will depend 
on the leaf angles. Given the understorey is composed of 
mixed species and variable leaf angle distributions, a value 
between the two more extreme leaf angle distributions 
(planophile and erectophile) (Ross 1981; Ross & Marshak 
1989) of 0.5 was used, which corresponds to a random 
foliage angle distribution. Since the field measured 
understorey cover is related to the understorey gap 
probability (Pgap) by the equation: 
 
 

iigap UCP −=1,  

 
(2) 

 
where: i = to the sub-quadrat cover measurement obtained at 

individual sample locations using the modified 
height pole (e.g. i = 1 for understorey cover 
estimated between 0.5 and 1 m above the ground).  

 
 
We can also express Eq. 1 in terms of foliage area density for 
each understorey measurement as follows: 
 

sGPF igapi /)ln( ,−=
 

 

(3) 
 

 
and subsequently, derive the total foliage area index at each 
quadrat area by: 
 
 

∑
=

=
n

i
itotal FsF

1  

 
(4) 

 
 
Subsequently, understorey cover values were converted into 
mean estimates at the plot scale (30 x 30 m area) and sub plot 
scale (15 x 15 m areas) for comparison with LiDAR data.  

2.3. Understorey vegetation cover comparison  
 

Using coordinates recorded from a differential Geographic 
Position System (dGPS) (horizontal positional errors were 
approximately 1 to 5 m), LiDAR first return data were 
extracted for each plot. Returns > 0.5 and ≤  4.0 m above 
ground surface were considered to be from understorey 
vegetation. Understorey cover was calculated at both the plot 
scale (30 x 30 m area) and sub plot scale (15 x 15 m areas), 
as the number of understorey returns divided by the total 
number of returns recorded ≤  4.0 m. These values were then 
compared to field-based estimates. Additionally, the 
variability of understorey cover recorded at each site was 
computed in both datasets by computing the coefficient of 
variation (CoV) of the 4 sub-plot cover values derived at each 
site (15 x 15 m area, n = 4). 
 

3. RESULTS 

 
Strong positive relationships are shown between field and 
LiDAR-based estimates of understorey cover (p < 0.001) 
(Figure 1). The estimates of understorey cover however, were 
shown to be better correlated at the plot scale compared to 
the sub plot scale, which showed a weaker relationship (p < 
0.05). Note one plot recorded no hits below 0.5 m and was 
excluded from analysis.      
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Figure 1. Relationship between field and LiDAR estimates 
of understorey cover: (a) plot scale (30 x 30 m areas) and (b) 
sub-plot scale (15 x 15 m areas). Note: outliers with an 
insufficient number of first returns were removed (n < 3). 
 
 
Analysis of the variability in field and LiDAR estimates of 
understorey cover, within individual plots, was also shown to 
be positively correlated (p < 0.001) (Figure 2). This suggests 
that LiDAR is sensitive to changes in understorey cover 
within 15 x 15 m areas.  
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Figure 2. Field and LiDAR estimates of understorey cover 
variability within plots. Note: the CoV for each plot was 
calculated using four 15 x 15 m estimates of understorey 
cover per plot. Outliers with an insufficient number of first 
returns were removed (n < 3). 

4. DISCUSSION 

 
The results presented in this paper provide an insight into the 
capacity of airborne LiDAR to estimate both plot level 
understorey cover as well as cover at smaller spatial scales. 
Importantly, this work has shown a strong correlation 
between field and LiDAR estimates of understorey cover at 
the plot scale, with plots covering a wide range of cover 
values from 0 to 100% cover. When each plot was then 
subdivided into 4, the relationship weakened but remained 
significant. This suggests the relationships at the sub plot 
level might have been influenced by the number of LiDAR 
returns and the spatial registration of field and LiDAR data.  
 
A limitation of this approach is that occlusion through the 
overstorey and understorey vegetation layers will reduce the 
number of first returns detected from ground and understorey 
surfaces. As a consequence, in areas with a dense canopy a 
larger mapping unit will be needed to capture a sufficient 
number of returns to derive understorey cover. At one of the 
12 plots, for example, understorey cover could not be 
computed within a 30 x 30 m area as no LiDAR first returns 
were detected below 0.5 m (above ground surface). 
 
Another important result is the relationship between LiDAR 
and field predicted understorey cover variation. This 
relationship is surprisingly strong, providing some 
confidence that regardless of the overall stand condition, the 
amount of variation in the LiDAR non-ground hits below 4 m 
is related to understorey cover variation. Additional work is 
needed however, to fully explore this relationship (e.g. 
sensitivity to scale). 
 
Further, it should be mentioned that the spatial position of the 
ground plots becomes increasing important when computing 
sub plot cover statistics at smaller spatial scales. Since the 
dGPS positional data for this study was recorded under dense 
forest canopies, which is known to affect the spatial accuracy 
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(Næsset & Jonmeister 2002), our analysis was restricted to 
scales that exceeded the horizontal positional errors. The 
measurement of understorey vegetation characteristics within 
5 x 5 m however, may well be the smallest feasible unit to 
compare with LiDAR observations (assuming similar LiDAR 
pulse densities of around 1 pulse per m2). 

5. CONCLUSION 

 
We encourage more research into LiDAR’s ability to map the 
understorey and believe that LiDAR can provide a suitable 
tool for mapping large differences in understorey cover (e.g. 
~20% intervals), and its spatial pattern, at the landscape 
scale. Stronger relationships were found at the coarser spatial 
scale (30 x 30 m), possibly in response to a larger number of 
understorey hits being available to characterise the 
understorey.  
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ABSTRACT: 
The paper presents a new segmentation algorithm, to be applied to terrestrial lasers scans of urban environments. The algorithm 
works directly in a range image. This is the fundamental laser scan data structure as  a laser recording can be regarded as a 2-
dimensional grid of range measurements. The horizontal and vertical axes of the grid denote the horizontal and vertical angles at 
which the scanner emits the laser beam, receives the reflections, and measures the distance (the range)  between the instrument and 
the reflecting surface at those angles.  
 
The presented algorithm estimates for each measurement (pixel) in the range image three parameters of the 3D plane that contains 
the pixel: two angles (horizontal and vertical) and the distance between the plane and the origin. The estimates are based on the scan 
angles (the horizontal and vertical angles at which the laser beam was emitted from the scanner)  and the image gradients, i.e. the 
rate of change in the distance that is observed between adjacent measurements.  Since the three estimated parameters characterize a 
plane in 3D space, regions of adjacent pixels with similar parameter values are likely to be part of the same plane. Such pixels are 
grouped  into segments by a region-growing image segmentation step, which takes the three parameters into account simultaneously.  
 
The overall algorithm uses two complementary strategies to deal with the measurement noise affecting the gradients, during the 
gradient calculation and the region growing steps respectively. 
 
 
 
 
 
 

1. INTRODUCTION 

Range image segmentation has a long tradition in the 
computer vision research community. For example, Hoover 
et al. (1996) already set up a framework for experimental 
comparison of range image segmentation algorithm results, 
flowed up by Xiang et al (2000). At the time, range images 
were produced by photogrammetric interpretation of stereo 
imagery, by structured light techniques, or by early laser 
equipment, such as the Perceptron laser ranger. Commonly, 
those data were recorded in well-controlled conditions. 
Nevertheless, they tended to be noisy and have low point 
densities. They described relatively simple close-range 
scenes, to be used in industrial applications and in robot 
vision experiments.  
 
Recent advancements in terrestrial laser scanning cause a 
renewed interest in segmentation of range data. Terrestrial 
laser scanners are being used in a multitude of applications, 
for example in 3D model reconstruction of complex outdoor 
scenes in urban environments. Nowadays scanners are able to 
record datasets with millions of points, and with recording 
speeds of several hundreds of thousands of points per second. 
The distance range has been increased to approx. 100 m for 

phase scanners, and to several kilometres for time-of-flight 
scanners, with spatial accuracies in the cm-range (Staiger, 
2007). These changes pose new requirements to 
segmentation algorithms. 
 
The common perception of terrestrial laser scanning is that it 
results in a 3-dimensional point cloud, i.e. a collection of 
(x,y,z) coordinates, corresponding to locations in the scene 
were the laser beam was reflected by a surface. Additionally, 
most laser scanners record the intensity of the reflected beam 
as it is recorded by the instrument. Some types of laser 
equipment record a colour image of the scene, more or less at 
the same time and from approximately the same position as 
the laser scan. This image can be used to “colour” the point 
cloud, i.e. to assign (R,G,B) values to the (x,y,z)  points of the 
laser scan. Many authors have reported on point cloud 
segmentation algorithms, amongst whom Rabbani (2006), 
who starts off with a Hough transform using (θ,φ,ρ) 
parameterization (see section 2). He also gives an overview 
of previous methods, stating that these either resample the 
data in a 2D or 3D grid, or build a topology on the point 
cloud using triangulation. 
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Figure 1. Upper: range image, lower: intensity image. The data were recorded by a FARO 880 phase scanner. Image size is approx. 
8100 x 2200 pixels, covering 360o horizontally and 100o vertically. This corresponds to 1/5th of the scanner’s maximum resolution. 

 

As an alternative to the 3D point-cloud notion, and better in 
accordance with scanner operation, a laser recording can be 
regarded as a 2-dimensional grid of range measurements. The 
horizontal and vertical axes of the grid denote the horizontal 
and vertical angles (let these be called α and β respectively) 
at which the scanner emits the laser beam, receives the 
reflections, and measures the distance (the range) R  between 
the instrument and the reflecting surface at those angles. The 
angles α  and β are sampled at regular intervals Δα and Δβ 
(the angular resolutions). Therefore, laser scanning results in 
a 2D (often termed “2.5D”) range image R [iα,iβ], with 
α=iα Δα and β=iβ Δβ. (Figure 1).  
 
Figure 1 also shows the intensity image, which is recorded 
simultaneously with the range image. (The remainder of this 
paper only concerns range measurements and does not 
consider intensity or (R,G,B)-information.) 
 
Pulli (1993) already described range image segmentation 
with some similarity to the method presented here, working 
with normal vectors and 3-feature image segmentation. 
 
 

2. PLANES IN RANGE IMAGES 

y

(x,y)

ρ

θ
α

R l

 

Figure 2. A line in 2D containing point (x,y), and  
its normal vertor  

 
We will first establish a relation between the equation of a 
plane in 3D Cartesian coordinates, and the representation of 
that plane in a range image with 2d spherical image 
coordinates. The situation resembles the equation of a line l 
in 2D passing through a point (x, y), as it is often used in 
Hough transforms:  
 

   ρ = x cos θ  + y sin θ,                         (1) 
 
where θ is the direction of the normal vector of the line and 
ρ is the distance between the line and the origin. With 
varying θ (and therefore ρ) this yields all lines passing 
though a given point (x, y) (Figure 2). The point (x,y) may 
have been measured by a laser scanner at scanning angle 
α and range (distance from the scanner) R. 
 
In analogy, Figure 3 shows that a parametric form of a plane 
in 3D, containing a point (x,y,z) is given by  
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   φz+φθy+φθx=ρ sin  cos sin cos  cos .           (2) 
 
We will use this equation to establish the distance ρ between 
a plane and the origin of the Cartesian coordiate syste, after 
having estimated the two angles θ and φ, denoting the 
orientation of the plane from the range image gradients. This 
will be done for every pixel in the range image. The resulting 
three “image features” will then be submitted to a three-band 
image segmentation algorithm. 

x

y

z

(x,y,z)

ρ’ = x cos θ + y sin θ

θ
φ

ρ = ρ’ cos φ + z sin φ
=  x cos θ cos φ + y sin θ cos φ + z sin φ

 
Figure 3. A plane in 3D containing point (x,y,z) and the 

normal vector to the plane. 

Assuming that a certain pixel belongs to a plane P we want 
to compute the orientation angles θ and φ of the normal 
vector of P, θ  being the angle between the x-axis and the 
projection of the normal vector in the xy-plane, and φ being 
the angle between the normal vector and the xy-plane. We 
will do this by computing the difference angles Δθ  and Δφ 
between the normal vector and the scan angle, which is given 
by the coordinates α and β of the range image. This is 
illustrated in Figure 6, which shows the following 
relationship between scan angle and normal vector 
orientation: 
  

  θ = α − Δθ                                              
  φ = β − Δφ .                                      (3)  

 
 

3. RANGE IMAGE GRADIENTS 

The computation of the difference angles Δθ and Δφ between 
the normal vector of a plane and the scan angle is based on 
the gradients of the range image. The horizontal gradient is 
the change in the image (range) value that is observed when 
going one pixel to the right; the vertical gradient is the 
observed change when going one pixel up. Since the image 
coordinates are related to the scan angles α and β, the 
gradients can be considered estimates of the partial 
differences of the range with respect to the horizontal and 
vertical components of the scan angle, ΔR/Δα and ΔR/Δβ, 
respectively, with Δα and Δβ denoting the angular resolution 
of the scanner in the`horizontal and vertical directions.  
 
To obtain the corresponding spatial resolution (the 
perpendicular distance between to neighbouring points), the 

angular resolution has to be multiplied by the range R [iα,iβ] 
itself. Finally, the arctangents of ΔR/(R×Δα) and 
ΔR/(R×Δβ)  yield the required difference angles. The 
procedure is illustrated for the vertical angle φ  in Figure 4. 
 

β

Δφ

R

ΔR = gradient

Δφ
φ = β − Δφ

δ = R Δβ

Δφ = atan (ΔR/ δ)

 

Figure 4. Computing difference angles from  
range image gradients 

Unfortunately, laser scanner measurements are not entirely 
accurate. In a range image R[α,β], both the range 
measurement R , as well as the scan angles α and β , contain   
noise, which may severely affect the range image gradients 
and propagate into the derived estimates of difference angles 
and plane orientations. 
 
Gradients are computed using convolution filtering with so-
called gradient kernels. Examples are Sobel filters (Mather 
1999). The noise problem is addressed firstly by using larger 
filtering kernels, having an smoothing effect, for the gradient 
computations. In the current example (see Figure 1) we used 
5 x 5 kernels, 
 

-1 -2 0 2 1 
-2 -3 0 3 2 
-3 -4 0 4 3 
-2 -2 0 3 2 
-1 -1 0 2 1 

and 
1 2 3 2 1 
2 3 4 3 2 
0 0 0 0 0 
-2 -3 -4 -3 -2 
-1 -2 -3 -2 -1 

 
for horizontal and vertical gradients respectively. 
 
A second countermeasure against laser measurement noise is 
applied during the segmentation step; see Section 4. 
 
The last step in the feature extraction phase is the 
determination of the third parameter ρ, the distance between 
the plane containing the pixel at image coordinate [iα,iβ] and 
the origin, using the plane equation  
  

  φz+φθy+φθx=ρ sin  cos sin cos  cos               (4) 
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This equation contains for each range image pixel the 3D 
coordinate (x,y,z) of the point where the laser beam was 
reflected. It can be computed from the range image as: 
 

x = R[iα,iβ] cos(iα Δα) cos(iβ Δβ) 
 y = R[iα,iβ]  sin(iα Δα) cos(iβ Δβ) 

   z = sin(iβ Δβ) .                                               (5) 
 
It is very important to note that a large plane, such as the 
façade of the building at the left in Figure 1, contains a large 
variety in range measurements, as the different colors 
indicate. However, after the above-described 
transformations, even such large plane should become rather 
homogeneous in the plane parameters θ, φ and ρ. This can be 
seen in Figure 6, which displays colour coded images of 
these three parameters.  

 

     
 

 

Figure 5. Images of plane parameters θ, φ and ρ.  
 
 

 

z

x

y

α

β

Δφ

Δθφ
θ

 
Figure 6. Relationship between scan angle and normal vector orientation 

 
 
 

4. IMAGE SEGMENTATION 

The purpose of image segmentation is to subdivide an image 
into adjacent groups of pixels, called segments, which 
(hopefully) coincide with meaningful objects in the scene. 
Image segmentation algorithms can be roughly subdivided into 
region based methods, where pixels within each segment obey 
some homogeneity criterion, and edge based methods, looking 
explicitly for boundaries between segments. Within the region 
based methods popular approaches are region growing (starting 
from seed pixels, pixels are added to regions as long as 
homogeneity is sufficiently maintained) and region merging (of 
adjacent regions that are similar enough). 
 
The image segmentation algorithm used in this study is a region 
merging method (Gorte, 1999). It was designed for multi-
spectral image segmentation, taking three image bands into 

account simultaneously. It is a quadtree-based method that 
works bottom-up: merging pixels (quadtree leaves) into 
segments, and adjacent segments into larger segments while 
maintaining for each segment a mean feature vector, and as 
long as two criteria are satisfied: 

a) the Euclidian distance between feature vectors of 
adjacent segments should not exceed a threshold 

b) the elements of the variance-covariance matrix within 
a segment after merging should not exceed a 
threshold. 

It has been previously shown that as the second threshold value 
the squared of the first one can be used, so only one value has 
to be specified. However, to prevent ‘order dependency’, the 
algorithm performs best when applied iteratively with a number 
of threshold values in a steadily increasing sequence (each 
iteration being recursive as previously stated). Therefore, the 
algorithm needs, in addition to the final threshold value, the 
number of iterations to be performed (usually 3 or 4). 
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Instead of using three bands of a multi-spectral image, we will 
now submit the three plane parameters images of Figure 5 to the 
segmentation algorithm. It will create segments of adjacent 
pixels that have similar values for θ, φ and ρ, and therefore are 
likely to belong to the same plane in the scene – the word 
‘similar’ indicating that the values may still be contaminated by 
noise. The amount of noise expected within a single plane  
determines the threshold value. 
 
Figure 7 shows the result of segmentation. Segments are 
displayed in arbitrary colours, just to distinguish them from 
each other. It should be noted, however, that each segment has 
its “mean feature vector”, containing average values for the 
plane parameters θ, φ and ρ. Also the size of each segments (the 
number of pixels) is known, and the pixels within very small 
segments can be considered not part of any plane, and can 
easily be removed from the result in a post-processing step, or 
assigned to a larger neighbour if required (Figure 8). 

 
 

5. CONCLUSION AND OUTLOOK 

The paper presents a new segmentation algorithm that 
subdivides a range image created by terrestrial laser scanning 
into segments that correspond to planar surfaces. Because it 
works in the 2.5D image domain, rather than in the 3D point 
cloud domain, the algorithm is quite straightforward and can be 
implement very efficiently in a suitable image processing 
environment: it only requires standard processing steps: 
convolution,  image calculation and multi-spectral 
segmentation. 
 
Working in the original range image data, as delivered by the 
scanner, the algorithm cannot be applied to point clouds that are 
created by co-registering multiple scans. A future research topic 
may be, however, the usefulness of the segmentation method 
for extracting segments to be used in a feature (or object) based 
registration process. 

A major obstacle in any segmentation effort is posed by 
measurement noise. It is clear that the effect of noise can be 
much better quantified, for example by regarding the 
specifications of the manufacturer (distinguishing between 
noise in angle and range measurements) and by taking the 
dependence of noise on the range into account. 
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Figure 7. Segmentation result. Oversegmentation in the horizontal plane occurs because the angle θ  is not well-defined 

 
Figure 8. Segmentation result after post-processing to remove small segments 
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ABSTRACT:

Several approaches for automatic registration of terrestrial LIDAR data exist. However, they normally can not be compared to each
other because of a lack of reference data. This is especially true for applications in urban areas. One dataset available for this purpose is
a set of eight LIDAR scans from Agia Sanmarina, a Byzantine church in Greece, which has been made available by the ISPRS working
group V/3 on terrestrial laser scanning.
We have tested our plane based approach for automatic registration on this particular dataset: The point clouds are first split into a
regular raster, then for each raster cell, the dominant plane is robustly estimated and denoted as surface element. Coarse registration
is carried out via grouping the surface elements to large planes and a generate-and-test strategy to find transformation parameters that
maximize the inlier count. Pairwise fine registration is accomplished using a variant of the ICP (iterative closest point) algorithm that
is based on matching surface elements instead of 3D points. In addition to this, the theoretical framework for a simultaneous fine
registration of multiple datasets is presented in this paper.

1 INTRODUCTION

The registration of terrestrial LIDAR data is a topic that is cur-
rently under discussion within the laser scanning community.
Several approaches based on different assumptions have been
proposed recently, but there is not yet an overall conclusion which
method could be regarded as the best one. Recently published
work includes, but is not limited to, (Akca, 2003, Dold and Bren-
ner, 2006, Ripperda and Brenner, 2005, Rabbani and van den
Heuvel, 2005, Wendt, 2004) and other publications cited later.

In general, registration of point clouds from LIDAR systems can
be divided in two steps. The first step is the coarse registration
where no information about the particular setup of the scan po-
sitions is known. The task here is to determine a set of initial
transformation parameters that bring (typically) two datasets into
a common geometric reference frame.

Then the fine registration follows as the second step. Here,
it can already be assumed that the datasets are aligned sufficiently,
i. e. within the convergence radius of the method. Fine regis-
tration refines the initial transformation parameters into an op-
timal parameter set, usually by minimizing the squared sum of
the residuals of some error term.

Although a number of approaches exist for registration, this is
not true for datasets as each group works on their own data. This
is probably caused by a lack of suitable standard datasets. For
the specific case of LIDAR data from urban areas, there is cur-
rently only a single dataset available from ISPRS Commission V.
Despite the publications from the originating group (Bae, 2006),
there have not yet been other known attempts to process the data.

In this paper, we will apply the plane based registration strategy
from (von Hansen, 2006) to the Agia Sanmarina LIDAR dataset
in order to determine its suitability. This method only contains the
coarse registration step. We have already extended the approach
by a fine registration based on the surface elements (von Hansen,
2007b) for the case of two datasets. Since the Agia Sanmarina
data consists of eight datasets in a ring shaped topology, pair-
wise fine registration inevitably leads to contradictions. There-
fore, we have extended the pairwise fine registration to a bundle
adjustment style registration for multiple datasets.

This paper is organized as follows: The generation of surface el-
ements, the coarse registration method and the pairwise fine reg-
istration will be briefly summarized in section 2. In section 3, the
bundle adjustment based on surface elements will be formulated.
Section 4 will shortly introduce the Agia Sanmarina dataset and
show the results obtained on it. The paper will conclude with
some remarks regarding both the dataset and the tested methods.

2 PREVIOUS WORK

This section will briefly summarize the work this paper is based
on. The original idea for the replacement of the point cloud by
surface elements and the coarse registration based thereupon has
been taken from (von Hansen, 2006). The pairwise fine registra-
tion is taken from (von Hansen, 2007b).

2.1 Surface elements

The raw data acquired by a LIDAR system is a huge set of (some-
times millions of) 3D points. The disadvantage of this representa-
tion is that the points are not related to each other. Sometimes, the
neighborhood of points is known from the scan geometry so that
region growing can be used to extract object surfaces from the
data (Dold and Brenner, 2004). In the generic case, the neigh-
borhood information is not available so that the data must be pro-
cessed as true point data.

One possibility to bring structure into the data are surface ele-
ments, i. e. local plane patches that approximate the object sur-
faces. They are generated by a two step process. First, the point
cloud is divided into a regular 3D raster of a given raster size. The
raster size should be chosen such that an object surface is spread
among several of the 3D cells, leading to an over-segmentation of
the scene. In the second step, a single plane is robustly estimated
from all points of a raster cell via a RANSAC scheme. This plane
called the surface element and shall be a replacement for all the
points in the cell. This way, the millions of raw 3D points are
replaced by – depending on the raster size – a few hundred or
thousand small planes.
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2.2 Coarse registration

For the coarse registration, the surface elements are first grouped
to larger planes based on neighborhood in the 3D raster and co-
planarity. This way, each planar object surface is represented by
one plane.

If plane based coarse registration would be tackled in a conven-
tional way, the algorithms would be extremely slow due to a com-
binatorial explosion as three matching planes must be found in
order to compute all six parameters of a rigid transform with-
out scale (Dold and Brenner, 2004). The barycenter of a pair of
matching planes can be used to compute the translation so that
only two matches are required for the unknown rotation (He et
al., 2005). (von Hansen, 2006) goes even further by assuming
parallel zenith directions of two scan positions, thereby allow-
ing to recover the transformation parameters from a single pair
of matching planes only. A pre-rotation carried out separately
for each dataset as shown in (von Hansen, 2007a) makes this ap-
proach suitable for generic sensor setups that include arbitrary
rotations.

In this particular case, a complete search can be used to find the
correct parameters: For each possible match, the transformation
parameters are computed and a high number of inliers, planes
matching for a given transformation, determines the correct trans-
formation. This technique is fast for a small number of planes –
up to a few hundred on modern hardware – but it should be noted
that more elaborate search techniques have been proposed as well
(He et al., 2005, Liu and Hirzinger, 2005).

2.3 Pairwise fine registration

The fine registration based on surface elements uses a variant of
the well known ICP (iterative closest point) algorithm (Besl and
McKay, 1992). This consists of two alternating steps that are
repeated until convergence.

The first step transforms the data using initial transformation pa-
rameters – those returned by the coarse registration for the first
run and the updated parameters for all consecutive runs. Then,
matching pairs of surface elements are found on a nearest neigh-
bor basis.

In the second step, the transformation parameters are updated by
a least squares adjustment minimizing the residuals between the
matching surface elements. For the mathematical model for the
pairwise registration one dataset is kept fixed while the other
is transformed. The bundle adjustment presented in section 3
extends this approach to a more general formulation.

Convergence can be determined by observing the pair matches.
If they remain unchanged, then a stable solution has been found.
However, sometimes the iteration procedure is cycling through
a number of solutions because each set of matches leads to a
slightly different parameter set that in turn leads to a set of slightly
different matches. In this case, some attenuation must be intro-
duced. This had be done by changing the matching of surface el-
ements in the first step. Instead of starting from scratch for each
iteration, only those matches whose distance is above a certain
threshold are reassigned to new partners.

3 BUNDLE ADJUSTMENT

Introduction This is an extension of the pairwise fine registra-
tion method shown in (von Hansen, 2007b). Opposed to the pre-
vious formulation where one dataset was kept fixed, the method

Figure 1. Agia Sanmarina and the Cyrax laser scanner. (By cour-
tesy of ISPRS WG V/3)

as presented here can deal with multiple datasets in a free net-
work. On the other hand, no ICP iterations are used, but a fixed
set of input matches taken from the output of the pairwise regis-
tration.

This method will be called bundle adjustment here in reference
to the idea of photogrammetric bundle adjustment even though
LIDAR point clouds do not represent bundles in the strict sense.

Input data As input, the bundle adjustment relies on the output
of a pairwise registration, requiring both the initial transformation
parameters and the list of matching surface elements.

The first step is to determine initial transformation parameters for
all datasets in a common reference frame. One dataset is used as
starting point and, based on known relative registrations between
datasets, all other datasets are subsequently added. Each of the
n datasets is now given as a tuple

Si = (Ri, ti,Pi), i = 1 . . . n (1)

where Ri is the rotation matrix, ti the translation vector and
Pi the set of surface elements. A surface element

p ∈ P = (n,x) (2)

is given by normal vector n and barycenter x that uniquely define
a plane using the Hesse normal form

n>x− d = 0 (3)

In addition there exists a set of matching surface elements

M = {(pi,pj),pi ∈ Pi,pj ∈ Pj} (4)

Vector notation for differential rotations For simplification,
the datasets are transformed via the initial transformation param-
eters prior to the least squares adjustment. We will assume in the
remainder, that these pre-transformations have been carried out
implicitly. Therefore, one can assume the identity matrix as ini-
tial rotation (R0 = I) and the null vector as initial translation
(t0 = 0). The matrix for the differential rotation around angles
α, β and γ is defined as

R =

(
1 −γ β
γ 1 −α
−β α 1

)
, |α|, |β|, |γ| � 1 (5)
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One can easily verify that

Rx = r× x + x, r := (α, β, γ)> (6)

holds. This provides an easier way to write rotations for small
angles using only vectors. Also, similar to t, the initial rotation r
is a null vector (r0 = 0).

Matching constraints In the remainder, indices 1 and 2 will
be used to denote two input datasets. Each match mi ∈ M
of two surface elements will lead to three constraints. As all
datasets are treated similarly, this easily extends to any number
of input datasets. Each surface element (n,x) is transformed via
the (unknown) parameters r, t to its ideal position (n′,x′):

n′ := r× n + n, x′ := r× x + x + t (7)

For an ideal solution a pair of transformed surface elements must
be coplanar

n′>
1 n′

2 − 1 = 0 (8)
n′>

1 x′2 = d′1 = n′>
1 x′1 ⇔ n′>

1 (x′2 − x′1) = 0 (9)

n′>
2 x′1 = d′2 = n′>

2 x′2 ⇔ n′>
2 (x′2 − x′1) = 0 (10)

i. e. the normal vectors are parallel (Eq. 8) and each barycenter
lies on the corresponding plane (Eqs. 9/10). Using Eq. 7, Eqs. 8
to 10 transform to the conditions

C1 = r>1 r2 · n>
1 n2 − r>1 n2 · n>

1 r2 + [r1,n1,n2] +

[r2,n2,n1] + n>
1 n2 − 1 = 0 (11)

C2 = r>1 r2 · n>
1 x2 − r>1 x2 · n>

1 r2 + [r1,n1,x2] +

[r1,n1, t2]− r>1 r1 · n>
1 x1 + r>1 x1 · n>

1 r1 +

[r1, t1,n1] + [r2,x2,n1] + n>
1 x2 + n>

1 t2 −
n>

1 x1 − n>
1 t1 = 0 (12)

C3 = r>2 r2 · n>
2 x2 − r>2 x2 · n>

2 r2 + [r2,n2, t2]−
r>2 r1 · n>

2 x1 + r>2 x1 · n>
2 r1 + [r2,x1,n2] +

[r2, t1,n2] + n>
2 x2 + n>

2 t2 + [r1,n2,x1]−
n>

2 x1 − n>
2 t1 = 0 (13)

where [a,b, c] denotes the triple product (a × b)>c. Note that
most terms cancel out because ri = ti = 0. This longer form of
the constraints is only needed for proper linearization of the least
squares adjustment.

Constraints and derivatives Eqs. 11 to 13 are an implicit rep-
resentation of the conditions and can be used for least squares ad-
justment using the Gauss-Helmert model (McGlone et al., 2004).
For this model, we require the equations of the constraints and the
derivatives with respect to parameters and measurements. The
constraints are directly available by removing all terms contain-
ing ri or ti because they have the null vector as initial values:

C1 = n>
2 n1 − 1 = 0 (14)

C2 = n>
1 (x2 − x1) = 0 (15)

C3 = n>
2 (x2 − x1) = 0 (16)

Note that the constraints are similar to Eqs. 8–10, which is obvi-
ous as the initial values assume that both datasets already are at
their optimal position. The derivatives are

dC1 = (n1 × n2)
>dr1 + (n2 × n1)

>dr2

+ n>
2 dn1 + n>

1 dn2 (17)
dC2 = (n1 × x2)

>dr1 − n>
1 dt1

Position #elements #planes
East 1250 50
Northeast 1917 79
North 1361 56
Northwest 4161 112
West 2339 75
Southwest 2547 82
South 1529 63
Southeast 2729 72

Table 1. Number of surface elements and large planes for each
dataset.

+ (x2 × n1)
>dr2 + n>

1 dt2

+ (x2 − x1)
>dn1 − n>

1 dx1 + n>
1 dx2 (18)

dC3 = (n2 × x1)
>dr1 − n>

2 dt1

+ (x1 × n2)
>dr2 + n>

2 dt2

+ (x2 − x1)
>dn2 − n>

2 dx1 + n>
2 dx2 (19)

Least squares adjustment Eqs. 14 to 19 can be used in a
Gauss-Helmert model to solve for all unknown parameters ri

and ti. The measurements are the plane parameters nij and xij

of the surface elements.

It should be noted that the equation system defined the way shown
here will be singular with a rank defect of 6. This is due to an
overall rigid transformation (rotation, translation) that could be
performed without changing the constraints. For this reason, the
bundle adjustment as shown here is a free adjustment. In order to
solve the equation system, one can compute the pseudo inverse
using the singular value decomposition and the explicit knowl-
edge of the rank defect.

4 EXPERIMENTS

4.1 Dataset

The purpose of this work is to test the surface element based
registration approach on a standard dataset containing buildings.
We have chosen the Agia Sanmarina data which is published by
ISPRS working group V/3 on terrestrial laser scanning (ISPRS
WG V/3, 2004). Agia Sanmarina is a Byzantine church near
Kalamata in Greece and is approx. 10× 20× 15m3 in size. The
scanner used was a Cyrax Cyra 2500. Both the church and the
laser scanner are shown in Fig. 1.

There are eight datasets positioned around the church in
45◦ steps. Each dataset contains between 500 and 800 thou-
sand 3D points. The opening angle of the scanner is rather small,
so that the church fills most of the field of view. The object itself
has many small and often highly structured surfaces which make
it rather difficult for a plane based approach. Furthermore, it is
difficult to find sufficient overlapping areas because the scanner
has been positioned directly in front of one of the facades half of
the time.

4.2 Generation of surface elements

The generation of the surface elements is straightforward and
quite fast because the number of points is low compared to other
laser scanners. Difficulties arose with the highly structured fa-
cades of the church because they are composed from many indi-
vidual but small planes. The raster size of the 3D grid therefore
had to be chosen rather small in order to get enough surface ele-
ments per object plane. On the other hand, the low point density
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Figure 2. Coarse registration result for Northeast (green) and
North (purple) positions.

Figure 3. Fine registration result for Northeast (green) and North
(purple) positions.

on the church – the nominal sampling interval is given as 1 cm
at 10 m distance – did not allow too small surface elements. The
best compromise was a raster size of 0.5 m. The number of gener-
ated surface elements ranges roughly from 1200 to 4200 depend-
ing on scene complexity (see Tab. 1). Examples of the surface
elements can be seen in Fig. 2 as the little square structures.

4.3 Coarse registration

The first step is the generation of large planes from the surface
elements. Tab. 1 lists their number which ranges from 50 to 112.
Too small planes below five surface elements have been dropped
in order to eliminate noise. The coarse registration required care-
ful choice of the algorithm’s thresholds so that all eight neighbor-
ing positions could be processed successfully.

Basically it can be reported that the plane based automatic coarse
registration works for the Agia Sanmarina dataset. The main rea-
son for the success is that two neighboring positions contain a
common facade completely so that there is a chance for the algo-
rithm to generate correct transformation parameters. Difficulties
arose because correct parameters are only accepted if they are
supported by a number of other planes matches and besides the
common facade, almost no other features overlap.

Another possible source for errors is the tilted sensor as the coarse
registration algorithm assumes parallel zenith directions. Even
though this influence is visible in the coarse registration result
(see Fig. 2) it did not prevent the extraction of a valid solution.

α/◦ β/◦ γ/◦ x/m y/m z/m
Northeast -6.4924 -1.1389 42.9209 -2.2892 15.6731 -0.3365
Southeast 3.7317 -1.1302 -28.8213 0.6569 -12.2696 0.1418
South 8.1701 -4.2542 -67.5171 -13.4374 -21.9461 -1.7592
Southwest 1.4909 -10.1123 -114.2456 -32.1951 -23.1324 -3.0601
West -0.2914 -5.3232 -166.7708 -43.9244 -6.4330 -4.0994
Northwest -1.7984 -9.5814 155.9213 -49.6421 9.6286 -5.2051
North 0.0711 -13.0660 91.4302 -20.8192 18.4335 -1.8945

Table 2. Resulting transformation parameters after bundle adjust-
ment. They have been transformed such that the parameters for
the East position are the identity transform (r = t = 0).

∆α/◦ ∆β/◦ ∆γ/◦ ∆x/m ∆y/m ∆z/m
Northeast 0.24 -0.17 0.13 0.09 0.06 0.06
Southeast -0.72 -0.55 -0.19 -0.10 -0.09 0.23
South -0.30 -0.86 -0.46 -0.25 -0.14 0.12
Southwest -0.31 -0.32 -0.37 -0.23 0.00 -0.06
West -0.08 -0.36 -0.21 -0.14 0.04 -0.20
Northwest 0.14 -0.57 -0.04 -0.04 0.04 -0.31
North 0.07 -0.05 0.08 -0.14 0.00 0.03

Table 3. Differences to reference values taken from the results for
the GP-ICPR method from (Bae, 2006).

Fig. 2 shows a coarse registration result for the Northeast and
North positions. It can be observed that the North data (purple)
is tilted a bit in one direction with respect to the other dataset.
This is due to the tilted setup of the laser scanner that has not
been accounted for by the registration algorithm. What can also
be seen is the limited amount of overlapping areas between the
positions which is typical for Agia Sanmarina data. There are
hardly any purple planes pointing to other directions than North
only. On the other hand, there are many green planes pointing
North and East as this dataset had been taken from a corner of
the church. However, matching object regions are close enough
to each other so that a fine registration is possible.

4.4 Fine registration

The pairwise fine registration uses the initial transformation pa-
rameters output by the coarse registration and is carried out on
the surface elements from which the large planes were com-
posed. Even though a valid solution could be found rather easily,
it turned out extremely difficult to find a set of thresholds that
would work on all neighboring datasets.

Often, the plane based ICP gradually converged to a wrong solu-
tion. The reason is that the plane based adjustment step requires
three independent planes to fix the translation. While this had not
been a problem for other datasets tested previously, Agia Sanma-
rina data typically contains only one big facade. Often there is
only little information on the orthogonal walls because the scan-
ner had been positioned in front of the facade. The ground plane
also is of bad quality since it is rough and does not display a suit-
able overlap.

An example for the fine registration is shown in Fig. 3. Match-
ing parts now overlap quite well. Despite the difficulties with the
convergence the fine registration also can be regarded as success-
ful. As some manual intervention was needed for good choice
of the thresholds, this step should be considered semi-automatic.
However, it should be noted that only two out of the eight posi-
tion pairs posed a problem and that the initial aim was to find a
global set of thresholds.

Pairwise registration only leads to the propagation of errors.
If the loop can be closed such as possible for Agia Sanmarina
data, these errors become obvious. An example is shown in
Fig. 4 (top). Especially at the top of the middle tower, the ac-
cumulated errors can be seen as a slight shift and rotation. Nev-
ertheless, the overall quality of the fine registration seems to be
quite well.
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Figure 4. Top: Residual of the loop closing for consecutive fine
registrations between Southeast (green) and East (purple) posi-
tions. Bottom: The same two positions after bundle adjustment.

4.5 Bundle adjustment

An improvement has been sought via a bundle adjustment of
all datasets. The resulting transformation parameters are shown
in Tab. 2. Similar to (Bae, 2006), an overall transformation had
been carried out such that the East position has an identity trans-
form as its parameters. As can be seen from Fig. 4 (bottom), the
two positions are now registered with smaller residuals. There is
a noticeable change in color because to a small remaining shift
most of the surface elements from the East facade (purple) are
slightly in front of those from the Southeast facade (green).

Tab. 3 shows the difference in the registration parameters ob-
tained via the surface elements and those given in (Bae, 2006)
that will be regarded as reference. Please note that the coordinate
system used for our work is different from that of the reference
data. Here, the z-axis is pointing upwards and the rotation angles
are defined in a slightly different way. For comparison, the refer-
ence parameters had been transformed into our coordinate frame
so that valid differences can be obtained.

(Bae, 2006) reports angular residuals that range from 0.0003◦

to 0.5◦. Most of the time the residuals are less than 0.01◦ – we see

that the plane based method is roughly ten times worse. For the
translation the situation is similar as the reference has residuals
in the order of about 1 cm whereas we found about 10 cm.

5 CONCLUSIONS

In this paper, an automatic registration method for terrestrial LI-
DAR data has been applied to the Agia Sanmarina test data sup-
plied by ISPRS WG V/3. Three different steps have been tested,
coarse registration, fine registration and a refined solution that
uses all datasets simultaneously.

All steps were able to generate a solution on the test data. Es-
pecially the coarse registration can be considered as successful
as it quite easily returned usable initial solutions. The pairwise
fine registration, however, required quite a lot attention to the se-
lection of proper thresholds so that a correct solution could be
obtained for all neighboring pairs.

The bundle adjustment was able to improve the results from the
fine registration, but could not achieve a satisfying result as the
accuracy is about a factor of ten worse than the ICP-based refer-
ence solution. A probable cause could be the rather coarse surface
elements that might be less accurate than their planar appearance
suggests.

On the other hand, the data is not optimal for plane based ap-
proaches because the scene consists of one convex object covered
with a lot of small structures. The approach should work better if
more objects with larger planar surfaces are available.

We can conclude that registration based on surface elements is
especially successful for coarse registration. Pairwise fine reg-
istration as well as a bundle adjustment style registration of an
arbitrary number of datasets are possible as well, but the result-
ing accuracy is limited.
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ABSTRACT: 
 
An understorey model is created for an area of broadleaf, deciduous woodland in eastern England using airborne LiDAR data from 
winter 2003 (leaf-off conditions) and summer 2005 (leaf-on). The woodland is ancient, semi-natural broadleaf and has a 
heterogeneous structure, with a mostly closed canopy overstorey and a patchy understorey layer beneath. In places, particularly in 
the centre of the study area, the top canopy is not mature, but is open and scrubby. The trees of the top canopy (i.e. dominants) 
together with trees and shrubs that occur in open areas (i.e. sub-dominants) can be sampled directly in leaf-on first return airborne 
LiDAR data, whereas trees and shrubs that occur hidden as understorey (i.e. suppressed) require a more sophisticated approach to 
map using airborne LiDAR data. This study makes use of the fact that in temperate deciduous woodland the understorey layer 
typically leafs out two weeks before the overstorey. Capturing winter (leaf-off) airborne LiDAR data during this time slot maximises 
the ability to map the understorey layer. Thus, leaf-on first return data were used to define the top canopy for overstorey trees and 
leaf-off last return data were used to model the understorey layer beneath. Field data from five stands were used to identify crown 
depth in relation to tree height for the six species of dominant trees in the study area. Thresholds were identified per tree species for 
crown depth as a percentage of canopy height, and the understorey layer was modelled where leaf-off last return data occurred 
below the relevant threshold. A minimum height of 1 m was applied to define woody understorey. Critical to this process were a 
Digital Terrain Model (extracted from the leaf-off last return LiDAR data) to normalise the first and last return LiDAR data to 
canopy height, and a digital tree species map (derived from the classification of time series airborne multi-spectral data) to guide the 
application of canopy depth thresholds per species. 
 
 

1. INTRODUCTION 

The vertical structure of woodlands or forest plays an important 
role in determining microclimatic conditions (including 
radiation levels at the forest floor), the availability of niche 
space, habitat quality, the distribution of fuels and subsequent 
fire behaviour (Brokaw and Lent, 1999, MacArthur and 
MacArthur, 1961, Pyne et al., 1996). Forests and woodlands 
can have simple, single-storey canopies or more complicated 
multi-storey canopies. In forests where there is a heterogeneous 
vertical structure, dominant trees form the overstorey canopy, 
whilst sub-dominant trees have free access to light but do not 
occupy the upper canopy, and suppressed trees have no direct 
access to light and grow underneath a relatively continuous 
cover of branches and foliage from adjacent dominant or sub-
dominant trees. The understorey can be composed of seedlings 
and saplings of overstorey trees which persist as suppressed 
juveniles until a suitable canopy gap opens, and shade tolerant 
species of trees or shrubs which complete their life-cycles in an 
environment of lower light intensity and higher humidity than 
in the overstorey. Information on the understorey layer of 
woodland can be essential for the accurate modelling of carbon 
stocks and sequestration (Patenaude et al., 2003) and of bird 
habitat availability and quality (Broughton et al., 2006). 
 
There are numerous case studies involving the application of 
airborne LiDAR data for detailed spatial modelling of forest 
structure (see Lim et al., 2003 for a review) and some 
techniques have become operational for forest inventory (see 
Næsset, 2004). At the stand level, measures such as mean tree 
height and diameter, timber volume, stem number, crown 

height, biomass, canopy closure, and LAI have been derived 
using discrete-return small footprint LiDAR data (Magnussen 
and Boudewyn, 1998, Næsset, 2002, Næsset and Økland 2002). 
This typically involves regression-based methods in which 
percentiles of the distribution of canopy height measurements 
from LiDAR are used to predict forest characteristics within a 
spatial sampling frame based on empirical relationships. Where 
the density of laser returns is greater than 5-10 per m2, then 
individual tree based approaches have been used (Persson et al., 
2002), giving more direct measures of tree height, timber 
volume and stem number (Maltamo et al., 2004a). These studies 
tend to be focussed either on single layered forests or on the 
dominant tree layer if forests are multi-layered, thus deriving 
variables for dominant trees only (Maltamo et al., 2005). Such 
measures will not fully characterise the structure of forests with 
significant vertical heterogeneity. For example, Maltamo et al. 
(2004b) showed that for a mixed-species woodland of spruce, 
pine and birch in Finland it was possible to detect over 80% of 
dominant trees but only 40% of all trees in LiDAR data with 
approximately 10 hits per m2. As a result, they found that 
predictions of timber volume and stem density were 
underestimated by 24% and 62% respectively, although this 
could be improved by predicting suppressed trees using 
theoretical distribution functions (Maltamo et al., 2004a). 
 
The larger footprint, waveform recording LiDAR systems have 
an obvious advantage for characterising and quantifying forest 
vertical structure. For example, systems such as SLICER and 
LVIS have been demonstrated successfully for estimating stand 
height, mean stem diameter, basal area, and total biomass 
(Means et al., 1999, Drake et al., 2002, Lefsky et al., 2002), and 
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characterising the canopy height profile (Lefsky et al., 1999, 
Harding et al., 2001, Parker et al., 2001). However, there have 
been attempts to characterise forest vertical structure using 
small footprint discrete return LiDAR data, as it is recognised 
that the distribution of LiDAR returns over forests and 
woodland relates to the vertical structure of the tree canopy. 
Thus, Zimble et al. (2003) characterised woodland as either 
single or multi-storey by the analysis of LiDAR-derived tree 
height variance in 30 m grid cells, whilst Riaño et al. (2003) 
performed cluster analysis of LiDAR tree canopy returns to 
discriminate overstorey and understorey proportions in 10 m 
grid cells. Maltamo et al. (2005) developed a histogram 
thresholding method to designate the distribution of LiDAR 
canopy height returns as uni- or multi-modal and thus the 
canopy as single or multi-layered. They constructed regression 
models for the logarithmic number and Lorey’s mean height of 
understorey trees, using independent variables derived from the 
LiDAR distributions. However, a common problem reported in 
these studies is that where the dominant trees form a dense and 
closed canopy it is not possible to identify understorey by 
analysing only one return of LiDAR data. 
 
Where the overstorey is deciduous, what is required is LiDAR 
data from leaf-on and leaf-off conditions; using the leaf-on data 
to model the overstorey and leaf-off data to identify the 
understorey. To-date only two papers have touched on this. 
Hirata et al. (2003) showed, by a visual assessment, that the 
amount of information on both the ground and the understorey 
layers was significantly higher in leaf-off LiDAR data for 
temperate deciduous forests in Japan. Imai et al. (2006) 
examined LiDAR data from three dates across a growing 
season, also for temperate deciduous forests in Japan, and 
produced a canopy height model from leaf-on conditions and a 
canopy height difference model across all three dates. They 
then applied height thresholds of 0-1m, 1-5m, 5-10m and > 10m 
to both models to separate ten classes that distinguished what 
they called high tree canopy (evergreen and deciduous, with or 
without a shrub layer), sub-high tree canopy (again separating 
evergreen and deciduous, with or without a shrub layer), shrub 
layer (evergreen and deciduous) and ground layer. 
 
The work reported in this paper makes use of dual return 
LiDAR data acquired in leaf-on and leaf-off conditions for a 
broadleaf deciduous woodland in the UK. Field data are used to 
identify the relationship between tree height and crown depth 
for overstorey tree species and this information is applied to the 
LiDAR data, using the leaf-on first return data to define the top 
canopy for overstorey trees, and leaf-off last return data to 
identify a discontinuous layer of suppressed trees or shrubs 
below the overstorey canopy. This is based on the identification 
of thresholds for crown depth as a percentage of canopy height 
per tree species. Critical to this understorey modelling process 
therefore, is a tree species map, which here is derived from the 
classification of time series airborne multi-spectral data. 
 
 

2. MATERIALS AND METHODS 

2.1 Field site 

The study area is Monks Wood National Nature Reserve in 
Cambridgeshire, eastern England (52o 24’ N, 0o 14’ W). This is 
an ancient woodland of broadleaved deciduous species, which 
covers 157 hectares. Within this boundary are two cleared 
areas, totalling 6 ha, which are maintained by grazing. These 
two fields are not considered to be part of the spatial coverage 

of Monks Wood in all following descriptions and statistical 
analyses. However, all other open areas within the boundary of 
Monks Wood, such as canopy gaps and paths, are included. The 
total area of Monks Wood is thus considered here to be 151 ha. 
 
Monks Wood is extremely heterogeneous in terms of the woody 
species making up the tree canopy and understorey, their 
relative proportions in any area, canopy closure and density, 
tree height and stem density (Hill and Thomson, 2005). The 
overstorey tree species of Monks Wood are common ash 
(Fraxinus excelsior), English oak (Quercus robur), field maple 
(Acer campestre), silver birch (Betula pendula), aspen (Populus 
tremula) and small-leaved elm (Ulmus carpinifolia). Ash is the 
most common and widespread species, occurring mostly as 
coppice stems but regenerating naturally wherever the canopy is 
opened (Massey and Welch, 1993). Oak, maple and birch occur 
less frequently, the latter regenerating from seeds in canopy 
gaps. Aspen and elm form occasional clusters on the wetter 
soils, although the elm population declined significantly in the 
1970s due to an outbreak of Dutch elm disease. The former elm 
stands have been left to regenerate naturally and today tend to 
be rather scrubby in nature. The dominant woody species 
making up the understorey and fringes of Monks Wood are 
hawthorn (Crataegus monogyna), common hazel (Corylus 
avellana), blackthorn (Prunus spinosa), dogwood (Cornus 
sanguinea) and common privet (Ligustrum vulgare). Hazel, 
along with ash, was coppiced until 1995. Hazel now occurs 
mixed with hawthorn and blackthorn throughout Monks Wood 
(Massey and Welch 1993). Also to be found in the understorey, 
especially in more open areas, are elder (Sambucus nigra), 
buckthorn (Rhamnus catharticus), grey willow (Salix cinerea), 
goat willow (S. caprea), downy birch (B. pubescens), crab 
apple (Malus sylvestris) and bramble (Rubus fruticosus).  
 
2.2 Field data  

The field data used in this study were collected in July 2000. 
Five contrasting stands were surveyed (see Table 1 in 
Patenaude et al., 2003). The stands ranged in size between 0.84 
ha and 3.69 ha, and covered the range of species composition 
and structure present within Monks Wood (Tables 1 and 2). 
Each stand was divided into a grid of 10 equal areas (8 in stand 
5), and in each of these grid cells a 20x20m sample plot was 
located randomly. For each of the 48 plots, the diameter at 
breast height (DBH) for all woody stems of at least 7cm DBH 
were recorded, totalling 2191 living stems. Each recorded stem 
was identified by species and designated as either overstorey or 
understorey. For the overstorey trees, crown height and crown 
depth (amongst other measures) were recorded for three 
randomly selected individuals of each species per plot. This 
totalled 101 individuals for ash, 62 for oak, 42 for maple, 15 for 
elm, 9 for aspen and 4 for birch. 
 

 
Table 1.  Structural composition of the five stands enumerated 

in Monks Wood. Data per stand are for ten 20x20m plots;   
Total Basal Area values are in cm2.   

(* values for Stand 5 are weighted to the equivalent of 10 plots) 

 Overstorey Understorey 
 # stems Total BA # stems Total BA
Stand 1   (2.57 ha) 144 103891 224 18589 
Stand 2   (3.35 ha) 248 104830 155 13293 
Stand 3   (2.83 ha) 84  47682 325 24087 
Stand 4   (3.69 ha) 394 108201 173 12672 
Stand 5* (0.84 ha) 229 190687 215 19073 

185

IAPRS Volume XXXVI, Part 3 / W52, 2007



 

 
Table 2.  Percentage composition of tree species in each stand 

enumerated from ten 20x20m plots.  
 
The tree crown data were used to examine the relationship 
between canopy height and crown depth per overstorey tree 
species across Monks Wood, and to identify thresholds in 
crown depth as a percentage of canopy height. This information 
was used to model the understorey layer from the airborne 
LiDAR data. The field data on understorey stem count and 
basal area were used to validate the derived understorey model. 
  
In additional to traditional forest mensuration data, a map of the 
six species of dominant trees which make up the overstorey of 
Monks Wood was available. This was produced from the 
supervised classification of a time-series of 2 m spatial 
resolution Airborne Thematic Mapper (ATM) data, acquired 
throughout the growing season of 2003. This map has a 
surveyed overall accuracy of 88% (kappa 0.84) for the 
identification of ash, aspen, birch, elm, maple and oak tree 
species in the overstorey canopy (Table 3). Note that for this 
product, the overstorey is defined as being greater than 8 m tall.  

 

 
Table 3.  Percentage composition of overstorey tree species in 

Monks Wood based on digital image classification, and the 
surveyed User’s Accuracy for each species. 

 
2.3 Airborne LiDAR data 

LiDAR data were acquired with an Optech Inc. Airborne Laser 
Terrain Mapper (ALTM-3033) on 14 April 2003 and 26 June 
2005. These data sets are referred to in this manuscript as leaf-
off and leaf-on respectively; however, the acquisition date for 
the leaf-off data was selected such that whilst the overstorey 
canopy was still dormant the understorey had already leafed 
out. For both data sets, the first and last significant return per 
laser pulse were recorded. The leaf-off data were acquired at an 
average flying altitude of 980m, with a scan half angle of 15o 
generating 1 laser hit per 1 m2, whilst the leaf-on data were 
acquired at an average flying altitude of 1125m, with a scan 
half angle of 20o generating 1 laser hit per 2 m2.  
 
The first and last return data of both the leaf-on and leaf-off 
data sets were each processed into a Digital Surface Model 
(DSM) via Delaunay Triangulation (Figure 1). The selected 
spatial resolution was 0.5m, i.e. the approximate horizontal 
accuracy of data acquisition by the ALTM 3033 at the flying 
altitude. Comparison of the leaf-off and leaf-on DSMs revealed 
the need for more precise geo-registration between the two data 
sets. Thus, 32 ground control points were identified in the first 
return DSMs of the leaf-on and leaf-off data. These had a 

predicted accuracy after first order polynomial transformation 
of 0.48m in x and 0.49m in y (total 0.69m). The same set of 
ground control points were used to register both the first and 
last return leaf-on DSMs to the leaf-off DSMs. The total shift 
after transformation was 0.33m in x and 1.68m in y. Nearest 
neighbour resampling was used to preserve individual pixel 
values in the transformed DSMs.  
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Leaf-on first return DSM (left) and leaf-off last return 
DSM (right) for Monks Wood, Cambridgeshire, UK. The 
boundary of the study area is shown by a dashed line. 
 
A Digital Terrain Model (DTM) was generated from the leaf-
off last return data, in which 48% of laser returns within the 151 
ha Monks Wood were ground hits. This compared with a 
ground hit rate for the leaf-off first return of 3.1%, and the leaf-
on last return (2.7%) and leaf-on first return (1.8%). Ground 
hits in the leaf-off last return data were identified by a process 
of adaptive filtering, whereby focal variance in the DSM was 
calculated over 10x10 and 40x40 pixel windows and thresholds 
in both were used to determine whether to extract a ground 
return as a 5x5, 10x10, or 20x20 pixel block minimum for any 
given area. A DTM was interpolated by applying a thin-plate 
spline to the extracted local elevation minima. This was carried 
out as an iterative process, comparing the DTM at each iteration 
with the leaf-off last return DSM and reducing the minimum 
filter size from which ground hits were extracted where the two 
surfaces were within tolerance limits. The accuracy of the 
resulting DTM was assessed using 244 terrain measurements 
recorded with an electronic total station (see Gaveau and Hill, 
2003). The RMSE was ± 0.27 m (range -0.78 m to +0.59 m). 
 
A Digital Canopy Height Model (DCHM) was then generated 
for the top canopy of Monks Wood by the per-pixel subtraction 
of the DTM from the leaf-on first return DSM. In line with the 
tree species map, the overstorey tree layer was considered as 
canopy taller than 8 m. The top canopy between 1 m and 8 m 
was considered to be sub-dominant trees and shrubs. This 
component of the understorey layer is directly exposed (i.e. not 
covered by an overstorey layer) and so is readily identifiable 
from airborne LiDAR data acquired during leaf-on conditions.  
 
Extracting the proportion of the understorey layer that is hidden 
below the overstorey (i.e. suppressed trees and shrubs) made 
use of the difference between the leaf-on first return and leaf-
off last return LiDAR data. The difference was calculated per-
pixel between the leaf-on first return and leaf-off last return 
DSMs and expressed as a percentage of the leaf-on first return 
DCHM. The hidden understorey layer was identified as any 
point where the leaf-off last return occurred below the threshold 
identified from the field data of crown depth as a percentage of 
canopy height per tree species. The tree species information 
came from the co-registered tree species map. A minimum 
height of 1 m was applied to define woody understorey. 

 Ash Oak Maple Aspen Elm Birch 
Stand 1 19 60 19 0 0 0 
Stand 2 89 3 8 0 0 0 
Stand 3 29 6 45 17 0 4 
Stand 4 89 8 3 0 0 0 
Stand 5 14 5 0 0 80 0 

 Composition (%) Users’ Accuracy (%) 
Ash 54.9 83.5 
Aspen 7.2 71.4 
Birch 2.3 90.7 
Elm 0.5 84.6 
Maple 14.3 84.1 
Oak 20.8 97.3 
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3. RESULTS 

For the six species of dominant trees that constitute the 
overstorey layer in Monks Wood, only in the case of maple was 
there a strong significant relationship between canopy height 
and crown depth (R2 = 0.65, n = 42, p < 0.001). Thus, rather 
than calculating the likely crown depth for a canopy of any 
given height for an individual species, an upper threshold was 
sought per species for percentage crown depth. Histograms of 
crown depth as a percentage of canopy height for the six 
overstorey tree species in Monks Wood are shown in Figure 2. 
The selected thresholds are also shown; these were 60% for ash, 
birch and elm, 70% for aspen and oak, and 80% for maple. 
These thresholds were subsequently applied to the leaf-on first 
return and leaf-off last return airborne LiDAR data to model the 
hidden understorey layer. The chosen thresholds of maximum 
crown depth as a percentage of canopy height were deliberately 
conservative; i.e. were more likely to miss larger trees or shrubs 
in the understorey where the overstorey canopy was tall but not 
deep (errors of omission) rather than to incorrectly map the base 
of deeper overstorey crowns as understorey (errors of 
commission).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Histograms of crown depth as a percentage of canopy 
height for the six species of dominant trees that constitute the 
overstorey layer in Monks Wood. The chosen thresholds are 
shown by a dashed line. 
 
The DSMs from leaf-on first return and leaf-off last return data 
clearly relate to two different surfaces, with the leaf-on first 
return reflecting the predominantly closed nature of the 
overstorey canopy and the leaf-off last return data supplying 
information from the understorey layer and ground (Figure 1). 
Statistics for the two DSMs normalised by the subtraction of 
terrain elevation are given in Table 4. The leaf-on first return 
data for Monks Wood had an average canopy height of 13.35 m 
(standard deviation of 5.10 m), with 83.2% having a canopy 
height > 8.0 m. This represents the overstorey tree layer, below 
which there could be a concealed understorey layer. Only 14% 
of the leaf-on first return data for Monks Wood had a canopy 
height of between 1 m and 8 m. This is the exposed proportion 

of the understorey layer (composed of sub-dominant trees and 
shrubs), and occurs around the woodland margins and in 
distinct patches in those areas which have been left to 
regenerate naturally following the loss of elm trees. The 
exposed portion of the understorey had an average canopy 
height of 5.46 m (standard deviation 1.87 m). The leaf-off last 
return data had an average canopy height of 1.38 m (standard 
deviation 1.61 m), with only 0.3% being > 8 m, and 42.5% 
returning from canopy between 1 m and 8 m. This could 
represent either understorey or returns from lower levels within 
the crowns of overstorey trees. 
 

 Leaf-on 
first return 

Leaf-off 
last return

Minimum (m) 0.00 0.00 
Maximum (m) 25.31 18.95 
Mean (m) 13.35 1.38 
Standard deviation (m) 5.10 1.61 
0 m to 1 m (%) 2.8 57.2 
1 m to 8 m (%) 14.0 42.5 
> 8 m (%) 83.2 0.3 

 
Table 4.  Summary statistics for the normalised leaf-on first 
return and leaf-off last return LiDAR data for Monks Wood 

 
Figure 3 gives histograms for the difference between the leaf-on 
first return and leaf-off last return DSMs; expressed in metres 
and as a percentage of overstorey canopy height. The summary 
statistics are given in Table 5. The obvious point to note is that 
there is a high level of penetration between the two LiDAR 
surfaces, with an average height difference of 11.98 m (standard 
deviation 5.28 m) and an average penetration rate of 90.2% 
(standard deviation 12.5%). In fact, just over half (50.5%) of 
Monks Wood overstorey has a penetration rate in the leaf-off 
last return data of > 95% of canopy height. This reflects a high 
level of ground penetration in the leaf-off last return LiDAR 
data. Note that negative values did occur where tree fall or 
felling took place between the two dates of LiDAR acquisition. 
However, these covered only 1% of the land area of Monks 
Wood and were not considered in the above statistics. 
 
 

 Difference 
in metres 

Difference as  
% canopy height 

Minimum (m) -12.97 0.06* 
Maximum (m) 25.09 100.00 
Mean (m) 11.98 90.23 
Standard deviation (m) 5.28 12.45 

 
Table 5.  Summary statistics for the difference between leaf-on 

first return and leaf-off last return LiDAR data for Monks 
Wood  

(* this value excludes negative height differences). 
 
The concealed component of the understorey layer was 
modelled based on the difference between the leaf-on first 
return and leaf-off last return DSMs. This layer of suppressed 
trees and shrubs covers approximately 30% of the area within 
the Monks Wood boundary, i.e. some 46.4 hectares. The 
understorey model covers a range of height values from a 
chosen minimum of 1.0 m to a maximum of 10.18 m; although 
99% has a height range between 1m and 6m. A histogram for 
the model of concealed understorey is shown in Figure 4. The 
mean height of the understorey is 2.64 m (standard deviation 
1.16m).  
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Figure 3. Histograms of the difference between leaf-on first 
return and leaf-off last return LiDAR data for Monks Wood.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Histogram for the concealed portion of the 
understorey, as modelled from the leaf-on first return and leaf-
off last return LiDAR data.  
 

The total understorey layer of Monks Wood is thus made up of 
two components, a portion which is shaded below an overstorey 
and a portion which is exposed. These cover 46.4 ha and 
21.2 ha respectively, which represents 30% and 14% of the land 
area within Monks Wood. The total understorey cover of 
Monks Wood is thus 67.6 ha, or 44% of the land area. 
Validation of this combined understorey model was carried out 
using the field plot measurements of understorey from five 
stands. For each stand the total Basal Area (in cm2) of all trees 
and shrubs designated as understorey was calculated and 
compared with the percentage cover of understorey modelled 
from LiDAR. A plot of this for the five stands (with stand 5 
weighted by coverage) is shown in Figure 5, with the best fit 
line from least squares linear regression also plotted. The 
relationship between the two measures of understorey cover 
was strong and highly significant (R2 = 0.82, n = 5, p = 0.033). 
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Figure 5. Plot showing the percentage cover of understorey as 
modelled from airborne LiDAR against field recorded total 
Basal Area of understorey trees and shrubs in five stands across 
Monks Wood. 
 
 

4. DISCUSSION AND CONCLUSIONS  

As has been well documented elsewhere, this work has shown 
that it is possible to map woodland canopy overstorey and 
scrubby areas along woodland margins and in overstorey 
canopy gaps from leaf-on first return airborne LiDAR data. Of 
greater significance is the demonstration of penetration rates of 
last return LiDAR data during leaf-off conditions. Thus, of the 
83% of the study area classed as overstorey based on the leaf-
on first return data, some 55.8% of leaf-off last returns came 
from the ground or ground vegetation layer and virtually all of 
the remainder came from the understorey. Less than 0.01% of 
leaf-off last return data came from the overstorey. Therefore, it 
would be possible to map all non-overstorey trees and shrubs 
within the study area simply by applying height thresholds of 
1 m and 8 m to the leaf-off last return data (66.3 ha, ca 42% of 
the Monks Wood land area). However, this product would make 
no distinction between whether the understorey layer was 
shaded or exposed, which from an ecological perspective is a 
significant difference. A woodland understorey layer occurring 
beneath an overstorey is part of a mature and stable vegetation 
community. The woody species comprising that understorey 
layer will be shade tolerant. In Monks Wood the most common 
woody species comprising the shaded understorey are 
hawthorn, hazel, privet, and dogwood. By contrast, the exposed 
areas of understorey represent either edge communities or 
patches of secondary succession. In Monks Wood, blackthorn 
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and hawthorn are the most common edge species, whilst the 
scrubby successional areas often contain blackthorn, hazel, 
willow or juveniles of ash, aspen or elm. The shaded and 
exposed understorey components in Monks Wood, thus have 
different woody species compositions, associated species 
assemblages and future trajectories. Distinguishing this is 
important in terms of both ecological and carbon modelling. 
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ABSTRACT: 
 
We reconstruct the vertical pulse power distribution returned from a commercial small footprint discrete pulse airborne laser terrain 
mapper within a mixed forest landscape. By modifying a Beer-Lambert approach, we relate the ratio of ground return power / total 
return power to the canopy gap fraction (P) as derived from digital hemispherical photography (DHP). The results are compared to 
the commonly cited and utilised ground-to-total returns ratio. Canopy gap fraction data were collected on five separate occasions 
from April to October of 2006, and analysed using standard DHP procedures. Five airborne lidar datasets were collected during dry 
conditions coincident with DHP, and all acquisitions were performed using the same sensor and survey configuration. It is found that 
for the mixed wood environment studied, a lidar intensity-based power distribution ratio provides a higher correlation with DHP gap 
fraction (r2 = 0.92) than does the often used ground-to-total return ratio approach (r2 = 0.86). Moreover, if the intensity power 
distribution ratio is modified to account for secondary return two-way pulse transmission losses within the canopy, the model 
requires no calibration and provides a 1:1 estimate of the overhead (solar zenith) gap fraction.  
 
 

1. INTRODUCTION 

1.1 Rationale 

The premise of the study is that the interaction between forest 
canopy and laser pulses emitted from an airborne lidar (light 
detection and ranging) mapping system can be considered in 
some ways analogous to the interaction of direct beam solar 
radiation with canopy covered environments. We examine the 
reconstructed vertical pulse power distribution returned from a 
commercial small footprint discrete pulse airborne laser 
scanning system and relate properties of the distribution to 
canopy structural and radiative transfer characteristics. In 
particular, we compare published gap fraction (P) and plant area 
index (Lt) algorithms and compare these to new algorithms that 
utilize the return intensity information. From the algorithms 
tested we develop a non-parameterized physical model to map 
the spatiotemporal variation in canopy gap fraction for a mixed 
forest landscape. 
 
1.2 Gap Fraction, Transmissivity and Leaf Area Index 

Leaf area index (LAI) is defined as one half the total leaf area 
per unit ground surface area (m2 m-2) (Chen et al. 2006) and is 
an important parameter for understanding variability in energy, 
water and carbon fluxes within an ecosystem. LAI and canopy 
transmittance (T) are key input parameters in many ecological 
and hydrological models as they enable the prediction of energy 
transmission through the canopy to lower layers of biomass or 
to ground level (e.g. Pomeroy and Dion, 1996). This 
information is essential in growth (e.g. photosynthesis) and 
hydrological (e.g. melt and evaporation) process modeling in 
forested environments. Accurate and consistent LAI 
measurements are often labour intensive and may also be 
difficult to collect in remote or difficult to access areas.  

FIPAR or the fraction of incoming photosynthetically active 
radiation absorbed by the canopy can be calculated based on the 
downwelling PAR at the top of the canopy, and downwelling 
PAR below the canopy (Gower et al. 1999). Chen (1996) states 
that downwelling PAR above the canopy does not tend to vary 
spatially during clear conditions, however, downwelling PAR 
below the canopy varies significantly both in space and time. 
The ratio of downwelling PAR below the canopy to 
downwelling PAR above the canopy is closely related to the 
canopy gap fraction (Gower et al. 1999). LAI can be estimated 
from the canopy transmittance Beer-Lambert’s Law (from 
Gower et al. 1999; Leblanc et al. 2005): 
 

)cos(/)()(

)( θθθ

θ
LAIk

eP
Ω−

=       (1) 
 
Where P(θ) is gap fraction along zenith angle (θ), k(θ) is the 
extinction coefficient (fraction of foliage area projected onto a 
perpendicular plane), and O(θ) is the clumping or non-
randomness index (Gower et al. 1999; Leblanc et al. 2005). 
Gap fraction can also be difficult to estimate using 
hemispherical photography and radiation sensors (e.g. Licor 
LAI-2000) due to photograph over-exposure and variable light 
conditions.  
 
1.3 Lidar estimates of P and LAI 

Numerous studies have examined the use of lidar for obtaining 
gap fraction (P), leaf area index (LAI), the fraction of incoming 
photosynthetically active radiation absorbed by the canopy 
(FIPAR) and extinction coefficients (k) from lidar (e.g. 
Magnussen and Boudewyn, 1998; Parker et al. 2001; Todd et 
al. 2003; Morsdorf et al. 2006; Thomas et al. 2006).  
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For every emitted laser pulse, there can be several reflecting 
surfaces along the travel path. Those backscatter elements that 
are strong enough to register a sufficiently large energy spike at 
the sensor are known as ‘returns’. For a discrete pulse return 
system such as the airborne laser terrain mapper (ALTM, 
Optech In., Toronto, Canada), the recorded ranges can be 
separated into single, first, intermediate and last returns. Single 
returns are those for which there is only one dominant 
backscattering surface encountered (e.g. a highway surface). For 
the ALTM, it is possible to also record two intermediate returns 
making a total of four possible returns from a single emitted 
pulse. While there is some slight loss of detection capability 
between adjacent returns (known as “dead time”), this multiple 
return capability means that there is a reasonable probability of 
sampling the dominant canopy and ground elements along the 
pulse travel path. 
 
Laser pulses that are returned from within the canopy have 
intercepted enough foliage or branch material to be recorded by 
the receiving optics within the lidar system, while some of the 
remaining laser pulse energy continues until it intercepts lower 
canopy vegetation, the low-lying understory and the ground 
surface. Laser pulse returns from the ground surface have 
inevitably passed through canopy gaps both into and out of the 
canopy. Increasing numbers of gaps within the canopy will 
result in gap fractions approaching 100%, whereas fewer gaps 
within the canopy will result in a gap fraction closer to zero. 
Lidar estimates of canopy P and LAI are often based on the 
assumption that gap fraction is equivalent to canopy 
transmittance (T) and from Beer-Lambert’s Law: 
 

kLAI

o

l e
I
ITP −===           (2) 

 
Where Io is open sky light intensity above canopy, Il is the light 
intensity after travelling a path length (l) through the canopy 
and k is the extinction coefficient, which can be approximated 
to a value of 0.5 in a canopy of spherical leaf distribution 
(Martens et al. 1993) but generally varies between about 0.25 
and 0.75 for natural needle- and broad-leaf canopies (Jarvis and 
Leverenz, 1983). The main geometric difference between the 
canopy interaction of solar and airborne lidar laser pulse 
radiation is that solar radiation is incident at all zenith angles 
while laser pulses are typically incident only at overhead (θ = 0 
to 30 degrees) angles. Therefore, any direct lidar estimate of P 
will be for approximately overhead gap fraction only and for a 
path length close to the height of the canopy. However, by 
assuming randomly dispersed foliage elements, an isotropic 
canopy radiation environment (i.e. equal transmittance in all 
directions) and ignoring the division of woody and leafy 
foliage, it is possible to derive a first approximation of LAI as a 
function of the overhead gap fraction: 
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Several studies have used this or a similar approach to estimate 
P and LAI from lidar data. In particular, Solberg et al. (2006) 
used this approach and assumed that P could be approximated 
by the ratio of below canopy returns to total returns. A similar 
but simpler approach was taken by Barilotti et al. (2006) where 
the same ratio was found to linearly correlate with LAI. The 
assumptions of the two previous studies were corroborated by 
Riaño et al. (2004) and Morsdorf et al. (2006) where the ratio 
of lidar canopy returns to all returns was found to be a 

reasonable indicator of the inverse of gap fraction; i.e. fractional 
canopy cover. Morsdorf et al. (2006) compared canopy lidar 
fractional cover estimates with field-based DHP fractional cover 
and found the best correlation was returned when using first 
return data only (r2 = 0.73). A method for estimating LAI that 
utilised laser profiling techniques was presented by Kusakabe et 
al. (2000), where field plot data were compared to the cross-
sectional area contained within the lidar surface profile across 
the plots. The rationale underlying this approach was that LAI 
would increase with tree height and stem density, and both of 
these physical attributes would act to increase the cross 
sectional area of a lidar profile across a plot.  
 
Common to the studies mentioned is that they all used laser 
pulse return height attributes but not the intensity. Intensity has 
implicitly been used in estimates of canopy gap fraction in the 
full waveform lidar literature where the strength of the returned 
signal from within or below the canopy is considered to be 
directly related to the transmissivity of the canopy. For example, 
in Lefsky et al. (1999), it was suggested that canopy fractional 
cover can be estimated as a function of the ratio of the power 
reflected from the ground surface divided by the total returned 
power of the entire waveform. It was further suggested that this 
power ratio needed to be adjusted as a function of different 
reflectance properties at ground and canopy level.  
 
For airborne laser pulses encountering and returning from a 
forested canopy at near-nadir scan angles, we cannot observe 
the incident pulse intensity as it enters the canopy; neither can 
we measure the transmitted intensity after it has passed through 
the canopy. However, by considering the total reflected energy 
from the canopy to ground profile as being some proportion of 
the total available laser pulse intensity, and the reflected energy 
from ground level as a similar proportion of the transmitted 
pulse energy, we have a means of estimating total canopy 
transmissivity at near-nadir angles. Further we can assume that 
atmospheric transmission losses for all outgoing and returning 
laser pulses are similar and small in magnitude relative to 
canopy losses. By building on the work of Lefsky et al. (1999), 
Parker et al. (2001) and adapting equation (2), a general pulse 
return power relationship can be described for gap fraction by: 
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Where SIb is below canopy power (the sum of all ground return 
intensity) and SIt is the total power (sum of all intensity) for the 
entire canopy to ground profile. However, this model does not 
explicitly account for potentially different probabilities 
associated with receiving a return signal from the ground or 
canopy level; i.e. the ground and lower level canopy return 
signals might incur two-way transmission losses due to 
travelling both into and out of the canopy, while those return 
signals at the outer envelope of the canopy do not incur any 
canopy transmission losses. For discrete return data, it is fair to 
assume that first and single returns generally have not incurred 
appreciable transmission losses prior to being reflected back 
towards the sensor. However, intermediate or last returns are, by 
definition, a reflected component of the residual energy left over 
after a previous return was reflected from a surface encountered 
earlier in the travel path of the emitted pulse. From Beer-
Lambert’s Law and assuming uniform transmission losses per 
unit path length travelled, it can be assumed that a below 
canopy (ground level) return incurs a similar proportion of 
transmission loss during its exit from the canopy as it did on the 
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way into the canopy. This leads to a variation of equation (4) 
such that for secondary returns within or below the canopy: 
 

∑
∑=

t

b

I
I

fP          (5) 

 
The analysis presented in this paper builds on previous research 
in a number of ways: 1) to sample a range of canopy LAI and 
light conditions, data are collected from multiple sites across an 
entire growing season; 2) the previously published discrete 
return ratio method of computing gap fraction is compared to 
plot-level field DHP data; and 3) new discrete return gap 
fraction methods are developed and tested based on equations 
(4) and (5) utilizing the pulse intensity information as an 
indicator of transmission losses within the canopy. 
 

2. STUDY AREA 

The study was conducted over a flat to rolling valley site (< 50 
m total elevation variation) near Nictaux in the Acadian forest 
ecozone of Nova Scotia. The study area was less than 1 km 
wide by approximately 2 km long and comprised a number of 
common land cover types for this region: predominantly 
Acadian mixed woodland (mostly yellow birch - Betula 
alleghaniensis Britton, with some mixed pine - Pinus and 
mixed spruce - Picea trees). The site is the subject of ongoing 
lidar and agro-forestry experiments, for which supplemental 
ground control, plot mensuration and DHP data exist (e.g. 
Hopkinson et al. 2006).  
 

3. METHODS 

3.1 DHP data collection and analysis 

Canopy gap fraction data were collected and analysed using the 
DHP procedures outlined in Leblanc, et al. (2005). DHP data 
collection took place on five separate occasions: April 8th, May 
12th, May 28th, August 18th and October 8th. The first collection 
was during early spring leaf off conditions, while the second 
was at the commencement of leaf flush. The May 28th dataset 
was at intermediate seasonal leaf area levels, while August 18th 
was close to maximum leaf area. The final dataset was collected 
during the autumn senescence and leaf drop period. These five 
datasets, therefore, represented the full seasonal growth cycle, 
capturing variable leaf area and transmittance conditions.  
 
Six Acadian mixed wood plots were established and the centre 
of each located using Leica SR530 global positioning system 
(GPS) receivers differentially corrected to the same base 
coordinate that was used for the airborne lidar survey. (In total 
we set up nine plots but the data for plots 5, 6 and 7 were not 
collected). Each of the six plots contained five photograph 
stations: one at the plot centre and one at an 11.3 m radius out 
from the centre at each of the four cardinal compass directions. 
Each station (30 in total) was marked with a stake to allow each 
location to be revisited. The camera was always set up level at 
1.3 m above ground level to ensure consistent data collection. 
In total, 150 individual photographs were collected during the 
growing season of 2006.  
 
All photographs were collected late in the evening on each day, 
immediately prior to dusk, to minimize direct sunlight and 
ensure even background sky illumination conditions. 
Photographs were collected using a Nikon Coolpix E8800 
camera with a 180o fisheye (FC-E9) lens set at 8 mega pixels 
with an exposure setting one f stop smaller than the automatic 

exposure reading to slightly under-expose the image and 
increase contrast between vegetation and sky. Each photograph 
was processed using DHP and TracWin software (S. Leblanc, 
Canada Centre for Remote Sensing provided to L. Chasmer 
through the Fluxnet-Canada Research Network).  
 
3.2 Lidar data collection and preparation 

The lidar sensor used was an Optech Incorporated (Toronto, 
Ontario) airborne laser terrain mapper (ALTM) 3100 owned by 
the Applied Geomatics Research Group (AGRG) operating at a 
wavelength of 1064 nm. All data were collected and processed 
by the authors. Five datasets were collected in 2006 coincident 
(within two days) of the DHP field data collections. All 
airborne lidar acquisitions were collected during dry conditions 
and using the same sensor and platform configuration. The 
surveys were flown at 1000 m a.g.l., 70 kHz pulse repetition 
frequency, peak pulse power of 7.2 kW, 0.3 mrad beam 
divergence (1/e) producing a footprint diameter on the ground 
of approximately 0.3 m, ±15 degree from nadir scan angle (30 
degree field of view), 50% swath overlap with roll 
compensation to keep survey swaths uniform. These settings 
provided a sampling density of approximately 3 points per m2 
and ensured that every point on the ground was observed from 
two directions at a mean viewing angle of 7.5 degrees. 
 
The airborne GPS trajectories were differentially corrected to 
the AGRG GPS base station receiver less than 5 km from the 
centre of the survey site. Raw lidar ranges and scan angles were 
integrated with aircraft trajectory and orientation data using 
PosPAC (Applanix, Toronto) and REALM (Optech, Toronto) 
software tools. The outputs from these procedures were a series 
of flight line data files containing las binary xyzi (easting, 
northing, elevation, intensity) information for each laser pulse 
return collected. 
 
Following lidar point position computation, the xyzi data files 
were imported into the Terrascan (Terrasolid, Finland) software 
package for plot subsetting and to separate canopy and below 
canopy returns. The data acquired for the leaf-off April 8th data 
collection were classified using the Terrascan morphological 
ground classification filter to provide a digital elevation model 
(DEM) to which all datasets could be normalised. After 
normalization, all elevations for all datasets were relative to the 
same ground level datum; i.e. possessed heights ranging from 0 
m to approximately 25 m. This allowed all returns to be divided 
into canopy and below canopy returns using a height threshold 
of 1.3 m to coincide with the height of the DHP field data. 
 
For each of the 30 DHP stations, all laser pulse return data were 
extracted within a circular radius of 11.3 m. This radius was 
chosen as it was: a) consistent with field mensuration practices; 
b) was the distance between adjacent photo stations and thus 
provided complete plot lidar coverage; and c) was close to the 
optimal radius of approximately 15 m observed in Mosdorf et 
al. (2006). In addition to the canopy and below canopy classes, 
the return data were further subdivided into four sub-classes 
related to the nature of the return itself; i.e. single, first, 
intermediate and last returns. For the canopy class, it is possible 
for a return to belong to any one of the four sub classes 
(provided the canopy is deep enough), however, ground returns 
can only belong to either the last or single return sub class. This 
subdivision was carried out as the return number and its 
position in the sequence indicates whether or not the pulse has 
been split and incurred any energy transmission losses on its 
way into and out of the canopy.  

192

ISPRS Workshop on Laser Scanning 2007 and SilviLaser 2007, Espoo, September 12-14, 2007, Finland



3.3 Lidar gap fraction analysis 

For this analysis, gap fraction was estimated from the extracted 
photo station and plot-level lidar data using three methods. 
These lidar estimates of gap fraction were then compared with 
the photo and plot-level DHP estimates calculated from both the 
single overhead annulus ring (0 - 10 degrees) and nine ring 
hemispherical (0 – 80 degree) data. The first was using the ratio 
of ground level (below canopy) returns to total returns and was 
known as the pulse return ratio method (Prr). This method is 
similar to that of Solberg et al. (2006) and has parallels to the 
fractional cover methods presented by Riaño et al. (2004) and 
Morsdorf et al. (2006). Further, laser pulse return power ratio 
methods were generated using return intensity data. Two 
variations were tested: 1) The simple pulse intensity power ratio 
is based on equation (4) with no modification; i.e. Gap fraction 
(Pipr) is estimated as the ratio of the sum of all ground level 
return intensities divided by the sum of total return intensity; 2) 
The square root power ratio (Psqr) is modified from equation (5) 
to account for the likelihood of two-way transmission losses for 
intermediate or last returns as follows: 
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Where each subscript refers to the class and/or sub-class of 
pulse return. In this model, first and single returns incur no 
reverse transmission loss through canopy and so are not square 
rooted, while intermediate and last returns should lose similar 
proportions of energy due to interception on both incoming and 
outgoing transmission; i.e. a power function loss. It is possible 
that differences in ground and canopy reflectance could 
influence these results. However, an adjustment of equation (6) 
based on reflectance is not presented here, as ground level 
vegetation, canopy level woody material and spatio-temporal 
variations in both make most assumptions about systematic 
reflectance variations invalid. 
 

4. RESULTS  

The seasonal variation in DHP gap fraction (PDHP) is clearly 
visible in Figure 1. The mean overhead (0 to 10 degrees zenith) 
and hemispherical (0 to 80 degrees zenith ) PDHP statistics, lidar 
ground-to-total return ratio (Prr), the simple intensity power 
ratio (Pipr) and the square root intensity power ratio (Psqr), along 
with the coefficients of determination (r2) are presented in Table 
1. All results illustrate high correlations suggesting that any one 
of these methods can be used to estimate gap fraction (or 
fractional cover). While there are high correlations for all three 
lidar gap fraction methods, we see that the best correlation for 
both the 80 and 10 degree PDHP results, however, is using the 
simple intensity power distribution ratio.  
 

 Summary r2 
 Mean SD PDHP 

10 deg 
PDHP 

80 deg 
PDHP (10 degree) 0.46 0.24   
PDHP (80 degree) 0.36 0.17 0.92  
Ground return ratio (Prr) 0.62 0.18 0.81 0.86 
Intensity power ratio (Pipr) 0.43 0.31 0.89 0.92 
Square root Power ratio (Psqr) 0.46 0.25 0.86 0.92 

Table 1. Gap fraction summary statistics (n = 150) 
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Figure 1. Plot-level seasonal DHP overhead gap fraction. 

 
The r2 values for the DHP 9 ring (0 to 80 degree) hemispheric 
gap fraction results are higher than those for the single overhead 
annulus ring (0 to 10 degree) due to the larger area sampled and 
subsequent increased stability in the data (Table 1). For the 
overhead DHP gap fraction, the small field of view (radius of ~ 
3.5 m at a canopy height of 20 m), leads to an increased 
likelihood of localised variations in canopy gaps that are not 
representative of the overall canopy conditions. Regarding the 
absolute magnitude of P, we see that the intensity-based 
methods produce values (0.43 and 0.46 for Pipr and Psqr, 
respectively) that are within 6% of the overhead DHP value 
(0.46), while the pulse return ratio value (0.62) is over-
estimated by 35%. In fact, the square root intensity-based 
method (Psqr) provided the closest estimate both in magnitude 
and in variance (expressed as the standard deviation), despite a 
negligibly lower explanation of the variance (r2 = 0.86) than for 
Pipr (r2 = 0.89). 
 

PDHP = 1.0 x Psqr

r2 = 0.86

PDHP = 0.8 x Pipr

r2 = 0.89
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Figure 2. DHP overhead gap fraction (PDHP) with lidar intensity 

power ratio (Pipr and Psqr) 
 
The high correlation and close match in absolute values is 
further illustrated in Figure 2, where we clearly see a 1:1 
relationship between PDHP and Psqr. This result suggests that by 
applying a two-way Beer-Lambert Law transmission loss to the 
intermediate and last return intensity values, we are more 
accurately recreating the laser pulse power distribution. These 
results also demonstrate that by including the intensity data, we 
achieve both a better correlation with, and more accurate 
estimates of, canopy gap fraction. Of most significance here is 
that the lidar intensity based estimate of gap fraction appears to 
require no calibration. 
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5. CONCLUSION 

While lidar ground-to-total return ratios have been 
demonstrated in the published literature to show strong 
correlation to canopy gap fraction and fractional coverage, it is 
shown here that for the mixed wood environment studied, the 
model can be improved slightly (r2 increase from 0.86 to 0.92) 
by considering the lidar power distribution ratio as 
reconstructed from the laser pulse intensity data. Moreover, if 
the intensity power distribution is modified to account for 
secondary return two-way pulse transmission losses within the 
canopy, the resultant gap fraction model requires no calibration 
and provides a 1:1 direct estimate of overhead gap fraction. This 
is an improvement over the ground-to-total pulse return ratio 
where it was found that despite a good correlation with DHP 
gap fraction, the actual value predicted was over-estimated by 
approximately 35%. The implications of these observations are 
that: a) canopy transmissivity in overhead zenith directions can 
be directly quantified from lidar data without the need for 
ground calibration; and b) if the canopy extinction coefficient is 
a priori known or can be estimated from look up tables, the 
plant area index can also be mapped. If canopy clumping, 
woody-to-total and needle-to-shoot ratios are known, then such 
estimates of plant area index can be converted to leaf area 
index. 
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ABSTRACT: 
 
As glaciers are good indicators for the regional climate, most of them presently undergo dramatic changes due to climate change. 
Remote sensing techniques have been widely used to identify glacier surfaces and quantify their change in time. This paper 
introduces a new method for glacier surface segmentation using solely Airborne Laser Scanning data and outlines an object-based 
surface classification approach. The segmentation algorithm utilizes both, spatial (x,y,z) and brightness information (signal intensity) 
of the unstructured point cloud. The observation intensity is used to compute a value proportional to the surface property reflectance 
– the corrected intensity – by applying the laser range equation. The target classes ice, firn, snow and surface irregularities (mainly 
crevasses) show a good separability in terms of geometry and reflectance. Region growing is used to divide the point cloud into 
homogeneous areas. Seed points are selected by variation of corrected intensity in a local neighborhood, i.e. growing starts in 
regions with lowest variation. Most important features for growing are (i) the local predominant corrected intensity (i.e. the mode) 
and (ii) the local surface normal. Homogeneity is defined by a maximum deviation of ±5% to the reflectance feature of the segment 
starting seed point and by a maximum angle of 20° between surface normals of current seed and candidate point. Two-dimensional 
alpha shapes are used to derive the boundary of each segment. Building and cleaning of segment polygons is performed in the 
Geographic Information System GRASS. To force spatially near polygons to become neighbors in sense of GIS topology, i.e. share 
a common boundary, small gaps (<2 m) between polygons are closed. An object-based classification approach is applied to the 
segments using a rule-based, supervised classification. With the application of the obtained intensity class limits, for ice <49% (of 
maximum observed reflectance), firn 49-74% and snow ≥74%, the glacier surface classification reaches an overall accuracy of 91%. 
 
 

1. INTRODUCTION 

The cryosphere is a component of the Earth system that 
presently undergoes dramatic changes. Glaciers and ice sheets 
as important features of the cryosphere are sensitive to climate 
fluctuations and their mass balance can be used as an indicator 
of regional-scale climate change. Next to the quantification of 
glacier geometry and mass, the qualitative analysis of the 
glacier surface is important, as for example the identification of 
the snow line for subsequent parametrisation of glacier mass 
balance or the classification of different glacier surface facies 
(e.g. ice, firn, snow). Glaciological research is fundamentally 
based on field observations, which are rather costly and time-
consuming. During the last two decades numerous studies have 
tested and discussed the possibilities offered by optical and 
radar remote sensing (summarized e.g. in Rees, 2005; Bamber 
and Kwok, 2004). Airborne Laser Scanning (ALS) allows for 
detailed mapping of glacier topography and the quantitative 
analysis of glacier geometry, such as changes in area and 
surface elevation, and subsequently mass. Not yet explored is 
the potential of ALS data for qualitative analysis (e.g. object 
detection, surface classification). 
 
This paper presents a new method for glacier surface 
segmentation based on the unstructured point cloud using the 
full information of ALS data, namely geometry (x,y,z) and 
signal intensity. The proposed algorithm is fully implemented 
in a Geographic Information System (GIS). Hence, the GIS 

vector data model and its topological processing tools can be 
used. The paper describes in detail the processing and 
segmentation steps and outlines an object-based classification. 
While this paper presents an application to glaciers, it shows 
that a common exploitation of geometry and radiometry 
provided by laser scanning can be jointly used to successfully 
segment and classify objects, where neither information source 
alone would suffice. 
 
1.1 Related work 

The last decade has seen increasing interest in the use of ALS 
for mapping and monitoring glaciers and ice sheets. One 
motivation was the ability of the technology to map areas of 
low surface texture (e.g. snow and firn) at high accuracy and 
resolution. To date, laser scanning for glaciological purposes 
has been widely and successfully applied in Antarctica and on 
the Greenland ice sheet (e.g. Abdalati et al., 2002), but only a 
few attempts have been made to utilize ALS or airborne laser 
profiling on mountain glaciers (e.g. Kennett and Eiken, 1997; 
Baltsavias et al., 2001). Geist et al. (2003) and Arnold et al. 
(2006) give an initial overview on potential applications of ALS 
in glaciology. 
 
ALS intensity has been utilized in many fields of applications 
(e.g. road and building detection, strip adjustment, forestry) but 
only a few studies investigated its value for glaciological 
research (e.g. Lutz et al., 2003; Hopkinson and Demuth, 2006). 
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Point cloud segmentation is mostly used for anthropogenic 
objects/surfaces (e.g. Filin and Pfeifer, 2006; Rabbani et al., 
2006). Natural surfaces, such as vegetation or glacier ice, are 
more likely to have a great variation in terms of geometry and 
reflectance characteristics. Thus, segmentation of such surfaces 
into homogeneous regions may be difficult. But separating 
homogeneous from heterogeneous surfaces already delivers 
valuable information, as for example the detection of glacier 
surface irregularities (e.g. crevasses, melt water channels, 
moulins, debris) surrounded by relatively homogeneous areas. 
 
1.2 Glacier surface characteristics 

The paper concentrates on the prevalent glacier surface classes 
ice, firn, snow and surface irregularities. The reflection 
characteristics of the glacier surface classes in the near-infrared 
wavelength of the laser scanner used in this study (1064 nm) 
exhibit a good spectral separability (Wolfe and Zissis, 1993). 
Due to the decrease of reflectance with age - metamorphosis 
from new to granular snow and increasing amount of absorbing 
particles (dirt) - different stages of snow/firn can be 
distinguished. Typical reflectance values are: glacier ice <0.2, 
firn 0.5-0.7 and fresh snow >0.7 (Rees, 2005; Hook, 2007). 
After correcting the laser signal intensity for spherical loss, 
topographic and atmospheric effects (Section 3.1), it can be 
used as a value proportional to surface reflectance (Ahokas et 
al., 2006; Höfle and Pfeifer, 2007). Lutz et al. (2003) and 
Hopkinson and Demuth (2006) state that the intensity is a good 
indicator for glacial surfaces (Fig. 1).  

 
Figure 1. Corrected intensity cross-section along different 

surfaces: glacier ice, firn and snow. Moving average 
line clearly shows steps in intensity between the 
surface classes. Also high variability in intensity of 
glacier ice areas can be seen 

Additionally to the corrected intensity, surface roughness can 
be used to describe the different classes. In general, terrain 
variation is increasing with proceeding melting from snow to 
uncovered glacier ice where irregularities due to glacier 
dynamics reach the upper surface, and hence are visible for the 
laser scanner. 
 

2. STUDY AREA AND DATA SETS 

2.1 Test site and data acquisition 

Hintereisferner (Fig. 2) is a typical valley glacier with a length 
of approximately 6.5 km along the flow line (determined in 
2005). The glacier shows a longitudinal profile with a relatively 
flat tongue and a steeper accumulation area. For the study 
described here data from 12 August 2003 is used, when most of 
the glacier, except the uppermost parts, was free of snow. The 
ALS flight campaign configurations are summarized in Table 1. 
 

 
Figure 2. Corrected intensity image of Hintereisferner with 

glacier borders and rectangular test site 

 
ALS campaign 
date, time 12.08.2003, 6:30–9:21 
scanning system Optech ALTM 2050 
laser wavelength 1064 nm 
avg. height above ground 1150 m 
pulse repetition frequency 50 kHz 
scan frequency 30 Hz 
scan angle +/– 20° 
swath width 837 m (with 40% overlap) 
avg. point density 1.7 points/m2 

Table 1. ALS flight campaign parameters 

 
2.2 Reference data 

Traditional aerial images were taken at the same day as the 
ALS campaign. These images were processed to orthophotos 
(0.5 m resolution). In order to obtain ground truth for 
validation, reference data for evaluating the results was created 
by a glaciologist aware of the local conditions. The classes ice, 
firn and snow were digitized using the orthophoto and the 
corrected intensity image. Surface irregularities were identified 
in the shaded relief of the ALS elevation model. 
 
2.3 Datasets and data management 

The ALS point cloud is managed within the LISA (LIdar 
Surface Analysis) framework (Höfle et al., 2006), which 
integrates full GIS functionality provided by the Open Source 
GIS GRASS. The results of the segmentation (segment 
polygons) are stored in the GRASS vector data model providing 
topologic geometry storage and attribute data management. For 
the glacier surface segmentation only single echo points are 
used. Plane positions, needed for intensity correction, are made 
available by LISA for each laser shot using linear interpolation 
of the GPS positions. A test site representing all target classes 
with 485 m x 318 m extent and 335.104 laser points was 
selected (Fig. 2). 
 

3. METHODOLOGY 

The developed methodology for glacier surface classification is 
shown in Fig. 3. The major processing steps will be described in 
detail below. 
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Figure 3.  The workflow of glacier surface classification using 

the original, unstructured ALS point cloud 

3.1 Intensity correction 

To get a value proportional to surface reflectance, a correction 
procedure accounting for spherical loss, topographic and 
atmospheric effects has to be applied. The emitted power is 
assumed to be constant for the chosen flight campaign because 
scanner settings, such as pulse repetition frequency, are not 
changed. The existing data situation allows only for applying a 
model-driven correction approach (Eq. 1), due to the lack of 
multiple flying altitudes over homogeneously reflecting areas. 
Further details concerning intensity correction are described in 
Ahokas et al. (2006) and Höfle and Pfeifer (2007). 
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where  ρ = reflectance 
 I = signal intensity [digital number (DN)] 
 R = range [m] 
 RS = standard/normalizing range [m] 
 a = atmospheric attenuation coefficient [dB/km] 
 α = angle of incidence [°] 
 
The intensities are normalized to 1000 m range. Under the 
assumption of Lambertian scattering characteristics of the 
surface this value is proportional to surface reflectance and will 
be called corrected intensity in the following. The surface 
normal is estimated by fitting an orthogonal regression plane to 
the 30 nearest neighbors and a vertical atmospheric attenuation 
coefficient of 0.15 dB/km was derived by modeling the 
atmospheric conditions at time of flight. Fig. 4 shows the 
evident reduction of disturbance in intensity after correction and 
Fig. 2 the corrected intensity image of Hintereisferner. 
 

 
Figure 4. a) image of mean recorded intensity with flight path 

(cyan); strip offsets can be clearly seen (arrow), b) 
mean corrected intensity image 

3.2 Segmentation 

The point cloud is subdivided into homogeneous segments 
using a geometrical and intensity homogeneity criterion. 
Segments are defined as spatially connected regions, allowing 
only smooth terrain transitions (break at step edges, such as 
crevasses, water channels and glacier borders) and similar 
intensities. The segmentation steps are (i) point feature 
calculation, (ii) seed point selection and (iii) region growing. 
 
3.2.1 Feature calculation:  For each laser point the features are 
calculated from its 2D k nearest neighbors (kNN). The surface 
normal is estimated by fitting an orthogonal regression plane. 
Additionally, the standard deviation (SD) of the orthogonal 
fitting residuals is used as parameter for surface roughness. A 
representative corrected intensity value is found in the 
histogram by choosing the most frequent value (mode) for a 
given bin size. Hence, the predominant surface is selected and 
the influence of noise and outliers is reduced. Additionally, the 
coefficient of variation (cv) of the corrected intensity is used as 
parameter for surface homogeneity in the local neighborhood. 
 

3.2.2 Seed point selection:  The laser points are sorted by 
homogeneity (cv). The lower the variation, the more likely the 
point lies within a homogeneous area, representing a single 
surface class, well suited as start point for growing a segment. 
The seed points could be limited by a certain cv threshold. Due 
to the inherent reflectance variation of natural surfaces and to 
reach an area-wide segmentation, all laser points are accepted 
as seed points ordered ascending by cv. 
 

3.2.3 Region growing:  The local connectivity of segments is 
forced by using a small local neighborhood (e.g. k=15) and a 
maximum growing distance, as well as a maximum distance of 
a neighbor to the current adjusting plane of the segment (either 
the local surface plane of the starting seed, the current seed or 
the fitted plane to all current region points). To maintain 
similarity in terms of smoothness, the angle between the current 
segment plane and the surface normal of a candidate point is 
checked. The similarity in terms of reflectance is checked by 
comparing the current segment corrected intensity (either 
intensity feature of starting seed, current seed or mean of all 
current region points) with the corrected intensity feature of the 
candidate point. The difference must be lower than a defined 
percentage of the current segment intensity, i.e. for brighter 
objects higher absolute variation is allowed. 
 
3.3 Delineation of point cloud segments 

To be able to use an object-based classification procedure, the 
delineation (polygonization) of point cloud segments is 
necessary. The segment boundary line is derived individually 
for each segment by calculating a 2D basic alpha shape (i.e. 
based on the Delaunay triangulation of the point set) for a given 
alpha value (Edelsbrunner and Mücke, 1994; Da, 2006). Small 
alpha values not necessarily produce a convex shape. If alpha is 
chosen very large (alpha→∞), the alpha shape represents the 
convex hull. Before calculating the alpha shapes a minimum 
segment size threshold (no. of points) is applied, which removes 
small, isolated points/regions, such as small snow spots or 
debris. The alpha value has to be chosen such that a connected 
exterior boundary can be produced. The alpha complex consists 
of non-ordered boundary line segments. Using GIS tools a clean 
polygon boundary is built (connect line segments; remove 
duplicate vertices and small islands; Fig. 5). 
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Figure 5. Segment boundary derived from point cloud alpha 

shape using different alpha values. a) With 
alpha=10000 the convex hull is reached, d) with 
small alpha values islands can occur 

 

3.4 Removal of overlaps and closing of gaps between 
segment polygons 

As the segment polygons are derived individually small 
overlaps and gaps may occur between the single segment 
polygons. With higher alpha values, more overlapping is 
necessarily produced. The lower the density of acquired points, 
the more areas are not covered by a polygon. Cleaning of 
segment polygons is proceeded as following (Fig. 6): 

1. Buffer polygons (define max. gap size) and intersect 
with gap areas (areas not covered by any polygon). 

2. Create Voronoi diagrams of segment boundary 
vertices. Voronoi polygons get ID of corresponding 
segment. 

3. Intersect gap areas within buffer size with Voronoi 
diagrams. Assign segment ID to intersection 
polygons. 

4. Merge intersection polygons with segment polygon 
sharing same ID. 

5. Merge overlapping areas (intersections) and very 
small areas (<2.0 m2) with adjacent segment sharing 
longest boundary. 

 
The buffer size should not be too large (e.g. half of estimated 
gap size) because the segments also grow into the areas not 
covered by any segment, which are later used to identify 
surface irregularities. After closing small gaps spatially near 
polygons share a common boundary line and therefore agree 
with the definition of neighbor in sense of GIS vector topology.  
 
3.5 Calculate segment attributes 

The segment attributes are directly derived from the point cloud 
(Sect. 3.2.1) but also from the segment polygon. Most important 
attributes are number of points, descriptive statistical values 
(e.g. min, mean, max) for elevation, corrected intensity, 
roughness (SD of plane fitting), as well as polygon area, point 
density and compactness (perimeter / (2 * sqrt(PI * area)). 

 
Figure 6. a) segment polygons derived from alpha shapes, b) 

1.0 m buffer (green) c) Voronoi diagrams (red lines) 
of boundary points, d) intersection of Voronoi 
diagrams with buffer area, e) intersection areas 
attached to segment polygons; overlaps are already 
removed (blue squares), small leftover areas to be 
removed (red circles), f) resulting segment polygons 
after filling gaps and removing overlaps 

3.6 Classification 

To show the potential of the proposed segmentation for glacier 
surface mapping, a simple rule-based classification with 
manually defined training areas is applied. Training areas are 
digitized on basis of the orthophoto (Fig. 7b). In a first step the 
range of corrected intensity values for each target class is 
derived from the segments spatially selected by the training 
areas. The second classification feature roughness is 
preliminary grouped into three classes: low <0.1 m, 
medium 0.1-0.25 m, and high ≥0.25 m (Kodde et al., 2007). In a 
second step the segments are labeled according to the 
classification (e.g. snow with low roughness, ice with medium 
roughness). Polygons of areas not covered by any segment are 
derived and labeled as class surface irregularities. Using the 
compactness of the polygon shape the irregularities could be 
further divided into “longish” (e.g. if high roughness: crevasses, 
low roughness: superficial stream) and “compact” (e.g. 
moulins). Using the segment ID the classification can be 
assigned to the laser points resulting in a classified point cloud. 
 
3.7 Merge of segments - dissolving of common boundaries 

Due to the cleaning of the vector topology (e.g. close gaps, 
remove overlaps) neighboring segments falling into the same 
class can be easily dissolved along shared boundary lines to 
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larger polygons. The IDs of the segments are stored and 
therefore the connection to the segment attributes is kept. 
 

 
Figure 7. Test site: a) shaded relief b) orthophoto with training 

areas 

4. RESULTS 

A fundamental result of the proposed algorithm is the corrected 
intensity, which can be used to produce undistorted intensity 
images (Figs. 2 and 4b). Intensity offsets between flight strips 
and topographic effects have been successfully removed. Using 
the intensity mode of a given neighborhood for segmentation 
leads to a removal of outliers and small surface structures (e.g. 
debris), but also results in a certain classification of the 
intensity dependent on the chosen bin size of the histogram. A 
bin size of 5% of the total value range (max. 20 classes) for 50 
kNN delivers appropriate values. If the bin size is too small, the 
mode is not representative anymore. If it is chosen too large, 
spectral classes are lost. To guarantee defined intensity 
homogeneity a maximum deviation of ±5% to the intensity of 
the segment starting seed point is set for growing. To allow 
smooth terrain transitions but stop growing at step edges, a 
maximum angle of 20° between the surface normals of current 
seed and candidate point is specified. The angle criterion is set 
low enough to get segment boundaries fitting well to the edges 
of crevasses (Figs. 7 and 8). The alpha shape value for segment 
delineation should be larger than the double average point 
spacing else too many islands are produced. An alpha value of 
1.5 m was set due to the 0.7 m avg. point spacing of the test 
site. A larger alpha value would lead to more overlapping 
segments. Closing gaps between adjacent segment polygons is 
necessary because the boundaries are individually derived. The 
double of the buffer around the polygons determines the 
maximum gap size that is closed. A buffer size of 1.0 m was 
chosen, and hence gaps of max. 2.0 m are closed but also non-
covered areas are shrinked or even fully closed, such as narrow 
crevasses. Filling gaps and cleaning of polygons is 
computationally very expensive (a lot of intersection with many 
polygons). If contextual information is not needed for 
classification, one could first classify the point cloud, merge the 
points of adjacent segments of the same class and then derive 
the boundaries and close gaps. But in comparison to our 
approach, the question of how to define a clear adjacency of 
point cloud segments can be more ambiguous. 
 
The classification rules are determined using the manually 
delineated training areas. The distributions of the three classes 
partly overlap. The following corrected intensity values (in 
percentage of maximum observed value in test site) were 
extracted: ice 38% (11.3% SD), firn 64% (6.7% SD) and snow 
85% (6.2% SD). In the ice areas of our test site also small snow 
and firn spots can be found, which results in a high SD for ice 
areas. The upper ice class limit is set to class mean+1 SD, 
whereas for firn and snow a class limit of mean±1.5 SD is used. 
Hence, the classification rules are: ice <49%, firn 49-74% and 
snow ≥74%. The roughness feature is not used to identify the 
surface classes but to independently subdivide the objects into 
the roughness classes low, medium and high (Sect. 3.6). The 

areas remaining uncovered even after filling gaps emerge from 
areas with no laser points or areas with a high variability in 
intensity or elevation. These areas are summarized as “surface 
irregularities”. Once the segments are classified, the building of 
larger units by merging neighboring segments is 
straightforward.  
 
Error assessment was performed using a point wise comparison 
method. For that purpose the classified point cloud was 
additionally labeled according to the reference map. The overall 
classification accuracy turned out to be 90.92%, whereas the 
spatial accuracy of the object boundaries strongly depends on 
point density and distribution. The given average point spacing 
of 0.7 m and closing of gaps <2.0 m fully agree with the state-
of-the-art requirements for operational tasks in glacier 
monitoring, which state a min. horizontal accuracy of ±2 m, in 
most cases even lower, to be sufficient (Jackson et al., 2001). 
Ice areas were found to have a good separability but there is a 
weak transition between firn and snow (Fig. 8), which can be 
explained by the advanced age of the snow (in August). 
 

 
 

Figure 8. a) Segments colored by mean corrected intensity 
(black - low intensity, light gray - high intensity, 
white - unsegmented); b) glacier surface 
classification 

 

5. CONCLUSIONS 

The paper has presented a new workflow for glacier 
segmentation and classification using spatial and intensity 
information of the unstructured ALS point cloud. Most ALS 
sensors already record signal intensity, hence available without 
additional costs. Homogeneous objects concerning reflectance 
could be successfully derived. ALS intensity data surpasses the 
orthophoto in distinguishing between ice and firn (or snow), 
and in areas with shadows, which are very often in high 
mountainous areas. The accuracy of the classification is 
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certainly sufficient for glacier inventory mapping but should be 
assessed for applications in detailed scales, as for example 
collect GPS data of distinct objects (e.g. ice and snow spots, 
crevasses). The segmentation, i.e. the zoning of the glacier into 
areas with homogeneous surface characteristics, highly reduces 
data with defined loss of information (homogeneity criteria), 
and already represents a valuable input for energy balance and 
melt process models. For the conversion of corrected intensity 
(DN) to reflectance values defined reflectance targets are 
needed (Ahokas et al., 2006). The surface classification 
supports glacier monitoring and facilitates the creation of 
glacier inventories solely using ALS data. The class “surface 
irregularities” is important for multitemporal analyses, such as 
feature tracking of objects for flow velocity estimation or 
glacier dynamics monitoring (e.g. closing and opening of 
crevasses). Future work will concentrate on 
• applying the methodology to larger areas with more 

surface classes (e.g. debris, water). Additional 
classification features have to be selected (e.g. use 
roughness for surface identification). 

• utilization of geometrical and contextual relationships 
provided by the segment vector topology 

• object-based error assessment (spatial and qualitative 
accuracy) of the classification. Ground truth data has to 
be collected. 

• improving the intensity correction by applying individual 
reflectance functions for the detected surface classes (e.g. 
anisotropic reflectance for snow) 
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ABSTRACT: 

 

We have developed a new concept of empirical calibration scheme for airborne laser scanner (ALS) intensity by means of portable 

brightness calibration targets, which can be laid out in the flight target area. The accurate radiometric calibration of these targets is 

based on laboratory measurements with CCD-based laser backscatter instrument and terrestrial laser scanner reference measurements 

in laboratory and field conditions. We also discuss the extension of this method into the usage of commercially available industrial 

gravels or other (natural-type) targets available ad hoc. We demonstrate that airborne laser intensity calibration is feasible using this 

type of targets, but one must take carefully into account the physical parameters related to the experiment and the targets. 
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1. INTRODUCTION 

1.1 The Radiometric Calibration of Laser Intensity 

The previous use of uncalibrated laser intensity has mainly 

focused on estimation of planimetric shifts between ALS strips 

(Burman, 2000; Maas, 2001, 2002), segmentation of ALS data 

(Oude Elberink and Maas, 2000), and object classification 

(Song et al., 2002; Matikainen et al., 2003; Clode and 

Rottensteiner, 2005; Luzum et al., 2005; Moffiet et al., 2005). 

The first attempts to calibrate laser intensity have been 

presented by Luzum et al., (2004); Kaasalainen et al., (2005); 

Coren and Sterzai, (2006); Ahokas et al., (2006); Donoghue et 

al., (2006). Luzum et al., (2004) assumed a signal loss related to 

squared distance. In Donoghue et al., (2006) a linear correction 

approach for intensity was found adequate. Kaasalainen et al., 

(2005) proposed the intensity calibration by means of a known 

reference target. Coren and Sterzai, (2006) suggested a method 

that takes into account the loss of intensity with the diverging 

beam, the incidence angle, and the atmospheric attenuation. An 

asphalt road was used as homogeneous reflecting area. Ahokas 

et al., (2006) proposed a more general correction method, i.e., 

the intensity values need to be corrected with respect to range, 

incidence angle (both bidirectional reflectance distribution 

function (BRDF) and range correction), atmospheric 

transmittance, attenuation using dark object addition and 

transmitted power (because difference in the pulse repetition 

frequency (PRF) will lead to different transmitter power 

values). 

 

Recently, it was proposed that the future ALS could be a 

hyperspectral sensor (Kaasalainen et al., 2007a). Under such 

circumstances the classification of laser hits could be highly 

automated if the used hyperspectral intensity responses could be 

radiometrically calibrated. The development of automatic data 

processing algorithms for, e.g., full-waveform digitizing lidars 

would also require calibrated intensity information. Therefore a 

systematic radiometric calibration method would have direct 

implications in more precise surface and target characterization.  

 

1.2 Physics of ALS calibration 

The recorded ALS intensity is related to the received power, 

which can be given in the form (Wagner et al., 2006; modified 

from Ulaby et al., 1982): 
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where Pr and Pt are received and transmitted power, 

respectively. Dr is the receiver aperture size, R is the range, βt is 

the beam divergence, Ω corresponds to the bidirectional 

properties of the scattering, ρ is the reflectivity of the target 

surface, and As is the receiving area of the scatterer. Thus, the 

recorded intensity is proportional to R
2
 for homogenous targets 

spreading over the full footprint, to R
3
 for linear objects (e.g. 

wire), and to R
4
 for individual large scatterers.  

 

The laser pulse illuminates a given surface area that consists of 

several scattering points. Thus, the returned echo comprises a 

coherent combination of individual echoes from a large number 

of points (as with radars, see Elachi, 1987). The result is a 

single vector representing the amplitude V and phase f (I~V2) 

of the total echo, which is a vector sum of the individual echoes. 

This means that as the sensor moves, the successive beam 

intensities (I) will result in different values of I. This variation is 

called fading. Thus, an image of a homogeneous surface with 

constant reflectivity will result in intensity variation from one 

resolution element to the next. The speckle effect gives the 

images acquired with laser light a grainy texture. According to 

Ahokas et al., (2006), the original variability of the beam 

intensities was about 10% for the rough calibration target. 

 

The effect of the incidence angle, i.e., the scanning angle, 

depends on the roughness of the surface. For rough surfaces, the 

variation with respect to incidence angle change is significantly 

smaller than for smooth surfaces and the main variation occurs 

for near-nadir measurements. Since surface smoothness is 

defined using Fraunhofer criterion (Schanda, 1986), most 
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natural targets are considered to have low variation of intensity 

as a function of incidence angle compared to microwave radars, 

where the variations with the incidence angle are significantly 

larger. However, recent experiments with laboratory and 

terrestrial lasers show that the intensity variation with the angle 

of incidence needs to be taken into account (see also 

Kaasalainen et al., 2005; Kukko et al., 2007).   

 

 

1.3 Calibration Scheme for ALS 

The Finnish Geodetic Institute has managed a permanent 

photogrammetric test field in Sjökulla, Kirkkonummi since 

1994. The test field contains permanent and transportable test 

targets for radiometric and geometric calibration of analogue 

and digital aerial cameras. Since 2000, airborne lidar testing has 

also been carried out using a set of eight portable 5x5 meter 

brightness targets (tarps) with calibrated reflectances of 70% 

(A), 50% (B), 40% (C), 26% (D), 20% (E), 16% (F), 8% (G), 

and 5% (H) (Kaasalainen et al., 2007b). These tarps have been 

used in airborne laser campaigns as well as laboratory and field 

reference measurements. This article presents the results from 

flight campaigns carried out in 2005-2006, and evaluates the 

feasibility of using these targets in brightness calibration and 

the accuracy of the results.  

 

The radiometric calibration scheme of the Finnish Geodetic 

Institute, presented first in Ahokas et al. (2006), was based on 

using these brightness calibration tarps. The brightness targets 

were calibrated in the laboratory at two different wavelengths 

and repeated reference measurements have been carried out 

with both terrestrial laser scanner and a laboratory laser 

instrument (Kaasalainen et al., 2005, 2007b). The brightness 

targets act as a near-Lambertian reference, which are needed for 

the development of the radiometric calibration scheme for ALS. 

 

Because of the inconveniences and limitations of the effective 

use of the large-size tarps, we also discuss the ongoing 

investigations of the usage of gravel and natural targets in 

radiometric measurement and calibration. 

 

2. EXPERIMENTS 

2.1 Airborne Laser Flights 

The brightness calibration method based on the calibration tarps 

has been tested in several laser scanner flight campaigns. The 

first complete radiometric calibration of all the eight targets was 

carried out during the Optech ALTM 3100 airborne laser 

scanner surveys (July 12th and 14th, 2005) at the Sjökulla 

photogrammetric test field (Ahokas et al., 2006). The 

measurements were carried out at flight altitudes of about 200, 

1000, and 3000 meters with a 1064 nm laser source. A more 

detailed description is in (Ahokas et al., 2006). At this 

campaign, the lowest flight altitudes (200 m and 1000 m) were 

found most suitable for intensity calibration. 

 

The tarps were also used in the Espoonlahti full waveform flight 

campaign (Aug 31st, 2006), which used the TopEye MKII 1064 

nm laser scanner. The flight altitude was 300 meters and the test 

area consisted of the Espoonlahti boat harbour and beach. The 

Topeye instrument recorded the entire waveform. Four of the 

targets (8%, 16%, 50%, and 70%, see also Fig. 1) were 

measured during these flights (Kaasalainen et al., 2007b). 

Another TopEye MK-II campaign occurred at the same site in 

December 2006, where the 5%, 20%, 26%, and 40% targets 

were measured. Four targets (5%, 16%, 40%, and 70%) were 

also measured at the Nuuksio flight campaign (14-15 May 

2006). The data were acquired at the altitude of 1097 m with the 

Optech ALTM laser scanner. The most important parameters of 

all the flight campaigns are summarized in Tables 1 and 2. 

 

 
 

Figure 1.  Four of the brightness calibration targets arranged for 

airborne laser measurement in Espoonlahti, Dec 2006. Each 

target is 5x5 m in size. 

 

Location & Date 

 

Instrument Wavelength 

(nm) 

Altitude 

(m) 

Sjökulla  Jul 05 Optech  1064 200 

Nuuksio May 06 Optech  1064 1097 

Espoonlahti Aug 06 Topeye  1064 300 

Espoonlahti Dec 06 Topeye  1064 100  

200 

300  

500 

700 

 

Table 1. Summary of some laser scanner flight parameters from 

different calibration flight campaigns. See also Table 2. 

 

Altitude Tarp 5 % Tarp 20 % Tarp 26 % Tarp 40 % 

100 m 702 645 413 1679 

200 m 280 237 251 125 

300 m 62 85 325 402 

500 m 11 14 13 17 

700 m 18 18 95 73 

 

Table 2.  Number of sample points at the Espoonlahti Dec 2006 

campaign. The intensities were then sampled as an average of 

the entire set of points for each tarp. The hits near the edges of 

the targets were excluded (i.e., if there was a significant change 

in intensity in the vicinity of a data point, it was interpreted to 

be near the edge of the target and excluded). 

 

2.2 Validation Measurements in the Laboratory 

Laboratory measurements are the only means of correcting the 

directional effects from backscattered laser intensity, which 

have been found to be common and affect substantially to the 

lidar intensity. They also provide an accurate reference for the 

intensity measurement. The laboratory laser instrument has been 

constructed to operate in the similar illumination/observation 

geometry as in laser scanning (i.e., exact backscatter where the 

source and detector light paths coincide). The instrument (Fig. 

2) comprises a 1064 nm Nd:YAG laser (wavelength similar to 

most airborne scanners), and 16-bit monochrome CCD-camera, 
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which is a commonly used detector in laboratory (laser) 

measurements in, e.g., optical physics (Yoon et al., 1993). More 

details on the laboratory experiment are found in (Kaasalainen 

et al., 2007). We averaged five 3-second images for each target. 

The backscattered laser intensities were measured from the 

CCD images by means of standard photometric techniques. 

 

 
 

Figure 2.  The laboratory laser measurement. The laser beam is 

reflected into the sample from a plate beam splitter (top left) 

and observed through the beam splitter with the CCD camera 

mounted above the instrument. Neutral density filters and a 

quarter-wave (λ/4) plate are used to avoid saturation of the 

detector and to scramble the linear polarization of the laser, 

respectively. 

 

 
 

Figure 3.  The FARO terrestrial laser scanner measuring a 4-

step (12%, 25%, 50%, and 99%) Spectralon reflectance 

calibration plate (Labsphere Inc.). 

 

The reflectance of a calibration target must be independent of 

the measurement technique and instrument, i.e. the relative 

intensities measured in different campaigns must be in 

agreement. To test this, we carried out laboratory reference 

measurements with the 785nm FARO LS HE80 terrestrial laser 

scanner. The scanner uses phase angle technique for the 

distance measurement with the accuracy of 3-5 mm and 

360°×320° field of view. The detector of the FARO scanner is 

not optimized for intensity measurement: there are 

modifications in the detector that affect the intensity, e.g., a 

brightness reducer for near distances (<10 m) and a logarithmic 

amplifier for small reflectances. These all required an extensive 

and systematic distance and reflectance calibrations, which were 

carried out in the laboratory using the test targets and a 

calibrated 4-step Spectralon reflectance panel (see Fig. 3). We 

also made experiments for the calibration of distance and 

incidence angle effects (e.g., Kukko et al., 2007) and found the 

most suitable laboratory measurement distance to be about 1 m 

for brightness measurements. 

 

3. RESULTS AND DISCUSSION 

3.1 Comparison of laser intensities 

The most important feature that makes a target suitable for 

intensity calibration is that its relative intensity is independent 

of the measurement system, i.e., the instrument, flight altitude, 

etc. To investigate this, we present a comparison of the relative 

intensities of the test tarps from different measurements in Table 

3. The intensities of the 20% and 50% target are presented 

relative to the 70% target. It appears that the reflectances are 

generally well reproduced, but occasional deviations occur, 

because of random (laser) measurement errors (such as the 

saturation of the detector) and the contamination of the target 

itself due to, e.g., weather conditions. Furthermore, the angle of 

incidence turns out to be a crucial factor in laser intensity 

(Kukko et al., 2007) and causes variation in the measured 

intensities, which must be taken into account in surface models 

and intensity calibration. There is also a wavelength difference 

between FARO (785 nm) and the other measurements (1064 

nm), which affects the relative intensities. There is a decrease in 

intensity towards longer wavelengths (see Fig. 4), which 

partially explains the differences for the targets measured with 

the FARO. 

 

It is obvious that more data are needed for further testing and 

investigation of the materials most suitable for calibration, but 

these results indicate that the relative intensity calibration is 

possible by means of calibration targets. 

 

Measurement (date Test tarp (%) 

& flight altitude) 16/70 50/70 

Sjökulla, Jul 05, 300 m 0.24 0.69 

Espoonlahti, Aug 06, 200 m 0.37 0.72 

Nuuksio, May 06, 1097 m 0.21 0.58* 

Laboratory, 785nm FARO 0.25 0.89 

Laboratory, 1064nm Nd:YAG 0.23 0.73 

 

Table 3.  Comparison of the test target intensities from ALS 

flight campaigns and laboratory measurements. The intensities 

are scaled with the brightest (70%) target. *=The Nuuksio value 

is for the 40% target, implying a response of 0.66 for 50 % 

target (by interpolating the missing 50% value). (Also note that 

the corresponding 40%/70% value in Sjökulla measurements 

was 0.60.) 

 

 
Figure 4. Reflectance spectra of the brighness tarps, measured 

using a flashlight illumination placed right on top of each 

sample (i.e. the zenith) and the detector placed at about 30º 

from the zenith (Kaasalainen et al., 2005). The intensities are 

relative to the 99% Spectralon reference plate. The 785 nm 

(FARO) and the 1064 nm (airborne and laboratory) 

wavelengths are marked with vertical lines. 
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We also made a further experiment on the effect from different 

flight altitudes on the calibration. The results are from a Topeye 

flight campaign in Espoonlahti, December 2006. The 

intensities, scaled at 100 m altitude, and relative to the brightest 

target (40% at this campaign) at four different flight altitudes, 

are presented in Table 4 and Fig. 5. (The scaling to the 100 m 

altitude was done by means of multiplying the original intensity 

by the ratio of the squared distance and the squared reference 

distance (100 m). The result was then divided by the squared 

atmospheric transmittance calculated with the MODTRAN 

software.) The intensity levels at different altitudes are in good 

agreement, i.e., the relative brightness calibration is 

independent on flight altitude. The relative results in Table 3 

and Fig. 4, on the other hand, imply that the calibration would 

be independent on the instrument.  

 

More data and a more accurate investigation on the effects of 

different parameters are needed to develop this concept into a 

well-established calibration procedure. 

 

Altitude Tarp 5 % Tarp 20 % Tarp 26 % 

100 m 0.14 0.55 0.68 

200 m 0.12 0.48 0.61 

300 m 0.13 0.47 0.60 

500 m 0.13 0.49 0.62 

700 m 0.13 0.48 0.61 

 

Table 4.  Espoonlahti Dec 2006: Test target intensities relative 

to the brightest (40%) target. (Scaled in 100 m altitude.) The 

intensities are plotted in Fig. 5. 
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Fig. 5. Comparison of the intensities of the Espoonlahti (Dec 

06) test targets (5%, 20%, 26%, and 40%) at different flight 

altitudes, scaled with the brightest (40%) target. (Cf. Table 4). 

 

3.2 Discussion and Future Work 

The calibration tarps provide a means to calibrate the laser 

scanner intensity in airborne flight measurements. They are, 

however, sensitive to errors caused by the weather effects, such 

as rain or wind changing the surface properties. The intensity 

signal from the wet or rugged and uneven surface may be 

substantially different from that of the flat and smooth or dry 

tarp. Because of these limitations, we are investigating the use 

of standard industrial gravels in brightness calibration. They 

would be less sensitive of, e.g., wind effects, and there could 

also be a possibility to calibrate, at some reduced accuracy at 

least, for the effects of moisture on their intensity. They have 

also proven more practical in field use because of easier 

logistics and mounting process, and their commercial 

availability. 

 

The prospects of in situ calibration of the brightness targets 

(with the aid of, e.g., portable laser instruments) during a laser 

scanner flight are also under study. This might enable the usage 

of natural targets (such as beach sands or roads) in the 

brightness calibration. Another alternative is to bring a sample 

of a natural calibration target into laboratory for more 

controlled reference measurement. More information is needed 

especially on the target reflectance properties in different 

weather conditions, especially because the actual targets to be 

calibrated also include complex vegetation surfaces. There is 

little information available on the laser-based reflectance 

calibration of vegetated surfaces, but strong directional effects 

have been found in the backscattered intensity of, e.g., forest 

understorey (Kaasalainen and Rautiainen, 2005). 

 

In May 24, 2007, the European Spatial Data Research 

(EuroSDR) approved the proposal of the Finnish Geodetic 

Institute and the Technical University of Vienna to develop a 

practical ALS intensity calibration method for national mapping 

and cadastre agencies and companies during 2007-2008.  

 

3.3 Applications 

The intensity calibration procedure has applications in, e.g., the 

utilization and processing of the data from full-waveform lidars 

(which have recently become common) into calibrated 

backscatter cross-sections. This would offer a possibility of 

classifying the data based on the shape of the returned laser 

pulse and the cross-section amplitude, and thus facilitate the 

development of more accurate digital terrain models and more 

effective classification of targets. The calibration technique will 

also enhance the methods of monitoring and mapping of forests 

(e.g. tree growth), construction, and agriculture. There are also 

prospects for environmental change detection and monitoring, 

such as snowmelt or snow/glacier albedo variation, hydrolgical 

processes and climate change. 
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ABSTRACT: 
 
Automated detection and 3D modelling of objects in laser range data is of great importance in many applications. Existing 
approaches to object detection in range data are limited to either 2.5D data (e.g. range images) or simple objects with a parametric 
form (e.g. spheres). This paper describes a new approach to the detection of 3D objects with arbitrary shapes in a point cloud. We 
present an extension of the generalized Hough transform to 3D data, which can be used to detect instances of an object model in laser 
range data, independent of the scale and orientation of the object. We also discuss the computational complexity of the method and 
provide cost-reduction strategies that can be employed to improve the efficiency of the method. 
 
 
 

1. INTRODUCTION 

Automated extraction of objects from laser range data is of 
great importance in a wide range of applications. Reverse 
engineering, 3D visualisation, industrial design monitoring and 
environmental planning are a few examples of the applications 
that require 3D models of objects extracted from images or laser 
range data. A 3D model provides an abstract description of the 
object, which can be processed and visualised more easily and 
efficiently. The process of object extraction consists of two 
main tasks. The first task is detection, in which the presence of 
an object in the data is verified, and its approximate location is 
found (usually by labeling the data points that belong to the 
object). The second task is modeling, where the detected object 
is represented with a 3D geometric model that is most adequate 
in terms of such criteria as accuracy, compactness, the domain 
of the object and the application requirements. The detection 
step plays a key role in the successful modeling of the object. If 
the object is properly detected in the data, the modeling can be 
carried out more reliably and accurately.  
 
Existing approaches to the detection of objects in range data 
can be divided into two major categories: data-driven 
approaches and model-driven approaches. Data-driven 
approaches are mainly based on segmentation (Khoshelham, 
2006; Rottensteiner and Briese, 2003; Sithole, 2005), clustering 
(Filin, 2002; Vosselman, 1999) and classification (Forlani et 
al., 2006; Oude Elberink and Maas, 2000). While these 
methods have been commonly applied to the laser range data of 
2.5D surfaces, their application to more complex 3D scenes is 
not always possible. For instance, in laser range data of 
industrial installations many objects are partially occluded and 
data-driven methods fail to correctly detect these objects in the 
data. Model-driven approaches, on the contrary, are more 
robust in the presence of partial occlusion, since they 
incorporate some form of knowledge about the shape of the 
object. The object model can be represented, among other 

representations, as a set of voxel templates (Greenspan and 
Boulanger, 1999) or spin images (Johnson and Hebert, 1999), 
which are matched against the data or as a set of parameters that 
mathematically define the object. In the latter case, Hough 
transform (Duda and Hart, 1972; Hough, 1962) has been used 
to determine the model parameters as well as the data points 
that belong to the object (Olson, 2001).  
 
The application of Hough transform is restricted to simple 
objects that can be represented with few parameters, such as 
planes, spheres and cylinders. Vosselman et al., (2004) describe 
a Hough-based method for the detection of planes and spheres 
in a point cloud. Rabbani (2006) developed an extension of this 
method that can be used for the detection of cylinders. Figure 1 
demonstrates the application of Hough transform to the 
detection of cylinders in a point cloud. As can be seen, the 
curved parts joining the cylinders have not been extracted 
because these parts cannot be expressed in parametric forms 
with few parameters. 
 
This paper concentrates on the detection of 3D objects with 
arbitrary shapes in a point cloud. The objective of this paper is 
to develop a new extension of Hough transform, which can be 
used to detect instances of a complex object model in laser 
range data, independent of the scale and orientation of the 
object. 
 
The paper has five sections. Section 2 provides an overview of 
the standard and generalized Hough transform as applied to 2D 
images. In section 3, the principles of the 3D generalized 
Hough transform is described. A discussion on the 
computational complexity of the method is presented in section 
4. Conclusions appear in section 5.   
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2. AN OVERVIEW OF THE STANDARD AND 

GENERALIZED HOUGH TRANSFORM 

Hough transform is a well known method for the detection of 
objects in 2D intensity images. The standard Hough transform 
is applicable to objects with an analytical shape such as straight 
lines, circles and ellipses; whereas, with the generalized Hough 
transform any arbitrary curve can be detected in a 2D image. 
The following sections briefly describe the standard and 
generalized Hough transform.  
 
2.1 The standard Hough transform 

The idea of Hough transform for detecting straight lines in 
images was first introduced by Hough (1962). In the original 
Hough transform, a straight line is parameterized as y = mx+b 
with two parameters m and b. According to the number of 
parameters, a 2D parameter space is formed in which every 
point in the image space corresponds to a line b = -xm+y. A set 
of image points that lie on a same line y = mx+b in image space 
correspond to a number of lines in the parameter space, which 
intersect at point (m, b). Finding this intersection point is, 
therefore, the basis for line detection in Hough transform. The 
parameter space is realized in the form of a discrete 
accumulator array consisting of a number of bins that receive 
votes from edge pixels in the image space. The intersection 
point is determined by finding the bin that receives a maximum 
number of votes. 
 
In addition to straight lines, Hough transform has been used to 
detect also other analytical shapes, such as circles and ellipses, 
in 2D images.  The underlying principle for the detection of 
other analytical shapes is the same as for the straight line 
detection, and is based on constructing a duality between edge 
pixels in the image and object parameters in the parameter 
space. The dimensions of the parameter space, however, vary 
with respect to the parameterization of the object. 
 
2.2 The generalized Hough transform 

Ballard (1981) proposed a generalization of Hough transform to 
detect non-parametric objects with arbitrary shapes in 2D 
intensity images. In the generalized Hough transform, the object 
model is stored in a so-called R-table format. An arbitrary 
reference point is selected for the object, and for every pixel on 
the object boundary the gradient direction as well as the length 
and direction of a vector connecting the boundary pixel to the 
reference point are computed (Figure 2). The gradient 
directions, φ, serve as indices in the R-table to look up the 

length, r, and direction, β, of the connecting vectors. Table 1 
illustrates a general form of an R-table. 
  

Table 1: R-table 
Point φ r 

0 0 (r, β)01 - (r, β)02 - (r, β)03 - … 

1 ∆φ (r, β)11 - (r, β)12 - (r, β)13 - … 

2 2∆φ (r, β)21 - (r, β)22 - (r, β)23 - … 
… …  

 
The reconstruction of the object model from the R-table is 
straightforward: 
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where (xc, yc) and (xp, yp) are respectively the coordinates of the 
reference point and a point on the boundary of the object. For 
the detection of the object model in the image, however, the 
coordinates of the reference point are not known. A 2D 
accumulator array is, therefore, constructed with the two 
parameters of the reference point as the axes. At every image 
edge pixel the gradient direction is obtained and then looked up 
in the R-table. The corresponding sets of r and β values are 
used to evaluate Equation 1, and the resulting xc and yc values 
indicate the accumulator array bins that should receive a vote. 
Once this process is complete for all edge pixels, the bin with 
the maximum vote indicates the reference point, and the edge 
pixels that cast vote for this bin belong to an instance of the 
object in the image. 
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Figure 2: Parameters involved in the generalized Hough 
transform. 

Figure 1. Detection of cylinders in a point cloud using Hough transform (from Rabbani (2006)). The curved parts 
joining the cylinders cannot be extracted using this method. 
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The generalized Hough transform can also be used to detect a 
rotated and scaled version of a model in an image. This is 
achieved by supplementing Equation 1 with a scale factor and a 
rotation angle, and the parameter space is expanded to a 4D 
accumulator array. The peak of the accumulator array 
determines the scale and rotation parameters in addition to the 
coordinates of the reference point, although at the price of a 
higher computational expense. 
 
2.3 Modifications to Hough transform 

Several modified variations of the Hough transform have been 
proposed to improve the performance of the method. 
Illingworth and Kittler (1988) provide a survey of these 
methods. Duda and Hart (1972) suggested a modification of the 
standard Hough transform by substituting the original slope-
intercept parameterization of straight lines with a polar, angle-
radius, parameterization. The polar parameterization leads to a 
bounded parameter space, unlike the original parameterization, 
and is, consequently, more computationally efficient. They also 
showed that standard Hough transform can be used to detect 
more general curves in an image. Gradient weighted Hough 
transform, as appears in Ballard’s generalization, was first 
introduced by O’Gorman and Clowes (1976). The derivation of 
edge orientation information imposes very little computational 
cost, but greatly increases the efficiency of the method. Other 
methods that have been shown to improve the performance of 
Hough transform include Adaptive Hough transform 
(Illingworth and Kittler, 1987), Hierarchical Hough transform 
(Princen et al., 1990), and Randomized Hough transform (Xu et 
al., 1990).  
 
3. EXTENSION OF GENERALIZED HOUGH 

TRANSFORM TO 3D DATA 

In this section we present an extension of the generalized 
Hough transform to 3D data. The method will be referred to as 
3D GHT in the subsequent parts of the paper. The 3D GHT 
follows the same principle as generalized Hough transform as 
outlined in Section 2.2. The main difference is that the gradient 
vector is replaced with a surface normal vector. The normal 
vectors can be obtained by triangulating the surface of the 
object or by fitting planar surfaces to small sets of points in a 
local neighbourhood. Vectors connecting each triangle to an 
arbitrary reference point are stored in the R-table as a function 
of the normal vector coordinates. A normal vector is 
constrained to be of unit length and is, therefore, defined by two 
orientation angles, φ and ψ, as depicted in Figure 3. A 
connecting vector is defined by two orientation angles, α and β, 
as well as its length r. These parameters can be derived from the 
coordinates of the reference point and the object boundary 
point: 
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This formulation results in a 2D R-table where all the 
connecting vectors, r, are stored in cells whose coordinates are 
the orientation angles of the normal vectors. Figure 4 
demonstrates how such a 2D R-table is constructed. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4: Storing r vectors in a 2D R-table. 

 
The reconstruction of the object model from the R-table is 
carried out by extending Equation 1 to 3D: 
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where α and β denote the orientation angles of the vector that 
connects a point p to the reference point c. For the detection of 
the 3D object model in a point cloud the three coordinates of 
the reference point are unknown parameters. Thus, the 
equations given in (3) are rearranged so as to express the 
unknown parameters as functions of the known variables: 
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Having obtained the object model in the form of the R-table, an 
algorithm for the detection of instances of this model in a point 
cloud can be outlined as follows: 
 

1. Construct a 3D accumulator array with the three 
parameters of the reference point as the axes; 
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Figure 3: Parameters involved in the 3D GHT method. 
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2. Compute the normal vector for every point in the point 
cloud and look up r vectors at coordinates (φ, ψ) of the 
2D R-table; 

3. Evaluate Equation (4) with the corresponding sets of r, α 
and β values to obtain xc, yc and zc; 

4. Cast a vote (an increment) to the accumulator array bin 
corresponding to each set of xc, yc and zc values; 

5. Repeat the voting process for all the points in the point 
cloud; 

6. The bin with the maximum vote indicates the reference 
point, and the 3D points that cast vote for this bin belong 
to an instance of the object in the point cloud. 

 
In practice, the object appears in range data with an arbitrary 
rotation and scale. To account for the additional rotation and 
scale parameters, Equation (4) is modified as: 
 

rMMMpc ... xyzs+=  (5) 

 
where                  ,                   ,                                                    
s is a scale factor and Mx, My and Mz are rotation matrices 
around x, y and z axis respectively. The incorporation of a scale 
factor and three rotation parameters results in an expansion of 
the Hough space to seven dimensions. To evaluate Equation 5 
and cast votes for the accumulator bins, a 4D space 
circumventing the entire range of scale factors and rotation 
angles must be exhausted. This implies that the crude 
application of the 3D GHT method to object detection can be 
very expensive. Therefore, cost-reduction strategies such as 
adaptive, hierarchical and randomized voting schemes are of 
great importance in the 3D GHT algorithm. 
 
 

4. IMPLEMENTATION ASPECTS 

The 3D GHT method as described in Section 3 is 
computationally expensive when the object appears in data with 
an arbitrary scale and rotation with respect to the model. The 
development of a cost-reduction strategy is thus the main 
challenge in the application of 3D GHT. In general, the 
execution time of Hough transform is more dominated by the 
voting process rather than by the search for a peak in the 
accumulator. In the absence of arbitrary scale and rotation, the 
number of required operations in the voting process is O(M), 
where M is the number of points in the dataset. Thus, a 
desirable cost-reduction strategy must aim to reduce the number 
of points that are involved in the voting process. Randomized 
(Xu et al., 1990)  and probabilistic (Kiryati et al., 1991) 
variations of the Hough transform work based on a random 
selection of a small number of data points, and are, therefore, 
suitable options for controlling the computational cost of the 
voting process.. 

 
In the presence of arbitrary scale and rotation, a 4D subset of 
the parameter space circumventing the entire range of scale 
factors and rotation angles is exhausted during the voting 
process. Consequently, the number of operations required in the 
voting process is O(M*N4), where N is the number of intervals 
along each axis of the accumulator array. Clearly, a desirable 
cost-reduction strategy in this case must concentrate on the N4 
factor. The adaptive Hough transform (Illingworth and Kittler, 
1987) reduces the number of intervals along axes since it begins 
with a coarse-resolution parameter space and increases the 
resolution only in the vicinity of the peak. The randomized 
Hough transform (Xu et al., 1990) also provides an efficient 

strategy to reduce the number of bins that receive votes in the 
parameter space. In the randomized voting, instead of working 
with one point at a time, a number of points sufficient for the 
computation of all parameters are selected from the data. Once 
all the parameters are computed, only one bin in the 
accumulator array receives a vote. In the case of a 3D object 
with seven parameters, a set of three points must be selected 
from the data at each time. These points along with their 
respective r vectors form nine equations of the form given in 
Equation 5, which can be solved for the seven parameters. 
Thus, for each randomly selected set only one vote is cast for a 
bin in the 7D accumulator array. 
 
 

5. CONCLUSIONS 

In this paper we presented an extension of the generalized 
Hough transform to detect arbitrary 3D objects in laser range 
data. The procedure of storing a 3D model in a 2D R-table was 
demonstrated, and a method for the detection of instances of the 
model in a point cloud, based on a voting process, was 
described. It was discussed that the voting process can be 
computationally expensive in the case that the object appears in 
data with an arbitrary scale and rotation with respect to the 
model. The employment of a voting process based on the 
randomized Hough transform was, therefore, suggested to 
reduce the computational cost of the method. 
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ABSTRACT: 

 

A terrestrial laser scanning survey has been performed on a forest reserve site. This paper represents the processing of the dataset. 

Two new methods have been developed for tree positioning, which is necessary for height calculation. One of them is the clustering 

method, the other is the so-called crescent moon method. The stems were modelled, as high as possible, by both methods. Two 

methods were tested for height estimation. One was a direct method based upon the Digital Surface Model; however a new method 

was developed to predict the tree-top based upon the modelled trunk and then the nearest local maximum was selected to that 

predicted point in the DSM. The other was an indirect method, where the modelled stems were described as paraboloids, and the 

heights were extrapolated. The accuracies of the methods were investigated by means of photogrammetric measurements based on 

very high-resolution aerial images. Both the clustering and crescent moon methods were appropriate in tree positioning and stem 

modelling. The height estimation based upon the DSM yielded good results. The extrapolation method was tested for European 

Larch only. The height in one-third of the cases was estimated by this method within tolerance. This method can be taken into 

consideration in the case of leaves on scanning in very dense, multi-storey forests. 

 

 

1. INTRODUCTION 

Sixty-eight forest reserves have been established in Hungary to 

protect and study natural or semi-natural forest ecosystems. 

Some of these reserves are selected for long-term investigations, 

and a permanent sampling network has been established. These 

network points are the geometric base for the collection of 

different data, such as the forest stand parameters, soil, 

vegetation and so on (Horváth et al. 2001). Single-tree mapping 

is not the main objective of these networks, but some of them 

include stem maps created with conventional instruments, and 

demand is growing for remote sensing methods producing 

single tree maps. Terrestrial laser scanning is an available 

opportunity to automate data acquisition in forests. Several 

researchers have reported promising results in applicability in 

forest inventories, e.g. Thies & Spiecker (2004), Aschoff et al. 

(2004).  

 

Forest Reserve 46, situated next to the Austrian border, was 

selected for this study. This reserve is a mountainous mixed, 

almost coeval forest stand with oak, hornbeam, beech, larch and 

spruce species. The spruces are dying of bark beetle disease.  

 

2. MATERIAL 

 

2.1 TLS data 

The terrestrial laser scanning (TLS) was carried out on a 

permanent sample plot, No. 05-11, in leaf-off state, in April 

2006 with a Riegl Z420i instrument. The configuration of the 

data acquisition can be seen in Figure 1. The scanning was done 

on the whole upper hemisphere at three different tilting angles, 

resulting in a vertical range from -40° to 90° with a 0.055° 

angle resolution. There were three further surveying points from 

which the surveys were done toward the sample plot at approx. 

180° horizontal, and from -40° to 90° vertical angles with a 

0.12° angle resolution. The data acquisition, the registration and 

the colour coding were performed by the surveying company. 

 

 
 

Figure 1.  The configuration of the TLS data acquisition 

 

 

2.2 Aerial images 

Very large scale, colour metric aerial photographs were taken in 

April 2005. The parameters of the photography can be seen in 

Table 1. 
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Parameters Value 

Date 2 April 2005 

Camera Wild RC-20 

Film type KODAK 

AEROCHROME 

III 

Focal length 153.1 mm 

FHAG ~600 m 

GSD 4 cm 

 

Table 1.  Parameters of the aerial photography  

 

3. METHODS 

3.1 Creating Surface Models 

The processing of the surface models was done based upon all 

four scanning positions (Figure 1). The first, and very important 

step, of the data-processing was the creation of the digital 

terrain model (DTM). The DTM was processed based upon an 

iterative, coarse to fine method. The points with the absolute 

minimum heights were selected within a cell, and then the first 

coarse triangulated irregular network (TIN) model was created. 

Then the heights relative to the previous DTM were calculated, 

and the points with the minimum relative heights were selected 

within a double resolution cell. In the raw data some points 

situated below the terrain surface were found to be faulty. A 

filtering method based upon the derivatives of the surface was 

applied, but some manual selections were also left. Finally the 

points situated on the terrain were selected and a TIN model 

was created. 

 

The processing of the Digital Surface Model (DSM) was 

simpler, because there were no points above the tree-canopy 

surface. An iterative coarse to fine method was applied here as 

well, but always the absolute highest points were selected 

within the cell. A minimum curvature raster model was 

interpolated from the ‘bumpy’ selected points. 

 

3.2 Stem modelling 

Two new methods, a statistical and a geometric approach, were 

developed to automatically detect the position of single trees, 

and furthermore the stem position and size at each height layer. 

Both modelling methods initiate the process with the 

determination of a tree’s position and diameter, based upon the 

selected points at breast heights (Figure 2). 

 

 

Figure 2.  The shape of the points at breast heights 

 

These processes were iterated for the selected points in slices of 

different height section above the terrain in both processes, but 

the processes differ from each other. The first approach was a 

statistical clustering method with a combination of a circle 

fitting by means of least square adjustments. The second 

approach was a geometric method utilising the crescent form of 

the points, which determines the position and diameter in one 

step. This method was called the crescent moon (CM) method. 

 

3.2.1 Clustering 

The point cloud was sliced for the clustering, with a surface 

parallel to the DTM from 1 to 18 metres above the ground by 1-

metre steps. The thickness of the slices were 10 cm up to 5 

meters, then it increased 10 cm for every 5 meters in elevation, 

because of the declining exposure of stems and the rising 

covering effect of neighbouring foliages. 

 

The measurements reflected from stems form groups at each 

height layer, as seen in Figure 2. Grouping points of a dataset 

based on a similarity criterion was possible with clustering 

methods. Points that were measured from the same stem were 

much closer to each other than points measured from different 

stems, and thus points that were reflected from the same cross-

section are represented by one cluster. The similarity was 

defined as the distance from the clusters’ centroid. The number 

of clusters was usually not known at the beginning of the 

process. However, an interval for the approximate cluster size 

could be given, because the minimal and maximal diameter of 

trees on the sample plot could be roughly estimated. Let dmax 

denote the maximal diameter for all of the clusters. In our work 

dmax was 1.0 m. That also means the minimal distance between 

stems has to be larger then dmax, otherwise the clusters will be 

merged (Figure 3). 

 

 
 

Figure 3.  Rules of clustering 

 

The algorithm worked iteratively. It read the points sequentially 

from a list. The actual point is labelled to the nearest cluster if it 

is closer than dmax, otherwise the point will be the centroid of a 

new cluster. At the end of the cycle the centroids were 

recalculated, and the clusters whose centroids were closer than 

dmax were merged. The iteration was continued until the changes 

in the coordinates of cluster centroids exceeded a given limit. 

After the last iteration the clusters containing fewer than 20 

measurements were deleted, because these were usually bushes, 

branches, or other small objects. 

 

3.2.2 Crescent Moon Method 

This method utilises the more or less regular crescent moon 

(CM) shape of the selected points (Király et al. 2007). Starting 

from the surveying point, the first step was to find the nearest 

point. Next a test was applied to find whether the point was a 

CM point or a single or scattered point. The routine calculated a 

fitting circle in the first case, based upon three cardinal points 

of the shape (Figure 4). The points were sorted by the 

horizontal angle as seen from the surveying point. The means 
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were calculated for the points situated at the minimum, the 

mean and the maximum angle with a tolerance for the three 

points defining the circle. 

 

 
 

Figure 4.  Fitting a circle to a crescent moon shape 

 

When the fitting was successful and the calculated diameter at 

breast height (DBH) was within a tolerance, then the tree’s 

position and DBH were recorded, the selected points – whether 

scattered or CM points – were deleted, and the routine was 

continued. 

 

The next step of this method was the slicing. This was applied 

downwards from breast height to the ground, and upwards from 

the breast height to as high as possible by 10-cm steps. Some 

constraints can be defined based upon the diameter difference 

and the centre translation. At times the fitting was unsuccessful 

because of noisy points or branches, but the method allowed us 

to leave these slices out, and to continue normally when a 

successful fitting occurred. 

 

3.2.3 Stem modelling from the fitted circles 

A model of the stems could be produced based upon the circles 

from either of the above-mentioned methods. The model was 

suitable for volume calculations, demonstrations and so on 

(Figure 5). 

 

 
 

Figure 5.  Two different representations of a stem model 

produced by the CM method 

 

3.3 Calculating tree height by Terrestrial Laser Scanning 

3.3.1 Stem form extrapolation 

The lower halves of the trunks were well defined by the several 

fitted circles in leaves-off conditions. So one can assume that 

the upper half could be extrapolated to estimate the tree height. 

The stems of trees can be approximated by a conoid-type 

geometric body of revolutions in general. For conoids the 

relative area of cross section is denotable with a power function 

of the relative length measured from the top. While the middle 

part of individual stems can usually be described as paraboloid, 

there is a linear relationship between the cross-section area and 

cross-section height that can be modelled with linear regression. 

The extrapolated value of the regression function at zero cross-

section area predicts the individual tree height (Figure 6). The 

area of cross sections can be calculated by fitting circles onto 

them. In our study site the larch (Larix decidua) had the longest 

stem without branches, so only these trees were sampled. In a 

pre-processing step the deformed or noisy clusters were 

eliminated by visual inspection. Only those trees were evaluated 

upon which at least 10 circles could be fitted. In the next step 

the regression model was established for each individual tree. In 

spite of the manual elimination of irregular clusters, extreme 

diameters sometimes occurred that erroneously affected the 

regression models. Therefore a second filtering step was 

necessary, where the detection of outliers took place during an 

iterative regression. In every step the standard deviation of 

residuals (Sxy) was calculated, and if there was a diameter with a 

larger residual than 2·Sxy then it was deleted. Finally the 

intersection with the abscissa was calculated. 
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Figure 6.  Estimated tree height versus cross section area 

 

3.3.2 Calculating tree height using DSM 

Tree height estimation can be done with the direct application 

of the digital surface model in the case of leaves-off scanning. 

The most problematic point in this method is finding the 

appropriate treetops on the DSM. 

 

Accepting that the tree-tops are local maxima in the DSM, the 

task is to find the appropriate local maxima on the DSM. An 

inverse watershed modelling was applied to detect the local 

maxima (Gougeon 1995, and Király 1998). 

 

The most obvious method is to find the nearest local maxima to 

the bottom of the tree in XY direction; however, this often 

causes mismatching. A new method was developed for 

predicting the treetop based upon the already modelled trunk. 

The modelled trunk was described as simple function of the 

heights. Then the predicted treetop was calculated based upon 

this function and the height estimated by the method above. The 

nearest local maximum was selected to that predicted point for 

the height calculation. 
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3.4 Reference Measurements 

3.4.1 Field Measurements 

A 30 m radius full circle sample with 208 trees was surveyed 

with total station around the sample point. Species and DBH 

were determined as attributes. 

 

3.4.2 Photogrammetric Measurements on aerial images 

The aerial images were evaluated using a digital 

photogrammetric workstation. The control points were 

measured by geodetic GPS surveys. The σ of the inner and 

relative orientations of the photos are less than 4 µm. The RMS 

of the absolute orientation is better than 0.3 m. The priory mean 

error of Z measurements is ~0.45 m. The 3D measurements on 

the oriented model were done manually. The measured larches 

were already grown green, so pointing the tip was usually 

effortless. 

 

4. RESULTS AND DISCUSSION 

The detection of the trees is a crucial point in automatic 

algorithms. There were 169 trees visible (or partly visible) from 

the sample point and 158 were sampled by more than 20 laser 

hits. 

 

The efficiency of the modified sequential clustering in stem 

detection was examined visually and by means of spatial 

analysis in GIS software. This method clustered 158 stems 

altogether. The stem points were successfully clustered in 142 

cases (89 %). The clustering merged two slight stems together 

in 4 cases. There were also 8 faulty clusters because of branches 

and noise. The main advantage of clustering is that it can handle 

point clouds from more than one scanning position in the same 

way. Although it is an easy and fast algorithm, it does not take 

account of shapes and is still unable to separate several stems if 

their outermost points are closer than the maximal cluster size. 

Noise reduction should be improved. 

 

The CM method found 196 single trees from 169 (‘116 %’), of 

which 166 were accurate (98 %). This method definitely over-

detected the branches and noise, but was often successful with 

less than 20 hits. The over-detection can be reduced by the 

checking of the successfully detected stems. The stem 

modelling was not so successful; approximately half of the 

detected trees were modelled to at least 10 metres. The branches 

and junctions are difficult to model automatically with this 

method. The prediction of treetops worked well; the right crown 

was found in more than 95 % of the cases. The height 

calculation of this method depends on the quality of the DSM. 

This is the point where the height estimation from extrapolation 

can play a role: e.g., summer scanning with a high veil layer.  

 

Twenty-seven larches were detected only with at least ten fitted 

circles along the stem, from thirty-nine total in the study area. 

The mean error of the prediction is 1.6 metres, which means 

significant underestimation. This presumably arises from the 

error of the model when the tops of trees are more conical than 

paraboloid formed. The main problem with the fitting cone is 

that accurate diameters above the two-third level of tree height 

are necessary. At such a height it is not possible to filter stem 

points with the methods presented here, due to the complexity 

of branches and crowns. We can say only in 9 cases (33%) that 

the accuracy of the prediction is comparable to the conventional 

field instruments, and gross errors often occurred (Table 2). 

 

ID H_photo H_DSM H_par Diff_DSM Diff_par 

7 25.1 26.8 19.5 1.8 -5.6 

11 25.7 26.8 25.0 1.0 -0.7 

13 28.8 29.5 21.9 0.7 -6.9 

20 26.1 28.9 25.6 2.7 -0.5 

23 25.1 28.1 21.9 3.0 -3.2 

24 27.2 27.4 30.5 0.2 3.3 

25 26.6 28.2 18.8 1.6 -7.8 

34 25.3 25.0 16.4 -0.3 -8.9 

43 22.6 24.2 27.6 1.6 5.0 

47 26.7 26.9 25.1 0.2 -1.6 

53 26.5 27.3 22.3 0.8 -4.2 

56 28.7 30.6 29.6 2.0 0.9 

63 28.3 28.9 28.7 0.5 0.4 

82 29.0 27.6 23.7 -1.4 -5.3 

91 24.4 26.2 24.0 1.8 -0.4 

93 28.1 28.3 23.8 0.1 -4.3 

97 27.3 28.1 19.6 0.9 -7.7 

99 31.1 28.1 25.6 -3.0 -5.5 

100 24.8 25.7 23.0 1.0 -1.8 

104 26.1 26.1 21.0 0.0 -5.1 

108 28.8 28.7 24.8 -0.1 -4.0 

111 27.3 26.3 25.0 -1.0 -2.3 

134 25.5 26.2 25.3 0.7 -0.2 

137 28.0 27.6 25.9 -0.5 -2.1 

143 26.9 27.4 33.1 0.6 6.2 

156 27.9 27.7 24.8 -0.2 -3.1 

202 28.1 27.2 29.2 -0.9 1.1 

Min    -3.0 -8.9 

Max    3.0 6.2 

Mean    0.5 -2.4 

RMSE    1.4 4.4 

 

Table 2.  Results of the different height calculations 

 

5. CONCLUSION 

Two new methods were developed for positioning tree trunks 

automatically, and these methods are also suitable for 

positioning and measuring the slices of the stems. The right 

locations and directions are essential for height estimation. Both 

methods proved their suitability. 

 

Height calculation based upon the DSM is not novel, but the 

algorithm predicting the tree top based upon the stem model is. 

It worked very well, although the method should be improved 

for curly trunks. Irrespective of the precision of the tree top, the 

accuracy of this method is based upon the accuracy of the DSM. 

The data acquisition in our study was adequate for DSM 

generation, but this is not always the case. Therefore, a new 

method was created calculating the height based upon the 

extrapolation of the stems. The accuracy of this method is not 

really adequate for practical tree height determination at this 

stage. With more precise filtering the upper third part of the 

stem should be sampled and an additional body of revolution 

(e.g., a cone) should be fitted. 
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ABSTRACT: 
 
The REIN algorithm makes use of the redundancy in lidar point cloud to generate bare ground DEM and vegetation canopy nDSM. 
The influence of the input lidar point density on the DEM precision and consequently also on the nDSM precision in the context of 
REIN have been analyzed in a rough-relief submediterranean karstic forested site. Different lidar point densities were simulated by 
thinning the density of the basic lidar dataset by factors of 2, 4, and 8. The DEMs and nDSMs were calculated separately from entire 
dataset and from the thinned lidar data. Strong smoothing effect of lidar data thinning was found in the study area both for DEM and 
nDSM. Based on the preset minimum precision criteria, the three highest point densities (i.e., 2.71, 5.43 and 10.85 last and only 
returns per m2) may be used for DEM generation in the study area, and the two highest point densities (i.e., 8.29 and 16.56 of all 
returns per m2) may be used to generate the nDSM. A coarser DEM raster resolution than 1 m is advised for all the lidar point 
densities except the highest one. 
 
 

                                                                 
*  Corresponding author 

1. INTRODUCTION 

Since nineteen-nineties the 3D representations of the bare 
ground relief under the forest canopy and of the forest canopy 
itself have been often captured and modeled using aerial laser 
scanning. Digital elevation models (DEMs) have been extracted 
from lidar data using a number of different approaches (e.g., 
Axelsson 2000, Kraus and Pfeifer 1998, Pfeifer et al. 2001, 
Sithole 2005, Vosselman 2000). Some of them were compared 
in Sithole and Vosselman (2004). Lidar DEMs are utilized 
among others in forest road construction and in archaeological 
studies. By subtracting the DEM from the corresponding forest 
DSM (digital surface model of the forest canopy) the nDSM 
(normalized DSM) can be computed, reflecting the relative 
forest vegetation heights. The nDSM are utilized, e.g., to detect 
tree tops and to analyze forest canopy closure and forest stand 
structure. 
 
The REIN (REpetitive INterpolation) algorithm used in this 
study to extract the DEM and consequently the nDSM, was 
presented in detail in Kobler et al. (2007). Briefly, REIN is 
especially applicable in steep, forested areas where other 
filtering algorithms typically have problems distinguishing 
between ground returns and off-ground points reflected in the 
vegetation. REIN is applied after an initial filtering (Figure 1a) 
of the point cloud, which involves removal of all negative 
outliers and removal of many, but not necessarily all, off-
ground points by some existing filtering algorithm (e.g., using 
the morphological filtering, Vosselman 2000). REIN makes use 
of the redundancy in the initially filtered point cloud (FPC) in 
order to mitigate the effect of the residual off-ground points. 
Multiple independent random samples are taken from the initial 
FPC. From each sample, ground elevation estimates are 
interpolated at individual DTM locations (Figure 1b). Because 
the lower bounds of the distributions of the elevation estimates 
at each DTM location are almost insensitive to positive outliers, 
the true ground elevations can be approximated by adding the 

global mean offset to the lower bounds, which is estimated from 
the data (Figure 1c). While other filters behave 
deterministically, always generating a filter error in special 
situations, in REIN, because of its random aspects, these errors 
do not occur in each sample, and typically cancel out in the 
final computation of DTM elevations.   
 
As the REIN algorithm makes use of the redundancy in the 
initially filtered point cloud, the input lidar point density has an 
influence on the DEM precision and consequently also on the 
nDSM precision. These influences have not yet been analyzed 
specifically in the context of REIN algorithm, so it is the aim of 
this study to estimate the influences of lidar point density on (1) 
the precision (i.e., spatial detail) of DEM extracted in a 
submediterranean karstic forested relief using the REIN 
algorithm, and on (2) the precision of the corresponding nDSM. 
 
 

2. LIDAR DATA AND STUDY AREA DESCRIPTION 

The study area (Figure 2) measures 400 m (E-W) by 250 m (N-
S), spanning elevations between 71 m and 233 m. It is located 
in the submediterranean region of Kras in western Slovenia, 5 
km from the Gulf of Trieste. The local Gauss – Krueger 
coordinates are: UL = 5394730, 5075590, LR = 5395130, 
5075340. The relief of the study area is rough with slopes 
ranging up to 60°, the average slope being 22°. The micro-relief 
features include rock outcrops up to 1 m in size, due to karstic 
limestone geology, a narrow gorge, and some remains of 
frontline trenches (the Doberdob section of the World War 1 
Isonzo front), which have been heavily vegetated since (Figure 
2c). The study area is covered by submediterranean coppice 
forest. The main tree species are Ostrya carpinifolia, Pinus 
nigra, Corylus avellana, and Ulmus minor, the latter being 
found especially within the gorge. The average tree height in 
the study area is 9 m with the highest trees exceeding 20 m, 
estimated from the nDSM, using maximum available lidar point 
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density. The vegetation canopy coverage CC is between 5% and 
91%, average value being 64%. CC was estimated as the ratio 
of the first and the only returns for each 10 by 10 sq. m area: 
CC = Nfirst / (Nfirst + Nonly) * 100. The discrete lidar data of 
the study area were acquired on April 27, 2005, after beginning 
of vegetation, as part of a larger campaign, covering 2 by 20 sq. 
km. The aerial laser scanning was performed by an Optech 
ALTM-3100 lidar mounted onto a helicopter. The ground speed 
was 120 km/h and flying height was 1000 m above ground. The 
lidar pulse rate was 100 kHz, scan frequency 30 Hz, scan angle 
?20°, beam divergence 0.3 mrad, and up to 4 measurements 
including the last one were collected for each pulse. The 
following lidar point densities were obtained within the study 
area: 5.15 first returns / m2, 0.56 intermediate returns / m2, 7.64 
last returns / m2, and 3.21 only returns / m2. 
 

 

(a) 

 

(b
) 

 

(c) 

 
Figure 1.  REIN algorithm is used after the initial filtering by 
any suitable deterministic filter. (a) The result of the initial 

filtering stage are ground points with few remaining unfiltered 
vegetation points and no negative outliers. Note the redundancy 

of ground points within the error band. The lidar point 
scattering within the error band is caused by measurement 

errors, grass and low herbal vegetation. (b) Repeated random 
selections of lidar points are used to build a set of TINs, out of 

which sets of elevation estimates are interpolated at the 
locations of DTM grid points. Note that also the remaining 

unfiltered vegetation points may become TIN nodes.  (c) DTM 
elevations are approximated by adding global mean offset to the 

lower bounds of elevation distributions, which are unaffected 
by the unfiltered vegetation points. 

 
 

3. METHODS 

Different lidar point densities were simulated by repeatedly 
thinning the density of the basic lidar dataset by a factor of 2, 
yielding the thinning factors of 2, 4, and 8, respectively. The 
points to be retained in the thinned dataset were selected by first 
ordering the points according to their respective GPS time-
stamps and then selecting every second point. This procedure 
was performed separately for each point type. The resulting 
point densities are presented in Table 1. Total point densities 
used to calculate DEMs (last returns + only returns) and DSMs 
(all four return types) are given in the bottom two lines of Table 
1. 
 

Data thinning factor Point density 
[m-2] 1 2 4 8
First 5.15 2.58 1.29 0.64
Intermediate 0.56 0.28 0.14 0.07
Last 7.64 3.82 1.91 0.96

Po
in

t t
yp

e 

Only 3.21 1.61 0.80 0.40
L + O 10.85 5.43 2.71 1.36

 F + I + L + O 16.56 8.29 4.14 2.07
 

Table 1. Lidar point densities obtained by thinning the basic 
dataset. The starting point density is given in the first column 
(thinning factor = 1). Total point densities used to calculate 

DEMs (last returns + only returns) and DSMs (all returns) are 
given in the bottom 2 lines. 

 
The DEMs, DSMs, and nDSMs were calculated separately from 
thinned lidar data corresponding to each thinning factor. The 
raster resolution of all the DEMs, DSMs, and nDSMs were 1 by 
1 sq. m, the grids thus measuring 400 columns by 250 rows. 
The lidar DEMs were calculated from the last and the only 
returns, using the REIN algorithm, as presented in Section 1. 
The following REIN parameter values (see Kobler et al. 2007 
for their detailed treatment) were used: 
 

• threshold slope = 60° for the initial slope filtering, 
• numsamples (i.e., number of repetitive TINs used to 

interpolate DEM elevations) = 20, 
• samplesize (i.e., percentage of lidar points used to 

build a TIN at each repetition) = 10% of the last and 
the only returns, i.e., 1.09, 0.54, 0.27, and 0.14 points 
/ m2 respectively, corresponding to thinning factors 
of 1, 2, 4, and 8 respectively. 

 
Each nDSM was calculated by subtracting the bare ground 
DEM from the corresponding forest canopy DSM. The 
elevation of each DSM pixel was estimated from the highest 
point of any type (first, intermediate, last, only) within each 1 
by 1 sq. m. The DEM and nDSM calculated from the non-
thinned dataset (DEM1, nDSM1) were used as the reference 
against which the “thinned” DEMs and nDSMs (DEMx, 
nDSMx; x = 2, 4, 8) were compared to estimate the decrease of 
precision due to lower point density. 
 
The DEM precision was estimated by statistics of the image 
differencing DEM1 – DEMx, and by visual comparison and 
evaluation of the difference images, and of the wireframe DEM 
renderings. The nDSM precision was estimated using 
percentage of the empty pixels, i.e., pixels containing no lidar 
points, and using statistics of the image differencing nDSM1 – 
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nDSMx, and correlations between pixel values of nDSM1 and 
nDSMx within the nonempty pixels. 
 
The minimum criteria for an acceptable DEM and nDSM 
precision were as follows: 

• vertical DEM standard error ≤ 15 cm 
• vertical DEM bias ≤ 5 cm 
• percentage of nDSM empty pixels ≤ 2 % 
• vertical nDSM standard error ≤ 150 cm 
• vertical nDSM bias ≤ 50 cm 
• vertical nDSM correlation to the reference nDSM ≥ 

0.9 
 

 (a) 

 (b) 

 (c) 

 (d) 
 

Figure 2. The study area measuring 400 m (E-W) by 250 m (N-
S) is shown (a) on an aerial orthophoto, (b) on a shaded forest 
canopy DSM, (c) on a shaded DEM of the bare ground (the 
latter being computed using the REIN algorithm), and (d) 

nDSM. The maps shown in (b), (c), and (d) were computed 
using the highest available point densities. The white rectangle 
in (c) denotes the detail rendered as wireframe model in Figure 

4. The DEM and the DSM have 1 m raster resolution. The 
average tree height in the study area is 9 m and the average 

forest canopy coverage is 64%. The average relief slope is 22°. 
There are several relief features to note in (c): the gorge on the 

left, the low manmade walls and footpaths appearing as 
crisscrossing lines, rock outcrops appearing as the rough 

surface, the abandoned agricultural terraces in the bottom part, 
and the jagged line on the right denoting the remains of the 

WW1 frontline trenches. 
 

4. RESULTS 

The DEM difference images DEM1 – DEMx are given in 
Figure 3 and the corresponding statistics are given in Table 2. 
The DEM subsets are compared as wireframe models in Figure 
4. The percentage of empty nDSM pixels due to data thinning is 
illustrated in Figure 6. The vegetation height images nDSM1 – 
nDSMx are given in Figure 5. The statistics of the differences 
and the correlations between nonempty nDSM1 and nDSMx 
pixels are given in Table 3 and Figure 7, respectively. 
 

 (a) 

 (b) 

 (c) 
-1 m and lower  +1 m and higher 

 
Figure 3. The elevation difference images due to data thinning: 
(a) DEM1 – DEM2, (b) DEM1 – DEM4, (c) DEM1 – DEM8.  

The differences are the greatest at sharp break-lines and at 
locations of pronounced micro-relief, e.g., low manmade walls, 

rock outcrops, or terraces (cp. Figure 2c). 
 
 

[m] x = 2 x = 4 x = 8 
Minimum error -2.34 -2.07 -1.98 
Maximum error 1.92 1.85 2.87 
Bias 0.02 0.03 0.05 
Standard error 0.11 0.13 0.17 
 
 
Table 2. The statistics for the difference images DEM1 – DEMx 

(x in table header) shown in Figure 3. 
[m] x = 2 x = 4 x = 8 

Minimum error -18.04 -18.62 -20.54 
Maximum error 1.63 1.55 2.13 
Bias -0.41 -1.39 -2.62 
Standard error 1.18 2.72 3.95 
 

Table 3. The statistics for the vegetation height difference 
images nDSM1 – nDSMx (x in table header) shown in Figure 5. 

Only the non-empty nDSM pixels were taken into account. 
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 (a) 

 (b) 

 (c) 

 (d) 
 

Figure 4. The wireframe DEM rendering of the DEM subset 
indicated in Figure 2c, as seen from the west. (a) DEM1 – based 

on lidar point density (i.e., last + only returns) 10.85 m-2, (b) 
DEM2 – density 5.43 m-2, (c) DEM4 – density 2.71 m-2, (d) 

DEM8 – density 1.36 m-2. The subset area is 80 m by 60 m. All 
wireframes are shown using 1 m raster. The main feature of the 

relief in the subset are the abandoned and overgrown 
agricultural terraces, which are increasingly smoothed out by 

REIN at greater data thinning factors. 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a)   (b) 

(c)   (d) 

(e)   (f) 
≥ -0.5 m  0 m 0 m   ≤ +0.5 m 

 
Figure 5. The vegetation height difference images: (a) and (b) 
nDSM1 – nDSM2, (c) and (d) nDSM1 – nDSM4, (e) and (f) 
nDSM1 – nDSM8. Due to different grayscale legends, the 
figures in (a), (c), and (e) in the left column highlight the 

negative difference values, and the figures in (b), (d), and (f) in 
the right column highlight the positive ones. Note the quasi-
random pattern of differences in the left column, and spatial 

coincidence of differences with the microrelief features in the 
right column. The differences at the empty pixels were set to 0. 

Compare also with Figure 2d. 
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Figure 6. Percentage of the nDSM empty pixels (pixel size 1 
m2) due to data thinning. Empty pixels are pixels containing no 
lidar points. Lidar point densities include all point types (first, 

intermediate, last, only). 
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Figure 7. Correlations between the vegetation heights in the 
reference nDSM and the “thinned” nDSMs. Only the non-

empty nDSM pixels have been taken into account. 
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5. DISCUSSION AND CONCLUSIONS 

The REIN algorithm was designed to generate DEM in steep 
forested relief, where other filtering algorithms typically have 
problems distinguishing between ground returns and off-ground 
points reflected in the vegetation. REIN takes multiple 
independent random subsets of the initially filtered point cloud, 
making use of the redundancy in dense point clouds. Lowering 
the density of the input point cloud also reduces the the size of 
the randomly selected point subsets that are used as nodes for 
TINs, generated in each repetition of REIN. This in turn affects 
the precision (i.e., spatial detail) of the generated DEMs, as 
illustrated in Figure 4. If one uses the DEM1 (i.e., the DEM 
based on the non-thinned point cloud) as the reference, this 
effect is mapped in Figure 3 and correspondingly quantified in 
Table 2. The largest elevation differences between DEM1 and 
the “thinned” DEMs (i.e., DEMS based on variously thinned 
point clouds) are found at sharp break-lines and at locations of 
pronounced micro-relief, e.g., low manmade walls, rock 
outcrops, terraces, and sharp depressions (Figure 3, Figure 2c). 
The standard deviation of the difference thus increases from 11 
cm for DEM2 to 17 cm for DEM8 (Table 2). There is also a 
slight increase of the bias (i.e., average difference) from 2 cm to 
5 cm for DEM2 and DEM8 respectively, which is due to a more 
biased estimate of REIN’s global mean offset calculation at 
lower point densities (Figure 1c). If a vertical DEM standard 
error of less than 15 cm, and a vertical DEM bias of less than 5 
cm, respectively (Table 2), are used as criteria for acceptable 
DEM precision, then all but the most thinned lidar point cloud 
densities are suitable for REIN-based generation of DEM in the 
study area of rough relief covered with dense forest. However, 
the visual evaluation of the wireframe models (Figure 4) 
suggests coarser DEM raster resolutions than 1 m would be 
advised for all the lidar point densities except the highest one. 
This is partly due to the decision of the analyst to use 
aggressive REIN filtering in this study in order to exclude all 
DEM errors related to positive outliers (i.e., vegetation points). 
Less aggressive REIN operating parameters would yield more 
detailed micro-relief even given less dense lidar point clouds, 
however at the cost of some remaining vegetation errors in the 
DEM. 
 
The smoothing effect of lidar point cloud thinning can also be 
observed in the resulting nDSMs. The comparison of nDSMs at 
different lidar point cloud densities reveals a strong influence of 
point density on the proportion of empty pixels, i.e., pixels 
containing no lidar points, where nDSM height has to be 
interpolated from the surrounding pixels. At a 1 m raster 
resolution, the number of empty nDSM pixels when low point 
density is used in the study area is proportionally much higher, 
compared to high point density (Figure 6). If 2 % are taken as 
the maximum allowable percentage of empty pixels, than only 
the two highest point densities should be used for the study area 
(considering all point types). Similarly as in DEM, the point 
cloud density influences the precision of forest canopy rendered 
in a nDSM. Because the vegetation height in a nDSM is 
calculated as the difference DSM – DEM, an additional factor 
in nDSM precision is also the underlying DEM precision. If one 
uses the nDSM1 (i.e., the nDSM based on the non-thinned point 
cloud) as the reference, these effects can be illustrated in Figure 
5. Note the quasi-random pattern of differences due to varying 
fidelity of forest canopy in the left column of Figure 5, and the 
spatial coincidence of differences with the the break-lines and 
with the micro-relief features, reflecting imprecision of the 
underlying DEMs, in the right column of Figure 5. These 
effects are quantified in Table 3, where the underlying DEM 

imprecision is reflected in the maximum differences (1.63 m for 
nDSM2 and 2.13 m for nDSM8), and the forest canopy 
precision is reflected in the minimum differences (-18.04 m for 
nDSM2 and -20.54 m for nDSM8). The strong effect of lidar 
point cloud thinning on nDSM precision can also be observed 
in decreasing correlation of the reference nDSM1 with the 
“thinned” nDSMs (Figure 7). If a vegetation height bias of ±50 
cm, a standard error of 150 cm, and a vegetation height 
correlation of 0.9, respectively, are taken as the minimum 
criteria for the nDSM precision, then only the two least thinned 
point clouds (i.e., thinning factors 1 and 2) are suitable for 
nDSM generation. 
 
In conclusion, the following can be summarized for the study 
area on the basis of the mentioned DEM and nDSM minimum 
precision criteria. The three highest point densities (i.e., 2.71, 
5.43 and 10.85 last and only returns per m2) may be used for the 
REIN-based DEM generation in the study area. Coarser DEM 
raster resolutions than 1 m is advised for all the lidar point 
densities except the highest one. However, note that a less 
aggressive REIN operating parameters would yield more 
detailed micro-relief given even a less dense lidar point cloud, 
at the cost of some remaining vegetation errors in the DEM. To 
generate a precise enough REIN-based nDSM, the two highest 
point densities (i.e., 8.29 and 16.56 of all returns per m2) may 
be used. 
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ABSTRACT: 

 

Glaciers are interesting phenomena to scientists, mountaineers and tourists. Glaciers have a great impact on the local economy, 

power generation and water supply. Furthermore, the behaviour of glaciers is influenced by climate variations, such as changes in 

temperature. Monitoring glaciers can therefore give valuable insight to glaciologists. Two aspects of glaciers that can be monitored 

are the delineation of a glacier and the crevasses within a glacier. In this paper it is presented how these two aspects can be detected 

automatically from Airborne Laser Scanning (ALS) data.  

The delineation of a glacier can be derived from ALS data by setting up a classification of the elevation model into the classes 

glacier and non-glacier surface. The smoothness, which is calculated from the ALS data, is used as classification criterion. 

Crevasses within the glacier can be detected by assuming that they are deviations from a regular glacier surface without any 

crevasses. Such a surface can be calculated with techniques from Mathematical Morphology. Given the assumption that crevasses 

have a V-like shape, the bottom of the crevasse and the two edges can be reconstructed from the point data. ALS data that was 

acquired at the Hintereisferner in Tyrol, Austria was used for testing the algorithms. Both the delineation of the glacier and the 

detection of crevasses give good results in the presented approach. However, the delineation of the glacier might fail if many 

crevasses cause exceptions to the smoothness criterion. Crevasses are sometimes not detected due to snow bridges. The quality of the 

reconstruction of crevasses is hard to assess due to the lack of reference data at the test location. Data acquisition with a higher point 

density and the acquisition of reference data for crevasses with Terrestrial Laser Scanning are recommended to independently check 

the result. 

 

 

1. INTRODUCTION 

Glaciers are sensitive indicators for climate change processes 

and have a significant impact on water supply in some regions. 

Several authors have shown that there is a relation between 

melting of glaciers and several climatologic parameters, 

including temperature (Oerlemans, 1994). Glaciers are also of 

great economic interest on a regional scale. In some regions 

hydro-power generation, drinking water supply and tourism rely 

heavily on the existence of glaciers. For these regions, a good 

understanding and monitoring of glaciers is of vital interest.  

 

For many decades, measurements of glacier length variations 

and glacier mass-balance have been made in differing ways with 

the purpose of monitoring the dynamics of the glacier. This was 

done by means of terrestrial measurements, or by using aerial 

based data such as photogrammetry. In the European Union 

funded research project “Operational Monitoring System for 

European Glacial Areas (OMEGA)”, several methods for 

glacier monitoring were explored, including Airborne Laser 

Scanning (Geist et al., 2005). Results from this project show the 

potential of ALS data for different applications in glacier 

research, thereby following up earlier attempts to utilise ALS on 

mountain glaciers (Baltsavias et al., 2001; Kennett and Eiken, 

1997; Rees, 2005). 

 

With the increasing availability of ALS data, automated 

approaches can be used to find specific properties of glaciers. 

Some of the information that can be extracted from the datasets 

is the extent of the glacier and the location of glacier crevasses. 

Crevasses are cracks in the upper surface of a glacier, formed by 

tension acting upon the brittle ice. They can be deep and thus 

dangerous for travellers on glaciers. Using ALS data to detect 

and reconstruct crevasses, will assist glaciologists to get more 

insight into ice dynamics.  

 

Research in other fields of application has already shown that 

ALS data can be used with a high degree of automation. Objects 

such as buildings (Vosselman and Dijkman, 2001) and trees 

(Kraus and Pfeifer, 1998) can be detected automatically from 

the data. However, automated surface analysis has not yet been 

applied to glacier surfaces. Climate change sensitive objects, as 

glaciers are, will be monitored more intensively in future, 

necessitating automated approaches. In this paper methods for 

the automatic delineation of glacier areas will be presented and 

compared. Subsequently, a method for detecting and finally 

reconstructing crevasses will be presented. 

 

 

2. DATA SETS 

The methods presented were tested on ALS data that was 

acquired within the OMEGA project. One glacier in this project 

was the Hintereisferner in Tyrol, Austria. It is a typical valley 

glacier located in the Ötztal Alps. Up to now, 13 epochs of laser 

scanning data are available for the Hintereisferner. These 

datasets were acquired between October 2001 and September 

2006 in different seasons of the glaciological year. The datasets 

acquired in the OMEGA project are documented in Geist and 

Stötter (2007). For the work in this paper, the data acquired on 
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August 12th 2003 (HEF9) and October 5th 2004 (HEF11) was 

used.  

 

The acquisition of these two datasets was performed with the 

Optech ALTM 2050 and the Optech ALTM 1225 respectively. 

HEF9 had a mean flying height of 1150 m. For HEF11 the 

average flying height was 1000 m above the surface. The 

minimum slant range was 460 m, while the maximum was 1980 

m. An average point distance of 0.8 m for HEF9 and 0.7 m for 

HEF11 was achieved. The vertical accuracy over a control area 

was σ = 0.095 m for HEF9 and σ = 0.075 m for HEF11. The 

full information of the points, i.e. values for first pulse, last 

pulse and intensity, is stored in a PostgreSQL database that can 

be connected to the GRASS GIS (Höfle et al., 2006). The other 

data sets were not yet added to the database at the time of 

writing. Additionally, the data was transformed to a 1 m 

resolution raster using a nearest neighbour interpolation method 

on the last pulse returns. The use of last pulse data increases the 

chance of getting points on the bottom of the crevasses. These 

resulting rasters form the input for the algorithms presented in 

the following sections.  

 

 

3. GLACIER DELINEATION 

For the detection and reconstruction of crevasses, it is required 

to limit the search area to the parts of a Digital Elevation Model 

(DEM) where a glacier can be found. This is done by 

automatically calculating the delineation of a glacier. 

Afterwards, the crevasse locations are detected and individual 

crevasses are reconstructed. The glacier delineation is not only 

of interest because it forms an important input to the crevasse 

detection algorithms, it is also an interesting result on itself. 

Delineations from repeated measurements can for instance be 

used to monitor the growth or decay of a glacier.  

 

In the presented method it is assumed that the measurements are 

organised as a rasterised DEM. An example of such a DEM 

representing a glacier and the surrounding mountains is 

presented in Figure 1. 

 

 
Figure 1. Shaded relief view of the tongue of Hintereisferner 

 

Determining the delineation is essentially a classification of the 

pixels into the classes “glacier” and “non-glacier”. The process 

of classification is well-known from Remote Sensing where it 

normally involves the analysis of multispectral image data and 

the application of statistically based decision rules. This spectral 

data is now absent, but other criteria can be developed for the 

decision rules: 

- Criterion 1: Smoothness 

- Criterion 2: Connectivity 

- Criterion 3: Hydrological constraints 

 

Criterion 1 is based on the surface characteristics as they can be 

derived from the elevation data. The ice surface that makes up 

the glacier is much smoother than the surface of the surrounding 

bedrock. There are several ways to find the smooth areas in the 

DEM. One method is to calculate the variance of the best fitting 

plane in a certain region of cells. The size of this region 

depends on some surface properties and the grid sampling 

interval. By setting upper and lower boundaries to the variance, 

the smooth areas can be classified as glacier. The result of this 

calculation is a new map Σ  which contains the variance of n 

surrounding points in each pixel Σ (r,c). The classification is 

now simply defined as applying a threshold t to this map: 
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Alternatively, smoothness can be determined by segmenting the 

area first. For smooth areas we assume that the first derivative 

of the surface remains constant. Areas with constant first 

derivatives can be grouped in segments. If these segments are 

large enough, the surface that belongs to them can be 

considered smooth. In image processing, the first derivative of 

the data is usually called the gradient z∇ . 

 

 

T

z z
z

x y

 ∂ ∂
∇ =  

∂ ∂ 
 (2) 

 

Numerically the gradient can be computed with the Sobel filter. 

Vosselman et. al. (2004) and Hoover et. al. (1996) treat 

different methods for segmentation in order to recognise 

structure in elevation models. One of the segmentation 

algorithms treated is the split-and-merge algorithm. For this 

work such a segmentation algorithm based on quad trees is 

used. The algorithm was designed by Gorte (1996) and has the 

advantage that it allows to segment on multiple bands 

simultaneously. In this case the x- and y-gradient images are the 

two bands on which the segmentation algorithm operates. After 

segmentation, we get a high number of different segments, 

which should now be classified in one of the classes ‘glacier’ 

and ‘non-glacier’. Only if a segment is relatively large, the 

surface can be called smooth. The problem of classifying glacier 

pixels can therefore be translated to the problem of selecting 

segments that are greater than a certain predefined area. By 

applying this classification method, the parts of the terrain that 

can be considered smooth are selected, resulting in the 

classification map C .  

 

Tests show that the results using the classification or the 

segmentation are practically equal. The size of differences 

observed fall within the grid resolution. In comparison to the 

variance based classification the segmentation method is 

computationally much more efficient because calculating the 

gradients requires less computational effort than fitting the 

planes through the data. However, when fitting the planes, slope 
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and aspect come as a side product, which may be interesting for 

other purposes. 

 

Criterion 2 involves the connectivity of pixels classified as 

glaciers surface. In glaciology a glacier is considered as one 

large connected mass, mainly consisting of ice. Using connected 

component labelling, the result from the classification on 

criterion 1 can be improved by applying the connectivity 

constraint. 

 

The last criterion that is used to improve the delineation is 

related to the hydrological properties of glaciers. Given some 

exceptional circumstances, glaciers generally flow downwards. 

Consequently, the notion of a catchment area also applies to 

glaciers. A catchment is the area in which all water, ice or snow 

flows to the same single outlet. Any pixel classified as glacier 

should therefore lie within the catchment area of the glacier. 

This criterion is therefore used to limit the extent of the glacier. 

Most GIS software contains methods to calculate such a 

catchment boundary from a DEM.  

 

In the end, the results of the three criterions can be combined to 

get the final delineation of the glacier. A further improvement 

of the glacier surface could be obtained by using intensity based 

segmentation. (Höfle et al., 2007) 

 

 

4. CREVASSE DETECTION 

4.1 Detection using Mathematical Morphology 

In order to extract crevasses from a DEM and visualise their 

locations, we try to create a flat surface with only non-zero 

values at crevasse locations. The part that has to be removed 

from the original DEM is the glacier surface as well as the 

elevation of underlying bedrock. The physical meaning of these 

elevations would be a glacier in which no crevasses were 

formed. In order to obtain this surface some techniques from 

mathematical morphology are used.  

 
Figure 2. Cross section of a glacier with the result of the 

closing operation 

 

Mathematical morphology is the theory of the analysis of spatial 

structures in data sets. It works like a convolution, but uses 

decision operators instead of multiplication. A morphological 

filter is used to detect or modify structural elements in the 

image, i.e. the morphology of the terrain. Provided that the 

structuring element is larger than the width of the crevasse, the 

closing filter will close all crevasses, effectively removing them 

from the glacier surface. Figure 2 shows a profile of the glacier 

after performing the closing filter. Having generated this surface 

of a glacier without crevasses, the closed surface is subtracted 

from the original data, an operation that is known as Black Top 

Hat. Applied to the DEM, the resulting dataset will be zero over 

the whole terrain, except for the locations with a crevasse. 

Given the DEM H , the Black Top Hat operation is now 

defined as: 

 

 ( ) ( )BTH φ= = −crevH H H H  (3) 

 

where ( )φ H  represents the closing operation over the DEM. 

Because the filter closes the crevasses horizontally, the filtered 

surface is not exactly a surface without crevasses because this 

will be a sloped surface. This problem was solved by detrending 

the data first, so that the horizontal closing gives the correct 

result. This detrending of the DEM, i.e. removing the large 

scale relief features, can for instance be done by top-hat filtering 

with a very large window size.  

 

 

4.2 Setting the structuring element size 

After detrending, the crevasse-less glacier surface should be 

perfectly flat. This means that a flat structuring element can be 

used, i.e. a structuring element where the shape is defined by 

the value ‘1’. The size of the structuring element can be seen as 

a definition of how long (or how far) the morphology in the 

structuring element holds. Often, the correct filter size is hard to 

determine. In this work a novel method is explored to formalise 

the structuring element size using a variogram of the terrain. A 

variogram is a measure of the variance between data as a 

function of distance. The theoretical variogram is defined as: 

 

 ( ) [ ]{ }2
1
2

( ) ( )d E h p d h pγ = + −  (4) 

 

Where p  is a point in the DEM, ( )h p  the height of that 

point and d  the distance from that point. Figure 3 gives the 

theoretical variogram based on the Gaussian model for a 

selected small part of the glacier surface. For comparison, the 

scatter- and experimental variograms are displayed as well. The 

values found after fitting the Gaussian model were a range of R 

= 369 m and a sill σ2 = 1.3 m2. 

 

From the theoretical variogram, measures of variance in the 

terrain can be related to the size of the structuring element. For 

instance, field measurements with a Terrestrial Laser Scanner 

on the Hintereisferner in the summer of 2006 showed that a 

variance of 0.06 m2 (0.25 m standard deviation) can be expected 

within a small area on the glacier. The variogram relates this to 

a structuring element size of 10 m in diameter. 

 

The shape of the structuring element depends on the anisotropy 

of the glacier. The amount of anisotropy can be determined by 

calculating a directional variogram. On a perfect isotropic 

surface, the variogram will be equal in all directions, yielding a 

disk shaped structuring element. On anisotropic surfaces, the 

directional variogram is used to form an ellipse-shaped 

structuring element. In this study only isotropic structuring 

elements were applied.  
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Implementing the variogram method in the detection software, 

means that an operator can select the amount of variance he or 

she assumes on a glacier surface without crevasses. The 

program then takes care of setting the right parameters for the 

filter. 

 

 
Figure 3. The fitted variogram of a part of the glacier surface 

 

 

5. CREVASSE RECONSTRUCTION 

Whilst the delineation of the glacier and the detection of 

crevasses were solely performed on height measurements that 

were interpolated to a grid, the reconstruction of crevasses will 

be done on the unprocessed point data. The point data for a 

crevasse is selected using the crevasse locations found in the 

previous step. A problem with reconstructing crevasses is the 

relative low point density of 1 point per square meter. This 

density is low compared to the average crevasse width of a few 

metres, which requires us to make some assumptions in the 

reconstruction. 

 

If it is assumed that crevasses have a regular V-like shape, it is 

possible to parameterise this shape into a geometrical object. A 

simple parameterisation would consist of parameters for depth, 

width and length. Unfortunately, crevasses are not that simple: 

they are usually bended and do not have a constant depth. 

Describing this in parameters is infeasible; therefore the 

crevasses will be reconstructed using a boundary representation. 

Taking the V-shape as a basis, we can build a crevasse with 

three lines: a bottom line and two upper surface edges. These 

three lines are connected at the beginning and the end of the 

crevasse.  

 

The bottom line is the first line to extract, using a process that 

consisting of two steps. The first step constitutes the 

determination of the horizontal position of the line. In the 

second step, z-coordinates are calculated for this line. It is 

unlikely that there are any laser points that lie exactly on the 

bottom line of the crevasse. The location of the bottom line 

must therefore be derived from the surrounding pixels. It can be 

assumed that the horizontal position of the bottom line lies in 

the middle of the crevasse. The program selects the lowest 25 

percent of the points in the crevasses and calculates the centre 

by fitting a spline though these points. After fitting, the program 

removes points with a large residual and tries to fit the line 

again, giving an improved position. 

 

The result of fitting the polynomial can further be improved by 

giving weights to the points used in the adjustment. Points with 

a large depth are given a higher weight in the adjustments, 

while points near the surface get a lower weight. We call the 

estimated polynomial coefficients x̂ , the weight matrix W  and 

the design matrix A . If the stochastic x an y coordinates are 

combined in the random vector y ,  the Least Squares 

Adjustment is given by: ( )
1

* *x̂ A WA A Wy
−

= . Then the 

weights are derived as: 

 

 

2
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max min
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− 
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Taking these weights in an iterative approach, gives the 

horizontal position of the bottom line. The next step is to assign 

elevations to this line. This can be done by taking the convex 

hull over the lowest 25% of the points, like depicted in Figure 

4. However, the reconstructed depth will be highly uncertain, as 

there might be snow in the crevasse, obstructing the bottom 

from the laser beam. The reliability will also depend on the 

sampling interval. 

 

 
Figure 4. Laser points in a crevasse. The proposed bottom line 

is drawn in red 

 

The remaining step comprises the modelling of the edge of the 

crevasse, the line where the glacier stops and the crevasse starts. 

For finding the edge, profiles of points were generated 

perpendicular to the bottom line that was found before. For the 

selected test crevasse, 152 profiles were made with an in-

between spacing of 2 meters. In each of these profiles, the 

locations of the left and right edge were searched 

independently.  

 

 
Figure 5. Cross section of a crevasse with generalisation result 

 

To find the crevasse edges in the profiles, an algorithm was 

developed, based on the Douglas-Peucker line simplification 

algorithm. This algorithm reduces the number of points until 
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only the most important points for the profile shape remain. 

These points are the start and end points of the profile, the two 

edges and the bottom. Figure 5 shows one of these profiles with 

the laser points (in blue) and the profile (in red) after applying 

the simplification algorithm. When all edge points are found in 

the individual profiles, a spline fitting algorithm is used to 

connect and smooth the points for the final edge lines. 

 

The points that are found on the bottom line and the two edge 

lines can be used for generating a Triangulated Irregular 

Network (TIN). From the TIN, it is possible to calculate values 

for the volume and shape of the crevasse. 

 

 

6. RESULTS 

The methods and algorithms described in the previous sections 

were implemented as a part of the LiSA toolbox, which is 

maintained by the University of Innsbruck. The program uses 

GRASS GIS (GRASS Development Team, 2006) for data 

storage and graphical output. The methods were tested on two 

epochs of the Hintereisferner ALS data. 

 

6.1 Glacier delineation 

The delineation of the Hintereisferner was determined by 

calculating the variance for all pixels in the DEM using the best 

fitting planes method that was presented in section 3. The 

window size used was 11 by 11 pixels with a resolution of 1 m 

per pixel. The surface variance that we find in the DEM is a 

combination of the measurement precision and the variation in 

the terrain: 
2 2 2

DEM ALS SURFACEσ σ σ= + .  

 

 
Figure 6. Area classified as glacier for the Hintereisferner 

DEM (black) and the manual delineation (red) 

 

If we only look to pixels on the glacier surface of the 

Hintereisferner, variance values up to 0.06 m2 were found, 

which implies a standard deviation of 0.25 m. This is 

approximately twice the specified laser scanning system 

variance 
2

ALSσ . This variance was used as the classification 

threshold t  for assigning pixels to the classes “glacier” and 

“non-glacier”. The boundary of the “glacier” class will give the 

delineation of the glacier. This delineation was further improved 

by smoothing it with a binary 3x3 morphological closing filter 

and intersecting it with the hydrological boundaries. Figure 6 

shows the resulting area that has been classified as 

Hintereisferner. 

 

The calculated delineation is a good representation of the real 

glacier extent. Only at some crevasse locations errors in the 

delineation occur. This is because the gaps at crevasse locations 

cause a higher surface variance, which is above the specified 

threshold value. Fortunately, these errors can easily be resolved, 

although they require manual intervention. One way to assess 

the quality of the delineation is to compare it with a delineation 

that was acquired manually by an experienced glaciologist. 

Comparing the computed delineation with the manual 

delineation gives an overall kappa value of 0.82. A comparison 

of the classified pixels in the manually made reference map and 

the classification result is given in Table 1 and Table 2. 

 

  Reference Map 

 Classes No Glacier Glacier 

No Glacier 19665553 1122511 
Classification 

Glacier 611266 5639118 

Table 1. Number of pixels assigned to each class. 

 

Classes Commission Omission Estimated k̂  

No Glacier 5.88 % 3.29 % 0.780 

Glacier 7.78 % 16.60 % 0.867 

Table 2. Confusion matrix of glacier classification. 

 

6.2 Crevasse detection 

In the previous sections a method was presented for detecting 

crevasses in a glacier using mathematical morphology. Within 

the boundaries formed by the glacier delineation, the crevasse 

detection algorithm can now be applied. The crevasse detection 

was applied to two laser scanning epochs of the Hintereisferner 

dataset, taken in different seasons. Figure 7 shows the detected 

crevasse locations on a part of the glacier in the summer season. 

In this figure only crevasses deeper than 0.4 meters are shown. 

 

 
Figure 7. Detected crevasse locations. 

 

From the variogram analysis it showed that a structuring 

element size of 10 m was most optimal for detecting the 

crevasses. In order to assess the quality of the crevasse detection 

one should consider the geometrical accuracy as well as the 

classification accuracy, i.e. how many crevasses are classified as 

glacier surface and how much glacier surface is classified as 
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crevasse? In the absence of any reference data, it was not 

possible to assess the quality of the results. However, by 

overlaying the detected crevasses over an orthophoto of the 

same time, a visual inspection was made. The visual inspection 

revealed that there were not crevasses found on the orthophoto 

that were missing in the automatic detection. The crevasse 

detection obviously gives wrong results when the crevasses are 

filled with snow or covered by snow bridges.  

 

 

7. CONCLUSION 

With the methods presented in this paper, it is shown that 

Airborne Laser Scanning is an accurate and reliable tool for 

monitoring glaciers and crevasses. Glaciers can be delineated 

from ALS data at an accuracy of the pixel size. The delineation 

used smoothness as well as some other classification criteria to 

find the outer boundaries of the glacier. This method takes the 

implicit assumption that glaciers can be recognised by a smooth 

surface. At crevasse locations this assumption doesn’t hold and 

therefore the method still needs human supervision. It is also 

possible to detect the location of crevasses from ALS data, 

provided that the glacier surface is not covered by snow so the 

crevasses are visible for the laser beam. Additionally the 

crevasse should be wider than the pixel resolution. It also 

requires the glacier delineation as input. 

 

Reconstructing crevasses is difficult because of the low 

sampling interval. The number of data points in the given 

dataset was too little to reliably reconstruct the crevasse without 

making assumptions. Additionally, specific situations, such as 

snow bridges, make the reconstruction even more unreliable. 

However, individually reconstructed crevasses do give a good 

indication of quantitative measures such as the volume and 

length of crevasses. Additionally, the area of the crevasses can 

be measured, even without reconstruction of its depth. For 

reconstructing crevasses, it is assumed that they are not covered 

by snow and have a V-like shape. In reality, some crevasses can 

have an A-shape, which can therefore not be reconstructed. 

 

The results of the developed program can be used for the 

applications identified in the introduction of this paper. Interest 

has also been shown in some other fields, such as cartography 

of glaciers. To increase automation, studies on other (types of) 

glaciers and with data acquired in different seasons are 

necessary. 
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ABSTRACT: 

 

An entire single-tree remote sensing (STRS) system was developed and tested in an inventory of timber resources of a 56.8-hectare 

forest. A semi-automatic approach with operator intervention is used in the system and it solves the essential tasks of STRS: 3D 

treetop positioning, height estimation, species recognition, crown width estimation and the model-based allometric estimation of the 

stem diameter.  Large-scale aerial imagery, an accurate DTM and semi-dense LiDAR data are required. The relatively low sampling 

density of the LiDAR, 6 points per m2 here, was considered appropriate for crown width estimation, when the 3D treetop position, 

tree height estimation and species classification are done first using the images. LiDAR-based crown width estimation was done 

using crown modeling, in which parametric crown instances are iteratively fitted with the LiDAR data. Image-based 3D treetop 

positioning and crown width estimation rely on multi-scale template matching (MSTM). Species recognition was done by visual 

photo-interpretation. In the experiment, a total of 59 circular 0.04-ha plots and 5294 trees were measured using STRS. The plots 

were investigated in the field and all STRS-trees and omission trees with a stem diameter of above 50 mm were mapped. The 

mapping was based on the use of the STRS-trees as geodetic control points. Redundant intertree azimuth and distance observations 

and a weighted least square adjustment of observations was used for the positioning of the omission trees. The commission error-rate 

was 2% in stem number and the omission trees constituted 10% of the total stem volume. Visual species recognition accuracy was 

95% in classes of pine, spruce, broadleaved and dead trees.  Height estimation accuracy of MSTM was 0.71 m or 4.7% in RMSE and 

it includes the DTM-errors. Stem diameter estimation RMSE was 29% and 20% when the crown widths were estimated using images 

and LiDAR, respectively. Underestimation of stem diameters was considerable, 3.4 and 1.0 cm. The inaccuracy of the stem diameter 

estimates degraded the accuracy of single-tree volume estimates and the results of estimating the proportion of assortments. 

Calibration of the STRS measurements and estimates are needed and this calls for field observations.  

 

 

1. INTRODUCTION 

1.1 Single-tree remote sensing from the viewpoint of 

forestry 

The conventional way of measuring trees is giving way to new 

remote sensing applications, which have different scales of 

observation from individual trees to stands. Different sensors or 

methods that encompass certain levels of observation should not 

be taken as exclusionary alternatives. An optimal hybrid forest 

inventory most likely combines different data sources and 

furthermore, adjusts to the information needs that vary between 

stands and forest owners. Trees constitute a natural target of 

observation and single-tree remote sensing (STRS) aims at 

substituting the field measurements of position, species, height, 

stem diameter and volume. Preferably, a STRS-based forest 

inventory would be carried out without field visits, as it is 

largely based on direct measurements of the dimensions of the 

trees. However, STRS estimates seem to be prone to bias - e.g. 

the use of LiDAR often results in an underestimation of tree 

heights. This means that in situ data may be needed, at least for 

calibration.  

The idea of photogrammetric STRS is old as early articles date 

back to the 1950s (e.g. Avery, 1958). Although the interest in 

the development has been extensive recently, especially in 

LiDAR-based methods (e.g. Persson et al. 2002), commercial 

STRS systems are essentially pending on the market. There are 

explicit difficulties to explain this. Scene complexity is an 

inherent aspect. Trees vary in crown size, shape and optical 

properties. Crowns are often interlaced. Occlusion and shading 

are present and result in omission errors. In boreal canopies, the 

trees with a relative height of above 0.5-0.7 are detectable in 

images and 0-12% of the total stem volume and nearly all short 

trees remain unseen (Korpela, 2004). The fact that small trees 

remain undetected is a serious shortage for many applications. 

The detectable trees constitute 90-100% of the commercial 

timber, which motivates for applications in timber cruising. 

Reliable species recognition is needed by foresters and remains 

currently unsolved. A satisfactory level of accuracy is above 

95% (Korpela and Tokola, 2006). This can be very difficult to 

achieve in for example temperate forests, where several species 

of one family or genus coexist in a stand. Foresters are 

interested in the current and future properties of the stems and 

the information on available timber assortments in a given area. 

Improved decisions are made in silvicultural and logging 

operations based on this information. This pays for the data. 

The estimates need to be accurate enough and the expenses of 

data acquirement and analysis need to remain tolerable. 

Objectives that are set for STRS systems should reflect these 

information requirements.  

  

1.2 Reducing the ill-posedness of STRS 

  Because of the complexity and ill-posed nature of optical and 

LiDAR-based STRS, it seems necessary to adopt the semi-

automatic approach and to use auxiliary information about the 

targets. Allometry, the knowledge on the relative sizes of plant 
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parts, is used in STRS, when the measurements of species (Sp), 

height (h) and crown width (dcrm) are used for estimating the 

stem diameter (dbh) with allometric equations (e.g. Kalliovirta 

and Tokola, 2005). They are imperfect and the inaccuracy, 

approximately 10% for dbh, defines an upper limit of attainable 

accuracy. Allometry varies between species and between trees 

in a stand as trees adapt to the intra- and interspecific 

competition and site conditions. The functioning and structure 

of trees are closely linked and it might be possible to improve 

the estimation accuracy of dbh, if, STRS could provide accurate 

measurements of the foliage density, foliage mass (Ilomäki et 

al., 2004) or crown length (Kantola and Mäkelä, 2004). Another 

aspect of allometry is to use the regularities for designing filters 

of rational STRS observations and for finding gross errors. In 

model-based STRS, allometry can provide initial 

approximations of the model instances (e.g. Larsen and 

Rudemo, 1998). In our STRS-system, the semi-automatic 

approach and allometric knowledge are used in solving the tasks 

of STRS. 

 

1.3 Objectives 

A set of semi-automatic STRS methods that use multiple images 

and airborne LiDAR data were developed to form an entire 

STRS system (Figure 1).  

 
Figure 1. A schematic diagram of the STRS system with the 

data, tasks and output.   

 

Allometric regularities are used for estimating the stem 

dimensions from STRS observations and for creating initial 

approximations of crown model instances. Following variables 

are measured by the system: i) Photogrammetric 3D treetop 

position using multi-scale template matching (MSTM), ii) 

photogrammetric tree height (h_foto) using the treetop position 

and a DTM, iii) LiDAR-based tree height (h_LiDAR), iv) 

species (Sp_foto) using visual image interpretation, v) image-

based crown width (dcrm_foto) using MSTM, vi) LiDAR-based 

crown shape and  width (dcrm_LiDAR) using least square 

adjustment of a crown model with the LiDAR point cloud and 

vii) stem diameter estimates (dbh_foto, dbh_LiDAR) using 

allometric equations. The system is described and a thorough 

performance test provided using a representative reference 

material from a systematic forest inventory. The rationales for 

our STRS system originate from the information needs in 

forestry and timber cruising in particular.  

2. METHODS 

2.1 Assumptions  

It is assumed that multiple accurately oriented large-scale, 

>1:15000, aerial images and a semi-dense, 4-8 pulses per m2, 

leaf-on LiDAR data are available. An accurate DTM is needed 

for reliable tree height estimation. Here, an experienced photo-

interpreter performed the visual species recognition. 

 

2.2 Semiautomatic photogrammetric 3D treetop 

positioning, height and crown width estimation using multi-

scale template matching 

Single-scale template matching has been successfully applied in 

2D and 3D treetop estimation of regular stands, where crowns 

show only moderate variation (Pollock, 1996; Larsen and 

Rudemo, 1998; Korpela, 2004; 2007a). The semi-automatic 

method that was presented in Korpela (2004; 2007a) and uses a 

single template per an aerial image was modified towards a 

more manual and reliable method. Instead of trying to position 

all treetops in an area, which fails when trees exhibit variation, a 

method that utilizes multi-scale template matching (MSTM) and 

operator assistance was developed. In it, the templates 

representing crown instances in the different views are copied 

from the real aerial images by first manually measuring the 3D 

treetop position of a model tree. Model trees are needed for as 

many species as there are in the area of interest. In the images, 

elliptic templates are defined by 3 metric parameters and the 

templates capture the upper part of the crown (Korpela 2004 p. 

#). For MSTM, these sub-images are copied, low-pass filtered 

and scaled into N=11 scales between 0.5 and 1.2 using bilinear 

re-sampling. For K images, this results in N×K templates. The 

semi-automatic 3D treetop positioning follows. A treetop is 

pointed manually in an image that is preferred by the operator. 

This image observation defines a reference image-ray, which is 

sampled over a range in Z (Figure 2).  

 
Figure 2. Illustration of the sampling of the reference image-ray 

over a search range in Z. The treetop position in the 

reference image is manually observed.  

 

The search range in Z is one parameter that is set by the 

operator. It depends on the height variation of the trees and it is 

always centered on the Z of the previously measured treetop. At 

each 3D point along the reference image-ray, normalized cross-

correlation (NCC) is computed in all images (along the epipolar 

lines) and templates (scales). The mean NCC of each scale is 

stored for each search point and the solution is the 3D point 

with the maximum NCC over all scales. Tree height (h_foto) is 

then given by the DTM by subtracting the terrain elevation from 

the elevation of the treetop. 
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Image-based crown width (dcrm_foto) estimation follows. The 

image with the smallest off-nadir angle is automatically selected 

for dcrm_foto estimation using MSTM. The 3D treetop position 

is mapped to this image and MSTM is tried in a small circular 

(r=0.4 m) image window near the projection point. The scale 

that gives the maximal NCC is used for the estimation of 

dcrm_foto: The crown width of the model tree, which is one of 

the 3 parameters that define the shape and position of the 

elliptic templates of the model tree, is multiplied by the scale 

factor to give dcrm_foto (Figure 3).  

 

 
Figure 3. Results of MSTM in 3D treetop positioning and in 

dcrm_foto estimation: a CIR-image triplet of a pine-

spruce stand. Solutions of twelve treetops are 

superimposed as yellow dots and the green circles 

depict estimates of dcrm_foto.  

 

2.3 Species recognition 

In tests with Vexcel Ultracam data (1:10000, GSD = 28 cm), it 

was found that the spectral values have considerable overlap 

between Scots pine, Norway spruce and birch. Within restricted 

areas in the front-lit parts of the images, the IR- and B-channels 

could potentially be used for species discrimination. The image-

position seemed to cause variation in the spectral values. Also, 

young and old trees of the same species had varying spectral 

characteristics. The automatic approach was therefore discarded 

and visual interpretation of Sp_foto was applied. In an image set 

with 60% forward and side overlaps that was available here, 

there were always 1-2 views, where the crowns were seen back-

lighted. These images are helpful for separating pine and spruce 

(Korpela et al., 2007). An experienced photo-interpreter carried 

out the visual interpretation.  

 

2.4 Crown width estimation using LiDAR and least square 

adjustment of parametric crown models 

A method was tried for LiDAR-based dcrm estimation, in which 

a parametric, non-linear crown model is iteratively fitted to the 

LiDAR point cloud (Figure 4; 5). The position and initial size 

and shape of the crown model are derived from the 

photogrammetric observations of Sp_foto, h_foto and the 3D 

treetop position. With these constraints, it was assumed that tree 

crown modeling is feasible even using rather a sparse LiDAR 

data. Crowns are approximated by a curve of revolution (1) that 

gives the crown radius r(hr) at a relative height hr∈[0..π/2] 

down from the treetop. The length of the crown is fixed to 40% 

of h_foto, which is a simplified approximation. The model is 

centered to the photogrammetric XYZ treetop position. If trees 

have only moderate slant, it can be assumed that the trunk is in 

the correct XY position. The crown model has three parameters 

and their initial values vary between species (Figure 4):  

  a 
a

)(h  h   a) r(h rr 3
2

1 sin +××=  (1) 

Parameter a1 sets the relationship between tree height and the 

maximum crown radius; a2 is a shape parameter and a3 gives the 

width of the top. If a3 ≠ 0, the top is flat. Using allometric data 

from the National Forest inventory of Finland (Kalliovirta and 

Tokola, 2005), conditional distributions of dcrm given h and Sp 

were derived. The relationship between dcrm and h was linear 

for all the three studied species: pine, spruce and birch. All 

broadleaved trees were treated as birches, as the proportion of 

other broadleaved trees is small in Finland. The conditional 

distributions were used in deriving initial values of parameter 

a1. Initial values for parameter a2 were set such that pine and 

spruce had a conical crown and birch a more round crown 

(Figure 4). At the start of the iteration, the crown instance was 

made to overestimate the expected crown envelope through a1. 

Initial value of a3 was 0.3 m for pine and spruce and 0.5 m for 

birch. 

 
Figure 4. Illustration of three crown models for 22-m-high trees: 

a birch, a pine and a spruce. Birches have a 30-50% 

wider crown given the same tree height. 

 

The LiDAR points that are inside the initial crown instance are 

collected and the relative height (hr) down from the top and the 

XY distance (r) from the trunk is computed. These observations 

are used in solving a1, a2 and a3 by a least square adjustment 

procedure. The highest DTM-normalized height of a LiDAR 

point alternatively inside the initial crown instance or inside a 

0.6-m wide cylinder is stored and used as height estimate 

h_LiDAR. dcrm_LiDAR is given by the adjusted model. 

 

 
Figure 5. A view of an image pair after crown modeling of a 

birch. The "trunk" that is known from 3D treetop 

positioning is drawn in the images as well as the 

adjusted crown model. dcrm_LiDAR = 4.5 m, h_foto 

= 22.1 m and the RMSE of the model fit was 0.43 

m. The texts give the image codes and the scale.  

 

2.5 Allometric estimation of stem diameter and sortiment 

volumes 

Equations by Kalliovirta and Tokola (2005) that predict dbh 

using h and dcrm for Sp i were applied: 

  

iii dcrmbhadbh ε+⋅+⋅=  (2) 

 

The models (2) assume maximal dcrm. Here, h_foto was always 

used as the h estimate and dbh was computed alternatively with 

dcrm_foto or dcrm_LiDAR giving two estimates for each STRS-

tree: dbh_foto and dbh_LiDAR. The first case represents a 
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situation, where no LiDAR data is available. Assessment of 

different assortments was made by simulating stem bucking into 

logs of saw wood and pulp wood. The calculation of tree and 

log volumes was done using polynomial stem taper curves by 

Laasasenaho (1982). They use Sp, dbh and h for predicting the 

stem form. The bucking algorithm used rules for allowable log 

lengths and the minimum top diameters. 

 

3. EXPERIMENT 

3.1 Study area, image and LiDAR data 

  The study site is a 56.8 ha forest in southern Finland (61º50’ 

N, 24º20’ E). The area consists of 25-70 and 100-130-yr-old 

stands. A systematic 50×50-m grid of 0.04-ha circular plots was 

established. Every 4th plot was selected and two additional 

plots giving a total of 59 plots and 2.36 ha (Figure 6). The 

image data is given in Table 1. Images were orientated in a 

hybrid bundle block adjustment (c.f. Korpela, 2006). For visual 

interpretation, the 5-channel Vexcel images were fused into 

CIR-images having a 9-cm GSD.  

 

 Image set 

Date July, 18 2004 August, 5 2006 

Time 11:25 09:27 

Scale 1:8000 1:10000 

Overlaps 60/60% 60/30% 

Sun elev. 45° 30° 

Camera RC30 UltraCam D 

Focal lenght 0.214 m 0.105 m 

Film-type CIR Kodak 1443 PAN, R, G, G, IR 

Film-size 23 × 23 cm 10 × 6 cm 

GSD 12 cm 9 cm PAN, 28 cm MS 

Table 1. Parameters of the two image sets. 

 

A LiDAR-DTM was estimated using TerraModeler software 

from leaf-on data from August, 2004 having 0.7-2 points per 

m2. Its accuracy was 0.27 m in a reference data of 8300 

tacheometer points (Korpela and Välimäki, 2007). A semi-

dense LiDAR from July 25, 2006 was available for tree crown 

modeling. An ALTM 3100 sensor with a pulse frequency of 100 

kHz, a flying height of 800 m, a scan frequency of 70 Hz, a scan 

angle of ±14°, a flying speed of 75 m/s and strip overlaps of 

55% were applied in the mission. The density of the data varies 

from 6 to 9 pulses per m2 and from 1 to 4 points per pulse. The 

data had a minimum range difference of 3 m between points in a 

pulse. The footprint was approximately 25 cm. 

 

3.2 STRS and field measurements 

In April 2007, 5294 STRS-trees in the vicinity of the photo-

plots were measured using the methods of sections 2.2-2.4. The 

work took 32 hours giving an average rate of 165 trees per hour. 

Each tree was measured for 3D treetop position, h_foto, 

h_LiDAR, Sp_foto and estimated for dcrm_foto and 

dcrm_LiDAR. From 3 to 6 images were used and the newest 

images from 2006 were included to reduce the underestimation 

of h caused by the 2-year mismatch of the 2004 images. There 

were always 6 images available on the computer screen for the 

visual species recognition into classes of pine, spruce, 

broadleaved and dead trees.  

 
Figure 6. The 5294 STRS-treetops superimposed in a BW leaf-

off topographic image from 1999. Forest roads 

define the borders of the 56.8-ha study area. The 

colors are: pine = red, spruce = green and 

broadleaved trees = blue. 

 

The STRS-trees were processed into plot-wise maps (Figure 7). 

Labels to be fastened to the stems were printed. These had 

information of the STRS measurements and a map of the 

neighboring trees with azimuths as seen from the tree in 

question. A GPS-receiver with 1-m accuracy was used for 

finding the plot center. From then on, the field investigators 

used the map, intertree azimuths and a precision compass for 

identifying the STRS-trees. Cases, in which the STRS-tree did 

not have a unique counterpart in the field, the STRS-tree was 

made into a commission error. In addition to the STRS-trees, all 

omission trees with dbh of above 50 mm were mapped and 

included in the reference data and measured for Sp and dbh and 

assessed for the state of the crown. Every 3rd STRS-tree and 

every 6th omission tree were measured for h and crown length. 

The h-observations were done with a Suunto-hypsometer and 

the standard error (SE) was assumed to be 0.8 m. It undoubtedly 

varied between investigators, tree species and height classes.  

 
Figure 7. A tree map of STRS-trees that the investigators had in 

the field. The circle depicts the 0.04-ha plot and the 

STRS-trees are represented by species-specific 

symbols. A LiDAR-DTM in 1-m resolution is drawn 

in the background.  
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The mapping of the omission trees used a geodetic procedure, 

where the STRS-trees served the role of control points (Korpela 

et al., 2007). The investigators selected 3-4 STRS-trees with 

vertical stems and an unambiguous apex. These trunks were 

assumed to have an XY accuracy of 0.3 m. Intertree azimuths 

(spatial resection) were measured with a precision compass and 

intertree distances (trilateration) with a laser distance meter. 

Using weighted least square (WLS) adjustment of control point 

coordinates, intertree distances and azimuths, the omission trees 

were positioned with an average accuracy of 0.25 m in X and Y. 

The SE estimates of X and Y were above 0.75 m in 4 of 1410 

omission trees. These trees had several gross observation errors 

and as the WLS adjustment could not be done in the field, it 

was arduous to track blunders. A leave-one-out technique was 

used to find cases with a single gross. Trees were also measured 

again. 

 

3.3 Results - Performance of tree detection 

2122 of 2205 STRS-trees were unambiguously found giving a 

commission error-rate of 3.7%. The commission error-rates 

were 1.8% for pine, 2.4% for spruce and 10.4% for the 

broadleaved trees. 

 
Figure 8. Results of tree detection. The curve gives the 

proportion (vertical axis, %) of correctly detected 

trees in 8 classes (0.3-1) of relative tree height.   

 

Broadleaved trees can have round crowns, which affects the 

photogrammetric treetop positioning and makes the field 

identification of STRS-trees difficult. Broadleaved trees may 

have fused crowns, or the top of the crown consists of several 

upright thick branches, which are easily misinterpreted as 

individual trees. Commission errors were detected in 29/59 

plots and the presence of broadleaved trees was associated with 

the number of commission errors. Since the detection of 

commission errors was a subjective process, it can be argued 

that a part of the commission errors were due to the prudence of 

the investigators. The true commission error-rate could only be 

examined by mapping the trees using tacheometry and by giving 

metric rules. From our field experience, we assumed that the 

true commission error-rate is approximately 2%. Omission trees 

constituted 38.8% of the stems (dbh > 50 mm) and 12% of the 

total stem volume. The omission error-rate in volume is thereby 

approximately 10%, if the “erroneous commission trees” are 

accounted for. (Figure 8).  

 

3.4 Results - Species recognition 

The species recognition accuracy was 93.7%, and if the 0-2% 

reference imprecision is accounted for, the accuracy is 

approximately 95% (Table 2).  

 

Field measured value 
Sp_foto 

Pine Spruce Broadl. Dead  All 

Pine 896 37 8 6 947 

Spruce 25 726 13 2 766 

Broadl. 16 22 354 0 392 

Dead 0 3 1 4 8 

All 937 788 376 12 2113 

Table 2. Error matrix of species recognition of the correctly 

found STRS-trees excluding 9 trees with tentative or 

missing reference measurements. Kappa = 0.90.  

 

3.5 Results - Height estimation accuracy 

The RMS-accuracy of h_foto was 0.71 m with an 

underestimation of 0.14 m (Table 3). Imprecision was largest in 

the broadleaved trees. Differences of up to 4 m were found. 

These may have resulted from errors in the 3D treetop 

positioning, the reference height observations or from errors in 

the DTM. h_LiDAR underestimated true h by 0.58 m (Table 4). 

The residuals of h_foto and h_LiDAR had an R2 of 0.78. It is 

evident that a large part of the correlation is a result of the 

measurement errors in the field data. The underestimation of 

h_LiDAR was largest with spruce, which is explained by the 

peaked crown form. 

 

Sp N Mean SD RMSE  RMSE-c 

Pine 322 +0.17 0.93 0.94 0.50 

Spruce 256 +0.19 1.07 1.08 0.73 

Broadl. 128 −0.02 1.30 1.30 1.02 

All 706 +0.14 1.06 1.07 0.71 

Table 3. Accuracy of height estimates h_foto [m]. RMSE-c was 

calculated by subtracting the expected 0.8-m SE 

error of the field measurements from the observed 

RMSE. Mean reference h of all trees was 15.6 m.  

 

Sp N Mean SD RMSE  RMSE-c 

Pine 322 +0.58 0.88 1.05 0.69 

Spruce 256 +0.69 1.01 1.22 0.92 

Broadl. 128 +0.36 1.15 1.20 0.90 

All 706 +0.58 0.99 1.14 0.82 

Table 4. Accuracy of the height estimates h_LiDAR [m]. 

 

3.6 Results - Stem diameter estimation accuracy 

The accuracy of dbh_foto estimates that were based on the use 

(2) of variables Sp_foto, h_foto and dcrm_foto was 28.7% in 

RMSE. The plot-level RMSEs were 15.8%-47.3%, which 

means that in the best cases the dcrm-foto measurement by 

MSTM had succeeded reasonably well. The 3.45-cm 

underestimation is most likely caused by the fact that the 

maximal crown width could not be seen in the images (Table 5). 

The estimates dbh_LiDAR that were predicted with models (2) 

using Sp, h_foto and dcrm_LiDAR, underestimated true dbh by 

1 cm (Table 6). The overall RMSE was 19.6% with plot-level 

values ranging from 12.1% to 35.4%. The average dcrm_foto 

was 2.1 m, while the mean of dcrm_LiDAR was 2.9 m, which 

explains the differences in dbh_foto and dbh_LiDAR.  

 

Sp N Mean SD RMSE  

Pine 945 +3.96 3.33 5.17 

Spruce 792 +3.24 3.08 4.47 

Broadl. 376 +2.58 3.60 4.42 

All 2113 +3.45 3.33 4.79 

Table 5. Accuracy of stem diameter estimates dbh_foto [cm]. 

Mean diameter of all reference trees was 16.7 cm. 
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Sp N Mean SD RMSE  

Pine 945 +0.73 3.12 3.21 

Spruce 792 +1.39 2.99 3.30 

Broadl. 376 +0.80 3.33 3.43 

All 211 +0.99 3.13 3.28 

Table 6. Accuracy of stem diameter estimates dbh_LiDAR [cm].  

 

3.7 Results - Volume estimation accuracy 

An RMSE of 60% was observed in the single tree volume 

estimates calculated with dcrm_foto. The plot-level RMSEs 

were 29.5%-108.1% (Table 6). The volume estimates that were 

based on the use of LiDAR in the estimation of crown width 

were more reliable. The RMSE for all trees was 46% and the 

plot-level RMSEs ranged from 24.6% to 101.4% (Table 7). 

 

Sp N Mean SD RMSE  

Pine 945 +82 102 131 

Spruce 792 +74 107 130 

Broadl. 376 +55 106 120 

All 2113 +74 105 128 

Table 6. Accuracy of single tree volume estimates [dm3] 

calculated using Sp, h_foto and dbh_foto and the 

taper curves by Laasasenaho (1982). Mean reference 

volume was 214 dm3. 

 

Sp N Mean SD RMSE  

Pine 945 +21 88 91 

Spruce 792 +36 100 106 

Broadl. 376 +24 94 98 

All 2113 +28 94 98 

Table 7. Accuracy of single tree volume estimates [dm3] 

calculated using Sp, h_foto and dbh_LiDAR.  

 

3.8 Results - STRS forest inventory  

Inventory method 
Variable 

STRS Field 

Standing stems, n 53137 64.8 % 82042 

Total volume, m3 9783 80.8 % 12110 

Saw wood, m3 3522 67.6 %  5212 

Pulp wood, m3 5926 94.6 % 6264 

Volume, Pine, m3 4511 86.8 % 5198 

Volume, Spruce, m3 3919 73.0 % 5372 

Volume Broadl., m3 1262 80.9 % 1560 

Table 8. Timber resources of the 56.8-ha forest with the STRS 

and field inventory. The STRS-results were 

computed using measurements of Sp_foto, h_foto, 

dcrm_LiDAR and dbh_LiDAR.  

 

The timber resources were computed for the 56.8-ha forest 

using both STRS and the field measurements (Table 8). The 

STRS inventory lead to an underestimation of volume by 

19.2%, which is explained by the omission errors (10 % in 

volume) and the 1-cm underestimation and 3-cm imprecision of 

the dbh_LiDAR estimates. An average STRS-tree had a dbh of 

16.7 cm and an h of 15.6 m. A 1-cm underestimation in dbh for 

such a tree results in a 10-% underestimation of volume. The 

inaccuracy of the dbh estimates affected especially the accuracy 

of saw wood and pulp wood volume estimates. When the dbh of 

a single tree reaches 17-19 cm, the stem can be cut to provide a 

single log of saw wood, which constitutes 50% of the stem 

volume. Because dbh_LiDAR was biased and, above all, 

averaged due to regression modeling (2), saw wood volume was 

underestimated as much as 32.4%. Averaged dbh estimates 

induce systematic errors in the volume estimates, because the 

relationship between dbh and the volume is non-linear. Only 

5% of the underestimation in saw wood volume was assessed to 

be due to omission errors, as the largest trees were measurable 

in the images (Figure 8). The rest of the underestimation, 27%, 

was due to the inaccuracy of dbh_LiDAR.  Pulp wood volume 

was underestimated by only 5.4%. The seemingly good result is 

fallacious and a result of errors in stem bucking, which 

overestimated the proportion of pulp wood and underestimated 

the volume and number of saw wood logs because of the bias in 

dbh_LiDAR. Thereby, the results of Table 8 suggest strongly 

that a calibration of the STRS measurements and model 

estimates is required to avoid large systematic errors in the total 

estimates. The smaller underestimation in the volume of pine 

(13.2%) in comparison to spruce and the broadleaved trees is 

mainly explained by the differences in the relative height of the 

detected STRS-trees and the height variation of the species. 

Pine and Silver birch are light-demanding and spruce is a semi-

shade-tolerant species. Also, the underestimation of dbh_LiDAR 

was largest for spruce.  

4. DISCUSSION 

The main result was that a STRS forest inventory was shown 

feasible, but that the results are subject to systematic errors that 

can only be eliminated with calibration. The STRS system 

provided the timber volume estimates per species and per 

sortiment, which is a must in a forest inventory. We 

demonstrated many difficulties that are inherent to STRS. 

Sampling, measurement and model errors all affected the 

results. Omission errors and biased measurements caused 

considerable systematic errors in the estimates of the timber 

resources.   The use of the allometric regression models results 

in averaged dbh estimates even with error-free measurements. 

These, although free from systematic errors, resulted in biased 

volume estimates because of the non-linear dependencies. In all, 

the allometric estimation chain needs improvement.   

 

The STRS measurements took 32 man-hours and the field work 

500 with an extra 80 man-hours of data recording. The ratio was 

1:18 between the two inventories. If larger photo-plots were 

used, less time per STRS-tree would have been needed, as the 

selection and measurement of the model tree in each plot was 

time-consuming. The costs should also include the image 

(~2€/ha) and LiDAR data (~3€/ha). Also, there was a high risk 

that no image data from 2006 was available because of bad 

weather. The weather risk is lesser with LiDAR and field work.  

 

Multi-scale template matching (MSTM) was accurate in treetop 

positioning and h estimation. However, up to six large-scale 

images and an accurate LiDAR-DTM were available. The 

RMSE of h estimates was 0.5 m for pine, 0.7 m for spruce and 

1.0 m for the broadleaved trees. The photogrammetric XY 

positioning accuracy was approximately 0.3 m, as the average 

σ0 was close to 1, when a 0.3-m a priori SE was applied in the 

WLS-adjustment of photogrammetric coordinates, intertree 

azimuths (SE = 0.03 rad) and intertree distances (SE = 0.1 m) In 

all, the field mapping method of the omission trees, in which 

the STRS-trees were used as control points was satisfactory. In 

dense stands, where broadleaved trees formed the upper canopy, 

the mapping become tedious and subject to errors. 

 

MSTM in near-nadir images for dcrm estimation resulted in 

badly biased dbh estimates with an RMSE of 29%. A plot-level 

RMSE of below 20% was observed in 7/59 plots. In first tests 

with the method (Korpela, 2007b), the accuracy of dbh 

estimates ranged from 16% to 21%, but the results were 
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obtained in well-structured stands and using images with a very 

low off-nadir angle. The technique needs further improvement. 

The use of synthetic templates should be tested (Larsen and 

Rudemo, 1998). The computation of NCC was done for gray-

scaled versions of the images. Better results may be possible 

using a combination of channels. Also, the system could learn 

from good and compatible measurements, where the LiDAR-

based estimates of h and dcrm are used to teach the system in 

the selection of better templates. The MSTM-based 3D treetop 

positioning algorithm was based on monoscopic observations 

by an operator and the process is slow. It might be possible to 

implement MSTM to find trees automatically. However, the 

very high computational costs of NCC need consideration. The 

3D search space for photogrammetric treetop positioning is 

accurately known, if LiDAR data is available. This was not 

exploited here and the LiDAR data could be used more effective 

by using the monoplotting principle (e.g. Baltsavias, 1996). In 

it, LiDAR data would be processed into a canopy surface model 

to be intersected by the reference (treetop) images rays. The 

search space could then be adjusted to the height variation 

measured by the LiDAR (c.f. Korpela, 2007a).  

 

The accuracy of the visual species recognition was 95% for 

classes of pine, spruce, broadleaved and dead trees. The 

achieved 95% classification accuracy is at the requisite level for 

Finnish forestry. However, in some areas a separation of the 

broadleaved trees at the species level would be needed. The 

automatic species recognition remains to be solved. Here, we 

see possibilities in the combined use of LiDAR and image data. 

 

The crown modeling procedure with LiDAR needs further 

improvement, although it resulted in a dbh estimation accuracy 

of 20% with 14/59 plot-level RMSEs of below 15%. Avoiding 

LiDAR points of neighboring trees to affect the modeling might 

be possible by constructing geometric filters that take into 

account the spatial pattern of trees, which is partially known 

from photogrammetric 3D treetop positioning. This would mean 

that the LiDAR-based crown modeling is done only after the 

tree map is attained. The dbh_LiDAR underestimated true dbh 

by 1 cm, because the dcrm was not measured correctly by the 

crown model. The LiDAR pulses do not seek their way to the 

tips of the branches and when LS adjustment is applied, the 

extent of the crown envelope is inherently underestimated. The 

nominal density of the LiDAR data was 6-9 pulses per m2 here - 

a lesser density may possibly suffice for crown modeling. 

 

Generalization of the results requires care. Most trees had 

peaked and uniform crowns. One experienced photo-interpreter 

was tested. The orientation of the images was exact and the 

image sets had a faultless match. Also, the LiDAR from 2006 

did not have XYZ offsets, which was examined using multi-

temporal large-scale images. Using network-RTK, a height 

offset of 0.18 m was detected in the LiDAR-DTM from 2004 

and corrected for. Performing such revisions is not feasible in 

practice. The stands were older than 25 years. In timber cruising 

young stands are less important, but in an inventory for forest 

management planning, they cannot be overlooked. 
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ABSTRACT: 

 

LIDAR systems have come to be extensively used in photogrammetry and mapping sciences. The accuracy of 3D information is 

mainly affected by navigational and system-dependent uncertainties, but also by the laser beam properties and the nature of the light 

interaction on the object surface. At the moment, the system-dependent sources of error are much better known than those arising 

from laser light interaction. In this paper, a simulation approach for scanning LIDAR systems is presented and discussed. Simulating 

light interaction on an object surface provides an opportunity to measure well-defined objects under controlled conditions. The 

simulated object remains unchanged over time, and when various sensor and system parameters are applied, it is possible to compare 

the 3D point clouds created. Furthermore, well-established simulation software makes it possible to study and verify future LIDAR 

systems and concepts.  

 

                                                                 
* Corresponding author.  

1. INTRODUCTION 

Airborne LIDAR systems have been extensively adopted for 

mapping purposes in recent years. Uses of laser scanning 

include digital elevation model (DEM) production (e.g. Kraus 

and Pfeifer, 1998; Pereira and Janssen, 1999; Axelsson, 2000; 

Reutebuch et al., 2003), building extraction (e.g. Brenner, 

2005; Haala et al. 1998; Hofmann et al. 2002; Hofmann, 2004; 

Hofton et al., 2000; Maas, 2001; Rottensteiner, 2003; 

Rottensteiner and Jansa, 2002; Rottensteiner et al. 2005; 

Vosselman, 2002; Vosselman and Süveg, 2001), and forest 

management (e.g. Naesset, 2002; Hyyppä et al. 2001; Persson et 

al. 2002; Yu et al. 2004; Matikainen et al., 2003). In these 

applications the algorithm development is usually based on data 

retrieved using commercial LIDARs. Consequently, mapping 

algorithms are often adapted to the laser data used. 

 

Earlier attempts at three-dimensional simulation modeling 

include modeling of the scanning angle effect in the 

measurement of tree height and canopy closure in boreal forest 

with an airborne laser scanner (Holmgren et al. 2003) and the 

establishment of optimal LIDAR acquisition parameters for 

forest height retrieval (Lovell et al. 2005). In these cases two 

assumptions are made: the simulated laser pulse is assumed to 

be a single ray without any divergence and the coarse objects 

simulated are assumed to be solid. In general, such simulation 

methods were useful, but the implementation was relatively 

simple. Thus, in Holmgren et al. (2003), the simulation method 

systematically overestimated the laser height percentiles by 2.25 

m since beam interaction, waveform, and threshold detection 

were not simulated. 

 

There are possible applications in which simulation together 

with good models for the sensors, target and beam interaction 

would provide further insights. Simulation may also supply 

answers to some questions, which are not properly understood. 

Optimization of the laser acquisition parameters is one feasible 

application area.. Opportunities for the use of waveform data 

has been long delayed due to the lack of experimental data. 

However, waveform data can be simulated with some accuracy 

(Filin & Csathó, 2000; Thiel & Wehr, 2004; Jutzi et al. 2005). 

Also, the capabilities of future laser instruments can be 

estimated using simulation and appropriate models. 

 

The quality of products derived from laser scanning is 

influenced by a number of factors, which can be grouped as 

follows: errors caused by the laser system (the laser instrument, 

GPS and INS) and data characteristics (e.g. first/last pulse, 

point density, flight height, scan angle, beam divergence), errors 

created during processing of the data (interpolation errors, 

filtering errors, errors caused by improper break-line detection, 

segmentation and smoothing of the data), and errors due to 

characteristics of the target (type and flatness of the terrain, 

density of the canopy above). By adding simulations to single 

data experiments, the effect of most of these errors can be 

estimated in a more reliable way than it is when an experimental 

approach is adopted. 

 

This article presents ideas and development of a simulation 

method for existing LIDAR systems, but also general user 

defined sensors are supported. The purpose of this work is to 

provide a tool for analyzing systematic properties of scanning 

LIDAR systems, and factors affecting the quality of the LIDAR 

end products. Utilization of the simulation method developed 

also aims at intensifying the algorithm development for specific 

mapping applications and waveform processing. A case with 

forest measurements is depicted in more detail. 

 

2. LASER SCANNING PRINCIPLE 

A laser scanner transmits a short laser pulse, typically 3-10 ns. 

This laser pulse, or beam, is transmitted in a certain direction to 

reach the object surface. The beam diverges from its nominal 

direction and creates a narrow conic shape, and thus the 

transmitted energy spreads over a larger footprint area. The 

reflections of the pulse also come from this footprint area and 

their intensity decreases towards the edges of the beam. 
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The illuminated footprint area may consist of a variable amount 

of surface materials at variable ranges and orientations. This 

affects the power and shape of the backscattered echo, or 

waveform, of the received signal. This situation is illustrated in 

Figure 1, which schematically depicts one laser beam and its 

reflection from a building. The different orientations and 

locations of the building surfaces cause sequential reflections 

from the building and ground. The amount of beam divergence 

from the nominal beam direction causes the decrease in 

accuracy in both the planar and height directions, since all 

echoes are considered to been reflected from the axis of the 

nominal beam direction. A good overview on the basic relations 

for the laser scanning can be found in (Baltsavias 1999). 

 

First Echo 

Last Echo 
 xl, yl, zl 

 xf, yf, zf 

Elevation errors 

Planar errors 

Laser beam 

GPS-IMU 

Beam nominal direction 

 
 

Figure 1. Principle of a LIDAR observation. Beam divergence 

causes the spread of a beam over the footprint area 

from which multiple echoes are collected. The 

nominal beam direction determines the final 3D 

position. 

 

Three basic scanning geometries are engineered for commercial 

airborne scanning LIDARs. These operate mainly in line, 

oscillating (sinusoidal or z-shaped lines) and elliptical 

geometries, all of which form a different point pattern on the 

ground. These general patterns are illustrated in Figure 2. The 

point density on the ground surface is determined by the field of 

view, pulse repetition rate and scanning frequency as the sensor 

overflies the area with a known velocity and direction and at a 

specified altitude. 

 

 
 

Figure 2. Scanning patterns for three basic measuring 

principles: A: Line, B: Oscillating, and C: Conic. 

 

Table 1 sums up some principal parameters of commercial 

airborne laser scanning systems, which are adopted in the 

simulation software. The main operational differences are in the 

pulse and scanning frequency, the scanning angle, the beam 

divergence and the pulse length. It is also expected that the 

shape of the pulse is different for each of the sensors. The 

parameter variability increases if the terrestrial scanners are 

taken into account, but here they are excluded. 

 

3. SIMULATION METHODS 

This section describes the basic implementations in the 

simulation software. The methodology includes emulation of 

the geometric properties of the scanner system, laser radiation 

and scattering on the target surface, as well as the signal 

waveform processing. 

 

A complete LIDAR simulator deals with platform and beam 

orientation, pulse transmission, beam interaction with the target 

surface, computation of waveform prototype, and eventually 

digitization of the waveform: 

 

• Platform and beam orientation – Controls platform 

movements and scanner operation according to the 

system and flight parameters. 

• Pulse transmission – Deals with the laser beam properties 

according to the beam angular divergence and the 

spatial distribution of the transmitted energy. 

• Beam interaction – Laser beam division into sub-beams 

and their interaction with the target surface are 

computed. Elevation, surface orientation, reflectivity, 

and distance from the beam center are considered. 

• Waveform – The echo waveform prototype is created by 

summing up the energy returned from different parts 

of the laser beam according to their range and surface 

orientation dependent reflectivity. Returned energy is 

collected by a telescope aperture. 

• Threshold detection and waveform digitizing – in this 

phase the echoes exceeding a given power threshold 

are detected. Recorded output echo waveform is 

created in digitization of the simulated echo prototype 

using system-dependent sampling interval and 

detection parameters. 

 

3.1 Scanning geomerties 

Airborne LIDARs typically have three basic scanning 

geometries, as shown in Figure 2. These are implemented into 

the simulation software. The other relevant system-specific 

parameters affecting the achieved scanning pattern, and thus the 

data coverage on the ground surface, are pulse frequency, 

scanning rate, scanning angle, and the along track velocity of 

the platform. 

 

One swath of a scanner consists of a certain amount of beams, 

defined by the ratio of pulse frequency and scanning rate, and is 

produced by rotation geometry around the origin of the laser 

scanner. The field of view of the scanner was divided according 

to the pre-set parameters to achieve the correct orientation for 

each beam in the ground coordinate system. Each single laser 

beam shot was modeled using multiple rays with uniform 

angular distribution around the center line of sight. The angular 

separation between adjacent rays, sub-beams, was chosen 

according to the flight altitude and surface model grid spacing 

in use. 

 

3.2 Pulse transmission 

The power distribution of the transmitted pulse can be 

approximated by a Gaussian as a function of time. The second 

element in the transmission sub-system controls the laser beam 

divergence, in other words, the laser footprint size at ground 
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Table 1. Characteristics of some commercial airborne laser scanning systems. 

 

Sensor Mode 
Scan 

Freq. 
Pulse Freq. 

Scanning 

Angle 

Beam Div. 

1/e2 

Pulse 

Energy 

Range 

Resolution 

Pulse 

Length 
Digitizer 

Optech 2033 Oscillating 0-70 Hz 33 kHz ±20° 
0.2/1.0 

mrad 
N/A 1.0 cm 8,0 ns N/A 

Optech 3100 Oscillating 0-70 Hz 33-100 kHz ±25° 
0.3/0.8 

mrad 
<200 µJ 1.0 cm 8,0 ns 1 ns 

TopEye MkII Conic 35 Hz 5-50 kHz 14°, 20° 1.0 mrad N/A <1.0 cm 4,0 ns 0.5 ns 

TopoSys I Line 653 Hz 83 kHz ±7.15° 1.0 mrad N/A 6.0 cm 5,0 ns N/A 

TopoSys II 

Falcon 
Line 630 Hz 83 kHz ±7.15° 1.0 mrad N/A 2.0 cm 5,0 ns 1 ns 

Leica ALS50 Oscillating 25-70 Hz 83 kHz ±37.5° 0.33 mrad N/A N/A 10 ns N/A 

Leica ALS50-II Oscillating 35-90 Hz 150 kHz ±37.5° 0.22 mrad N/A N/A 10 ns 1 ns 

LMS-Q560 Line 160 Hz <100 kHz ±22.5° 0.5 mrad 8 µJ 2.0 cm 4,0 ns 1 ns 

 

level. The size of the footprint on the ground is a simple 

function of the divergence angle and the flight altitude, or more 

precisely the range: 

 

2tan2 θ∆= zD ,            (1) 

 

where D is the beam footprint diameter, ∆θ is the beam 

divergence angle and z the distance to the ground surface. 

 

 
 

Figure 3. Intensity pattern of a 8 µJ Gaussian TEM00 pulse 

with a beam divergence angle of 1.0 mrad (1/e2) at 

range of 400 m. The resulting footprint diameter is 

approximately 40 cm. 

 

The intensity of a laser pulse is modeled using transverse mode 

TEM00, which gives one centralized Gaussian spot on the target 

surface. As it travels in the air, the laser-beam wavefront 

acquires curvature and begins to spread as follows: 
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where z is the distance propagated from the plane where the 

wavefront was flat, λ is the wavelength of light, w0 is the radius 

of the 1/e2 irradiance contour at the plane where the wavefront 

is flat, w(z) is the radius of the 1/e2 contour after the wave has 

propagated a distance z. Eventually attained energy per unit area 

is: 
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where I(r) is the intensity function, P the total energy, w the 

laser footprint radius measured between ± 2σ points, and r the 

distance from the centre of the laser beam. Thus, the energy 

decreases as a function of the distance from the beam centre 

leading to less energy returning from the outer parts of the beam 

than from the centre. Intensity pattern of a typical airborne laser 

scanner pulse is illustrated in Figure 3. 

 

The transmitted laser pulse is modeled by a predefined number 

of discrete rays. The returned energy is calculated using the 

intensity of the transmitted pulse at the range in question, the 

surface reflectivity and the area of interaction, which here 

depends on the beam sub-division parameters: 

 

( ) ( ) ( ) ArIRrEret 0θτ= ,          (4) 

 

where Eret is the returned energy, t is atmospheric transmission, 

R anisotropic surface reflectance at given angle of incidence θ, 

I0 pulse intensity at range r from the scanner, and A the 

receiving area of the scatterer. Surface reflectance R depends on 

the angle of incidence θ, and the type of the surface. Scatterer 

cross section area A was calculated using angular distribution of 

sub-beam rays. Each scatterer (ray intersection) is then summed 

to an echo waveform prototype. Finally, the recorded intensity 

is affected by the aperture of the receiver telescope. 

 

3.3 Scattering and attenuation 

The wavelength of the laser used affects the scattering from the 

object surface. This scattering can be assumed to be isotropic, 

but the anisotropy should be taken into account for better 

precision. Scattering anisotropy depends greatly on the surface 

orientation relative to the light source, and on the surface 
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properties (Nicodemus et al., 1977; Hapke et al., 1996; 

Sandmeier and Itten, 1999). 

 

Variation in the light scattering from different surfaces can be 

carried out by introducing different object types and incidence 

angle dependent scattering functions. Models introducing 

multiple scattering could also be considered. In this paper, the 

scattering was assumed to conform to the cosine of the angle of 

incidence. Laboratory measurements of backscattered intensity 

as a function of the angle of incidence using 1064 nm laser light 

have been performed for a set of natural and artificial surface 

types, and the data are being processed for description and use 

in a future paper. It is an interesting question, how much this 

kind of behaviour affects the accuracy of LIDAR range 

measurement. 

 

Atmospheric transmission is of little interest within this context, 

since it can simply be considered constant, and thus only adds a 

scale term to the simulated energy, not altering the shape of the 

recorded waveform. This should be taken into account when 

data acquired using different flight altitudes and possible 

wavelengths are compared. 

 

3.4 Waveform sampling 

The transmitted pulse was modeled as energy vs. time function, 

with known time interval sampling. For simulation purposes 

100 ps sampling was chosen to obtain the prototype echo 

waveform. This provides time sampling that is 5-10 times better 

than that provided by widely available scanners. 

 

Every sub-beam of a modeled laser beam results in a distance, 

or range, from scanner to target surface. Thus one beam results 

in a number of distance measurements. Ranges are converted 

into time units and sub-echoes are summed into a sum echo as a 

function of time according to their scattering angle dependent 

reflectance. By summing up all the sub-echoes we obtain a sum 

waveform, including approximated noise, at a given 100 ps 

sampling interval. This provides a high-resolution view of the 

target, which could be regarded as an approximation of its 

physical properties. 

 

The output echo waveform is then digitized from the higher 

resolution prototype waveform with a given system dependent 

sampling. By using the detector threshold, the information 

exceeding the selected noise level is found and digitized. This 

gives the first approximation for the point location, but more 

importantly captures the meaningful signal from the time slot. 

The recorded waveform is though more often analyzed in post 

processing, and could be used for more exact point extraction 

and range detection algorithm development. 

 

One of the most crucial factors for exact range determination is 

the echo detection algorithm applied (Wagner et al., 2004, 

Wagner, 2005). Since the length of the laser pulse is longer than 

the accuracy needed (a few meters versus a few centimeters), a 

specific timing of the return pulse needs to be defined.  

 

In a non-waveform ranging system, analogue detectors are used 

to derive discrete, time-stamped trigger pulses from the received 

signal in real time during the acquisition process (Wagner, 

2005). The timing event should not change when the level of 

signal varies, which is an important requirement in the design of 

analog detections as discussed by (Palojärvi, 2003). For full-

waveform digitizing ALS systems several algorithms can be 

used at the post-processing stage (e.g. leading edge 

discriminator/threshold, center of gravity, maximum, zero 

crossing of the second derivative, and constant fraction) 

(Wagner, 2005). 

 

The most basic technique for pulse detection is to trigger a 

pulse whenever the rising edge of the signal exceeds a given 

threshold (leading edge discriminator), which was also 

implemented in this first version of the simulation system. 

Although it is conceptually simple and easy to implement, this 

approach suffers from a serious drawback: the timing of the 

triggered pulse (and thus the distance measurement) is rather 

sensitive to the amplitude and width of the signal. If the 

amplitude of the pulse changes then the timing point also 

changes. The same applies for the center of gravity when 

computed over all points above a fixed threshold. 

 

More sophisticated schemes are based on finite differences of 

numerical derivatives (e.g. the detection of local maxima or the 

zero crossings of the second derivative) or, more generally, the 

zero-crossings of a linear combination of time-shifted versions 

of the signal. An example of the latter approach is the constant 

fraction discriminator, which determines the zero crossings of 

the difference between an attenuated and a time-delayed version 

of the signal (Gedcke and McDonald, 1968). Maximum, zero 

crossing, and constant fraction are invariant with respect to 

amplitude variations and therefore also, to some degree, 

changes in pulse width (Wagner, 2005). 

 

3.5 Surface and object models 

In this paper, the surfaces used for simulation were modeled as 

high-resolution rasters. A grid spacing of a few centimeters was 

used. The height resolution of the models was 1.0 cm. Artificial 

building and forest models, and those based on multiple 

overlapping laser scanning strips, were used. Artificial models 

consist of areas much smaller than those in natural test areas, 

for example single buildings or a randomly generated forest 

stand as seen in Figure 4, which presents a forest canopy model 

expressing deciduous forest, 150x150 m2 in area. 

 

 
 

Figure 4. Randomly generated forest canoby model. 

 

4. TESTS AND RESULTS 

In this section we present one case, which demonstrate the 

versatility of the developed simulator in an airborne forest 

mapping, as the forest parameter extraction using LIDAR 

techniques is common practice nowadays. Here we present 

some preliminary results achieved by simulating TopEyE MK-

II laser scanner over a model forest 150x150 m2 in size. The 
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total number of trees was 100, with a mean height of 25.97 m 

and a standard deviation of 0.58 m. The tree crowns were 

characterized by a 10.31 m mean crown diameter with 1.40 m 

deviation, and modeled by means of a sinusoidal surface with 

5.0 cm grid spacing, 

 

The simulated data presented in Figure 5 was acquired at an 

altitude of 200 m, and a flight speed of 25 m/s. The pulse 

repetition frequency was set at 30kHz, and the scanning angle at 

20 degrees.The sub-sampling of the 1.0 mrad laser beam was 

set according to the model grid spacing and the flight altitude 

used, thus giving 53 sub-beams within the foot print area of 20 

cm in diameter at ground level. Furthermore, a constant detector 

energy threshold was used to extract the first echo 3D-points 

from the 1.0 GHz sampled waveform data produced by the 

simulator. 

 

 
 

Figure 5. Composite presentation of the simulated 

measurements for a forest model. The tree tops of 

the forest model (top left), the tree tops expressed on 

top of the simulated points (top right), and ground 

points extracted from the simulated data (bottom 

left). 

 

The tree tops were extracted from the simulated data using a 

priori model information on the tree locations. The maximum 

height point within a 0.5 m radius of the model tree top was 

chosen. On average this tree top estimator indicates a 0.33 m 

underestimation of the tree heights compared with the known 

ground level in the model. When simulated ground points 

within a one-meter wide circular belt around the tree canopy 

were considered, the tree height underestimation decreased to 

0.02 m. This could be explained by the fact that the model trees 

had relatively flat tops with approximately the same surface 

orientation as the ground surface around the trees. Also, no 

distinction was made between the tree canopy and the ground 

reflectivities. 

 

Tree location was extracted to 0.15 m accuracy by considering 

the selected maximum height point as a good representative. 

This was a rather good estimation thanks to the relatively dense 

point spacing and smooth shape of the tree canopy model. 

According to the international Tree Extraction comparison 

(Hyyppä and Kaartinen, 2007), the best models using a point 

density of 2-8 pt/m2 resulted in a median error of 0.5 m in 

location. However, in this study the segmentation errors of 

individual trees were the main source of errors. Also, the tree 

trunks were not always vertical. 

 

Based on this test case it is clear that this novel simulation 

method provides reasonable and accurate results for forest 

parameter extraction, compared with those presented by 

Holmgren et al. (2003) and Lovell et al. (2005). The advantages 

lie in the modeled beam divergence, and in the consideration of 

the incidence angle effect and waveform detection. 

 

The full capability of the simulation system is expressed by a 

simulation over a ground model based on multi-strip poind data 

acquired with TopoSys Falcon in August 2006. The simulated 

data were acquired using system characteristic parameter values 

for the Optech ALTM 3100 and TopoSys Falcon determining 

the spatial distribution of the laser beams, pulse transmission 

and waveform detection. The resulting simulated point cloud 

data and detailed profile for data comparison are presented in 

Figure 6, along with the original point data, in which the point 

colors are coded by elevation. 

 

   

 
 

Figure 6. Point cloud presentation of the simulated data (top 

left) and the original laser scanning data (top right). 

Comparison of the original data (blue) with the 

simulated TopoSys Falcon (green) and Optech 

ALTM 3100 (red). 

 

The level of details in the original first pulse data is reproduced 

by the simulation. The point spacing and elevation information 

are comparable to the original. The differences in the color 

mapping in Figure 6 are due to the larger elevation range of the 

original data as the data area is larger. More comparative 

statistical data analysis is beyond the scope of this issue. 

 

The simulation method developed was intended to be a 

universal tool for studies on multiple parameters affecting the 

laser scanning accuracy and end products. This kind of 

approach is suggested for use in finding relevant system 

dependent differences affecting the data quality and suitability 

for desired mapping tasks. Simulation also makes it possible to 

better understand the particular measurement technique and its 

properties. 

 

5. CONCLUSIONS 

In this paper the simulation approach to laser scanning data is 

introduced and discussed. The simulation method implemented 

is the first to combine both spatial and radiometric components 

to produce realistic point cloud and waveform data for system 

analysis and algorithm development. Simulation provides a tool 

for demonstrating the effect of different factors on a LIDAR 

measurement. When integrated into an implementation of 

238

ISPRS Workshop on Laser Scanning 2007 and SilviLaser 2007, Espoo, September 12-14, 2007, Finland



sensor and platform geometry, simulation is a powerful tool for 

verification and comparison of different laser scanning systems, 

and analysis of the technique itself. Furthermore, simulator 

provides artificial data on known targets for algorithm 

development purposes in many fields of application. It is also 

clear that simulation of this kind is an important adjunct to the 

analytical error modeling and estimation performed creditably 

in recent years (Balsavias, 1999; Schenk, 2001; Wagner et al., 

2006). 

 

Preliminary results show that different system-dependent factors 

affecting the quality of LIDAR-based end products can be 

studied by simulation. It is also expected that the applicability 

of the simulation in this kind of research will be very varied. 

Since simulation makes it possible to acquire data from an 

unchanged object with different scanning geometries, it is 

possible to perform thorough analysis of the effect of scanning 

geometry on the quality of laser products. This is not usually 

possible with the real data. 

 

Simulation provides a promising and efficient method for 

studying application-dependent parameters to optimally fulfill 

the demands of different LIDAR mapping tasks. Greater 

understanding of the particular measurement technique and its 

properties is possible. This kind of approach could be used to 

find relevant system-dependent differences affecting data 

quality and suitability for desired mapping tasks. Furthermore, 

the effects of positioning and scanner inaccuracies can be 

studied by varying the magnitude of these errors, or 

alternatively they can be completely omitted and attention given 

only to instrument-dependent sources of uncertainty in the data. 

 

Further development of the LIDAR simulation method will deal 

with more precise scattering models as the results of the 

laboratory measurements become available. 
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ABSTRACT: 

 

The Finnish Geodetic Institute has been developing a mobile road environment mapping system, named as  ROAMER, since 2003. 

The vehicle-borne ROAMER system consists of a carrying platform, positioning and navigation systems, and a 3D data acquisition 

system. The system employed a 3D laser scanner operated in a profiling mode. The laser scanner can be mounted in several different 

positions to meet the special needs of some planned applications of the mobile mapping system. In order to be able to accomplish the 

high automation in 3D modeling, a laser scanner capable to provide dense point clouds was set as the requirement for the system. 

Additionally, the system is aimed to be a flexible moving laboratory for various road environment applications. The wide field of 

view and a high point measurement frequency of 120 kHz provided by the laser scanner in use, makes the ROAMER unique. This 

paper describes the hardware and the navigation solution of the FGI ROAMER. We also discuss the applicability of mobile mapping 

system in the field of traffic engineering as data source. There is a wide range of laser sensors applicable, as the MMS presented in 

this paper, but also static laser profilers could be used for real-time traffic flow measurements. This data could be used as input to the 

MMS based 3D virtual models of the different traffic places to help traffic planners to increase the traffic safety. The detailed 3D 

models of the transport systems can be used for traffic modeling and traffic simulation systems. In 3D models the interactions 

between vehicles, pedestrians and bicycles can be examined in high detail. Also the interaction with traffic environment can be 

studied. 

 

 

                                                                 
* Corresponding author.  

1. INTRODUCTION 

 

Modern transportation planning is becoming an increasingly 

interactive process between planners, authorities, road users, 

and private companies requiring more communication between 

various parties. On the other hand, the traffic systems are 

becoming more and more complex and difficult to understand 

as a whole. Thus, more complex modeling techniques are 

needed, which makes it more difficult to maintain the dialog 

between involved parties. In many other technology fields, 

virtual reality and 3D modeling techniques have made it 

possible to describe complicated systems. However, in the field 

of transportation engineering, the use of virtual reality and 3D 

modeling has so far developed slowly. The 3D modeling of a 

whole city or its transportation system is a time-consuming and 

expensive process, and road environments are not modelled 

with accuracy that would provide solutions to transportation 

engineering. These bottlenecks slow down the use of 3D in road 

environments and, thus, new solutions are needed for fast and 

automatic data collection. 

 

The detailed 3D models of the transport systems can be used for 

traffic modeling and traffic simulation systems. In 3D models 

the interactions between cars, pedestrians and bicycles can be 

examined in high detail. Also the interaction with traffic 

environment can be studied. As an example, the number of 

vehicle-train accidents in Finland is four times larger than that 

in other Scandinavian countries. Poor visibility due to 

vegetation and low density of gates (appr. 20%) are the main 

reason for these accidents. Virtual reality information in 3D of 

these interchanges could help in reducing future accidents.  

 

There is also a growing need to improve of the efficiency of 

urban traffic. It is now recognized that this objective requires 

not only the improvement of traffic monitoring and 

management schemes in traffic control centres but also the 

provision of information services for ordinary road users. New 

ICT technologies can provide a new source of up-to-date, real-
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time traffic information (time as the fourth dimension). 

Especially, when the dynamic traffic data is combined with the 

static model of the city, it is possible to produce new services 

for drivers and improve the traffic management. Also if 

computational methods, such as simulation or neural networks 

are integrated, it is possible to produce short-time predictions of 

the traffic situation and derive indicators about traffic fluency, 

safety, economy and environmental aspects. 

 

In transportation engineering, the transport telematics is the 

most rapidly developing area. Transport telematics is used for 

collecting traffic data, for processing it and creating new 

services for driver and authorities (Kulmala, 1995; Kosonen, 

1999). Land vehicle navigation has advanced significantly over 

the past 20 years (El-Sheimy, 1996). First this was largely due 

to the advancement of navigation and computer related 

technologies (Krakiwsky, 1991). During that period, land 

vehicle navigation was known as, or associated with, Automatic 

Vehicle Location and Navigation (AVLN), Intelligent Vehicle 

Highway Systems (IVHS), Intelligent Transportation Systems 

(ITS), and Mobile Mapping Systems (MMS) (El-Sheimy, 

1996). The integration of navigation sensors with sighting 

devices, e.g. digital cameras and laser imaging, extends the 

application of AVLN systems to inventory and mobile mapping 

(MMS), some of which are capable of collecting 3D 

information of the surroundings (El-Sheimy, 1996). 

 

A modern MMS can be today considered as a multi-sensor 

system that integrates various navigation and data acquisition 

sensors on a rigid, moving platform (van, car) for determining 

the positions of the surrounding objects remotely. The 

navigation sensors typically include GPS (Global Positioning 

System) receiver and IMU (Inertial Measurement Unit), while 

in the data acquisition sensors some of the most sophisticated 

systems use both terrestrial laser scanners and digital cameras or 

videos. Other possible data acquisition sensors include film 

cameras, multi-spectral linear scanners, CCD cameras, imaging 

laser, laser profilers, laser scanners, impulse radar, and ultra 

sonic sensors depending on the needed information (see e.g. El-

Sheimy, 2005 for more details).  

 

Typical requirements for a MMS are that visible objects should 

be measured with accuracy of few decimetres with a maximum 

speed of 50-60 km/h and desired objects should be collected at 

distance of several tens of meters from the sensor. Because of 

the high costs of the MMS, mainly due to navigation-grade 

IMU used, the systems are one-off systems that are operated by 

the companies or institutions that build them. (El-Sheimy, 

2005). 

 

Mobile mapping systems have become an independent field of 

research and a short summary of state-of-the-art of systems can 

be found in El-Sheimy (2005). He concluded his overview in 

mobile mapping systems by stating “Considerable work is 

needed in the areas of real-time and post-mission quality 

control, automation of GPS/INS integration in case of frequent 

lock of loss, automatic feature extraction in post mission 

processing, and the efficient and user-oriented manipulation of 

extremely large databases.” 

 

Recent papers in the MMS field includes El-Sheimy (2005), 

Clarke (2004), Grejner-Brzezinska and Toth (2003), Habib et 

al. (2001), Joo et al. (2005), Karimi et al. (2000), Manandhar 

and Shikbasaki (2001,2002,2003), Reulke and Wehr (2004), 

Talaya et al (2004), Tao (2001), Tao et al. (2001), Zhang and 

Xiao (2003), Zhao and Shibasaki (2003ab, 2005). 

 

Finnish Geodetic Institute initiated a MMS development in 

2003 with an aim to develop a system that would maximize the 

automation of feature extraction at the post processing phase. 

Additionally, the MMS system should be a moving MMS 

laboratory flexible for various road environment applications. 

To accomplish the high automation, a laser scanner capable of 

providing dense point clouds was set as the requirement for the 

system. This paper describes the hardware of the FGI 

ROAMER equipment for the first time. 

 

2. MOBILE MAPPING UNIT/PLATFORM 

The MMS platform is manufactured of hardened aluminium 

plates and profile tubes. The base plate is approximately 63 cm 

in length and width. The height of the scanner origin/mirror is 

approximately 97.5 cm above the base plate in the normal 

position, where the scanner is in upright position, and between 

36-57 cm when some of the tilted (fixed) positions are used. 

The tilt angles are 60º, 45º, 30º, and 15º below the horizon of 

the platform. The design of the MMS/ROAMER integration 

platform is presented in Figure 1. The total weight of the 

intended instrumentation and the platform sums up to 

approximately 40 kg. 

 

 
Figure 1. Side and top views of the platform design and 

instrumentation. 

 

The integration platform is mounted on three standard off-the-

self racks designed for the railings on top of the vehicle. 

Between the rack and the platform there is a suspension layer of 

nine shock absorption dampers to attenuate vibrations. The idea 

is to provide a compact and robust platform, isolated from the 

carrier vehicle, for the instrumentation to be mounted on, as 

seen in Figure 2. 

 

The GPS antenna is attached on top of a mast in front of the 

scanner socket/holder. The height of the antenna can be 

adjusted using mast pieces with known length to avoid 

unnecessary wobble of the antenna. The root of the antenna 

mast is made of 30 mm square aluminum profile. The additional 

antenna mast pieces are at 10, 20 and 30 cm in length and made 

of 20 mm round aluminum bar. 
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Figure 2. The ROAMER instrumentation on its first field run. 

The scanner is tilted to the backward direction. 

 

For the attitude determination of the MMS an inertial 

measurement unit (IMU) is applied. The IMU unit is mounted 

on its own rack at the front end of the platform base plate, with 

a suspension of four additional rubber absorbers. The unit is 

centered by tight fittings designed for the openings found in its 

feet. Two aluminium brackets are used to fasten the IMU-unit 

into its position. 

 

The laser scanner is mounted on a steel socket/holder at the 

upper end of the instrument arm. The scanner socket can easily 

be tilted to acquire full scene and profile scans at different 

scanning angles. Both scanning modes can be utilized, which 

makes the versatility of the platform unique. 

 

The normal scanner position can be used when structures lying 

above the lanes, i.e. bridges and traffic signs, have to be 

included in the model. The normal position is also good for 

measurements for the building facades and other similar 

structures, though many of them can be captured also at any of 

the tilted positions. 

 

The tilted scanner positions are used in the extraction of the 

road surface. Tilted scanning plane also produces multiple hits 

even from narrow pole structures usually present on the both 

sides of the road. This is due to the high profile repetition 

frequency (scan rate), high point density along the profile, and 

especially due to the fact that the wide FOV makes it possible 

to acquire multiple hits from several sequential profiles from an 

object as the mapping unit passes by, as illustrated in Figure 3. 

The speed of the vehicle determines the number of profiles 

sweeping the object in the end. 

 
 

 
 

Figure 3. Wide FOV and tilted laser plane produces multiple 

hits  from sequential profiles even from narrow 

vertical objects (blue circle presents a pole) lying on 

the side of the road. The height of the hits in each 

profile gets lower, though, giving a good estimation 

for the location of the pole. 

 

3. LASER SCANNER SYSTEM 

The mobile mapping system utilizes the FARO LS 880HE80 

(FARO LS) terrestrial laser scanner for 3D measurements. 

FARO LS is based on phase difference technique providing 

high-speed data acquisition. The disadvantage for this is the 

relatively modest measurement distances ranging in practice up 

to 30-40 meters. Wide field of view (FOV) and good angular 

resolution however compensate this. Some of the technical 

properties of the scanner are summed up in the Table 1. In 

Figure 4 the modular construction of the FARO LS is 

presented. 

 

 
 

Figure 4.  FARO LS 880HE80 terrestrial laser scanner. Top 

left: the laser ranging unit. Top right: Deflection 

unit. Bottom right: The data storage unit. Bottom 

left and center: The scanner electronics and base 

structure. 

 

Table 1. Technical properties of the FARO LS 880HE80. 

 

Maximum range ~76 m 

Measurement rate  120 kHz 

Field of view  320°x360° 

Beam divergence  0.2 mrad, 3 mm at 

aperture 

Maximum angular resolutions 

  Vertical 0.009° 

  Horizontal  0.00076° 

Ranging error ±3 mm, linearity e. 

Mirror frequencies 3,6,12,15,24,30 Hz 

Temp. limit > 0°C, dry conditions 

 

With slightly modified hardware, the FARO LS provides a so-

called tunnel mode, or profile measurements, with 

synchronization to be used with external positioning and data 

logging systems. The deflection unit sends a synchronization 

pulse for every profile to the navigation hardware to be logged. 

This information is needed to derive the position and attitude 

information for each 3D-point produced by the laser scanner. 

 

The mirror rotation frequency, or scan rate of the FARO LS can 

be set between 3 and 30 Hz, thus giving the vertical angular 

resolution of 0.0096-0.096 degrees (0.17-1,7 mrad), 

respectively. The corresponding point spacing at a typical 

scanning range of 15 meters in road mapping is thus 2.5-25 mm 

in the scanning plane. More general illustration of the point 

spacing at a given range and resolution level are summarized in 

Figure 5. It is seen that the point density is reasonable at any 

resolution level within the scan profile. 
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 Figure 5. Point spacing at ranges from 0 to 40 meters for 

different scanning resolutions. 

 

In Figure 6 the achievable along-track distances between two 

sequential profiles are shown as a function of platform velocity 

at different scan frequencies. Along-track profile spacing is less 

than one meter even for the speeds up to 70-80 km/h when high 

mirror speeds are used. For the platform speeds of 50-60 km/h 

the profile spacing around one meter is achieved also for the 

mid-frequencies for the mirror. The resulting point pattern cast 

on the scene depends on whether the scanner is in the normal or 

in the tilted position. 

 

In the profile measurement mode the operator can determine the 

number of profiles to be measured. The number of profiles can 

be calculated by estimating the time needed for driving the 

planned route, and according to the selected mirror frequency. 

The operator can choose to automatically split the accumulating 

data into separate files of selected size, i.e. the number of 

profiles. 
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Figure 6. Movement of the scanner origin between two 

sequential profiles at different scan frequencies and 

platform velocities. 

 

The operator controls the data recording with an external 

device. Using this device the operator can pause the data 

recording, and synchronization signal output, without stopping 

the scanner mirror rotation. This is useful in situations where 

the measurement vehicle has to stop due to other traffic, or for 

example in traffic lights. 

 

Full scans can be used in the so called stop-and-go procedure, 

where the mapping unit stops to one position to acquire a full 

scene scan, and then proceeds. Full scene scans are also used 

for the calibration of the MMS sub-systems to a common 

coordinate frame. Full scans can be acquired in both normal and 

tilted positions of the scanner. One full FOV scan at ¼ of the 

full resolution produces approximately 40 million 3D-points, 

and an external calibrated digital camera (Nikon D70s) with 

fisheye lens can be used to produce RGB values for the scan 

points. 

 

4. NAVIGATION SYSTEM 

For orientation of the data acquisition sensors in to the external 

coordinate system, the instantaneous rotations and the position 

of the MMS platform is determined by the navigation system. 

Navigation solution for the MMS is produced by a NovAtel’s 

SPAN (Synchronized Position Attitude Navigation) 

Technology that integrates GPS and inertial data for 

applications requiring greater functionality and reliability than 

traditional stand-alone GPS can offer. The SPAN system also 

operates in RTK (Real-Time Kinematic) mode with an Internet-

based application, named vDiff, developed by the Finnish 

Geodetic Institute. 

 

Table 2. SPAN’s IMU (HG1700 AG11) specifications. 

 

Gyro Input Range ±1000 deg/s 

Gyro Rate Bias 1.0 deg/s 

Gyro Rate Scale Factor 150 ppm 

Angular Random Walk 0.125 deg/hr 

Accelerometer Range ±50 g 

Accelerometer Linearity 500 ppm 

Accelerometer Scale Factor 300 ppm 

Accelerometer Bias 1.0 mg 

 

The GPS receiver is a NovAtel DL-4plus, containing the OEM-

G2 engine. Additionally, A GPS-702 antenna that offers access 

to the GPS L1 and L2 frequencies is included. The inertial 

measurement unit is a tactical-grade, ring laser gyro (RLG)-

based IMU manufactured by Honeywell, and its specifications 

are given in the table 2. 

 

To establish correct navigation solution the offset between the 

IMU and the GPS antenna phase center should be measured as 

accurately as possible, preferably within millimeters especially 

for RTK operations. This is a task to be carried out in the MMS 

system calibration. 

 

4.1 Results from driving test 

To measure the performance of SPAN system in a more realistic 

setting, data were collected while driving a route of 18 km and 

the vehicle passed 4 bridges and areas covered by forest that 

offered possibility to test the solution under full outages. Figure 

7 shows the trajectory travelled during the test as calculated for 

the GPS/INS filter, and for the RTK filter alone, without inertial 

aid. Table 3 shows the quantified position error during the test 

for both GPS and GPS/INS solutions. 
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Figure 7. Driving route and solution accuracy during the test. 

 

Table 3. Position Accuracy during the drive test. 

 

Positional Error (m) 

Horizontal Vertical Solution type 

RMS Max RMS Max 

GPS-only 3.765 61.980 4.046 57.102 

GPS/INS 0.232 1.043 0.124 0.650 

 

Due to the shadowing of the forests and the passed bridges 

during the test drive and the instability of GPRS connection, the 

availability of a GPS-only solution was limited. Table 4 shows 

the solution availability for the GPS-only and GPS/INS filters, 

confirming that the addition of inertial data results in more 

reliable positioning solution. 

 

Under the conditions of this test, the GPS-only solution could 

be computed for 82,6 percent of the time elapsed. The SPAN 

combined GPS/INS solution gave 100 percent availability, and 

from which 60,4 percent was RTK solution. 

 

Table 4. Positioning solution availability during the drive test. 

 

Solution type Number of 

epochs 

Percentage of 

solution 

GPS-only 925 82,6% 

RTK-fixed (GPS-only) 677 60,4% 

GPS/INS 1120 100% 

 

4.2  Results from a test with the entire MMS system in a 

static mode 

The research team carried out a field test with all the major 

components/sensors in Otaniemi, Espoo. Also the SPAN system 

was involved together with the laser scanner. All the sensors 

were mounted on the common integration platform. The offset 

from the GPS antenna to IMU was measured within one-

centimeter accuracy. All data were logged from the GPS 

receiver serial port to a laptop. A Thales ZX-Sensor GPS 

receiver was setup on the roof of FGI’s office building as the 

reference station. The RTK baseline length was approximately 

20 kilometers during the test and GPRS communication was 

stable. 

 

Data were collected through two test runs in a static mode. 

When the laser scanner starts, it sends a pulse for each profile 

via the synchronization device connected to USB port to GPS 

receiver and a log called MARKPOS is generated and recorded.  

 

 

 
 

Figure 8. Position Error of the GPS/IMU solutions. 

 

In Figure 8, the upper part shows the results of the first test, 

while the lower part shows that of the second test. In the second 

test, a larger error at the epoch between (294735.044 

294736.026) occurred because the solution for this epoch was 

based on the wide-lane ambiguity. Table 5 summarizes the 

statistics of positioning solutions for the first test and the 

second test. It can be seen that a standard deviation is far below 

2.0 cm. 

 

 
 

Figure 9. Attitude information of test no. 1 (left column) and 

test no. 2 (right column). 

 

The INS solution was also initialized before the test start. The 

attitude information was logged with 1 Hz frequency. During 

the tests, as it is presented in Figure 9, the variations around the 

X-axis (roll) and Y-axis (pitch) were quite small within the 

interval of 0.03 degrees and 0.02 degrees, respectively. 

Moreover, the azimuth (heading) during the tests is almost 

constant, the small variation being determined by the Earth 

rotation around its own axis that are sensed by the IMU. 

 

Table 5. Position of the antenna phase-center during the test. 

 

Cartesian coordinates in WGS 84 

X Y Z 

Stats. Test no.1 

MIN 2885684.477 1333906.568 5510884.178 

MAX 2885684.550 1333906.605 5510884.244 

MEAN 2885684.528 1333906.586 5510884.205 

STD 0.0150 0.0074 0.0157 

 Test no.2 

MIN 2885684.478 1333906.547 5510884.194 

MAX 2885684.543 1333906.599 5510884.247 

MEAN 2885684.513 1333906.574 5510884.221 

STD 0.0117 0.0107 0.0090 
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5. APPLICABILITY OF MOBILE MAPPING SYSTEM 

FOR TRAFFIC ENGINEERING, FUTURE ADD-

ON’S AND DISCUSSION 

In the following, some of the potential applications are 

delineated. 

 

Industry - The Mobile Mapping System under development can 

be applied to various applications such as map and GIS 

database updating, 3-D mapping, virtual reality modeling and 

highway feature inventory acquisition. 

 

Safety - In Finland there is four times higher number of vehicle-

train accidents than in other Scandinavian countries. Poor 

visibility due to vegetation and low density of gates (appr. 20%) 

are the main reasons for accidents. Virtual reality information of 

these interchanges could help in reducing future accidents by 

showing the danger of these environments to decision makers. 

 

Modeling of the traffic system - The capability of using modern 

simulation and modeling techniques in transport planning is not 

so much limited by the models themselves, but due to the 

difficulties in obtaining the large amount of input data required. 

The benefits of high computing power and state of the art 

modeling systems are lost, because the collecting and 

organizing of the input data is mostly done manually.  The need 

for automatically generated data models of transportation 

infrastructure is very urgent. The mobile mapping technology 

can provide a solid solution to the bottleneck of data input.  

 

Traffic simulation - As detailed static models of the traffic 

system get available the extensive use of microscopic traffic 

simulation is much more simple and cost effective. This would 

be a very significant improvement in traffic and infrastructure 

planning since micro-simulation can provide large scale of 

traffic indicators regarding traffic fluency, safety, economy and 

environmental aspects. 

 

Improvement of traffic efficiency - There is also a growing need 

for measuring of the efficiency of urban traffic. It is possible to 

measure the traffic efficiency by indicators provided by real-

time traffic simulation. This way the present situation can be 

monitored and compared with past situations in order to figure 

out trends of effects of traffic improvement and control 

operations. It is possible to produce short-term prediction for 

improving the traffic management capabilities.  

 

In real-time simulation, a static model of the traffic site is first 

needed. For dynamic modeling of the traffic situations, the 

simulation model is able to digest various sources of traffic 

information (data fusion). The basic input for real-time 

simulation are vehicle detectors. However, the problem of using 

detector data only is the cumulative error in the traffic situation 

model. Therefore additional sources and an on-line calibration 

facility are needed. The use of laser scanning in direct 

measurement of the traffic density and queue length could be a 

very important new data source. This would be of great advance 

in development of comprehensive system for real-time 

modeling of the traffic.   

 

The future hardware development of the MMS will concentrate 

on the calibration of the sub-systems to a common reference 

frame. Also, a camera system is planned to be included to the 

MMS, and it may to consist of two or three AVT Oscar 5 Mpix 

color cameras. The frame rate at full image size is five frames 

per second. The synchronization of the camera system to the 

other instrumentation of the MMS uses TTL signals, and the 

image data transfer is done via FireWire (IEEE 1394) 

connection. 

 

One of the cameras may point forward, and will be used to 

drape the labels captured from the traffic signs to the modeled 

road environment data. The two other cameras are planned to be 

used to capture backward looking stereo pairs along-track to 

provide complementary image measurement power, 

navigational aid and colour information to the road mapping 

system. 
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ABSTRACT: 
 
Light Detection and Ranging (LiDAR) has been used to extract surface information as it can acquire highly accurate object shape 
characteristics using geo-registered 3D-points. Therefore, LiDAR can be used to effectively measure tree parameters in forested areas. 
In this research, we estimated the LAI (Leaf Area Index) for Pinus koraiensis, Larix leptolepis and Quercus spp. using LiDAR data. 
For calculating the LAI (Leaf Area Index), the LPI (Laser Penetration Index) and LII (Laser Interception Index) were generated by 
LiDAR data having High Vegetation Returns (HVR), Medium Vegetation Returns (MVR), Low Vegetation Returns (LVR) and 
Ground Returns (GR). The LPI was calculated with point density using first returns (h ≥ 1m) and ground returns (h < 1m), and the 
LII was computed with the ratio of all returns to HVR and MVR. The LAI is calculated through the regression analysis by tree 
species with the LPI and LII. Afterward, we assessed the accuracy of LiDAR-derived and field-measured LAI with the coefficient of 
determination and root mean square error. As a result, the slope of Pinus koraiensis was the steepest, and the slope of Quercus spp. 
was the gentlest of three tree species. This can be explained by the fact that the amount of transmitted sunlight through the canopy in 
Quercus spp. can be different by seasons. Moreover, in the LAI generated by the LII, the coefficients of determination were estimated 
higher than those by the LPI. This can be attributed to the fact that the original information of the number of laser points was lost 
when the point data was transformed to raster data for generating the LPI. And the LII allows normalizing biased local variation of 
the number of laser points while the raster data has some noise due to unbalanced distribution of laser points. 
 
 

1. INTRODUCTION 
 

There are several definitions for the LAI in the field according 
to Jonckheere et al. (2004). The LAI can be defined as the total 
one-side area of leaf tissue per unit ground surface area 
(Watson, 1947). But this is only used for deciduous forests. 
Schulze et al. (2005) mentioned that the LAI could be 
determined as the sum of the projected leaf surface per soil area 
and Myneni et al. (1997) defined the LAI as the maximum 
projected leaf area per unit ground surface area. By these 
definition, the LAI can derive both the within and the below 
canopy microclimate, control canopy water interception, 
radiation extinction, water and carbon gas exchange (Bréda, 
2003). Moreover, they provide as the information for biosphere 
modeling (Bonan, 1993) and fire behavior models (Finney, 
1998), since they have information for a number of relevant 
ecological process (Morsdorf et al., 2006). Therefore, the LAI 
can play a key role of biogeochemical cycles in ecosystem. 
Various methods for the LAI can be classified into two 
categories as direct and indirect estimation (Bréda, 2003). The 
direct methods can be measured as harvesting vegetation but 
these methods are destructive and exhaustive. Furthermore, 
such methods are suitable for the vegetation of small structure, 
not applied to large area or trees (Bréda, 2003). And previous 
methods have time-consuming and labor-intensive problems 
when the LAI is measured in the field. On the other hands, 
indirection methods can be estimated without destructive works 
and easily with the radiative characteristic of the sunlight, 
which is dispersed or penetrated around the vegetation area. In 
such methods, remote sensing techniques using satellite 
imagery and aerial photograph have applied to deriving this 
measurement. Such many approaches were based on passive 
optical sensor system and regression models (Cohen et al., 
2003) or radiative transfer modeling (Koetz et al., 2004). 
However, a serious problem of remote sensing using passive 

sensor system is that it can not describe the canopy shape and 
structure because it doesn’t have the elevation information by 
itself. However, Light Detection and Ranging (LiDAR) with 
active sensor system, especially, has recently been used to 
extract surface information, as it can acquire highly accurate 
object shape characteristics using geo-registered 3D-points 
(Kwak et al., 2006). Therefore, the LiDAR system can measure 
both vertical and horizontal forest structures in forested areas, 
such as tree heights, sub-canopy topographies and distributions, 
with high precision (Holmgren et al., 2003). As such 
characteristic of the LiDAR is used for extracting the forest 
information, some research derived the LAI and the fCover 
(fractional cover) (Morsdorf et al., 2006) and Riãno et al. 
(2004) obtained the LAI using the gap fraction distribution. 
Moreover, Lovell et al. (2003) used the ground-based laser 
scanner to model the LAI using canopy profile and Koetz et al. 
(2006) applied the LiDAR waveform model to generating the 
fCover and the LAI from large footprint LiDAR data. However, 
it is difficult for the large footprint LiDAR used to extract 
forest information for small area. The use of the ground based 
Laser scanner is limited by topography conditions of study area 
and can estimate only limited small forest area, not broad forest 
area. Therefore in this research, we verified the usefulness of 
small footprint LiDAR data for estimating the LAI. 
Furthermore, we compared the LAI extracted from our study 
with previous research, which Barilotti et al. (2006) analyzed 
the LAI with the LPI (Laser Penetration Index). Thereby, we 
examined which method would be suitable for estimating the 
LAI in the forests of South Korea. 
 
 

2. MATERIALS AND METHODS 
 
2.1 Study area 
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The study area was located in Mt. Yumyeong (the upper left 
127°28′45.76074″E, 37°35′59.75109″N and lower right 
127°30′6.98627″E, 37°35′6.27425″N), central South Korea . 
Situated from 321m to 573m above sea level, the study area 
was dominated by steep hills, with the main tree species being 
Pinus koraiensis (Korean Pine), Larix leptolepis (Japanese 
Larch) and Quercus spp. (Oaks). Approximately 312ha were 
selected for this study and the 30 plots (10 plots by tree 
species) of the study area were investigated for measuring the 
LAI. These plots were selected in such a way that the 
composition of tree species was homogeneous.  
 
2.2 LiDAR data 
 
In this study, Optech ALTM 3070 (a small footprint LiDAR 
system) was used for acquisition of the LiDAR data, with the 
flight performed on 28th April 2004. The study area was 
measured from an altitude of 1,500m, with a sampling density 
of 1.8 points per square meter, and the radiometric resolution, 
scan frequency and scan width were 12bits, 70Hz and ±25°, 
respectively. Field data were obtained on 28~30th April 2007, 
although the LiDAR data were acquired on 28th April 2004. 
However, the difference in the tree height growth relevant to 
the period between the acquisition of the ground data and 
LiDAR-derived values was not considered, as an increase in 
the quantity of needle leave (Pinus koraiensis and Larix 
leptolepis) during 3 years is relatively small and broad leave 
were come out little. In order to calculate the LAI from the 
LiDAR data, pre-classified points were used with the TerraScan 
software (Terrasolid Corporation); therefore, raw LiDAR points 
were classified into one of 4 groups; Ground Return (GR), Low 
Vegetation Return (LVR), Medium Vegetation Return (MVR) 
and High Vegetation Return (HVR) (Lim et al., 2001). The 
HVR and GR were used to estimate the LPI, and the LII was 
calculated from the GR and all point data.  
 
2.3 Field data 
 
The number of sample plots was 10 sites by tree species. Each 
plot was composed of 20mⅹ20m (400m2) size and the LAI of 
plots was measured using the AccuPAR-80 Linear PAR/LAI 
Ceptometer of Decagon Devices, INC. The LAI was calculated 
automatically, as shown equation 1 in the device (Decagon INC, 
2001). 
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where fb is the fraction of incident PAR (Photosynthetically 
Active Radiation) which is beam, K is the extinction coefficient 
for the canopy, and τ is scattered and transmitted PAR. A is 
defined as below equation 2 and the a of equation 2 is the leaf 
absorptivity in the PAR band.  

The fb was estimated at 0.85 in the barely field before 
beginning the measurement of the LAI below the canopy and 
used the same value for all tree species. The a was determined 
as 0.9 which was assumed by AccuPAR in LAI sampling 
routines. K could be calculated with zenith angle (37°) of the 

sun in the study area (Equation 3) (Campbell, 1986). And τ 
could be computed as the ratio of PAR measured below the 
canopy to PAR above the canopy (Equation 4). 
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where θ is the zenith angle of the sun and x is a leaf angle 
distribution parameter. When the LAI was estimated in the 
study area, x was determined as 1 which means that the angle 
distribution was spherical. Therefore K can be simplified to 
equation 5.  
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Through this process of the AccuPAR, we acquired the average 
LAI as estimating 9 positions for avoiding the LAI value 
fluctuating by changing the value according to the directions. 
The LAI estimation was begun at the centers of the plots and 
determined at 8 positions with 8 directions as we moved with 
45° from the north and 10m distant from the center. The LAI 
value per 1 position was also estimated 4 times with 4 
directions, where were East, West, South and North. Therefore 
we could obtain the one average LAI per a plot and compare 
field-derived LAI with LiDAR-derived LPI and LII through 30 
LAI values totally. The measurement was carried out from 11 
A.M to 14 P.M. since the solar altitude was the highest during a 
day. The positions of the plots were acquired at the breast 
height of the center of each plot, using GPS Pathfinder Pro 
XR® manufactured by Trimble™.  

 
2.4 Estimation of LAI 
 
2.4.1 Potential of LiDAR for estimating LAI 
 
It is possible to apply various remote sensing techniques for 
estimating the LAI. However, the LiDAR has the potential for 
obtaining geo-registered 3D-points whereas satellite imagery 
and aerial photograph are difficult to extract the 3 dimensional 
information of forested area. Moreover, the laser is similar to 
the sunlight at the aspect based on reflectance or transmission 
through the canopy; therefore, we could estimate the LAI as 
acquiring the 3D points reflected on the canopy and the ground 
in forested area. On the other hands, instead of the radiation 
reach from the sun to the ground and vegetation, with the 
number of ground returns and vegetation returns (including 
HVR, MVR and LVR) reach from an aircraft, we could analyze 
the LAI. Monsi and Saeki (1953) estimated the LAI as 
measuring both incident (I0) and below-canopy radiation (I) 
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like equation 6 . 
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where I0 is the incident radiation, I is the radiation transmitted 
below-canopy, k is the extinction coefficient. In above equation, 
I/I0 describes the ratio of sunlight interception. With such 
aspect of interception or penetration, we could estimate the LAI 
when using total amount of laser point emitted from an aircraft 
and reflected from the canopy although physical and chemical 
characteristics of laser and sunlight were different each other. 
In other words, the total emitted laser point from an aircraft 
could be considered as the total amount of sunlight, and the 
total intercepted or penetrated laser point through the canopy 
could be regarded as the total amount of blocked or incident 
sunlight. Therefore, for estimating the LAI, we applied the LPI 
and LII which could be generated using the density and number 
of laser point penetrated and intercepted through the canopy. 
However, we didn’t apply the equation 6 directly because that 
equation was applied to only natural radiation. Thereby, in our 
study, new regression functions were used instead of equation 6 
after regression analysis was performed with field-derived LAI 
and LiDAR-derive LPI and LII. Furthermore, we didn’t 
consider the extinction coefficient as k of equation 6 because 
we conducted this study with only the number of laser point, 
not laser intensity value. 
 
2.4.2 Laser Penetration Index (LPI) 
 
For estimating the LAI, Barilotti et al. (2006) suggested the 
LPI using point density of ground returns and vegetation 
returns in the sample plots. The classification of LiDAR points 
into ground returns and vegetation returns was conducted by 
Terracan™ software. Afterward, vegetation returns were 
divided into two classes; one was first returns (height ≥ 1m), 
the other was ground returns (height < 1m). For generating the 
LPI, the ground and high vegetation returns were used only.  
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where Dgnd is the density of ground returns and Dhigh is the 
density of first returns. The LPI was calculated with raster data 
by a neighbor statistical analysis using a radius of 5m because 
of the heterogeneous distribution of LiDAR points. If the LPI 
value is close to 0, it means the vegetation is dense, however, if 
the value is close to 1, it describes the vegetation is sparse. We 
generated the LPI using the same methods and then compared 
the accuracy with the result of the LII as conducting the 
regression analysis with the LPI value and the field-derived 
LAI. 
 
2.4.3 Laser Intercept Index (LII) 

 
The LII can be generated from the number of ground and low 
vegetation returns and all returns including HVR, MVR, LVR 
and GR. Practically, however, the LII can be described as 
shown equation 8 because the LII means the ratio of laser 
points intercepted by the canopy. 
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where N(high+mid) is the sum of high and medium vegetation 
returns, Ngnd and Nlow are the number of ground and low 
vegetation returns respectively and Nall is the sum of all returns 
in a plot. With above equation 6, we could predict that the LII 
is proportioned to the LAI since the LAI increases when the 
ratio of points intercepted by the canopy increase. We 
generated the LII by three tree species with the number of laser 
points, and then created the relationship function as comparing 
with field-derived LAI values. 
 
 

3. RESULTS AND DISCUSSION 
 
For the accuracy analysis of estimated regression function with 
field-derived LAI and LiDAR-derived LPI and LII, the 
coefficient of the determination (R2) and root mean square error 
(RMSE) were calculated. As a result, on the whole tree species, 
coefficients of the determination of the LII were higher than 
those of the LPI. The coefficients of determination for the LPI 
were 0.81, 0.73 and 0.81 respectively for Pinus koraiensis, 

Species Statistics LPI LII 
Function 3411.7561.54 +⋅−= LPILAI  573.42184.50 −⋅= LIILAI  
Range 0.04~0.07 0.92~0.96 

R2 0.81 0.88 
Pinus koraiensis 

RMSE 0.31 0.24 
Function 5776.33405.8 +⋅−= LPILAI  6359.42604.8 −⋅= LIILAI  
Range 0.07~0.19 0.78~0.91 

R2 0.73 0.85 
Larix leptolepis 

RMSE 0.25 0.18 
Function 2168.17093.1 +⋅−= LPILAI  6043.08422.1 −⋅= LIILAI  
Range 0.02~0.34 0.66~0.98 

R2 0.81 0.86 
Quercus spp. 

RMSE 0.09 0.08 
Table 1. Accuracies of the LAI estimations with LPI and LII 
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Larix leptolepis and Quercus spp. (Table 1). The LII were 
estimated at 0.88, 0.85 and 0.86 respectively. Likewise with the 
result of the coefficient of determination, RMSEs of the LII 
were evaluated higher than those of the LPI. RMSEs of the LPI 
were determined as 0.31, 0.25 and 0.09 by three tree species, 
and LIIs were estimated at 0.24, 0.18 and 0.08 respectively. 

Figure 1. Distribution of LAI according to LPI and LII, and 
comparison of slope by tree species 
 
When seeing the results, we could find out the accuracy of 
regression function was rarely different. However, the 
coefficient of determination for the LPI was totally lower than 
those of the LII. The reason for the difference could be judged 
as the original information of laser point was lost when the 
point data was transformed to raster data for generating the LPI. 
On the other hands, because the LII maintains the properties of 
laser points without losing peculiar individual value of laser 
points according to being changed into raster data, it can 
represent the LAI close to the sunlight through the canopy. 
Furthermore, the LII allows normalizing biased local variation 
of laser points since it uses only the number of laser points in a 
plot, whereas raster data has some noise which is caused by 
unbalanced distribution of laser points due to different distance 
of across track and along track (Kwak et al., 2007). 
 
And in the estimated regression functions, the slopes by 
functions show large difference by tree species (Table 1 and 
Figure 1). We can guess that the tendency of slope (the absolute 
value of slope) in estimated regression functions keeps up with 
the ratio of the amount of intercepted sunlight. In the equation 
1, the LAI is affected by only τ value because the other 
variables are fixed as constant number in the study area. The τ 

is defined as the ratio of PAR measured below the canopy to 
PAR above the canopy. Therefore, the τ has a nearly 1 value 
due to little difference between minimum and maximum PAR 
in the case with little leave as Quercus spp. in the spring. It 
means, when the τ is close to 1, τln is close to 0. Thus, the 
absolute value of the slope in regression function for Quercus 
spp. is smaller than those of the others because the τ of Quercus 
spp. is close to 1 due to little difference between maximum and 
minimum PAR. However, τs of Pinus koraiensis and Larix 
leptolepis are very small due to large difference between 
minimum and maximum PAR. Thereby, the absolute values of 
slopes in Pinus koraiensis and Larix leptolepis are relatively 
higher than those of Quercus spp. because the increment of the 
LAI per unit of the LPI or LII is large. By the way, in 
coniferous trees, the slope of Pinus koraiensis is higher than 
that of Larix leptolepis. The reason for the difference is that the 
leaf density of Larix leptolepis is low since leaves of Larix 
leptolepis were rarely come out in April. We can expect that the 
slope of Larix leptolepis will become similar with Pinus 
koraiensis in summer season. 
 
In this study, we used the LiDAR data which had 3 years gap 
with field measurement. However, we didn’t consider the 
difference of leaves increment according to tree growth for 3 
years because we tried to examine the tendency and 
relationship between field-derived LAI and LiDAR-derived 
information such as the LPI and LII. For the quantitative 
analysis of the LAI with the LPI and LII, the growth gap by the 
lapse of time must be considered. And based on above 
mentioned objective, we just examined the tendency and 
relationship of the LAI by LPI and LII without comparison 
with new sample area (test area). For proving the accuracy of 
our study, however, we have to estimate the LAI and compare 
the result with filed-derived LAI with new sample area not 
included in our training area. 
 
 

4. CONCLUSION 
 
In this study, we estimated the LAI using LiDAR data 
classified into 4 type points such as HVR, MVR, LVR and GR. 
For calculating the LAI, firstly the LPI and LII were generated. 
The LPI was created with first returns (h ≥ 1m) and ground 
returns (h < 1m), and the LII was prepared with ground returns, 
low vegetation returns and all returns. As the result, the 
accuracy of the LPI was evaluated rather lower than the LII for 
Pinus koraiensis, Larix leptolepis and Quercus spp.. This is can 
be attributed to the fact that the characteristic of point data was 
removed when the LPI was calculated because the LPI was 
generated using a density map of raster data type which was 
assigned to point density of plot. Another reason was that the 
LII allows normalizing biased local variation of the number of 
laser points while the raster data has some noise due to 
unbalanced distribution of laser points. The slopes of estimated 
regression functions were also appeared differently each other. 
The slope of Pinus koraiensis was the steepest and that of 
Quercus spp. was the gentlest of three species. The reason was 
that the difference between minimum and maximum PAR is 
large in Pinus koraiensis because the sunlight and the LiDAR 
points were much intercepted above canopy by dense leave 
density of Pinus koraiensis. However, in the case of Quercus 
spp., the difference of minimum and maximum PAR was small 
because of sparse leave density. Therefore we can expect the 
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increase of the slope of Quercus spp. from summer because 
leave density is gradually higher and higher. In the case of 
Larix leptolepis, the absolute value of slope was between Pinus 
koraiensis and Quercus spp. because leaves of Larix leptolepis 
were rarely come out in April. 
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ABSTRACT: 
 
In this paper, a deciduous-coniferous tree classification mechanism is proposed, tested and analyzed using solely laser scanner data. 
The data were acquired under leaf-off conditions by Toposys II system. Under such circumstance, sources of last pulse hits of 
deciduous and coniferous are different, which allows concise discrimination between these two species.  Tree positions were located 
from first pulse DSM, species were identified by the difference between two pulse data and field measurements were used for 
validation. The classification results demonstrate that first-last pulse laser data, under leaf-off condition, is ideal for deciduous and 
coniferous trees classification; and also indicate that the data collected for high accuracy DEM production is also suitable for forest 
investigation. 
 
 

                                                                 
*   Corresponding author.   

1. INTRODUCTION 

Airborne laser scanners (ALS), providing small footprint 
diameters (10 – 30 cm), allow accurate forest information 
estimation (e.g. Næsset 1997; Magnussen and Boudewyn, 
1998). Two main approaches in deriving forest attributes using 
laser scanner data have been those based on laser canopy height 
distribution and on individual tree detection. In former 
approach, percentiles of laser canopy heights distribution are 
used as predictors to estimate forest characteristics. Næsset 
(2002), Lim et al. (2003) and Holmgren and Jonsson (2004) 
have shown that this approach produces highly reliable 
estimates of stand variables. If the number of laser pulses is 
increased to several measurements per square meter, individual 
trees can be recognized (Hyyppä and Inkinen, 1999; Hyyppä et 
al. 2001, Persson et al., 2002; Popescu et al., 2002; Leckie et al. 
2003). From individual tree, height, crown diameter and even 
species can be derived using laser scanner data. Then, more tree 
and stand attributes, e.g. timber volume, can be quite reliably 
estimated using existing forest models based on height, 
diameter and specie information (Hyyppä and Inkinen, 1999).  
 
Tree species is an essential index in forest studies, inventories, 
managements and other forest applications.  In practice, species 
classification is performed using range and optical/near-infrared 
data, together or individually. 
 
In Brandtberg (2002), features describing branch structure, 
crown shape and color were extracted from high spatial 
resolution color infrared aerial photographs and then input into 
a classification system. In Bohlin et al. (2006), spectral values, 
corresponding to sunlit part of detected crown, were extracted 
from high spatial resolution color infrared aerial photographs 
and applied in tree species identification. In the June and 
October images, 88% and 89% of the detected trees, 
respectively, could be separated into three classes, pine (Pinus 
Sylves-tris), spruce (Picea Abies) and deciduous. 

The airborne laser scanning data has also been tested for tree 
species classification. Holmgren and Persson (2004) stated that 
it is possible to separate pine and spruce using laser scanner 
data.  That approach was tested at individual tree level between 
Scots pine and Norway spruce.  The portion correctly classified 
trees on all plots was 95%. Moffiet et al. (2005) proposed that 
the proportion of laser singular returns is an important predictor 
for the tree species classification.  Brandtberg et al. (2003) used 
laser data under leaf-off conditions for the detection of 
individual trees. Additionally, classification results of different 
indices suggest a moderate to high degree of accuracy using 
single or multiple variables between deciduous trees. 
Brandtberg (2007) presented a framework to express 
interactions of the laser beams with individual tree canopy, and 
proposed species classification strategies for selecting group of 
laser points, where variables used were quantifications of 
independent events and statistics/geometric measurements. 
Overall, 64% classification accuracy is achieved, for three leaf-
off deciduous trees, oaks (Quercus spp.), red maple (Acer 
rubrum) and yellow poplar (Liriodendron tuliperifera). 
 
Persson et al. (2006) identified individual tree species through 
combining features of high resolution laser data with high 
resolution multi-spectral images. Classification experiment was 
conducted in southern Sweden with forest dominated by 
Norway spruce (Picea abies), Scots pine (Pinus sylvestris), and 
deciduous trees, mainly birch (Betula spp.). The results implied 
that by combining structure and spectral features, the 
classification could be improved (95 % accuracy).  
 
As a summary, laser data has been used for tree species 
classification successfully, but there are unsolved problems. 
Firstly, the accurate classification between deciduous and 
coniferous trees requires the aid of optical or near-infrared data.  
Secondly, in practical applications, there can only be few 
training trees for a large area. Therefore, in order to receive 
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good classification accuracies, more research is needed in 
deriving good features for tree species classification.  
 
The increasing use of laser scanning for nation-wide elevation 
data collection also supports use of the data for other purposes. 
Up to now, airborne laser scanning data can be available for 
whole countries (Switzerland, Netherland) and for large 
districts (South Tyrol / Italy, Vorarlberg / Austria, Saxon-
Bohemian Switzerland / Germany, Baden-Württemberg / 
Germany).  All this data has been collected with leaf-off 
conditions in order to get the highest accuracy in DEM.  In 
Finland, the leaf-off data is also the first candidate for the 
national laser scanning. Forest inventory authorities are, 
however, planning to have a laser and aerial imaging survey 
during summer time in order to get more reliable information 
also for the tree species. 
 
In the present work, we analyzed airborne laser data acquired in 
a suburban site in 2003 under leaf-off conditions. The objective 
was to demonstrate that leaf-off laser data is ideal for tree 
species classification between deciduous and coniferous trees. 
In previous studies, it has already been demonstrated that 
deciduous trees can be reconstructed using leaf-off data. 
 
 

2. MATERIAL AND METHODS  

The test site locates in Espoolahti, 15 km west of Helsinki. 
Toposys II (wavelength of 1.54 µm, maximum scan angle 
±7.1°) campaigns were carried out in 14th May 2003. At that 
time, the leaves were off and in some cases there were small 
buds depending on the tree species. The flying altitude was 400 
m above ground and the beam divergence was 1 mrad giving a 
footprint of 0.40 m in diameter. In the Toposys II, there are 128 
parallel beams (pushbroom type scanner) that are sampled in a 
fast rate. The point spacing between consecutive beams was 80 
cm in the across track direction and between 10-15 cm in the 
along track direction (depending on the flight speed). Therefore, 
there was a high autocorrelation between the consecutive hits in 
the along track direction. We expect that the data corresponded 
to a nominal pulse density of 4 to 5 pulse per square meter 
organized in even spacing. Thus, the sampling density of the 
data was not significantly higher than that used in nation-wide 
data collection (for example, in Switzerland, the surveying 
company has collected laser data for their own use with a 
density of about 4 pulses per square meter).  
 
Reference data included 295 identified trees, which were of 
direct access and were evenly scattered across the test site. 
Among them, 176 were coniferous (spruce and pine) and 119 
were deciduous trees. Tree species information, coniferous or 
deciduous, was collected from those trees in summer 2006.  
 
Coordinate transformations, geoid correction, strip adjustment 
and systematic shift correction were first performed on laser 
points cloud. Then, last pulse data were classified in TerraScan 
software (see www.terrasolid.fi) to separate the ground points 
from others  (low and high vegetation). In Terrascan, the 
ground points were triangulated using TIN densification method 
developed by Axelsson (2000). The following parameters, cite 
dependent, were used for the classification: max. building size 
100m, terrain angle 75˚, iteration angle 6º, iteration distance 
1.2m, and reduce iteration angle when edge length < 5 m.  The 
raster image file corresponding to the Digital Elevation Model 
(DEM) was created from the classified ground points using the 

following parameters: lowest hit within 0.5 m grid spacing and 
gaps filled up to 10 pixels. 
The Digital Surface Model (DSM) was calculated for both 
pulses respectively, with a 0.5 m grid from the highest hits. 
Gaps were filled up to 3 pixels using interpolation. The final 
Canopy Height Model (CHM) was then calculated as the 
difference between the DSM and the DEM.  
 
In the tree top detection, a simplified process to that presented 
in Hyyppä et al. (2001) was applied. The prefiltering was done 
with a one step convolution of a 3 x 3 filter 
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and then the possible tree top position was found by a 5 x 5 
maximum filter: if the current pixel was the highest in the 5 by 
5 window, it was labelled as possible tree top. Lower local 
maxima, with height less than 3 m, were neglected from further 
analyses.  
 
Tree crown radius was estimated using the tree top position and 
corresponding value of the CHM, which was taken as the tree 
height. The radius of the tree was assumed, according to 
Pitkänen et al.  (2004), to be 
 
 
 0.5  H)  0.16  1.2(R Org ××+=     (2) 
 
In our analysis, the radius was reduced by 40%.  
 
 
  0.6R  R OrgEst ×=      (3) 
 
It was assumed that the main difference in first-last pulse 
signature between coniferous and deciduous trees lies in the 
crown centre and that smaller radius leads to more reliable 
estimation for different tree species.  
 

Then, a neighbourhood window [ ]12R,12R EstEst ++  was 
defined as the estimated crown area.  
 
It was expected that, under leaf-off conditions, first pulse 
signals correspond to reflections from treetops, even with the 
deciduous trees, as discovered by Brandtberg et al. (2003); and 
that the source of last pulse hits of deciduous trees is the ground 
and of coniferous tree, it is the tree top. Based on this 
assumption, tree species were classified by the absolute height 
difference between two DSMs, and defined as a function of two 
thresholds. If the proportion of pixels within the estimated 
crown area (defined in threshold 1) does not present significant 
height difference (defined in threshold 2), the tree was 
classified as coniferous tree. Otherwise, it was identified as 
deciduous tree.   
 
 

3. RESULTS 

Figure 1 and 2 show points cloud and DSM corresponding to 
coniferous and deciduous trees respectively. Points are in local 
coordinates. First and last pulses are marked in green and red, 
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whereas tree top and estimated crown area are marked by cross 
and circle, respectively.  

 
Figure 1. Points cloud and DSM corresponding to a coniferous 

tree. (a) Points cloud in vertical projection 
perpendicular to Northing, referred as Easting-Z. (b) 
Points cloud in vertical projection perpendicular to 
Easting, referred as Northing-Z. (c) Points cloud in 
horizontal projection, referred as Easting-Northing. 
(d) Points cloud in 3D space. (e) DSM based on first 
pulse laser data. (f) Difference between first and last 
pulse data. 

 

Figure 2. Points cloud and DSM corresponding to a deciduous 
tree, where a-f corresponds to cases in Fig. 1. 

 

 

Figure 3. Points cloud corresponding to a deciduous tree, where 
a-f corresponds to cases in Fig. 1. Obviously, tree 
crown has been hit by the last pulse. 

Figure 3 gives an example of how misclassification could be 
introduced. In that case, a deciduous tree’s crown was hit by 
both pulses at the centre of the tree, leading to small height 
difference between first and last pulse data.  
 
The classification results between coniferous and deciduous 
trees are reported in Table I and Figure.4. 
 
Table I shows the confusion matrix of classification, where Th1 
refers to the proportion of pixels within the estimated crown 
area and Th2 refers to the height difference in meter.  The 
overall accuracy is 89.83%. Figure 4 shows the producer 
accuracy as a function of parameter Th2, where Th1 equals to 
40%. 
 

 Actual 
Coniferous 

Actual 
Deciduous Total 

Classified as  
Coniferous 157 11 168 

Classified as  
Deciduous 19 108 127 

Total  176 119 295 

 
Table 1.  Confusion matrix (Th1 = 40% and Th2 = 0.3) 

 
 

 

Figure 4. Producer accuracy as a function of threshold 2 
 
 

4. DISCUSSION 

The result indicates that a simple signature, i.e. the range 
difference between first and last pulse hits under leaf-off 
conditions, is suitable for deciduous-coniferous tree 
classification.  In order to improve the quality of the 
classification and to understand where the proposed 
methodology failed, the misclassified cases were analysed.  The 
reasons for the misclassification could be grouped into 
categories (1) branch structure, (2) only pulse hits (3) crown 
shape (4) tree top position, (5) parameter and (6) data 
processing. Yet, in practice, the misclassification is mostly 
introduced by several, rather than solely one, factors. 
 
Branch structure: The basic assumption for this study was that, 
under leaf-off condition, last pulse would penetrate deciduous 
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tree crown and would be reflected from coniferous tree top. 
However, under certain circumstance, e.g. when coniferous 
trees are heavily defoliated, this is not always the case. For the 
deciduous, the denser the crown is, the more last pulse points 
are reflected from upper branches, which reduces difference 
between the two pulse modes, and possibly leads to 
misclassification. On the other hand, small buds also caused 
that some last pulses were reflected by upper branches.  
 
Number of only pulse hits: In first and last pulse data set, there 
are some points with same planar coordinates and small, even 
zero, height differences. We assumed that they corresponded to 
only pulse hits. In Toposys II, about 1 m vertical difference was 
needed to separate between first and last pulse mode. 
Accompanied with incidence angle and crown shape, the only 
pulse hit may happen to be the ones adopted in DSM 
generation, thus leading to smaller differences between first and 
last pulse data. This explains that some deciduous trees were 
misclassified as coniferous.   
 
Crown shape: particularly, for spruce with cone shaped crown 
and small open angle, it is possible that both lower and upper 
crown parts happen fall into the same raster cell, due to relative 
large cell size. In such case, the height difference, between two 
pulses, is exaggerated, and then leads to misidentification. 
 
Tree top position: In general, tree top is expected to locate at 
crown centre and correspond to local height maximum. 
However, in practice, branches’ configuration may be 
complicated and then makes it hard to define a necessary and 
sufficient condition of treetops. For instance, tree top may 
incline to one side and then not be local height maximum; 
outstretched branches may be higher than real tree top.  
Therefore, it is possible that some tree tops locate apart from 
crown centre and some mis-located tree tops exist. In former 
case, the height difference, around the estimated crown area, 
may be larger than what is supposed to be for coniferous, due to 
the edge area. And then the trees would likely be misclassified 
as deciduous ones. To overcome this problem, it would help to 
first determine crown area and then find possible, or assumed, 
tree top position.  In the latter case, mis-located trees were 
neglected from analyses.  
 
Parameter:  Figure 4 shows how overall classification accuracy 
changes according to threshold 2. Clearly, the fluctuation of 
accuracy is moderate and the classification is not sensitive to 
parameter TH2. However, selected parameter also plays its own 
role in the classification. In general, larger Th1 and smaller 
Th2, which means larger proportion pixels presents smaller 
height difference between first and last pulse data, lead to 
higher producer accuracy for the coniferous, smaller producer 
accuracy for the deciduous, and vice verse. Between the two 
parameters, the classification is more sensitive to Th1. 
Considering the overall accuracy, 40% keeps a balance and 
leads to accuracy around 89% for both species. 
 
Data processing: data processing, which enhances the different 
reflectance pattern between the deciduous and coniferous, also 
contributes to identification accuracy amelioration. One 
example could be the process in last pulse DSM production. 
When the highest hits are assigned to DSM cells, like in this 
study, the confusion caused by several last hits reflected by 
lower coniferous branches does not, generally, introduce large 
height differences between the DSMs, and the coniferous 
identification accuracy therefore improves. On the other hand, 
if the lowest hits were assigned to DSM cells, the confusion 

caused by a few last hits reflected by upper deciduous branches 
would be effectively eliminated, which would contribute to 
high deciduous identification accuracy. 

5. CONCLUSIONS 

The results in this paper indicate that the difference between 
first and last pulse is a valuable feature for trees species 
classification. It reliably (89 % accuracy) gives the difference 
between coniferous and deciduous trees under leaf-off 
conditions.  In order to conclude the optimal accuracy it could 
achieve, more experiments based on difference mechanisms are 
needed. 
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ABSTRACT: 
 
Interest in full-waveform airborne laser scanning (ALS) data has significantly increased with the release of waveform digitizers by 
commercial vendors. Despite the recent widespread availability of full-waveform data, the full potential of this type of data has yet 
to be realised. Some of the most promising applications for waveform data can be found in various fields of forestry, in which ALS 
data can aid in understanding single-tree characteristics. Waveform data can provide both vertical and horizontal information on 
forests. In this article, we study the feasibility of using full waveform data for tree identification. This study also considers the 
applicability of methods designed for use with conventional data, the possibility of generating methods that could use considerably 
denser point clouds extracted from full-waveforms, as well as the applicability of single descriptive or distinct waveform 
characteristics for tree species classification and tree parameter extraction. In addition, waveform data is compared with terrestrial 
close-range images. Superimposing waveform data on registered close-range images offers an excellent opportunity for 
understanding the waveform in greater detail.  
 
 

                                                                 
*  Corresponding author. 

1. INTRODUCTION 

Airborne laser scanning (ALS) has become a commercially 
accepted tool for modelling our environment. For the past 
decade, the majority of commercial applications have 
concentrated on using the last and first pulses. Recently, ALS 
vendors have expanded the provided number of returns, thereby 
enabling users to more easily gain information between the first 
and last pulses. Typically, between two to five returns have 
been employed, though some ALS systems can register the full-
waveform.  
 
The methods and problems of interpreting recorded waveforms 
have recently been studied by Hofton et al. (2000) and Wagner 
et al. (2006). Current methods for waveform processing focus 
on using a Gaussian decomposition of the signal to derive 
individual echoes, derived from the main scatterers in the path 
of the laser beam (Wagner et al., 2006; Reitberger et al., 
2006a). 
 
ALS data has become popular for estimating forest parameters. 
The two main feature extraction approaches for deriving forest 
information from ALS point clouds have been based on 
statistical canopy height distribution (e.g., Næsset 1997) and 
individual tree detection (e.g., Hyyppä and Inkinen, 1999; 
Persson et al., 2002). Distribution-based techniques typically 
use regression, non-parametric or discriminant analysis for 
forest parameter estimation. Individual-tree-based approaches 
use the neighbourhood information of canopy height point 
clouds and the pixels of CHMs for extracting such features as 
crown size, as well as individual tree height and location. 
Finally, forest inventory data are estimated using existing 
models and statistical techniques. 
 
Before current commercial small-footprint waveform digitizers 
became available, some forest parameters were statistically 

extracted using large-footprint waveform laser altimeters such 
as "Scanning Lidar Imager of Canopies by based on Echo 
Recovery" (SLICER) and "Laser Vegetation Imaging Sensor" 
(LVIS) (Ni-Meister et al. 2001, Harding et al. 2001). 
 
Tree species is an essential index in forest studies, inventories, 
managements and other forest applications. Pyysalo and 
Hyyppä (2002) investigated a method for describing the tree 
shape by its 3D point cloud density distribution in both height 
and width dimension (Reitberger, 2006a). Holmgren and 
Persson (2004) showed that pine and spruce can be separated 
with 95% accuracy using laser scanner data. Knowledge of the 
echo type (first, last, only) together with elevation information 
was used to extract features from tree crowns. In Brantberg 
(2007), a digraph process was used for tree species 
classification, and the shape characteristics of a marginal height 
distribution were used to improve the tree height estimate. The 
potential use of waveform data for tree species classification 
has been presented, e.g., in Reitberger et al. (2006b). 
 
If a size-independent representation of the point cloud structure 
can be formed, the corresponding features can be represented 
using primary components or other data compression methods. 
Waveform-induced point cloud densification could enable the 
generation of structural features that are detailed enough to 
allow for species classification. 
 
In this article, we present various experiments on tree 
identification using waveform laser data. Two types of methods 
are used: methods based on single descriptive or distinct 
waveform characteristics and those that use considerably denser 
point clouds extracted from the full-waveforms. In addition, we 
also present the integration of ALS waveform echoes with 
terrestrial close-range images. 
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2. DATA 

Waveform Data from Espoonlahti 2.1 

2.2 

The study data are from the Espoonlahti area and were recorded 
August 31st 2006 with a TopEye MKII Palmer scanner. A flying 
altitude of 300m was used, with the scan angle varying between 
9 and 25 degrees, as measured from the scanner position to the 
recorded point position. The waveform sample interval was 1 
ns, corresponding to approximately a 15-cm resolution in the 
beam direction. The pulse length was 5 ns. The footprint of a 
single laser beam on the ground was approximately 30 cm 
caused by a beam divergence of 1 mrad. The mean point 
density was 16.6 points/m2.  
 

Reference Lidar Data 

As a reference, we use the automatically extracted points from 
the TopEye MKII system, which produces first and last pulse 
data. For comparison of structural features, we also used the 
data from Optech ALTM3100 flight on July 12th 2005 with 
combined point cloud from 1000 and 400 m flying heights. Fig. 
1 presents the point distributions of the systems used in the case 
of a birch. 
 

 
Figure 1. Birch tree example of point distribution for the data 

types used.  
 
2.3 

3.1 

3.1.1 

Photographs 

Close-range images were captured using a Nikon D100 camera 
with a Nikkor 24-85 mm lens. The size of the CCD array was 
3,008 x 2,000 pixels. A zoom setting of 24 mm was used during 
the image capture. The camera was calibrated in the test field at 
the Helsinki University of Technology (TKK). The original 
images were resampled in order to eliminate the effect of lens 
distortions. 
 
 

3. EXPERIENCES WITH WAVEFORM METHODS 
FOR TREE SPECIES IDENTIFICATION AND FINDING 

TRUNK LOCATIONS 

Methods Based on Points Extracted from Waveform  

 Tree Top Shape Identification 
 
It is more convenient to detect and locate treetops rather than 
crowns, especially when occurring in clusters. Certain species 
have distinctive top shape; for example, the spruce usually 

shows a cone-shape crown with a small open angle. Ideally, the 
shape of the crown can be modeled in 3D space by surface 
fitting (e.g., Holmgren and Persson, 2004). In our study, the 
crown top was explored in vertical projection and described 
with 2D curve parameters. At first, the crown points were 
projected onto four vertical planes through the assumed trunk 
position, in cardinal and half-cardinal directions. The final 
projection was constructed as a superposition of these four 
planes, which roughly expressed the convex hull of the crown. 
In the description phase, top shape was described by 
discharging all inner points and fitting a parabola based on the 
points lying in the topmost two meters.  
 
Fig. 2(a) and Fig. 2(b) plot fitted curves in North-South 
projection for typical pine and spruce; Fig. 2(c) and Fig. 2(d) 
show the curves for 8 pine and 8 spruce trees, respectively. In 
general, the open angle for spruce is smaller than that for pine, 
thus providing a likely indicator for species identification. 
 

 
Figure 2. Tree top shape identification. (a) Pine with fitted 

curve, (b) spruce with fitted curve, (c) curves of 
eight pines and (d) curves of eight spruces. For 
comparison, curves were plotted at the same vertex 
in (c) and (d). 

 
Mean increase 
WF/system % 

Crown top points Points used in tree top 
algorithm 

Spruce 139% 115% 
Pine 132% 106% 

 
Table 1. The second column describes the mean points increase 

in the tree crown top, comparing the available points 
extracted from the waveform with points from 
first/last pulses. The third column presents the points 
increase in the treetop shape identification 
algorithm. 

 
Table 1 shows that the points extracted from the waveform 
located inside the canopy are of little practical use, when 
employing shape predicting methods developed for first and last 
pulse data. The result is only indicative due to the small sample 
size. Verifying this result would require more data from 
different species and other environments. 
 
3.1.2 Vertical and Horizontal Density Features 
 
First and last pulse and waveform densified data are studied to 
determine those features that both represent the characteristic 
tree shape of different species and are independent of tree size. 
In our examples, the height of each tree is divided into ten 
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equal-sized bins. As a height feature, we use the percentage of 
points falling into each height bin. 
 
Fig. 3 plots the height features of eight trees for each of the four 
tree species. It can be seen that the feature describing the height 
of a pine has the greatest point density near ground level. In 
contrast, the deciduous trees, birch and willow, have a 
maximum density in the upper canopy. The spruce tree has the 
most uniform point distribution along height bins. These height 
features only consider the point cloud distribution in the vertical 
direction. As structural features, we use both height and 
distance from the assumed trunk position. For simplicity, the 
location of the highest laser point is assumed to be trunk 
position. If the treetop is clearly asymmetrical, the centre of the 
point cloud is used. The point cloud is divided into ten height 
bins and five distance bins. The distance bins are cylindrical 
volumes around the trunk. Thus, distance bins located far from 
the trunk have larger sample percentages than would the inner 
distance bins. Different grey levels of the structural feature 
matrix elements in Fig. 4 describe the percentage of all the 
points falling into single height-width bin. 

 
Figure 3. Eight representatives from each of four species are 

plotted to visualize the stability of the height feature 
in dense point clouds. 

  

 
Figure 4. Structural density representations of the birch tree 

created from the point cloud in Fig. 1. The darker 
the structural element, the more points are located in 
the corresponding volume. 

 
The advantage of using structural or height features to represent 
trees is that trees of different physical dimensions and point 
cloud size can be compared and dimension reduction methods 
can be used to enhance the computation. 
 

The usability of height and structural features for species 
classification was tested using a sample of 32 trees, 8 samples 
from each of four species: pine, spruce, birch and willow (Salix 
Siberica). In the tests, the Euclidean distance between feature 
vectors was used as the distance metric. The leave-one-out 
method was employed for classifying each tree to one of the 
four species; for each tree in turn, the species information of 
other trees is used for determining the species of the current 
tree. In a nearest neighbour test, the distance to the feature 
vectors of 31 other tree samples was calculated, and each tree 
was classified to the same species as the closest neighbour. In 
the centre distance test, we computed the mean feature vectors 
for each species. Each tree was classified to the species whose 
feature centre was closest to the tree feature. 
  

Height: pine spruce birch willow Total 
Dense 1-nn 75% 13% 75% 0% 41% 
Thin 1-nn 88% 25% 75% 0% 47% 
Dense cd 88% 75% 88% 25% 69% 
Thin cd 100% 13% 63% 13% 47% 
Structural: pine spruce birch willow Total 
Dense 1-nn 50% 63% 88% 63% 66% 
Thin 1-nn 88% 75% 88% 75% 81% 
Dense cd 50% 50% 88% 75% 66% 
Thin cd 100% 13% 63% 75% 63% 

  
Table 2. For each species, the percentage of correctly classified 

trees for waveform densified (Dense) and first and 
last pulse (Thin) TopEye data in nearest neighbour 
(1-nn) and centre distance (cd) methods. 

 
In Table 2, two different distance metrics have been used to 
study whether the densified point cloud improves the separation 
between feature vectors of different tree species using height 
and structural features. The nearest neighbour method is likely 
to suffer from outlier samples. In larger samples, the nearest 
neighbour method should be k-nn, with a k variable of at least 
three. This result is only suggestive due to the small sample 
size. In a more realistic scheme, the sample centres would be 
calculated using a small training sample from each of the 
species.  
 
Recently, Reitberger (2006a) compared the number of TopEye 
System points and waveform-extracted points. The increase in 
points for leaves on deciduous areas was 123%, but 230% for 
coniferous trees. For our sample, the respective values are 
376% (Birch, Willow, leaf on) and 254% (Pine, Spruce). The 
difference in the percentages above is probably due to different 
area determination around the tree. We have not yet found an 
explanation for the fact that Reitberger et al. (2006) found a 
larger increase in the points for coniferous trees, whereas our 
study found a higher increase for deciduous ones. 
 
3.2 Methods Using Single Waveform Features 

In this section, we consider the possibility of examining the 
individual waveforms hitting a single tree. Such waveforms 
could be used to find information on tree trunk location or tree 
species. The use of the features extracted from the waveform is 
considered in Wagner et al. (2006), in which the authors studied 
the range, amplitude, pulse width and backscatter cross section 
information for target discrimination. 
 
Fig. 5 describes the number of details in the waveform data. 
The left graph plots the points extracted from waveforms, 
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hitting the manually delineated tree canopy. Because of the 
relatively large scan angle, the extracted points occupy a much 
larger area than the original point cloud. This is of particular 
concern when analysing a dense forest. In the middle plot, only 
those waveforms are selected that travel across the point cloud 
centre. The right plot shows a densely sampled plane that slices 
the canopy when consecutively sent pulse waveforms are used 
together. In order to use features to measure characteristics such 
as trunk hits, it is essential that these features can be found 
computationally efficiently from large waveform data sets. 
 

 
Figure 5. The left image shows all of the extracted points. In 

the middle image, the points with waveform directed 
into the tree canopy are plotted in green. The right 
image visualises a single slice from the consecutive 
waveforms.  

 
3.2.1  Distinctive waveform profiles 
 

 
Figure 6. A multi-peaked waveform profile (right) is 

characteristic for signals that hit the spruce at a 
certain angle (left). 

 
A laser beam that passes through spruce at a certain angle 
produces a multi-peaked waveform profile, as shown in Fig. 6. 
The return signal, composed of reflections from branch peaks 
and waveform amplitude, varies strongly as the signal passes 
through the foliage. To automatically determine multi-peaked 
waveforms, we developed an algorithm based on the divergence 
of signal amplitudes. The divergence was calculated from the 
part of the signal that originated from the tree crown, taking 
into account the fact that divergence was found throughout that 
part of the signal. Using this algorithm, we found several multi-
peaked waveforms among each studied spruce. These 
waveforms were also found among pine data, though not as 
often as was the case with the spruce samples. Spruce can be 
identified based on the assumption that they cause more multi-

peaked waveforms than do pines. In this study, 0-50 % more 
multi-peaked waveforms were found from the spruce data 
compared to the pine data, though the results depend on 
algorithm parameters and several other factors. At the moment, 
only a few trees have been analyzed and more waveform data is 
needed to gain statistically reliable results. 
 
3.2.2  Trunk echoes 
 
Typically, two strong echoes were found in the case when the 
signal first hit the tree foliage and then the trunk, as seen in Fig. 
7. Based on this information, an algorithm was developed to 
find tree trunk waveforms. The algorithm uses waveform data 
originating from the upper part of trees and restricts the 
distances between strong echoes. This was important to avoid 
confusion with signals of similar appearance originating from 
foliage and the ground. Several trunk waveforms were found 
from each spruce and pine, most of which seem to suggest 
roughly the same trunk location, thus allowing divergent points 
to be filtered out and the trunk position to be determined. In the 
future, field survey data are required to detect absolute errors 
arising from the determined trunk points. 

 
Figure 7. The spruce point cloud and waveform signals that 

hit the tree trunk (left). The waveform profile on the 
right is typical for signals that hit both the foliage 
and the trunk. 

 
3.3 Integration of the ALS Waveforms with Terrestrial 
Close-Range Images 

Registered close-range images are the most illustrative 
references when trying to understand the behaviour of the ALS. 
Unlike images derived with ALS, the internal geometry of the 
images is well known. In addition, the further perspective 
gained from terrestrial close-range images adds supplementary 
information to the laser scanning data. Such a comparison can 
reveal, for example, the effect of weather conditions.  
 
During the test flight in Espoonlahti, the wind was relatively 
strong. The effect of the wind is clearly visible when the ALS 
data was superimposed onto the example images (Fig. 8). The 
registration of the images and ALS was completed using the 
interactive orientation method (Rönnholm et al., 2003). For 
registration, the most stabile features were observed, such as 
house roof, antennas, chimneys, pipes, and lamps. 
Unfortunately, movement of the treetop prevented sensible 
stereo viewing of the canopy, as the location and the shape of 
the treetop differed slightly in all images as well as in the ALS 
data. Fig. 8 shows how the tree canopy of the pine in the laser 
data does not fit perfectly with either of the two registered 
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images. Nevertheless, the laser point cloud fits very well with 
the roof of the building. 
 

  
 
Figure 8. The first pulses are superimposed onto two registered 

terrestrial images. The colour coding is chosen to 
visualise the heights of the point cloud. The effect of 
the wind is clearly visible – the canopy of the tree 
has moved between the capture of the first and 
second images. 

 
The full-waveform ALS data can be visualised by 
superimposing the echo rays onto the images. In Fig. 9, the 
ALS data is superimposed in two convergent images that are 
captured at an almost 90-degree angle to each other. The chosen 
camera locations and viewing directions make it easier to 
perceive the 3D shape and the behaviour of ALS data. If the 
canopy had been more stabile, the stereo views from these two 
viewing directions would have been even more informative. For 
visualisation of the waveform data in Fig 9, we calculated the 
3D location of each intensity value along the waveform echoes. 
The smallest intensity values were considered noise and thus 
rejected. The brightness of the colour describes the measured 
intensity values. 
 

  
 
Figure 9. The full-waveform superimposed onto images. The 

difference in the viewing angles of the images is 
close to 90 degrees. 

 
The superimposed ALS data is very informative. For example, 
the echoes that have hit the trunk can be selected using images 
(Fig. 10). Perpendicular image capturing can aid in this 
purpose. First, the area around the trunk is selected from the 
first image. The result is a cross-section of the echoes that can 
then be superimposed onto the next image. The different 
perspective of the second image visualises the cross-section 
from the side. Second, the area around the trunk is now selected 
from this second image. The intersection between these two 
cross-sections includes potential echoes that have hit the trunk.  
 

   
 
Figure 10. Using images for finding the trunk of the tree from 

the waveform data. The intersection of two 
perpendicular cross-sections finds potential echoes 
that have hit the trunk.  

 
Although the total number of echoes that have hit the trunk is 
small, the waveform data includes significantly more 
information about the trunk than that provided by the first 
pulses alone. The first pulses have succeeded in detecting the 
trunk only in the lowest part of the tree and the number of hits 
is less than half of the number of trunk hits in the waveform 
data. Figs. 11 and 12 present some examples in which the 
information concerning the trunk is not located in the first 
pulse.  
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Figure 11. Waveform echo passes through the thick upper 

foliage before reaching the trunk. The echo is 
denoted in the image by uniform colour in order to 
enhance visibility of small intensity values. 
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Figure 12. Two similar waveform echoes pass through thin 

branches of the upper foliage, detecting the trunk 
and continuing to the ground. The echoes are 
denoted in the image by uniform colour in order to 
enhance visibility of small intensity values. 
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4. CONCLUSIONS 

Full-waveform data have great potential for improving the 
classification of tree species. The waveform can be used for 
densifying tree point clouds for more detailed information on 
tree structure. The benefit of densification is likely to be 
moderate for algorithms that use the special characteristics of 
the first and last pulse data, as described in section 3.1.1. 
However, those features based on density are likely to benefit 
more, since the large amount of data suppresses the effect of 
outlier points, different scan patterns and differences in the 
sampling resolutions. Table 2 presents preliminary 
classification results for height and structural features. The 
results show reasonable separation between the tree features of 
different species, despite the small size of the test sample. With 
larger data sets, we expect to gain more reliable estimates of the 
feature distribution for each species. 
 
Single descriptive waveforms, studied in section 3.2, present a 
different approach for tree classification: instead of solving 
compute-intensive statistical densities, our method searches for 
simple descriptors of each species. Such waveforms could be 
used, for example, in decision-tree-based classification systems. 
In addition, this method enables detection of tree properties 
such as precise trunk position to be determined. To find the 
most informative single waveform types, a detailed knowledge 
is needed of the different types of waveforms and the typical 
locations in which they may occur. 
 
Full-waveform data can be superimposed onto registered close-
range images in order to obtain detailed information on the 
behaviour of the data. Visually, it is easy to find interesting 
waveforms if their nature can be verified from images. These 
waveforms can be chosen and examined separately. Stereo 
images would provide an easy interface for visualising 
waveform data. Unfortunately, windy conditions may cause 
instability of the tree canopies, thereby preventing sensible 
stereo examination, especially when images are not captured 
simultaneously. Alternatively, images can be taken 
convergently from different sides of a target. However, such 
convergent image acquisition would not allow stereo viewing, 
though it also provides a good impression of how light rays are 
located in the 3D space. 
 
The usefulness of the superimposed ALS data is based on the 
human ability to find correspondences and similarities between 
images. It is very difficult to understand the true behaviour of 
ALS data if it cannot be compared with real images. Terrestrial 
close-range images give detailed reference data, and the 
viewing perspective which differs from that offered by ALS 
data gives additional information concerning the targets. A 
fuller understanding of these waveforms should make it is 
possible in the future to develop improved tools for interpreting 
and classifying full waveform data. 
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ABSTRACT: 
 

This paper describes the methodology adopted for developing a simulator for airborne altimetric LiDAR.  The goal is to 
model LiDAR sensor functioning so LiDAR data can be generated for a user specified terrain with given parameters of the 
sensor and aerial platform.  The simulator is conceived having three components: 1) Terrain component, 2) Sensor 
component and 3) Platform component.  Terrain component is formed using multiple mathematical surfaces for bare terrain 
and for objects on top of the surface.  Further, the terrain can be represented using a raster.  The sensor component permits a 
user to opt for the commercially available sensors or a generic sensor and accordingly generates data. The third component 
attempts to model the platform parameters, viz., velocity, roll, pitch, yaw and accelerations.  LiDAR data are generated by 
first finding the equation of laser vector that changes with each pulse and then determining the point of intersection of this 
vector with the mathematical surface or the raster representing terrain. This GUI based simulator, developed in JAVA, is an 
ideal tool for research and education. 

 
 
 

1. INTRODUCTION 

The last decade has seen manifold growth in the use of airborne 
altimetric LiDAR (Light Detection and Ranging) technology.    
Due to the main advantage of measuring topography through 
highly dense and accurate data points which are captured at 
high speed, the LiDAR technology has found several interesting 
applications (Lohani, 2001; Queija, et al., 2005).   
 
1.1 What is a simulator? 

A LiDAR simulator is aimed at faithfully emulating the LiDAR 
data capture process with the use of mathematical models under 
a computational environment.    Basically, data generated by 
simulator should exhibit all characteristics of data acquired by 
an actual LiDAR sensor.     
 
Literature reveals that only a few attempts have been made by 
researchers to develop simulator for LiDAR instrument.  These 
efforts are limited in their scope as either these consider effect 
of only single parameter on one kind of object (Holmgren et al., 
2003) or inaccurate scanning pattern (Beinat and Crosilla, 2002).   
More focused and comprehensive efforts have been made to 
simulate the return waveform from a footprint (Sun and Ranson, 
2000; Tulldahl and Steinvall, 1999).   
 
 
1.2 Why a simulator? 

LiDAR data with varying specifications are fundamental for 
success of a research.  To judge the optimality of algorithms or 
suitability of data for an application one needs to work with 
data with varying characteristics.  Collecting these data in field 
is not feasible in view of extensive time and resource 
involvement.  Further, for success of a research (e.g., building 
extraction from LiDAR data), availability of accurate and 
complete ground truth is crucial, which is difficult and 

expensive to collect in field.  LiDAR simulator can generate 
data with all user specified specifications at no cost.  Data can 
be generated even with those specifications that are not 
available in commercially available sensors.  Also, in the case 
of simulator complete and 100 per cent accurate ground truth is 
available.    Simulated data can help in evaluation of the effect 
of noise and/or systematic error in final outcome.  
 
A simulator is also a useful tool for education, as data 
generation process and the effect of error and various flight 
parameters can be understood in laboratory.  In view of the cost 
and sometime the security/proprietary concerns associated with 
LiDAR data, the same are not cheaply and readily available for 
classroom activities.  Simulator can help by producing data for 
various laboratory exercises aimed at understanding LiDAR 
data, their errors and information extraction algorithms.   
 
 

2. DESIGN BENCHMARKS FOR THE SIMULATOR 

The following benchmarks are set for an ideal simulator:  
 

1. Simulator should employ a user-friendly GUI 
(Graphical User Interface.) 
2. Simulator should be designed for wider distribution 
over various computational platforms.   
3. The simulator should come along with a help/tutorial 
system which can explain concepts of LiDAR using user-
friendly multimedia techniques.  
4. It should simulate a generic LiDAR sensor and some 
other sensors available in market. 
5. The simulator should facilitate selection of trajectory 
and sensor parameters as in actual case along with the 
facility of introducing errors in various component systems 
of LiDAR.     
6. Simulator should facilitate data generation for actual 
earth-like surfaces.  
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7. The output data should be available in commonly 
used LiDAR formats.  
 

3. METHODOLOGY 

 
3.1 Coordinate systems used 

As shown in Figure 1 two coordinate systems are considered.  
The first coordinate system is (X, Y, Z), which is absolute.  All 
trajectory and terrain coordinates are determined in this system.   
A system which translates with platform and remains parallel to 
absolute coordinate system is considered at the laser head and is 
henceforth referred to as gyro coordinate system.  The second 
coordinate system is the body coordinate system(x,y,z), which 
has its origin at laser head and is affected by roll, pitch and yaw 
rotations.  Scanning takes place in this coordinate system, i.e., 
in y-z plane.  The laser vector at any instance is defined using 
direction cosines and coordinates of laser head in gyro 
coordinate system. 
 

 
 

Figure 1.  Schematic of laser vector intersection with a surface 
and coordinate systems 

 
3.2 Simulator components and programming environment 

Simulator components are shown in Figure 2.  These 
components take form as per user input, while their integration 
generates LiDAR data.  Following paragraphs describe 
development of these components as implemented in the latest 
version of simulator.   The simulator has been improved 
substantially from its previous version (Lohani et al., 2006).  
This paper will focus more on description of these 
improvements.  However, to make it complete a few parts are 
reproduced from Lohani et al. (2006) with modifications.   
 

 
Figure 2. Basic components and their integration 

 
 
Programming language JAVA has been chosen, as it offers 
good numerical and graphical programming besides, and most 

importantly, being platform independent. The parameters 
required to define three individual components and output data 
format are input through user-friendly GUIs.       
   
3.3 Terrain component 

Vector and raster approaches are chosen for simulating bare 
earth surface and above ground objects as described below.  
Through a GUI, as shown in Figure 3, a user is prompted to 
select an area of interest, by marking it using the mouse on 
screen. The area selected from the underlined mathematical 
surface or raster becomes available for LiDAR data generation.   
 

 
 

Figure 3. GUI showing selection of underlying mathematical 
surface, its extent and area of interest on it for 
LiDAR flight along with flight lines 

 
3.3.1 Vector approach 
In this, a terrain is represented using mathematical equations, 
which yield earth like surfaces.  The GUI permits selection of 
these surfaces and their parameters.  A few of these are:  
 

                            
 
                            (1) 
 

3.3.2 Raster approach 
In this the surfaces resulting from the above equations are 
rasterized.  Most importantly, this approach permits populating 
the raster with above ground objects. Those cells, where an over 
ground object is desired to be placed, take new values as per the 
height and shape of object.   In addition, it is possible to import 
an existing raster file (say DEM) for which LiDAR data can be 
simulated.   
 
3.4 Sensor component 

The GUI prompts user to select any one of the two 
commercially available sensors (ALTM3100 or ALS50) or a 
generic sensor.  While the range of parameters is constrained in 
commercial sensors, as per their specifications, the generic 
sensor permits selection of any range of parameters.  Having 
selected the sensor, the user is prompted to enter the sensor 
parameters which are desired for LiDAR data generation, viz., 
scan angle, scan frequency, firing frequency,  type of scanning 
etc. (Figure 4.)   
 
Depending the type of scanning (which may be zig-zag or 
sinusoidal) the instantaneous scanning angle is determined by 

                              Integration 

Input Output 

Sensor 
component 

Trajectory 
component 

Terrain 
component 

[sin( / ) sin( / )]
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the following model.   Let time taken to complete 1/4th of a scan 
is T and there are P numbers of points in this.  The maximum 
scan angle is θmax .  For the ith point, which is fired at time ti 
from the beginning of scan, the scan angle will be: 
 

 
 

Figure 4. Parameter input for different sensors 
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The resulting trajectories are shown in Figure 5.   By changing 
the parameters listed above the spread of points within scan can 
be altered.  
 

 
Figure 5. Sinusoidal and zig-zag scan generation 

 
3.5 Trajectory component 

Complete trajectory of aircraft is made of several flight lines as 
shown in Figure 6.  Depending the area chosen for LiDAR data 
generation (gray area in Figure 6) and sensor parameters (i.e., 
swath width and per cent overlap) the direction of flight lines is 
either chosen by the user or an optimum direction is determined 
by the software.  In latter case, the flight direction is determined 
by making use of the principal direction of area.  For this, first 
using Douglas-Peucker algorithm (Douglas and Peucker, 1973) 
the number of vertices defining the area of interest marked by 
the user are reduced, which ensures that the area marked has no 
small kinks which are the artefacts of drawing on screen by 
hand.  Covariance matrix is generated for the coordinates of all 
points forming the area of interest polygon.  The first eigen 
vector of this is used to determine the principal direction of the 
polygon.   The flight direction is oriented in the principal 

direction, which makes the total flight line length required to 
cover the area a minimum (in most of the cases.)   
 
The software also determines the location of flight lines (thick 
lines in Figure 6) so as to cover entire area considering the 
overlap specified.  The algorithm places the first flight line (top 
flight line in Figure 6) in such a way that the swath covers up to 
the edge of area.  The last flight line is placed considering the 
spacing between flight lines for given overlap.  It is shown in 
Figure 6 that in order to cover full area of interest some extra 
area (union of all swath rectangles – area of interest) is also 
scanned.   Using the points of intersection of periphery of area 
and the flight line the starting and ending points of flights are 
determined.   The following section describes computations for 
an individual flight line.  The same procedure is followed for 
other flight lines also.    
 
3.5.1 Location 
A trajectory (referred as flight line henceforth to indicate a 
single flight) is defined by the location of laser mirror centre 
(point of origin of laser vector) in the absolute coordinate 
system at each instance of firing of laser pulse.  To simulate the 
flight line and to incorporate a possibility of introducing errors 
in parameters the following procedure is employed.   
 
 

   
 
Figure 6.  Area of interest (gray) , flight lines in optimum 

direction (thick arrows) and swaths with overlap 
(thin rectangles)  

 
 
Let, time interval between firing of successive pulses is dt , 
which is equal to 1/F, where F is firing frequency.   Total 
number of points on flight line wherefrom pulses are fired is n, 
which will depend upon the length of flight line.  Velocity of 
platform in flight direction at ith point on flight line is u 

i.  Let 
the laser head coordinates at ith point on trajectory are (Xi, Yi, Zi).   
 
At each successive dt interval one needs to compute the location 
of laser head.  The aerial platform is subject to internal and 
external force fields with the net effect that the platform is 
subject to random accelerations in three axes directions.   The 
following system is employed to simulate accelerations.  This 
system ensures a pseudo-random generation of acceleration 
values.   
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Where ax
i
 is the acceleration at ith point in X direction.  T is the 

total duration of a flight line.  The parameters of this equation J, 
K, A, B, C and D control the direction and quantum of 
acceleration.  Developed software permits selection of these 
parameter values within ranges that generate accelerations as 
may be observed in a normal flight.  Similarly, ay

i
 and   az

i
 are 

also generated with different values of parameters in above 
equation.  Using the acceleration values at ith point the new 
location of laser head (i.e., Xi+1, Yi+1, Zi+1

  ) after dt interval is 
computed using equations similar to:  
 

1 21
2

i i i i
x t x tX X u d a d+ = + +    (4) 

Where, u x
i   is the velocity in X direction.   

 
3.5.2 Attitude  
As in case of acceleration, due to internal and external force 
fields, the attitude will change within certain limits and may 
exhibit a random behaviour.  To realise this, the attitude values 
(i.e., ωi, φi, κi) at any ith   point are determined using the 
equation (3).  Similar to the case of acceleration, the developed 
simulator permits selection of these parameters in the ranges 
which generate attitude values as in case of a normal flight.   
 
The outcome of aforesaid is that at each point wherefrom a laser 
pulse is fired the attitude values and coordinates of point are 
known in the absolute coordinate system.   
 
3.6 Integration of components 

The components discussed above are integrated by generation 
of the laser vector and its intersection with simulated terrain.  
The point of intersection yields the coordinate of terrain point.  
As shown in Figure 1, for any ith point on trajectory there exists 
a laser vector.  Equation of laser vector is given as: 
 

i i i

i i i

X X Y Y Z Z
a b c
− − −

= =                          (5) 

 
Where ai, bi, and ci are direction cosines (cosαi,  cosβi, and 
cosγi, respectively) of laser vector with respect to gyro 
coordinate system at ith point.   The values of αi, βi, and γi are 
determined from known values of attitude (ωi, φi, κi ) and 
instantaneous scan angle (θ).   
 
The point where laser hits the terrain, following the above laser 
vector, is computed by solving for intersection of equation (5) 
and equation (1) or the rasterized terrain.  Solution is realised 
using specially formulated numerical methods.   These methods 
differ for vector and raster terrain and also depend upon the 
basic equations employed to create terrain.  The raster data size 
becomes very large (raster cell is taken 10 cm).  Therefore, to 
solve the intersection it is not feasible to store entire data in 
memory.  Special data structuring is adopted by tiling the raster 
and reading the data only from those tiles which fall under the 
swath of flight line.  This is ensured by using the “point in 
polygon” algorithm which determines whether a tile 
intersection is within the area covered by flight line (i.e. Swath 
x Flight length).   Full description of these methods is beyond 
the scope of this paper.  At this stage coordinates of all points of 
intersection (Xt

i, Yt
i, Zt

i) are known.   
      

3.7 Error introduction in data  

LiDAR data suffer from systematic and random errors of 
different kinds (Huising and Pereira, 1998).  Errors in position 
and orientation of platform and in angle and range measurement 
by sensor propagate in final coordinates.  It is proposed to 
provide facility for introduction of these errors in the future 
version of simulator.  In present version a normal error is 
introduced in the terrain coordinates computed in the above step 
in X, Y and Z directions separately.  The system for introducing 
error in X direction is shown below:  
 

2( , )i i
T t X XX X N μ σ= +     (6) 

 
Where XT

i is the X coordinate value with error.  Similar systems 
with different values of parameters are used for Y and Z 
coordinates.  It is assumed that errors in X, Y and Z directions 
follow normal distribution.  Further, when introducing these 
errors it is ensured in algorithm that there is no spatial auto-
correlation of error.  The parameters of this distribution are 
known from field experience and are reported by the vendors of 
sensors.  The simulator facilitates variation of these parameters. 
 
3.8 Output generation  

The software facilitates output of LiDAR coordinates in simple 
ASCII format or standard LAS format.  Further, a variety of 
other reports are generated, e.g., sensor parameters, flight 
parameters and parameters used to generate terrain (Figure 7).  
These reports are output in textual format which can be 
employed by user for further study.   
 

 
 

Figure 7. LiDAR data output menu and options 
 

4. RESULT AND DISCUSSION 

Simulated trajectory and attitude parameters are shown for a 
duration of 5 seconds (Figure 8).  Though, it is statistically 
difficult to compare simulated data with any set of actual flight 
data, as these two represent two different populations, the 
former amply exhibit the random nature of parameters as in any 
normal flight.   
 
A hypothetical terrain (2km by 2km) is created over a flat 
surface and is populated with building like shapes (length and 
breadth ranging from 150 m to 300 m) along with 6 cylindrical 
objects (50 m diameter and 90m height).  Large objects are 
chosen here to fill the 2km by 2km area.  The flat surface and 

267

IAPRS Volume XXXVI, Part 3 / W52, 2007



 

objects on top of it are rasterized.  The raster takes values as per 
the underlying surface or the object.    A view of this is shown 
in Figure 9, which is generated using surface feature of Surfer.   
This view also shows the location and direction of the four 
flight lines.  This view will help understanding the results 
presented later.  LiDAR data were generated for this terrain 
with the parameters: Flight velocity: 60 m/s; Altitude: 600m; 
Firing frequency: 20000 Hz; Scan frequency: 48 Hz.; Scan 
angle: 50°; No  of flight lines: 4; Overlap  1.5 % 
 

 

 
Figure 8. Acceleration (top) and attitude (bottom) values   
 
 

 
Figure 9. Surfer surface view of the chosen terrain (heights are 

exaggerated) 
 

Resulting LiDAR data are imported in Terrascan software and 
displayed.  Only few views are being presented for the sake of 
space as shown in Figure 10 and Figure 11.    Data generation 
for objects of different shapes and sizes and as well as for 
objects situated at different locations w.r.t. the flight line can be 
understood from these figures.  In Figure 10(a) a perspective 
view is shown, which shows various buildings where data are 
captured, while the interplay of object and shadow is also 
evident.  Not all black areas (i.e. where data are not captured) 
are shadows.  This can be understood from the profile drawn 
about A-A and shown in Figure 10 (b).    For example, the  roof 
of building marked by white oval is not fully captured.  The 
reason for this can be understood in profile (also marked by 
white oval.)  The black area is not being covered by either flight 
lines.  This also serves as an example of poor choice of scan 
angle and flying height, which can be understood by simulator.   
 
 

(a) 
 
 

 
(b) 

 
Figure 10. (a) LiDAR data display in Terrascan-perspective 

view; (b) Profile along A-A band shown by white 
colour in top image.  The profile is shown along 
with the flight lines and swaths. The building within 
oval is not fully measured.   

 
The zoomed out views (shown in Figure 11 (a) and (b)) of the 
same data show the point cloud as obtained for different objects.    
Location of flight lines is also shown.  The spread of point 
cloud depends on the location of the object with respect to 
flight line and the parameters chosen for sensor.   LiDAR data 
points are available on the vertical walls facing flight line, 
while no data points are captured on the other wall.  Data in 
these examples are produced with error.  This is evident as the 
points do not fall in smooth scan lines.     

A

A
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(a) 

 

 
(b) 

Figure 11.  Zoomed out display of point cloud 
 
 
 

5. CONCLUSION 

The presented simulator emulates existing commercial sensors 
and models a generic LiDAR sensor to generate data over a user 
specified terrain.  A user can alter the sensor and trajectory 
parameters with ease and generate the resulting LiDAR data.  
Error can also be incorporated in output.   The simulator has a 
user friendly GUI designed in architecture independent JAVA 
language.     
 
The simulator can be useful to generate LiDAR data for 
research to test algorithms.  It is also useful in a classroom for 
demonstrating LiDAR data capture process and understanding 
the effect of flight and sensor parameters and their errors.   
 
Terrain representation using raster has solved to a large extent 
the problem of representation of bare earth and objects.  
However, this results in large data size which is managed 
through data structuring so the data are brought into the 
simulator in chunks as needed.   
 
A MATLAB based system has been developed in parallel for 
simulating full waveform digitization for a Gaussian pulse.  
Efforts will be made in future to integrate this with the present 
simulator, thus to generate multiple return data and waveform 
digitization.    
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ABSTRACT 
 
During last ten years the research concerning airborne laser scanning based forest inventory applications has been very active in 
different parts of the world. In Finland, both basic approaches, single tree detection and area based modeling have been widely 
examined. In the following the results of the ALS based forest inventory experiments and further possibilities in Finland are reviewed 
and discussed. A short review of Finnish forestry in relation to possibilities of ALS based forest inventories is included as well. 
Finally, some examples concerning the comparison of single tree detection and area based modeling and the usability of spatial 
information provided by ALS data are presented.  
     
 

1. INTRODUCTION 
 

During last ten years the research concerning airborne laser 
scanning (ALS) based forest inventory applications has been 
very active in different parts of the world (e.g. Næsset, 1997; 
Magnussen & Boudewyn, 1998; Hyyppä et al., 2001; Persson 
et al., 2002; McCombs et al., 2003; Takahashi et al., 2005; 
Tickle et al., 2006; Koch et al., 2006). Most of the studies 
have been conducted by using discrete return small footprint 
systems but there are also large footprint lidar applications as 
well (Drake et al., 2002). 
 
In Finland, both basic approaches to utilize ALS data, single 
tree detection (Hyyppä & Inkinen, 1999; Hyyppä et al, 2001; 
Maltamo et al., 2004a; Yu et al., 2006; Korpela, 2007; 
Peuhkurinen et al., 2007) and area based modeling (Suvanto 
et al., 2005; Maltamo et al., 2006a; c; Packalen & Maltamo, 
2007) have been examined. In the following, the results of 
the ALS based forest inventory experiments and further 
possibilities in Finland are reviewed and discussed. Forest 
inventories are usually multipurpose but here we concentrate 
mainly on prediction methods of living tree stock. Some 
examples concerning the comparison of single tree detection 
and area based modeling as well as spatial information 
provided by ALS data are also presented. However, to 
understand the growing conditions and forest inventory 
traditions in Finland a short review of Finnish forestry in 
relation to possibilities of ALS based forest inventories is 
also included.   
 
 

2. FOREST INVENTORIES IN  FINLAND 
 
The forests of Finland are located in boreal vegetation zone. 
The number of existing tree species is rather low, including 
coniferous pine (Scots pine [Pinus sylvestris L.]) and spruce 
species (Norway spruce [Picea abies L. karst]), and as 
deciduous birches (Silver birch [Betula pendula Roth],  
downy birch [Betula pubescens Ehrh.]), alders (grey alder [ 
Alnus incana], red alder [Alnus glutinosa]) and aspen 
(European aspen [Populus tremula]) species. At stand level, 

most of the forests are dominated either by pine or spruce. 
There is no pure plantation forestry in Finland. Although 
considerable proportion of regenerated stands have been 
planted by one tree species the rotation age is so long that 
other species usually naturally regenerate to stand. As a 
result, a considerable proportion of stands are mixed at least 
in some level. Only the least fertile stands, usually located in 
northern Finland consist of pine only. Of course, silvicultural 
treatments may also favour certain tree species. One specific 
phenomenon in boreal forests is also high stand density by 
means of number of stems whereas trees are rather small. For 
example, in managed forests of Matalansalo test area, used in 
several ALS studies, the average stand density is about 1500 
stems per hectare and in mature stand strata still over 1250 
stems per hectare (Suvanto et al., 2005). As a comparison, in 
the study data by Heurich and Weinacker (2004) the stand 
density in southeastern Germany on temperate forests was on 
average 540 stems per hectare.   

   
In Finland forest inventory is carried out on two levels: 
National forest inventory (NFI) and forest management 
planning. NFI is based on systematic cluster sampling of 
field plots and covers whole country (Tomppo, 2006a). This 
data is used for calculation of national and regional forest 
resources and for national level planning. In addition, satellite 
images are used in the multi-source National Inventory as an 
auxiliary material (Tomppo, 2006b).  

 
ALS data based sample plots is not a realistic alternative for 
replacing field measured NFI sample plots. This is due to the 
fact that one of the main requirements of NFI is that forest 
resource results should be unbiased and this cannot be 
quaranteed by using ALS data. Furthermore, information 
concerning tree stock is only a minor part of the 
measurements in these plots. Some other data needs consist 
e.g. of forest health, biodiversity and forest soil variables and 
most of these cannot be remote sensed (the head of the NFI 
of Finland, Dr. Kari T. Korhonen, personal comm.). On the 
other hand, large scale ALS data such as National Laser 
Scanning (e.g. Artuso et al., 2003) could provide auxiliary 
information for multi-source inventory in the form of digital 
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terrain model (DTM), canopy height model (CHM) or stand 
characteristics interpretation on systematic grid. 

 
Forest management planning in private forests is usually 
based on information collected by forest compartments 
(stands) (Poso, 1983). A conventional inventory by 
compartment includes expensive field work, but the number 
of assessments per stand is typically small, resulting in low 
precision of estimated stand variables. All assessments are 
made on tree species level already in the field and as a final 
product tree species specific timber sortiments are calculated. 
The accuracy of prediction of stand total volume achieved in 
compartment inventory usually varies between 15 and 30% 
(Haara & Korhonen, 2004).  For tree species the results are 
even considerably worse. In fact, during recent years, the 
costs and accuracy of conventional field work based small 
area forest inventories have been at unsatisfactory levels 
(e.g., Kangas & Maltamo, 2002). There is, therefore, an 
increasing pressure to improve methods of carrying out field 
inventories in small areas. The main approaches to 
developing a compartment inventory have been the 
modification of field measurements and the application of 
remote sensing methods to support, or even replace, field 
measurements.  For the purpose of replacing current 
inventory, ALS based methods have a very high potential.  

 
Other forest inventory applications in Finland include 
specific inventories for detailed purposes, such as wood 
procurement planning or forest protection survey. These 
inventories should produce very fine grained information of 
variables of interest. In addition, the area they cover can vary 
from one marked stand to large scale level. The usability of 
ALS data in these inventories varies. For wood procurement 
planning ALS based methods could provide detailed 
information but due to the small area of target stands the cost 
efficiency of data may not be sufficient. Concerning 
characteristics of forest protection, some of them may be 
mapped by ALS data and the others may be almost 
impossible to recognise. In general, ecological information 
can be obtained from ALS data (Hill et al., 2003; Hashimoto 
et al., 2004)   

 
All in all the characteristics of Finnish forests (low number of 
tree species but usually more than one in stand, high stand 
density, no fast growing plantations) and inventory output 
needed (stand variables by tree species) define the 
possibilities for ALS data to be applied. These possibilities 
are further discussed later in this paper. 
 
 

3. ALS EXPERIENCES OF FOREST 
INVENTORY IN FINLAND 

 
3.1 General 

 
The first ALS based forest inventory studies in Finland were 
based on single tree detection and high pulse density data 
(Hyyppä & Inkinen, 1999; Hyyppä et al., 2001). In fact, 
Hyyppä and Inkinen (1999) were among the first ones to 
apply single tree detection with ALS data. The accuracy was 
found to be superior already in these first studies the standard 
error (without bias) being about 10% for stand volume. In the 
studies by Hyyppä and Inkinen (1999) and Maltamo et al. 
(2004b) the proportion of detected trees was only about 40%. 
This was due to the multilayered and unmanaged stand 
structure of the study area. Detailed information concerning 
ALS studies in Finland before 2004 can be found from 

review by Hyyppä et al. 2003. More recent developments in 
Nordic countries and in boreal forests in general have been 
reported e.g., by Næsset et al. (2006) and Hyyppä et al 
(2007). In Finland, there has also been active research going 
on concerning the quality of DTM construction in forested 
areas (e.g. Hyyppä et al., 2005; Korpela & Välimäki, 2007). 
In addition, the TerraScan software (by Arttu Soininen) from 
Terrasolid Oy is assumed to be the global market leading 
software concerning laser scanning processing.   

 
3.2 Single tree detection 
 
More recently the research of single tree approach has 
concentrated on detection algorithms, recovery of undetected 
trees, height growth and change detection. In addition, crown 
height estimation and, especially, tree species recognition are 
under growing research interest in Finland.  

 
Concerning detection algorithms one problem on raster 
canopy height models is handling of tree crowns of different 
sizes. On laser scanner data one size attribute, height, is 
directly available. This gives possibilities to develop 
processing methods that adapt to the object size. In the study 
by Pitkänen et al. (2004) three adaptive methods were 
developed and tested for individual tree detection on CHM.  
In the first method, the CHM was smoothed with canopy 
height based selection of degree of smoothing and local 
maxima on the smoothed CHM were considered as tree 
locations. In the second and third methods, crown diameter 
predicted from tree height was utilised. The second method 
used elimination of candidate tree locations based on the 
predicted crown diameter and distance and valley depth 
between two locations studied. The third method was 
modified from scale-space method used for blob detection. 
Instead of automatic scale selection of the scale-space 
method, the scale for Laplacian filtering, used in blob 
detection, was determined according to the predicted crown 
diameter.  

 
Possibility to characterize suppressed trees that cannot be 
detected has also been of interest. Maltamo et al. (2004a) 
combined theoretical distribution functions and laser 
scanning data to describe small and suppressed trees, which 
tree crown segmentation methods was not able to detect. The 
use of original point clouds instead of digital surface models 
(DSM) or CHMs also gives possibilities for detection of 
small trees. Since, some of the laser pulses will penetrate 
under the dominant tree layer, it is also possible to analyze 
multilayered stands. In Maltamo et al. (2005), the existence 
and number of suppressed trees was examined. The results 
showed that multilayered stand structures can be recognised 
and quantified using quantiles of laser scanner height 
distribution data. However, the accuracy of the results is 
dependent on the density of the dominant tree layer.   

 
Correspondingly, Mehtätalo (2006) used theoretical approach 
to describe small trees. The probability of a tree being 
observed was related to its height and was equal to the 
proportion of the forest area not covered by taller trees. 
Mehtätalo (2006) presented mathematical formula which was 
based on the following assumptions: (i) trees are randomly 
located within the stand and crown diameters within a stand 
are uncorrelated, (ii) tree height increases as a function of 
crown diameter, (iii) the tree crown forms a circle around the 
tree tip, and (iv) a tree is invisible if the tree tip locates within 
the crown of a taller tree. Furthermore, different approaches 
were proposed for the correction of the censoring effect upon 
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the observed distribution of crown areas. The used approach 
provided theoretically accurate estimates for the distribution 
of crown areas and the number of stems.  

 
Yu et al. (2004) demonstrated the applicability of airborne 
laser scanners in estimating height growth and monitoring 
fallen or cut trees. Out of 83 field-checked fallen or cut trees, 
61 were detected automatically and correctly. All the mature 
cut trees were detected; it was mainly the smaller trees that 
were not. Height growth was demonstrated at plot and stand 
levels using an object-oriented tree-to-tree matching 
algorithm and statistical analysis. In Yu et al. (2006) the 
potential of measuring individual tree height growth of Scots 
pine in boreal forest was analysed. Three different types of 
variables were extracted from the point clouds representing 
each tree:  (i) the difference of highest z value, (ii) difference 
between DSMs of tree tops and, (iii) difference of 85, 90 and 
95% quartiles of the height histograms corresponding to a 
crown. The results indicate that it is possible to measure the 
height growth of an individual tree with multi-temporal laser 
surveys.  
 
Maltamo et al. (2006b) compared the results of the prediction 
of crown height characteristics using ALS data and intensive 
field measurements. Crown height models were constructed 
both at the tree and plot level for Scots pine, Norway spruce 
and birches. The ALS based models included independent 
variables of tree levels, such as tree height, crown area and 
independent plot-level variables, i.e. canopy height and 
density quantiles and proportion of vegetation hits. The 
results indicated that the ALS-based crown height models 
were more accurate than the field-measurement-based models 
when plot-level information was used as independent 
variables. However, the field-measurement-based tree-level 
models for Scots pine and Norway spruce were more 
accurate than the ALS-based models. Even so, the accuracy 
of the different models was very similar. 

 
Related to wood procurement planning Peuhkurinen et al. 
(2007) applied ALS data and field measurements to 
characterize timber sortiments of two pure Norway spruce 
marked stands. Pre-harvest measurement was realized by 
using different methods as follows: (i) lidar-based individual 
tree detection (see Pitkänen et al., 2004) and local 
constructed dbh model (tree height as predictor), (ii) lidar-
based individual tree detection and existing regional dbh 
model for spruce presented by Kalliovirta and Tokola (2005), 
(iii) lidar-based individual tree detection and existing 
regional dbh model (both tree height and maximum crown 
diameter as predictors), (iv) systematic field plot sampling 
data, (v)  field inventory by compartments and, (vi) area 
based canopy height distribution approach. The mean stand 
variables were predicted with the models presented by 
Suvanto et al. (2005). As a ground truth data harvester 
measurements were used and the comparison of the methods 
was based on bucking simulations. 
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Fig. 1. Comparison of diameter distributions of single tree 
detection, compartment inventory and harvester reference 
data in a marked stand (Peuhkurinen et al. 2007). 
 
The results of Peuhkurinen et al. (2007) illustrated 
considerable advantage of lidar-based single tree detection 
procedure compared to other studied methods in producing 
pre-harvest measurement information. Single tree detection 
with local dbh model (method (i)) was the most accurate 
method by means of error index of diameter distribution 
(Reynolds et al., 1988), saw wood and pulp wood volumes 
and apportionment indexes used in relation with distribution 
of logs. In fact, single tree detection found 2561 trees 
whereas harvester data included 2638 trees, corresponding 
figures for saw wood volumes were 1262 m3 and 1267 m3, 
respectively. Predicted tree diameters were even able to 
produce bi-modal shape of diameter distribution (Fig. 1). 
Though, it must be noticed that the study by Peuhkurinen et 
al. (2007) was done using two marked stands only and, thus, 
has the nature of a case study. 
 
Pyysalo (2006) developed 3D vector models of single trees 
from ALS data in order to derive geometry features. The 
vector model construction included four stages: (i) laser point 
classification, (ii) DTM construction, (iii) extraction of points 
from each individual tree and, (iv) vector model creation. The 
extracted features were tree height, crown height, trunk 
location, and crown profile. According to the derived results 
tree shape is underestimated in vector models in both vertical 
and horizontal direction Tree location were extracted with an 
accuracy of 2 m and tree heights with an accuracy of 1.5 m 
(Pyysalo, 2006). 
 
Säynäjoki (2007) examined tree species classification 
between aspen and other deciduous trees by using single tree 
recognition of ALS data. Watershed segmentation was used 
to create crown segments on the smoothed CHM (Pitkänen et 
al., 2004). Crown segments of deciduous trees were used to 
classify trees to aspen or other deciduous trees using linear 
discriminant analysis. Classification accuracy between aspen 
and other deciduous trees was as its best 79.1%. Predictors in 
this classification function were proportion of vegetation hits, 
standard deviation of pulse heights, accumulated intensity on 
90th percentile and relation of proportions of laser points 
reflected on 95th and 40th height percentiles. In addition to the 
study by Säynäjoki (2007) there is a lot of research interest 
going on in Finland to recognise tree species from single tree 
detected ALS data.  In Liang et al. (2007), it was shown that 
the difference between first and last pulse is a valuable 
feature for trees species classification. It gives reliable (89% 
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accuracy) classification between coniferous and deciduous 
trees under leaf-off conditions.    
 
Finally, international EuroSDR/ISPRS Tree Extraction 
project is coordinated by Finland (Hyyppä & Kaartinen 
2006). The project includes twelve partners and the study 
area is located in southern Finland. The aims of the project 
are: (i) to compare different algorithms in tree extraction, (ii) 
to study the effect of pulse density and (iii) to improve results 
by combining ALS data and aerial images. The 
characteristics to be compared are tree and tree species 
detection and tree height estimation. The results clearly 
showed that the variability of tree location accuracy is small 
as a function of pulse density and it mainly changes as a 
function of the provider. With the best models for all the 
trees, the mean location error was less than 1 m and the 
difference with 2, 4 and 8 pulses per m2 was negligible. With 
trees over 20 m, the accuracy of tree location of 0.5 m was 
obtained. Tree height quality analysis using selected 70 
reference trees, the reference height was known with 
accuracy of 10 cm, showed again that the variability of the 
pulse density was negligible compared to method variability. 
With best models RMSE of 50 to 80 cm was obtained for tree 
height. Even the 2 pulses per m2 seemed to be feasible for 
individual tree detection. Percentage of the found trees by 
partners showed that the best algorithms found 90% of those 
trees that were found at least by one of the partners. There 
was again higher variation with the method used rather than 
pulse density. The results of the test showed that the methods 
of individual tree detection vary significantly and that the 
method itself is more significant for individual tree based 
inventories rather than the applied pulse density (Harri 
Kaartinen and Juha Hyyppä, personal comm.).    

 
3.3 Area based modelling 
 
Research concerning area based modelling by using canopy 
height distribution approach and low pulse density ALS data 
started year 2004 in Finland (Suvanto et al., 2005; Maltamo 
et al., 2006a). First studies confirmed the corresponding 
accuracy observed in other Nordic countries (e.g. Næsset, 
2002; 2004; Holmgren, 2004; Næsset et al., 2004). Juntunen 
(2006) also made cost plus loss comparisons between ALS 
based stand variables and characteristics of conventional 
inventory by compartments (see e.g., Eid et al., 2004). When 
compared to optical sensors canopy height distribution 
approach was found to be more suitable alternative for the 
next generation method for compartment inventory in 
Finland (Uuttera et al., 2006). Instead of using regression 
models in construction of stand variable models k-MSN 
model was used by Maltamo et al. (2006c). The k-MSN 
method is a non-parametric method, which uses canonical 
correlation analysis to produce a weighting matrix used in the 
selection of k Most Similar Neighbors from reference data. 
Most Similar Neighbors are observations that according to 
predictor variables are similar to the target of prediction. 
When using k-MSN model the accuracy of stand volume was 
improved when compared to regression models (Maltamo et 
al., 2006). Additional information of aerial photographs or 
stand register data further slightly improved the accuracy.  
 
When constructing area based forest inventory application a 
ground truth sample of accurately measured field plots is 
needed. One possibility for reducing the costs lies in the use 
of existing field plots for ground truth purposes. The most 
obvious alternative in Finland is to use truncated angle count 
sample plots of the National Forest Inventory.  Due to the 

lack of suitable angle count ground truth data and 
corresponding laser data, Maltamo et al. (2007a) tested this 
possibility using data on fixed area sample plots, in which 
tree locations were simulated. The trees for a truncated angle 
count sample plot were then chosen and the resulting data 
together with the characteristics of an ALS -based canopy 
height distribution were used to construct regression models 
to predict stem volume, basal area, stem number, basal area 
median diameter and the height. The accuracy of the stand 
attributes was found to be almost as good as in the case of 
models of fixed area plots. However, one drawback of this 
study was that there were no field plots which were located 
on stand edge. Such plots are typical for systematic sampling 
based forest inventory applications, such as NFI of Finland.     
 
Närhi (2007) tested the usability of area based canopy height 
distribution approach to define the need and timing of 
silvicultural treatment on Norway spruce sapling stands. Two 
approaches were used: (i) ALS characteristics were directly 
used to classify sapling stands according to treatment need by 
using discriminant analysis and, (ii) regression models were 
constructed for mean height and stand density 
correspondingly as Næsset and Bjerknes (2001). After that, 
the need and timing of silvicultural treatment was classified 
according to these predicted characteristics. The results 
indicated that overall accuracy of about 70% was achieved in 
classification. The stands where there is a need for treatment 
were found more accurately than those who did not have 
need for that. 

 
Basicly, area based canopy height distribution approach 
produces stand variables, usually stand volume, stem 
number, basal area, basal area median diameter and tree 
height. However, ALS data can also be used to predict 
parameters of a theoretical diameter distribution model of a 
stand (Gobakken & Næsset, 2004; 2005). In Finland, 
Maltamo et al. (2006a) compared prediction of diameter 
percentiles and the use of predicted stand characteristics to 
further predict Weibull parameters. More flexible and local 
percentile based distribution was able to better describe 
diameter distribution of heterogeneous stands.  

 
In Maltamo et al. (2007b) the accuracy of ALS-based stem 
frequency and basal area diameter distribution models by 
using Weibull distribution were compared. Furthermore, the 
usability of calibration estimation (see, e.g., Kangas & 
Maltamo, 2002) to adjust the predicted distributions to be 
compatible with the ALS based estimated stand volume was 
presented. As a main result, the authors state that when 
diameter distributions are predicted using ALS data, basal 
area diameter distributions may not be needed. This 
represents a considerable improvement in the inventory 
system, since basal area is not in itself an interesting end-
product variable. When stem frequency distributions are 
directly usable, this would provide a more realistic 
description of the stand structure and generate simulations for 
the further development of the tree stock. 

 
Pesonen et al. (2007) analysed the potential of ALS data for 
estimating coarse wood debris (CWD) volumes in 
conservation area of the Koli National Park. The accuracy of 
the ALS data proved adequate for predicting the downed 
dead wood volume (RMSE 51.6%), whereas the standing 
dead wood volume estimates were somewhat poorer (RMSE 
78.8%). The downed dead wood volume estimates were 
found to be substantially more accurate than traditional 
predictions based on field measurements. Correspondingly, 
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Kotamaa (2007) analysed the potential of ALS data for 
estimating downed dead wood volumes in managed forests in 
Juuka, eastern Finland. The accuracy was found to be 
considerably worse. However, ALS data was able to 
satisfactory classify plots whether they included downed 
dead wood or not. 

 
In all abovementioned studies (excluding Säynäjoki, 2007 
and Liang et al., 2007) tree species have been ignored and 
total tree stock has been considered. However, species-
specific stand characteristics are essential in Finland. To 
solve this problem Packalén and Maltamo (2006) combined 
information from ALS data with digital aerial photographs to 
predict stand volume by tree species. Furthermore, Packalén 
and Maltamo (2006; 2007) applied the non-parametric k-
MSN method to predict species-specific forest variables 
volume, stem number, basal area, basal area median diameter 
and tree height simultaneously for Scots pine, Norway spruce 
and deciduous trees as well as total characteristics as sums of 
the species-specific estimates. The combination of ALS data 
and aerial photographs was used in these studies. The 
predictor variables derived from the ALS data were based on 
the height distribution of vegetation hits, whereas spectral 
values and texture features were employed in the case of the 
aerial photographs. The results showed that this approach can 
be used to predict species-specific forest variables at least as 
accurately as from the current stand-level field inventory for 
Finland.  
 
 

4. CALCULATION EXPERIMENTS  
 

4.1 Comparison of single tree detection and canopy height 
distribution approaches 
 
Area based canopy height distribution and single tree based 
approaches to utilise ALS data have been compared and 
discussed in some reviews (Næsset et al., 2004; Hyyppä et 
al., 2007). However, reliability figures presented earlier have 
been based on different reliability characteristics and study 
areas as well. Peuhkurinen et al. (2007) observed the better 
accuracy of single tree detection in pre harvest measurement 
case study. The example stand had rather low stand density 
(465 stems per hectare). However, for forest inventory 
purposes, comprehensive forest resource estimate should be 
provided in relation to area to be considered, not just for 
mature stands.  

 
In this paper we theoretically compare these two approaches 
in Matalansalo test area. This area has been earlier used in 
several ALS studies (Suvanto et al., 2005; Maltamo et al., 
2006c; 2007a; b; Packalén & Maltamo, 2006; 2007). The 
total size of the area is about 1200 hectares. There are a total 
of 472 field sample plots (radius 9 meters) located in the area 
and ALS campaign was conducted in summer 2004 using an 
Optech ALTM 1233 laser scanning system operating at an 
altitude of 1500 m above ground level. Sampling density of 
the data was about 0.7 measurements per one square metre. 
The pulse density does not allow individual tree detection 
and, therefore, we simulated single tree approach as follows: 
(i) it was expected that all trees were found, i.e. true tee 
heights of all field measured trees were used, (ii) tree species 
recognition produced 100% accuracy, i.e., tree species 
recorded for each field measured tree was used and, (iii) tree 
diameter was predicted with the help of tree height (h) either 
by using existing, i.e. no calibration, regional regression 
models by Kalliovirta and Tokola (2005) or from sample tree 

material, i.e. calibrated by using about 1200 measurements, 
constructed local tree diameter models. The model forms 
were for Scots pine )( hfdbh =  and for Norway spruce and 
deciduous tree species )(hfdbh = .  After that we calculated 
stand volumes by using volume functions of Laasasenaho 
(1982). As a result RMSE’s of 25.3% and 22.9% for plot 
level volumes were obtained for regional and local models, 
respectively.  When compared these figures to canopy height 
distribution approach based estimates of regression models 
19.9% (Suvanto et al., 2005), k-MSN estimate 15.6% 
(Maltamo et al., 2006c), species-specific k-MSN estimates 
summed to plot level 20.5% (Packalén & Maltamo, 2007) 
and diameter distribution based plot volume estimate 20.6% 
(Maltamo et al., 2007b) it can be seen that the accuracy is 
slight worse although it was expected that tree and tree 
species detection totally succeeded. This is due to the fact 
that the relationship between tree height and diameter is far 
from deterministic. Allometric relationship between tree 
diameter and height defines only certain limits for the 
variation of these to variables, but characteristics such as 
stand density, stand silvicultural history, genetic factors of 
tree seed, tree position in a stand, site fertility, height above 
sea level, distance from sea, mineral soil/peatland and stand 
development class effect considerably to this relationship 

 
In real world applications all trees and tree species would not 
be detected, tree groups would cause some problems and tree 
heights would be underestimates (e.g. Maltamo et al., 2004b), 
but, the errors obtained here might not be increased 
considerably due to the correlations between different errors 
(Kangas, 1999). On the other hand, our simulation was not 
able to take into consideration other variables produced by 
single tree detection, usually tree crown area or diameter 
(Hyyppä et al., 2001; Persson et al., 2002; Maltamo et al., 
2004a). In the study by Kalliovirta and Tokola (2005) the 
increase in accuracy when maximum width of tree crown was 
added to dbh/h model was 2.5 %-units in tree diameter 
prediction. Furthermore, in Finnish conditions the effect of 
tree crown area or diameter to increase accuracy of volume 
prediction has been found to be 5-7 %-units (Maltamo et al., 
2004a; Villikka et al., 2007). Furthermore, the use of height 
and density distributions of 3D point cloud of each detected 
tree would additionally slightly improve the accuracy as 
suggested by Villikka et al. (2007).  Also some of the 
characteristics mentioned in previous paragraph could be 
used in dbh/h models or in the stratification of the data.   

 
In fact, it is obvious in statistical manner that if the target 
variable is stand volume, direct prediction model, as in the 
case of canopy height distribution, is the most accurate 
alternative to predict it. To further compare these two 
approaches by using diameter distribution estimates we also 
calculated error index presented by Reynolds et al. (1988): 
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if i are the predicted and true frequency of 
diameter class i, respectively, and K is the number of 
diameter classes. The error index was calculated in 1-cm-
diameter classes for stem numbers at the plot level. Thus, the 
error index of a given plot was the sum of the absolute 
differences between the actual and predicted stem 
frequencies of the diameter classes. Diameter distribution 
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estimate was in the case of canopy height distribution 
approach based on Weibull distribution (Maltamo et al., 
2007b). Correspondingly, diameter estimates of local 
diameter models were used in the case of single tree 
detection. Tree species recognition was not used in these 
comparisons, i.e. distributions described tree total stock. As a 
result, the average values of error indexes were 30.1 for 
Weibull distribution based estimates and 30.8 for single tree 
detection. In 239 plots Weibull distribution was more 
accurate and in 211 plots single tree detection, in the rest (n= 
22) these methods were as accurate by means of Reynold’s 
error index.  

 
Finally, RMSE figures for volumes of saw wood sized trees 
(dbh>17 cm) were calculated. This characteristic 
approximates saw wood proportion, an important variable 
when deriving value or final cut decision of the stand. In the 
case of Weibull distribution the RMSE was 32.2% and for 
detected single trees, which diameters were predicted with 
local tree diameter models, the RMSE was 40.3%. 

 
At least when only tree height is used to predict tree diameter 
single tree detection is not able to produce more accurate 
common forest resource estimates than area based methods. 
This is true for the stand volume as well as derived diameter 
distribution or certain detailed part of tree stock. Single tree 
detection does directly measure physical dimension of a tree 
but tree height in itself is not an interesting variable in most 
of the forest inventory applications. When considering 
biodiversity aspects or certain habitat requirements stand 
vertical structure is of primary interest but usually diameter 
distribution and end products derived from it together with 
tree height and tree species information are most important 
output variables of forest inventory.     

 
The accuracy of single tree detection could be improved by 
calibrating tree diameter estimates at stand level. This would, 
however, need field visit and measurement of GPS mapped 
tree(s) and their height/diameter -relationship almost in each 
target stand, i.e. extensive and very expensive reference data 
for calibration is needed. Alternatively, single tree detection 
based estimates, such as number of trees and stand volume, 
could also be calibrated by using corresponding area based 
ALS estimates. For general forest resource information field 
calibration would not be cost-efficient, since such field visits 
could take as much time as current compartment inventory in 
Finland (on average 10 minutes per stand). Without 
calibration there is, however, a high possibility of large errors 
in operational inventories. For certain purposes, such as pre 
harvest measurement of a marked stand in Finland single tree 
detection could still be very interesting alternative expecting 
that tree and tree species detection algorithms are highly 
successful.  

 
4.2 Usability of spatial information provided by ALS data  

 
Both basic approaches to process ALS data for forest 
information purposes also include some spatial information 
which has not yet been utilised as much as possible. In the 
case of single tree detection location and height of each 
detected trees are obtained as well as same characteristics of 
neighbouring trees. This allows us to calculate height based 
competition indexes. In the following we calculate additive 
competition index based on elevation angle sums (see Miina 
& Pukkala, 2000): 
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where hneighbour is height of neighbour tree, n is number of 
neighbouring trees and dist is distance between target and 
neighbour trees, maximum distance of 8 meters was taken 
into consideration in the calculations. 
 
This index was calculated for trees of two pine dominated 
mapped field sample plots and corresponding individual tree 
recognised ALS data including point density of 3.88 pulses 
per square meter. ALS data was acquired in summer 2005 
using an Optech ALTM 3100 scanner operating at a mean 
altitude of 900 m above ground level. Example sample plots 
were located on Koli National park and algorithms of 
Pitkänen et al. (2004) were used for tree detection. Tree 
coordinates and heights were needed in the calculations.  

  
In the case of sparse density sample plot almost all trees were 
detected and distributions CI-indexes were quite close to each 
other (Fig. 2). All in all, ALS data was capable of producing 
realistic estimates of competition indexes. On the other hand, 
in dense sample plot less than 50% of trees were detected and 
ALS data based CI estimates are not realistic (Fig. 3). In the 
case of small trees there are only a few ALS detected trees 
and also for larger trees underestimates are obtained since 
there are too few neighbouring trees taken into consideration 
in these estimates. 
 
Further use of spatial indexes lies, e.g., in situation where tree 
level distance dependent growth models are constructed (e.g. 
Miina & Pukkala, 2000). Additional information that ALS 
data could provide for such models would be spatial indexes 
as described here, past height growth estimates from 
multitemporal ALS data either at single tree level or plot 
level as suggested by Yu et al. (2004, 2006) and information 
included in laser based DTM, e.g. slope. Field measurements 
including at least time series of two measurements are, of 
course, needed for model construction, but when applying 
such models a considerable amount of independent variable 
information could come from ALS data.    
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Fig. 2. An example plot of spatial competition indexes 
calculated from field measurements (n=44) and ALS detected 
trees (n=39). Stand variables: basal area=24.5 m2ha-1, mean 
height=24.7 m and number of stems = 489 per hectare. 
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Fig. 3. An example plot of spatial competition indexes 
calculated from field measurements (n=151) and ALS 
detected trees (n=67). Stand variables: basal area=31.7  
m2ha-1, mean height= 24 m and number of stems= 1677 per 
hectare 
 
In the case of canopy height distribution approach spatial 
information can be considered by using within stand 
information provided by ALS based grid cells. In our 
example two stands in Juuka test area are used. ALS data 
were collected during summer 2005 using an Optech ALTM 
3100 scanner operating at an altitude of 2000 m above 
ground level resulting point density of about 0.6 pulses per 
square meter. Field ground truth consists of systematic 
sample (30 m distance) of angle count sample plots measured 
originally for stand delineation purposes (Mr. Jukka 
Mustonen, personal comm.). ALS based stand variable 
estimation was based on the principle presented by Packalén 
and Maltamo (2007). The size of the systematic grid cell was 
16 m * 16 m which was close to original field sample plot 
(radius 9 m). 
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Fig. 4. Within stand distributions of field measured and ALS 
based basal area estimates. Field measurements: mean basal 
area 18 m2ha-1 and number of field measured angle count 
plots 44. ALS: mean basal area 15.6 m2ha-1 and number of 
grid cells 153. Area of the stand is 3.9 hectares. 
 
As shown in the example figures (4 and 5) ALS data can 
reproduce realistic estimates of within stand variation of 
basal area. The averaging effect of models can be seen on 
both ends of the distribution since extreme values are not 
predicted. Compared to current field estimate of compartment 
inventory which is only average value of basal area in the 
stand this kind spatial information is of primary interest. As 
within stand variation can be described, the need for 
silvicultural operations such as thinnings can be more 

accurately timed and spatial pattern at stand level can also be 
defined. Of course, information presented in Figures 4 and 5 
can also be produced by using single tree detection if as a 
result of it high proportion of trees are detected and accurate 
calibrated tree diameter model is used.  
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Fig. 5. Within stand distributions of field measured and ALS 
based basal area estimates. Field measurements: mean 24 
m2ha-1 and number of field measured angle count plots 87. 
ALS: mean basal area 22.9 m2ha-1 and number of grid cells 
327. Area of the stand is 8.4 hectares.   
 
 

5. CONCLUSIONS 
 
In Finland there are numerous research activities going on 
concerning the utilisation of ALS data in forest applications. 
First commercial ALS applications for forest inventory 
purposes were also introduced in Finland year 2006. This 
paper reviewed and discussed most of research works 
concentrating especially on forest inventory purposes. Some 
further utilisation possibilities, such as spatiality and 
biodiversity aspects in terms of CWD and large aspens, were 
also considered and proposed. There are also numerous other 
research topics, such as canopy cover, tree quality, forest 
condition, stand delineation, forest planning, site 
classification and forest structure which are currently 
examined in Finland by using ALS data. From the point of 
forest research both area based and single tree approaches 
have a very high potential to be further developed and used in 
novel applications. One possible application would also be a 
combination of area based and single tree detection methods. 
Also the rapid technological development of laser technology 
gives new possibilities all the time.  

 
A lot of interest is currently being shown especially in remote 
sensing-based forest inventories in Finland, the driving force 
being the possibility for reducing costs, although the potential 
for improved accuracy is also important. Species-specific 
stand characteristics are essential in Finland, because they are 
used as an input to forest management planning. The 
accuracies achieved in the study by Packalén and Maltamo 
(2007) in the estimation of species-specific characteristics 
were at least as good as those achieved with the current 
inventory practise, but more testing must be carried out in 
different types of forests with varying species compositions, 
different geographical locations and different age 
distributions before it is fully justified to conclude that the 
combined use of ALS and aerial photographs prove superior 
to a conventional inventory by compartments (Packalén, 
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2006). The inclusion of young forests to inventory chain is 
also one research topic to be further examined.   

 
ALS-based tree-level forest inventories may become a 
realistic alternative in the near future. Tree-level inventories 
require denser ALS data but technological development will 
mean that costs will decrease rapidly. An approach in which 
aerial photographs are not needed for species recognition 
would also be interesting at the individual tree level, but 
more development work must still be done in the fields of 
individual tree recognition, tree species classification, 
modelling tree variables, especially tree diameter and the 
inventory chain as a whole before tree-level inventories can 
be valid operationally.  
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ABSTRACT:  

 

A classification tree based approach for building detection was tested. A digital surface model (DSM) derived from last pulse laser 

scanner data was first segmented and the segments were classified into classes ‘ground’ and ‘building or tree’ on the basis of 

preclassified laser points. ‘Building and tree’ segments were further classified into buildings and trees by using the classification tree 

method. Four classification tests were carried out using different combinations of 44 input attributes. The attributes were derived 

from the last pulse DSM, first pulse DSM and an aerial colour ortho image. In addition, shape attributes calculated for the segments 

were used. The attributes of training segments were presented as input data for the classification tree method, which constructed 

automatically a classification tree for each test. The trees were then applied to classification of a separate test area. Compared with a 

building map, a mean accuracy of almost 90% was achieved for buildings in each test. The classification tree method appeared to be 

a feasible and highly automatic approach for distinguishing buildings from trees. If new data sources become available in the future, 

they can be easily included in the classification process. The results also suggest that satisfactory building detection results can be 

obtained with different combinations of input data sources. By using a statistical method, it is possible to find useful attributes and 

classification rules in different cases. The use of an aerial image or both first pulse and last pulse laser scanner data does not 

necessarily improve the results significantly, compared with a classification that uses only last pulse laser scanner data.  

 

 

                                                                 
* Corresponding author. 

1. INTRODUCTION 

Most methods presented for automatic building detection from 

laser scanner data use step-wise classification approaches to 

distinguish buildings from other objects (see, for example, Hug, 

1997; Morgan and Tempfli, 2000; Vögtle and Steinle, 2000; 

Rottensteiner et al., 2005a; Forlani et al., 2006; Zhang et al., 

2006). The methods normally begin by extracting the ground 

surface using a filtering algorithm. After this, the most 

important task is to distinguish buildings from trees. Features or 

attributes commonly used for building detection include height 

texture (e.g. Hug, 1997; Maas, 1999) or surface roughness (e.g. 

Brunn and Weidner, 1998), reflectance information from 

images (e.g. Haala and Brenner, 1999; Vögtle and Steinle, 

2000) or laser scanning (e.g. Hug, 1997), the difference 

between first pulse and last pulse laser scanner data (e.g. Oude 

Elberink and Maas, 2000; Alharthy and Bethel, 2002), and 

shape and size of objects (e.g. Tóvári and Vögtle, 2004). The 

attributes calculated for predefined segments or single pixels are 

presented as input data for a classification method which can be 

a general-purpose supervised or unsupervised method but more 

commonly is a rule-based method or other similar method 

specifically designed for the task.  

 

Each building detection method typically uses a certain set of 

attributes and rules selected by its developers on the basis of 

their knowledge and experience on the subject and/or training 

data available for the study. This approach is a feasible one and 

can lead to satisfactory results, as shown by many previous 

studies. The disadvantage of the approach, however, is that the 

development of the methods is time consuming. When new 

datasets become available, considerable time is needed to study 

their potential in building detection and include them in the 

methods. Comparative studies between different datasets and 

input attributes are also rare (for examples of comparative 

studies, see Rottensteiner et al., 2005b; Pfeifer et al., 2007), 

which makes it difficult to evaluate the usefulness of and need 

for different datasets for practical applications. For example, 

many of the methods use aerial image data in addition to laser 

scanner data, but whether this improves the results significantly 

is largely an open question. The same applies to the combined 

use of first pulse and last pulse laser scanner data. 

 

A method that has been increasingly used in the classification of 

remotely sensed data in recent years is classification trees (also 

called decision trees) (Breiman et al., 1984; Safavian and 

Landgrebe, 1991). Classification trees can be created 

automatically with data mining or statistical software tools, and 

they have many useful properties which make them attractive 

for the analysis of remotely sensed data (see Breiman et al., 

1984; Safavian and Landgrebe, 1991; Hansen et al., 1996; 

Friedl and Brodley, 1997; Huang and Jensen, 1997; Lawrence 

and Wright, 2001; Thomas et al., 2003; Lawrence et al., 2004). 

The classification tree method is non-parametric and does not 

require assumptions on the distribution of the data. It is thus 

particularly interesting when multisource datasets with different 

types of possible input attributes are used. A large number of 

different attributes can be presented for the method, and it 

automatically selects the most useful ones. This makes the 

classification process highly automatic and different from most 

other approaches, in which the user must select suitable 

attributes before classification. Different attributes can be used 

for distinguishing different classes. The structure of the 

classification tree is easy to understand and it gives information 

on the roles and usefulness of different attributes in the 

classification task, although caution is needed in the 

interpretation of this information (see Breiman et al., 1984). 
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There are still few applications of the classification tree method 

to the analysis of laser scanner data. Hodgson et al. (2003) 

studied the mapping of urban parcel imperviousness using 

colour aerial photography and laser scanner derived height 

information. Ducic et al. (2006) used the classification tree 

method to classify laser points as vegetation points and non-

vegetation points on the basis of full-waveform information. 

Matikainen (2006) tested the classification tree method for 

building detection to distinguish buildings from trees. This 

approach proved to be highly automatic and provided an 

accuracy that was very near the accuracy obtained earlier using 

the same dataset and manually created classification rules. 

 

This article presents further tests of the classification tree 

method in building detection. A large set of input attributes 

derived from last pulse and first pulse laser scanner data and an 

aerial ortho image were used. In addition to testing the 

feasibility of the method, the objective of the study was to 

acquire basic information on the importance of different 

datasets and attributes in building detection. 

 

 

2. STUDY AREA AND DATA 

Data from a study area in Espoonlahti, near Helsinki, were used. 

The area is a suburban area with small hills and plenty of 

coniferous and deciduous trees, as well as lower vegetation. 

When the laser scanner data were acquired on 14 May 2003, 

some deciduous trees were without leaves and others had small 

leaves. Colour aerial images were taken on 26 June 2003, when 

all trees were in full leaf. Separate areas covering about 0.4 km2 

and 1.4 km2 were used for training and testing the classification 

tree method. The test area was divided into two parts, one of 

which is mainly a high-rise residential area and the other is 

mainly a low-rise residential area.  

 

The laser scanner data were acquired simultaneously in first 

pulse and last pulse modes with the TopoSys FALCON system. 

The flying altitude was 400 m above ground level (a.g.l.), which 

resulted in a point density of about 10 points per m2. The 

average point density in the datasets, including overlap between 

adjacent strips, is about 17 points per m2. First pulse and last 

pulse digital surface models (DSM) in raster format and with a 

pixel size of 30 cm × 30 cm were created using the TerraScan 

software (Soininen, 2005; Terrasolid, 2007). The highest (first 

pulse DSM) or lowest (last pulse DSM) value within the pixel 

was assigned to each pixel, and interpolation was used to 

determine values for pixels without laser points. The original 

laser points were also classified in TerraScan to detect points 

located above 2.5 m a.g.l.. This classification for the last pulse 

points was used for distinguishing buildings and trees from the 

ground surface before application of the classification tree 

method. An aerial colour ortho image with a pixel size of 30 cm 

× 30 cm was created from the aerial images, which were taken 

with a Leica RC30 camera and had red, green and blue 

channels. The images were acquired and scanned by FM-Kartta 

Oy.  

 

Two additional raster images were derived from the DSMs: 

slope calculated from the last pulse DSM and difference 

between first pulse and last pulse DSMs. Both of these were 

filtered using morphological opening and closing operations to 

remove building edges and to smooth areas covered with trees.  

 

A building map from 2003 obtained from the city of Espoo and 

a forest map obtained from FM-Kartta Oy were used as training 

data. The building map was also used for estimating the 

accuracy of the building detection results. The map data were 

converted from vector to raster format (pixel size 30 cm × 30 

cm). Before this, neighbouring building polygons were merged 

to obtain one polygon for each building and polygons smaller 

than 20 m2 were eliminated to exclude very small buildings and 

other constructions from the analysis. Compared with some 

ground measurements in the study area, the positional accuracy 

of buildings in the original building map is 0.5 m or higher. 

There are, however, many differences in the appearance of the 

buildings on the map and in the laser scanner and aerial image 

data. For example, building outlines on the map represent the 

ground plans of the buildings instead of roof edges. Some more 

details of the laser scanner, aerial image and map data can be 

found in Matikainen et al. (2004; 2007). 

 

 

3. METHODS 

3.1 Classification tree tools 

The classification (and regression) tree tools available in the 

Statistics Toolbox of the Matlab software (The MathWorks, 

2007) were used in the study. These tools can be used to 

construct a classification tree with a binary tree structure and to 

apply the tree to classification (for a detailed description of the 

classification tree method, see Breiman et al., 1984). A 

classification tree has a root node, non-terminal nodes and 

terminal nodes. The root node and each non-terminal node 

contain a question that asks whether a given attribute satisfies a 

given condition. Beginning from the root node, an object to be 

classified goes to the left or right descendant node, depending 

on whether or not it satisfies the condition of the node. Finally, 

it ends up at one of the terminal nodes and is assigned to the 

corresponding class. When a classification tree is constructed, 

the most useful attributes and splits are selected using a splitting 

criterion. The Gini’s diversity index was used as the splitting 

criterion in our study. This criterion is a measure of node 

impurity and is defined as 
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where t is the node, and p(it) is the proportion of cases xn ∈ t 

which belong to class i (x is the measurement vector). At each 

node of the tree, a search is made for the split that most reduces 

node impurity. (Breiman et al., 1984; The MathWorks, 2003.) 

 

The resulting tree is normally large and can overfit the training 

data. Therefore, it must be pruned, which means that a set of 

smaller subtrees is obtained. The best level of pruning can be 

estimated by computing the cost of each subtree in the optimal 

pruning sequence (for details, see Breiman et al., 1984; The 

MathWorks, 2003). This was carried out using the training data 

and 10-fold cross-validation. The costs were based on the 

misclassification costs of classes (default; 1) and probabilities 

of the terminal nodes. The best level of pruning was the level 

that produced the smallest tree within one standard error of the 

minimum-cost subtree. When the tree was initially created, a 

threshold value of 10 (default) was used for splitting nodes, 

which means that a node had to contain at least 10 training 

objects to be split.  
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3.2 Workflow for building detection 

The building detection method used in the study included the 

following stages: 

1. Segmentation of the last pulse DSM into 

homogeneous regions. The segments were the objects 

to be classified. The multiresolution segmentation 

method (Baatz and Schäpe, 2000) of the Definiens 

Professional software (Definiens, 2006; 2007) and a 

homogeneity criterion based completely on the height 

values in the DSM were used. The software also 

provides a large number of different attributes for 

each segment.  

2. Exportation of the segments and various attributes for 

the segments from Definiens Professional.  

3. Classification of the segments into classes ‘ground’ 

and ‘building or tree’ on the basis of the preclassified 

laser points. A segment was classified as ‘building or 

tree’ if most of the last pulse laser points within it had 

been classified as having a height value of 2.5 m or 

over (a.g.l.). Within each pixel, only the lowest point, 

which was also used in forming the last pulse DSM, 

was considered. 

4. Definition of training segments on the basis of 

training data. A segment from the training area was 

defined as a training segment for building or tree if 

over 80% of its area was labelled as building or forest 

in the map data (some forest areas were excluded 

because they included a considerable area covered by 

roads). Segments classified as ground were excluded 

from the training data. The total number of training 

segments was 2464, which included 396 building 

segments and 2068 tree segments. The building 

segments covered an area of about 3.2 ha and the tree 

segments covered an area of about 0.8 ha. 

5. Construction of a classification tree on the basis of the 

attributes of the training segments.  

6. Classification of all ‘building or tree’ segments on the 

basis of their attributes and the classification tree. 

 

The classification tree method has also been applied to 

segments and attributes obtained from the Definiens (previously 

eCognition) software in some previous studies. For example, 

Thomas et al. (2003) used this approach for land-cover/land-use 

mapping. 

 

3.3 Attributes and classification experiments 

Four sets of attributes were selected to be used as input data for 

the classification of buildings and trees (Table 1, left column). 

Attributes calculated from the last pulse DSM included standard 

deviation, texture and the mean slope of the segments. In 

addition to these more common attributes, two attributes that 

were available in the Definiens Professional software and were 

expected to be potentially useful were included. Contrast to 

neighbour pixels is an attribute that describes the difference (in 

this case, height difference) between a segment and its 

surrounding area. Standard deviation of neighbour pixels is the 

standard deviation of the surrounding area. The surrounding 

area of a segment consisted of pixels that were located inside 

the bounding box of the segment (extended by one pixel at the 

edges) but did not belong to the segment. Attributes calculated 

using the first pulse DSM comprised standard deviation, 

texture, and the mean difference between the first pulse and last 

pulse DSMs. Aerial image attributes included the mean value, 

standard deviation and texture in different channels. Shape 

attributes comprised 27 different shape descriptors available in 

Definiens Professional.  

 

The texture attribute used in the study, Grey Level Co-

occurrence Matrix (GLCM) homogeneity, is one of the texture 

measures originally presented by Haralick et al. (1973). It can 

take into account grey level variations between neighbouring 

pixels in different directions. We used the option ‘all 

directions’. For a more detailed description and formulas of this 

and other attributes, the reader should refer to Definiens (2006).  

 

Four classification tests were carried out, each with a different 

combination of attributes (Table 1, middle column). These tests 

could correspond to four practical situations with different data 

sources available. The last pulse DSM, which was also used for 

segmentation, was considered as the primary data source and 

was available in each test. The shape attributes calculated for 

the segments could also be used in each case. 

 

3.4 Accuracy estimates 

Completeness (corresponds to interpretation accuracy or 

producer’s accuracy), correctness (corresponds to object 

accuracy or user’s accuracy) (Helldén, 1980; Congalton and 

Green, 1999) and mean accuracy (Helldén, 1980) were 

calculated for buildings by comparing the classification results 

with the reference map pixel by pixel in the test area. As 

described in Section 2, the test area was separate from the 

training area. 

 

 

4. RESULTS 

Attributes selected automatically for the classification tree in 

each of the classification tests are listed in the right-hand 

column of Table 1. The corresponding pruning level is also 

mentioned (for example, ‘pruning level 3/8’ means that there 

were 8 pruning levels in the tree and level 3 was selected; level 

0 is the full tree without pruning). In each classification test, the 

script created for the construction of the tree was run five times 

to find the best level of pruning. The estimated level may vary 

slightly between the runs because the subsamples for cross-

validation are selected randomly. If different levels were 

selected as the best in different runs, the classification was 

carried out using each of these. The level that gave the best 

mean accuracy for buildings in the whole test area is shown in 

Table 1 and following figures and tables. In practice, the 

differences in mean accuracy between the different levels were 

very small (less than 1 percentage unit).  

 

To give an idea of the relative importance of different attributes 

in the classification, the total number of training segments 

passing through nodes with a given attribute is shown in 

brackets in Table 1. Some training segments had undefined 

values for one of the shape attributes (main direction) and were 

not taken into account in the construction of the trees. The total 

number of training segments used by the algorithm was 2224 

(391 building segments and 1833 tree segments). If one 

segment passed more than one node with the same attribute, it 

was counted more than once for this attribute. The number of 

training segments per attribute can thus exceed the total number 

of training segments.  

 

The classification tree obtained for Test 3 is shown in Figure 1 

(pruning level 3/8). Classification results for Test 1 and Test 3 

in the high-rise area and Test 2 and Test 4 in the low-rise area 
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Table 1. Attributes and classification tests. The complete set of attributes used in the study is shown on the left, attributes available 

for the classification tests are shown in the middle and attributes selected automatically by the classification tree method 

in the different tests are shown on the right. The number of training segments passing through nodes with the given 

attribute is given in brackets. The accuracy obtained in the classification (completeness/correctness/mean accuracy) is 

also shown for each test. 

 

Attributes 

 

Attributes from the last pulse (LP) DSM 

LP DSM, standard deviation 

LP DSM, GLCM homogeneity 

LP DSM, contrast to neighbour pixels 

LP DSM, standard deviation of neighbour pixels 

Slope from LP DSM, mean 

 

Attributes from the first pulse (FP) DSM 

FP DSM, standard deviation 

FP DSM, GLCM homogeneity 

FP DSM - LP DSM, mean 

 

Attributes from the aerial image 

Aerial image, red, mean 

Aerial image, red, standard deviation 

Aerial image, red, GLCM homogeneity 

Aerial image, green, mean 

Aerial image, green, standard deviation 

Aerial image, green, GLCM homogeneity 

Aerial image, blue, mean 

Aerial image, blue, standard deviation 

Aerial image, blue, GLCM homogeneity 

 

Shape attributes 

Area 

Area (polygon-based, excluding inner polygons) 

Area (polygon-based, including inner polygons) 

Asymmetry 

Average length of edges 

Border index 

Border length 

Compactness 

Compactness (polygon-based) 

Density 

Edges longer than 10 pixels 

Elliptic fit 

Length 

Length of longest edge 

Length/Width 

Main direction 

Number of edges 

Number of inner objects 

Number of right angles with edges longer than 

10 pixels 

Perimeter 

Radius of largest enclosed ellipse 

Radius of smallest enclosing ellipse 

Rectangular fit 

Roundness 

Shape index 

Standard deviation of length of edges 

Width 

Attributes available for the classification 

tests 

 

Test 1  

Attributes from the LP DSM 

Attributes from the FP DSM 

Attributes from the aerial image 

Shape attributes 

 

Test 2  

Attributes from the LP DSM 

Attributes from the aerial image 

Shape attributes 

 

Test 3  

Attributes from the LP DSM 

Attributes from the FP DSM 

Shape attributes 

 

Test 4  

Attributes from the LP DSM 

Shape attributes 

 

 

 

Attributes selected for classification and 

accuracy obtained (completeness/ 

correctness/ mean accuracy) 

 

Test 1  

(Pruning level 3/8) 

Aerial image, blue, mean (2224 segments) 

FP DSM - LP DSM, mean (2186) 

Length of longest edge (1872) 

Average length of edges (38) 

Area (12) 

-> Accuracy 92.0/85.8/88.8% 

 

Test 2  

(Pruning level 1/6) 

Aerial image, blue, mean (2224 segments) 

LP DSM, standard deviation (2183) 

Length of longest edge (1872) 

Aerial image, blue, standard deviation (1834) 

Slope from LP DSM, mean (344) 

Edges longer than 10 pixels (48) 

Average length of edges (38) 

-> Accuracy 92.1/86.4/89.2% 

 

Test 3  

(Pruning level 3/8) 

FP DSM - LP DSM, mean (4022 segments) 

FP DSM, GLCM homogeneity (1881) 

Average length of edges (1805) 

LP DSM, GLCM homogeneity (1803) 

Slope from LP DSM, mean (560) 

LP DSM, standard deviation (343) 

Radius of largest enclosed ellipse (36) 

-> Accuracy 92.5/87.4/89.9% 

 

Test 4  

(Pruning level 3/10) 

Length of longest edge (2224 segments) 

Slope from LP DSM, mean (2189) 

LP DSM, GLCM homogeneity (1921) 

LP DSM, contrast to neighbour pixels (420) 

Area (330) 

LP DSM, standard deviation of neighbour 

pixels (55) 

-> Accuracy 92.8/86.7/89.7% 

 

 

 

Table 2. Numerical accuracy estimates for the building detection results (%) (Test 1/Test 2/Test 3/Test 4). 

 

 Test area 

 High-rise residential Low-rise residential All 

Completeness 92.6/92.3/92.6/92.3 91.5/91.9/92.5/93.2 92.0/92.1/92.5/92.8 

Correctness 91.0/91.1/91.9/91.0 82.2/83.2/84.4/83.8 85.8/86.4/87.4/86.7 

Mean accuracy 91.8/91.7/92.2/91.6 86.6/87.4/88.3/88.2 88.8/89.2/89.9/89.7 

Buildings classified as trees 0.6/0.9/0.6/0.9 2.6/2.2/1.6/0.9 1.8/1.6/1.2/0.9 

Buildings classified as ground 6.8/6.8/6.8/6.8 5.9/5.9/5.9/5.9 6.3/6.3/6.3/6.3 
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Figure 1. Classification tree obtained for Test 3. Attributes are: x20: FP DSM - LP DSM, mean; x21: slope from LP DSM, mean; 

x14: FP DSM, GLCM homogeneity; x32: LP DSM, standard deviation; x5: average length of edges; x26: radius of 

largest enclosed ellipse; x15: LP DSM, GLCM homogeneity. 

 

 

are presented in Figure 2. Figure 3 shows classification results 

for Tests 1–4 in a smaller area of the low-rise residential area. 

Four input data sources derived from the laser scanner data are 

also shown for this subarea. The accuracy estimates for the 

building detection results are shown in Table 2. The percentage 

of building pixels classified as trees or ground is also presented 

(here, it should be noted that the ground classification was the 

same in each test). The accuracy estimates obtained for the 

whole test area are also shown in Table 1. 

 

 

5. DISCUSSION 

The classification tree approach allowed rapid and automatic 

testing of different attribute combinations for the classification 

of buildings and trees. Different attributes were selected for the 

trees, but the quality of the results, evaluated either visually or 

numerically, was very similar in each test and relatively good, 

taking into account the differences between the remotely sensed 

data and reference map. This suggests that satisfactory building 

detection results can be obtained with different combinations of 

input data sources. By using a large training dataset and a 

statistical approach, it is possible to find useful rules for 

separating buildings and trees in different cases. The highest 

mean accuracy, 89.9%, was obtained in Test 3, which used 

attributes calculated from the last pulse and first pulse DSMs, in 

addition to the shape attributes, which were used in each test. 

The mean accuracy obtained in Test 4, using the last pulse DSM 

alone, was only slightly lower, i.e. 89.7%. The lowest accuracy, 

88.8%, was obtained in Test 1, which used both last pulse and 

first pulse DSMs and the aerial image. The difference in 

accuracy between this and other tests, however, was very small. 

The percentage of building pixels misclassified as trees was 

remarkably small in each test. Direct comparison of 

classification results from different studies is not possible, but 

the accuracy estimates are also in accordance with those 

obtained in other studies (e.g. Rottensteiner et al., 2005a; 

2005b). 

 

Many of the attributes were selected in several trees. These 

included the mean value of the segment in the blue channel of 

the aerial image, the mean difference between first pulse and 

last pulse DSMs, the mean slope calculated from the last pulse 

DSM, standard deviation and texture calculated from the last 

pulse DSM, and shape attributes ‘length of longest edge’, 

‘average length of edges’ and ‘area’. These are obviously useful 

attributes for distinguishing buildings from trees. Some other 

attributes appeared occasionally in the trees, but most attributes 

were never selected. It should be noted, however, that there can 

also be useful attributes among those that were not selected (see 

Breiman et al., 1984). At each node, the algorithm selects the 

best split according to the splitting criterion, but there can be 

several attributes and splits that would be almost equally good. 

The lower splits in the tree also depend on the splits selected 

earlier. This can explain the difference in the attributes selected 

in different tests. The tree obtained in Test 2 was also different 

from the tree obtained in our earlier study (Matikainen, 2006), 

which used basically the same input data sources but somewhat 

different attributes and training data. 

 

The classification tree based method seems to be a feasible 

approach for building detection. Satisfactory results can be 

obtained rapidly and with a high level of automation. When 

new data sources become available, they can be easily included 

in the classification. Once the input data are in the correct 

format, the construction of the tree can be carried out in 

seconds. This means a remarkable saving of time compared with 

the typical manual (or semi-automatic) process of attribute 

selection and rule development. The classification process itself 

is also fast. The method could thus be well suited to automatic 

processing of large areas. A training area with up-to-date map 

data, or manually delineated buildings and trees, is required for  

x20 < 0.128347 

x14 < 0.192925 x21 < 48.1429 

x14 < 0.109359 x5 < 3.34908 x26 < 0.278277 

x15 < 0.166807 

x20 < 0.902471 

x21 < 26.4 

x32 < 4.58016 

Building Tree Tree Building Building Building Tree 

Building 

Tree 
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Last pulse DSM, high-rise area 

 
Test 1 Test 3 

 
Last pulse DSM, low-rise area 

 
Test 2 Test 4 

  Building  Tree  Ground  Outside study area 

Figure 2. Last pulse DSM and building detection results for Test 1 and Test 3 in the high-rise residential area and Test 2 and Test 4 

in the low-rise residential area. 
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First pulse DSM 

 
Test 1 

 
Test 2 

 
Difference between first pulse and 

last pulse DSMs (filtered) 

 
Slope calculated from the last 

pulse DSM (filtered) 

 
Test 3 

 
Test 4 

 

Figure 3. Four input data sources and classification results for Tests 1–4 in a subarea of the low-rise residential area. 
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training, but it is likely that the classification rules created in 

one training area could be applied to classification of other 

similar areas if the characteristics of the laser scanner and aerial 

image data are stable. For example, the rules from our training 

area could be largely applicable to other suburban areas in 

Finland. Further improvements of the classification method 

might be achieved by testing multivariate trees, alternative 

splitting rules and pruning methods, and advanced methods of 

using training data (see, for example, Breiman et al., 1984; 

Safavian and Landgrebe, 1991; Lawrence et al., 2004).  

 

The classification tree based results can be improved by 

eliminating obvious misclassifications. This was tested by 

filling holes (classified as trees) in buildings and removing 

buildings smaller than 20 m2. This increased the mean accuracy 

of the building detection results in Tests 1–4 to 90.0%, 90.1%, 

90.6% and 90.4%, respectively. The use of aerial imagery with 

an infrared channel should also be tested in the future. The 

application of the classification tree method to the first 

classification step of building detection, i.e. distinguishing 

buildings and trees from the ground surface, could also be 

tested. Some preliminary experiments related to this were 

carried out and promising results were obtained, although 

further study is needed. The use of the classification tree 

method for ground classification too, could further speed up 

and simplify the process of building detection. 

 

 

6. CONCLUSIONS 

A classification tree based approach for building detection was 

tested. Segments derived from the last pulse DSM were first 

classified into classes ‘ground’ and ‘building or tree’ on the 

basis of preclassified laser points. ‘Building and tree’ segments 

were further classified into buildings and trees by using the 

classification tree method. Four classification tests were carried 

out by using different combinations of 44 input attributes. 

These included attributes calculated from the last pulse DSM, 

first pulse DSM and aerial colour ortho image, as well as shape 

attributes. The classification tree method appeared to be a 

feasible and highly automatic approach for distinguishing 

buildings from trees. The attributes of 2224 training segments 

were used as input data in the method, which automatically 

constructed a classification tree for each test. The trees were 

then applied to classification of a separate test area (1.4 km2). 

Compared with a building map, a mean accuracy of almost 90% 

was achieved for buildings in each test. The best results were 

obtained using attributes derived from the last pulse and first 

pulse DSMs, and the shape attributes. The differences in 

accuracy between the different tests, however, were very small. 

The results thus suggest that satisfactory building detection 

results can be obtained with different combinations of input 

data sources. By using a statistical method, it is possible to find 

useful attributes and classification rules in different cases. Most 

importantly for practical applications, the use of only last pulse 

DSM may be sufficient. The use of aerial images or first pulse 

DSM does not necessarily improve the results significantly. 

However, if new and potentially useful data sources become 

available in the future, they can be easily included in the 

classification process. 
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ABSTRACT: 
 
Density, diameter distribution and height-diameter (H-D) pattern of a forest stand are of primary importance in deriving various stand 
characteristics, but measuring diameters and heights of a tree stock is rather time-consuming. That is why theoretical diameter 
distribution and H-D models are usually employed. We examine the prediction of them for Scots pine sample plots using information 
obtained with airborne laser scanning (ALS). We propose a parameter recovery approach, where such values for the parameters of 
assumed diameter distribution and H-D models are determined, that satisfy the mathematical relationships between the predicted 
plot-specific characteristics. If the solution for the formulated system of equations exists, it is always compatible with the predictions 
of stand characteristics. The method is developed and tested with a dataset of 213 Scots pine stands. A solution was found for all but 
2 plots. The proposed method appears to be a reasonable alternative for predicting stand structure from ALS data.  
 
 

                                                                 
∗ Corresponding author 

1. INTRODUCTION 

Information on tree diameters and heights from a forest stand 
can be used for deriving various stand characteristics, such as 
basal area, volume and timber assortments, which are of 
primary interest in forest management. Since measuring 
standing tree diameters and heights is rather time-consuming, 
a theoretical model for the structure of the growing stock is 
usually employed in growth and yield simulators. We call 
such a model stand description. A stand description 
characterizes stand structure with only a few parameters. The 
level of detail in a stand description varies according to 
information needs of the application. In this study, we use a 
triplet including stand density (i.e. number of trees per 
hectare), diameter distribution, and height-diameter (H-D) 
curve. Assuming that tree volume and taper curve are known 
functions of tree diameter and height, such a stand 
description is sufficient for computing timber assortments. In 
a mixed species stand, such a description would be needed 
for all tree species, but this study will consider only single 
species stands.  
 
Numerous approaches for describing the diameter 
distribution of a stand have been presented, including beta, 
Weibull and Johnson SB functions, as well as percentile-
based and non-parametric approaches (Bailey and Dell, 1973; 
Loetsch et al., 1973; Hafley and Schreuder, 1977; Borders et 
al., 1987; Maltamo and Kangas, 1998). Correspondingly, two 
main methods have been used to predict parameters of an 
assumed theoretical distribution, namely the parameter 
prediction method (PPM) and the parameter recovery method 
(PRM) (Hyink and Moser, 1983). In PPM, field measured 
stand variables, such as basal area and mean diameter, are 
used as predictors in regression models that are applied in 
predicting the diameter distribution for a target stand. In 
PRM, stand variables, moments or percentiles of diameter 
distribution are predicted or measured for the target stand, 
and parameters of an assumed diameter distribution are then 

recovered using mathematical relationship between them and 
the utilized characteristics (see Knoebel and Burkhart, 1991).  
 
This study generalizes the idea of PRM to recovery of a stand 
description of an assumed form. Instead of recovering the 
parameters of a diameter distribution, we will simultaneously 
recover the parameters of diameter distribution and H-D 
curve. In addition to stand density, as many predicted stand 
variables are needed as the assumed stand description has 
stand-specific parameters to make recovery possible.  
 
The development of small footprint and discrete return 
airborne laser scanning (ALS) technology has offered 
possibilities for accurate prediction of forest variables, such 
as standing tree volume. Numerous studies have shown that 
both the recognition of individual trees and plot level 
utilization of the characteristics of canopy height 
distributions can produce highly accurate predictions of 
forest variables (e.g. Næsset, 1997; Hyyppä et al., 2001; 
Persson et al., 2002; Lim et al., 2003; Holmgren, 2004; 
Næsset et al., 2004; Hopkinson et al. 2006; Maltamo et al., 
2006). ALS-based variables have usually been stand mean 
and sum characteristics, but in Norway and Finland, ALS 
data have also been used to predict the parameters of 
assumed diameter distribution models (Gobakken and 
Næsset, 2004; 2005; Maltamo et al., 2006; Bollandsås and 
Næsset, 2007). These studies have employed either Weibull 
function or percentile-based distributions, and have applied 
parameter prediction method. Recently, Maltamo et al. 
(2007) applied Weibull distribution, PPM, and calibration 
estimation (see Deville and Särndal, 1990; Kangas and 
Maltamo, 2000) to predict distributions that are compatible 
with ALS based stem number, basal area and stand volume.      
 
The aim of this study was to apply the parameter recovery 
method to estimate diameter distribution and H-D curve of 
Scots pine (Pinus sylvestris) by using ALS based stand 
variables. First, stem number, stand volume, basal area 
median diameter, and the corresponding tree height were 
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regressed on independent variables based on ALS data, and 
the obtained models were applied for prediction in the 
modelling data. A parameter recovery system, developed for 
this study, was then utilized to recover such values for the 
parameters of two parameter Weibull distribution and Korf’s 
height curve that are compatible with these predictions. The 
system was validated by calculating the proportion of plots 
where recovery was possible, and RMSE and bias of volume 
predictions for trees above given diameter limits. 
  
 

2. STUDY MATERIAL 

2.1 Field data 

The Juuka test area (about 10 000 hectares) in eastern Finland 
is a typical Finnish managed boreal forest area. The field data 
were acquired during summers 2005 and 2006. A total of 506 
circular sample plots with a radius of 9 metres were 
established on the area. Sample plots were located rather 
systematically to the young, middle-aged and mature forests; 
sapling stands were left out. Subsequently, the Global 
Positioning System (GPS) was used to determine the position 
of the centre of each of the 506 plots to the accuracy of about 
1 meter. The diameter at breast height (DBH), tree and storey 
class, and tree species were recorded for all trees with DBH 
over 5 cm, and the height of one sample tree of each species 
in each storey class was measured on each plot. For 
prediction of heights for other trees, a Näslunds height model 
with a random constant for each plot was fitted to the data of 
measured heights (Aki Suvanto, personal communication). 
The model with predicted plot effects was utilized to predict 
heights for trees without height measurement. The volume 
models of Laasasenaho (1982) were used to compute tree 
volumes. Finally, the stand characteristics of interest were 
scaled up to per hectare level. Of those 506 plots, pure Scots 
pine plots (the proportion of Scots pine over 90 % of volume) 
were selected to the study data of 213 plots  (Table 1).  
 
 

 mean min max sd 
Volume, m3ha-1 122.8 14.7 317.8 61.8 
Number of stems, ha-1 903.8 196 2122 377.3 
Basal area median 
diameter, cm 

18.1 9.4 40.0 4.8 

Height of a basal area 
median tree, m 

14.0 6.0 23.4 3.3 

Table 1. Mean characteristics of the study data. Sd is standard 
deviation. 

 
2.2 Laser scanning 

Georeferenced point cloud data were collected from Juuka on 
13th July 2005 using an Optech ALTM 3100C laser scanning 
system. The test site was measured from an altitude of 2000 
m above ground level using a field of view (FOV) of 30 
degrees. This resulted in a swath width of approximately 
1050 m and a nominal sampling density of about 0.6 
measurements per square meter. The divergence of the laser 
beam (1064 nm) was set at 0.26 mrad. Optech ALTM 3100C 
laser scanner captures 4 range measurements for each pulse, 
but here the measurements were reclassified to represent first 
and last pulse echoes. 
 
In order to generate a digital terrain model (DTM) from the 
laser scanner data, the points reflected from objects, e.g. from 
trees, were classified as vegetation hits. The laser point 

clouds were first classified to ground points and other points 
(the method is explained by Axelsson, 2000). Then a DTM 
raster with a cell size of 2.5 meters was created by computing 
the mean of the ground points within each raster cell. Values 
for raster cells with no data were derived using Delaunay 
triangulation and bilinear interpolation.  
 
Laser canopy height at a given location was calculated as the 
difference between the z value of laser hit and the estimated 
DTM raster. Points having canopy height over 0.5 meters 
were classified as vegetation hits. Different height metrics 
were calculated using the vegetation hits of each sample plot. 
Percentiles for the canopy height were computed for 5, 10, 
20, … , 90, 95 and 100 % (h5,…, h100) (see Næsset, 2004), 
and proportional canopy densities were calculated for each of 
these quantiles (p05,…, p100). For example, h10 means the 
height where 10% of all vegetation hits are accumulated, and 
p10 the proportion of laser hits that is accumulated at the 
height of 10%. Moreover, the standard deviation (hstd), mean 
(hmean), and proportion of vegetation hits (veg) were 
computed. In addition to height and density metrics the 
intensity of reflection of backscattered laser pulse was 
utilized. Intensity variables were calculated as percentiles 
(i10, … , i90) within a plot using vegetation hits only. All these 
characteristics were calculated for both first (f) and last (l) 
pulse data. 
 
 

3.  METHODS 

3.1 Modeling stand characteristics using ALS data 

Regression models were constructed for standing tree volume 
(V), stem number (N), basal area median diameter (D) and 
height of a basal area median tree (H) using ALS based 
characteristics as independent variables. The models were 
fitted using ordinary least squares. A stepwise procedure was 
applied in the choice of independent variables. The obtained 
models were applied for prediction in the modelling data.      
 
3.2 Recovering the stand description 

In parameter recovery, a stand description of an assumed 
form was determined that is compatible with all four 
predicted stand variables. The stand description includes 
stand density, diameter distribution and H-D curve. The stand 
density is directly obtained as the predicted number of stems, 
whereas the other components are recovered using the other 
three predicted stand variables. We assume that the growing 
stock is fully described with the stand variables we have, and 
PRM is used to find a compatible stand description. 
 

Denote the predicted values of stand variables by V̂ , ˆ  and  G
Ĥ  and the values based on an assumed stand description by 
( )NV θ ˆ, ,  ( )θ  and D ( )θH , which depend on the parameters 

of the stand description, θ , and the predicted stand density, 

N̂ . A stand description that is compatible with all the 
predicted stand variables is obtained as a solution to the 
following system of equations: 
 

( )
( )
( )⎪

⎩

⎪
⎨

⎧

=−
=−
=−

0ˆ
0ˆ
0ˆˆ,

HH
DD
VNV

θ
θ

θ
, (1)  
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The system is infeasible if no stand description of the 
assumed form exists that complies with V ,  ˆ D̂ Ĥ  and .  N̂
 
Denote tree diameter by x , height by  and volume by v . 
We assume a diameter distribution with density 

h
( )βα ,xf , 

height ( )γxh  for a tree with diameter x , and volume ( )hxv ,  

for a tree with diameter x  and height , where the 
parameters of the stand description are 

h
( ',, )γβα=θ . Thus, 

the diameter distribution is characterized by two plot-specific 
parameters, α and β, and the H-D curve with one plot-
specific parameter, γ. A general volume function with no 
stand-specific parameters is assumed for all trees. The stand 
variables based on such a stand description are  
 

 ( ) ( ) ( )(∫
∞

=
0

,,ˆˆ, dxxhxvxfNNV γβαθ )   

( ) ( βα ,5.01−= GFD θ )   
 
and  
 

( ) ( )γDhH ˆ=θ , 
 
where ( βα ,1 pFG

− )  is the inverse (quantile) function of the 
basal-area weighted diameter distribution 
 

( ) ( )∫=
x

GG duufxF
0

,, βαβα ,  

 
where  
 
 

( ) ( )

( )∫
∞=

0

2

2

,

,
,

dxxfx

xfx
xfG

βα

βα
βα  

 
is the density of basal-area weighted diameter distribution 
(see e.g. Gove and Patil, 1998). 
 
We described the diameter distribution with the two-
parameter Weibull distribution. It has density  
 

( )
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

− αα

βββ
αβα xxxf exp,

1

, 

 
where α  is a shape and β  is a scale parameter. As the H-D 
curve, we used the model of Mehtätalo (2005)  
 

( ) ( )( )max 1.4,exph x y xγ γ δ⎡ ⎤= −⎣ ⎦ . 

 
The independent variable is a transformation of tree diameter  
 

( ) ( ) ( )
( ) ( )cc

cc Dxxy
3717

17ˆ7
−

+−+
= ,  

 

where . This transformation gives 
interpretations to the two parameters: 

Dc ˆ058.098.0 +=
γ  is the logarithmic 

height of trees with diameter  and 10ˆ +D δ  is the expected 
difference in logarithmic height between diameters  and 

. We allowed only 
D̂

10ˆ +D γ  vary between plots in recovery 
and δ  depended on basal area median diameter according to 

 (Mehtätalo, 2005). As the 
volume function, we used that of Laasasenaho (1982), 

2ˆ00094.0ˆ027.062.0 DD +−=δ

 
( ) ( 07.107.201.2 3.1997.0036.0, −−= hhxhxv x )

)

.  
 
Using the functions presented above, we solved the system of 
equations given in (1) for ( ',, γβα=θ . The estimation was 
carried out in two stages: we first searched initial estimates 
for the parameters by minimizing function 

( )( ) ( )( ) ( )( 222 ˆˆ,ˆˆ,,, HHDDVNV −+−+− γβαγβα )  for 
( )',, γβα=θ , using the algorithm of Nelder and Mead with 

( )'3,ˆ,5 D=θ  as initial guesses. The obtained estimates were 
used as initial guesses for the Newton-Raphson algorithm, 
which was used for finding the final estimates. The required 
integrals and differentials were evaluated numerically. The 
basal-area weighted quantile function was solved using a 
simple up and down algorithm. R-software (R Development 
core team 2006) was used for computations.  
 
3.3 Evaluation of results 

The results were first evaluated using the proportion of plots 
where the system of equations was feasible. For plots with 
feasible solution, the obtained stand description was used to 
compute the total volumes for trees with diameter above a 
predefined lower diameter limit L. The volume was 
computed as 
 

( ) ( )( )∫
∞

=
L

L dxxhxvxfNV γβα ˆ,ˆ,ˆˆˆ . 

 
We used values 10, 15 and 20 cm as the values for L. As 
criteria of comparison, we used the bias and RMSE of these 
volumes, together with the bias and RMSE of the predicted 
stand characteristics. In addition, we evaluated the 
predictions visually and report graphs of selected sample 
plots of our data. 
 
 

4. RESULTS 

4.1 Prediction models for stand characteristics. 

The models for plot volume, number of stems, basal area 
median diameter and corresponding height are: 
 

( )
( )vegl

vegfhfV
_ln114.0

_198.0_ln202.1134.0ln 50

+

++=  

 (R2 = 0.924, s.e. = 0.155, relative s.e. 16.3% ) 
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vegfhfN

−⎟⎟
⎠

⎞
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(R2 = 0.497, s.e. = 0.311, relative s.e. 30.8%) 

 
 

95 40

50
60

ln 26.075 5.747ln _ 3.581ln _
138.371 0.605ln _ 4.907ln _
_

H f h f

l veg l h
f h

= − + +
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h
 

 
(R2 = 0.783, s.e. = 0.119, relative s.e. 12.9%)  

 
 

50 20

50 40

1 1ln 2.697 2.605 37.812
_ _

2.004ln _ 1.231ln _

D
f i f

f h f h

= − −

+ −
p      

  
(R2 = 0.860, s.e. = 1.230, relative s.e. 8.7%)  

 
 
where f or l denotes the laser pulse type (first or last pulse), hp 
denotes the height at which p% of the height distribution has 
accumulated, veg is the proportion of vegetation hits, i50 is 
the 50th percentile of intensity reflection, and p20 is the 
proportion of laser hits which is accumulated at the height of 
20%. 
  
The RMSEs of predicted volume, number of stems, basal 
area median diameter and the corresponding height (Table 2) 
were at the same level as they have been in previous studies 
with laser scanning data (Holmgren, 2004; Næsset, 2002; 
2004;  Maltamo et al. 2007). The predictions of the number 
of stems and total volume are slightly downward biased.  
 
 

 RMSE  Bias  
 Absolute % Absolute % 
H, m 1.22 8.70 0.00 -0.01 
D, cm 2.35 12.96 -0.15 -0.80 
N, ha-1 279.8 31.00 -35.30 -3.91 
V, m3ha-1 20.02 16.29 -1.64 -1.33 

Table 2. RMSE and bias of predicted stand characteristics in 
the data of feasible solutions (211 plots). 

 
 
4.2 Recovery of stand description 

A stand description of the assumed form could be found for 
almost all stands. In only two out of the 213 plots, the system 
of equations was infeasible. In addition, the resulting 
distribution was highly peaked (recovered shape parameter 

20>α ) for 2 stands.  
 
The accuracy of predicted volume above diameters 10, 15 
and 20 cm is given in table 3. The RMSE of volume above 
10 cm is slightly lower than that of total volume in absolute 
terms, but slightly higher in relative terms. For higher 
diameter limits, the RMSE gets higher both in absolute and 
relative terms, being 24.33 m3ha-1 (42%) for the volume of 
trees above 20 cm in diameter. The volumes are slight 
underestimates in all cases; an expected result because the 
predictions of stand characteristics were underestimates, too.  

 RMSE  Bias  
 Absolute % Absolute % 
V10, m3 ha-1 19.70 16.67 -0.79 -0.67 
V15, m3 ha-1 22.20 22.70 -2.20 -2.25 
V20, m3 ha-1 24.33 42.76 -1.72 -3.02 

Table 3. RMSE and bias of volumes above 10, 15 and 20 cm 
diameter limit in the data of feasible solutions (211 plots). 
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Figure 1. Examples of true and recovered stand descriptions. 
The histogram shows the observed diameter distribution and 

the open circles the tree heights. The dashed line shows a 
Weibull-distribution fitted to the observed data using ML. 

The solid lines show the recovered diameter distribution and 
H-D curve. 
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Visual evaluation of predictions showed that they are, in most 
cases, fair (the two uppermost stands in Figure 1). However, 
especially errors in predicted basal area median diameter 
made the location of the distribution inaccurate, causing large 
errors in the predicted structure of the growing stock (The 
lowest plot in Figure 1). The recovered H-D curve did not 
agree very well with the “true” heights, which are based on 
plot-specific Näslund’s curve. These differences result from 
different model forms.  
 
 

5. DISCUSSION 

This study generalized the parameter recovery of diameter 
distribution to the recovery of stand description, including 
stand density and models for diameter distribution and H-D 
curve. Such a method is useful in laser scanning approaches, 
where accurate predictions are obtained for characteristics 
that depend on both tree diameter and height. In the proposed 
parameter recovery approach, diameter distribution and H-D 
curve of assumed forms are recovered so that the obtained 
stand description is compatible with predicted stand 
characteristics. The approach appears to be a reasonable 
alternative for obtaining estimates of stand structure using 
laser data. 
 
With the stand description of this study, the parameter 
recovery would be possible with any four stand 
characteristics, given that they are mathematically related to 
the stand description and at least one of them depends on tree 
height. In addition, the parameters of the assumed stand 
description can further be increased if the number of 
predicted parameters is increased. Total volume, stand 
density, basal area median diameter and corresponding height 
were selected as the variables being predicted because they 
can be rather accurately predicted using laser data. However, 
attention was also paid to the correlation of the prediction 
errors. Using two accurately predicted variables with highly 
correlated prediction errors (e.g. volume and basal area) 
might have lead to worse results than using variables with 
lower accuracy but less correlated prediction errors (e.g. 
volume and the number of stems). However, analysis of this 
requires further efforts. 
 
A problem with the proposed approach is that a solution to 
the system of equations cannot necessarily be found. In our 
data, this happened with two plots. For those plots, a stand 
description that simultaneously satisfies the three equations 
does not exist. This may result from too restricted form of the 
assumed stand description: three parameters are not enough 
to realistically describe all possible forms of diameter 
distribution and H-D curve. A solution would be to assume a 
more flexible stand description, including more parameters 
and, for example, allowing bimodal diameter distributions.  
However, the number of parameters in the stand description 
would be increased, and that would also require more ALS-
predicted stand variables. Another possible cause for 
infeasibility is an illogical set of predictions. Especially, if 
the models are based on small plots, sampling errors may 
cause the modeling data to include such combinations of 
stand variables that cannot be described with the simple 
description we used. This may affect also to the prediction 
models, making them it more likely for them to give illogical 
predictions. To prohibit this effect, the plot size of the 
modeling data should be large enough. However, the above 
solutions do not guarantee feasibility, and for operational 
utilization, predictions are required for all plots. One 

alternative would be using the solution that minimizes the 
sum of squared distance between the predicted values and the 
values based on the stand description. Appropriate weights 
should be used for different terms to make them comparable. 
The solution would no more be compatible but, however, as 
compatible as possible.   
 
The approach presented in this study would allow conversion 
of old inventory results, where stand mean characteristics are 
predicted by using ALS data (e.g. Næsset, 2002, 2004; 
Holmgren, 2004; Suvanto et al.;  2005), to stand descriptions 
as used in this study. Compared to earlier ALS data based 
diameter distribution studies (Gobakken and Næsset, 
2004;2005; Maltamo et al. 2006;2007) the benefit of the 
proposed method is that no additional modelling is needed 
since the approach recovers possible parameter values 
without the use of tree level data. Finally, this study also 
confirms the result by Maltamo et al. (2007) that in the case 
of ALS data, basal area diameter distributions are not needed 
to obtain accurate volume estimates.  
 
This study considered stand description in Sots pine stands. It 
was assumed that it is known prior to prediction that these 
forests are pure pine stands (pine proportion of volume over 
90%). In practical applications, information concerning 
species proportions could be obtained by using non-
parametric species-specific forest inventory approach which 
utilises both ALS data and digital aerial photographs 
(Packalén and Maltamo, 2007). This kind of method would 
also recognise stands where pine exists but it is not the main 
tree species. The usability of stand description approach of 
this study could be worse in some of those stands, i.e., the 
system of equations might be infeasible due to inconsistency 
with mean characteristics of pine. Crude information about 
species proportions could also be obtained from old stand 
register data or site fertility class. Photo interpretation could 
also be used for estimation of species proportions, as it was 
done in Norway (e.g. Næsset, 2004)        
 
This study expected that the diameter distribution of a pure 
pine stand can be characterized with a unimodal function. In 
managed stands, this is, in fact, true in most cases. In 
unmanaged stands, conservation areas, or forest reserves, the 
situation would be more complex since fire ecology and gap 
dynamics may result in diameter distributions of a 
multimodal shape (Esseen et al. 1997).    
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ABSTRACT:

Airborne Laser Scanning (ALS) has been established as a valuable tool for the estimation of biophysical canopy variables, such as tree
height and vegetation density. However, up to now most approaches are built upon empirical stand based methods for linking ALS data
with the relevant canopy properties estimated by field work. These empirical methods mostly comprise regression models, where effects
of site conditions and sensor configurations are contained in the models. Thus, these models are only valid for a specific study, which
renders inter-comparison of different approaches difficult. Physically based approaches exist e.g. for the estimation of tree height and
tree location, however systematic underestimation depending upon sampling and vegetation type remains an issue. Using a radiative
transfer model that builds on the foundation of the Open-Source ray tracer povray we are simulating return signals for two ALS system
settings (footprint size and laser wavelength). The tree crowns are represented by fractal models (L-systems), which explicitly resolve
the position and orientation of single leafs. The model is validated using ALS data from an experiment with geometric reference targets.
We were able to reproduce the effects of target size and target reflectance that were found in the real data with our modeling approach.
A sensitivity study was carried out in order to determine the effect of properties such as beam divergence (0.5, 1, and 2 mrad), canopy
reflectance (laser wavelength, 1064 and 1560 nm) on the ALS return statistics. Using the two laser wavelengths above, we were able
to show that the laser wavelength will not significantly influence discrete return statistics in our model. It was found that first echo
return statistics only differ significantly if the footprint size was altered by a factor of 4. Last return distributions were significantly
different for all three modelled footprint sizes, and we were able to reproduce the effect of an increased number of ground returns for
large footprint sizes. These forward simulations are a first step in the direction of physically based derivation of biophysical ALS data
products and could improve the accuracy of the derived parameters by establishing correction terms.

1 INTRODUCTION

In recent years, Airborne Laser Scanning (ALS) was established
as a valuable tool for the horizontal and vertical characterization
of the vegetation canopy. A number of studies prove ALS to be
capable of deriving canopy height, be it for stands [Lefsky et al.,
1999; Means et al., 2000; Næsset and Bjerknes, 2001] or sin-
gle trees [Hyyppä et al., 2001; Persson et al., 2002; Morsdorf et
al., 2004]. Furthermore, ALS was used to derive measures of
vegetation density such as fractional cover (fCover) and/or leaf
area index (LAI) [Harding et al., 2001; Lovell et al., 2003; Mors-
dorf et al., 2006b]. These approaches can be divided into two
classes, empirical and physical methods. Tree height and crown
width are mostly directly computed from either a gridded canopy
height model (CHM) or the point cloud itself, making it a physi-
cal approach as e.g. the tree segmentation algorithm proposed by
Morsdorf et al. [2004] (Figure 1). On the other hand approaches
deriving fCover and LAI most often use regression models to link
ground measurements with laser predictor variables, making it an
empirical method.

These products comprise site and instrument specific properties,
such as different sensor types, vegetation types and viewing ge-
ometry. This makes the comparison of results from different sites
and sensor configurations hard, if not impossible. For instance,
it is expected that laser wavelength and footprint size have an in-
fluence on the magnitude of these parameters. Some research
has already been pointing in this direction. A study of Yu et
al. [2004] showed that tree height underestimation was larger for
higher flying heights (and consequently larger footprint size), as
well as that fewer trees were detected the higher the flying alti-
tude was. These results are backed (among others, e.g. Gaveau
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Figure 1: Illustration of physically based tree segmentation al-
gorithm based on cluster analysis of raw data. For details see
Morsdorf et al. [2004].

and Hill [2003]) by Morsdorf et al. [2006a], who showed that
tree height underestimation in a mountain pine forest would in-
crease by about 30 cm when changing the flight altitude from
500 m AGL to 900 m AGL. However, it remains unclear how
much the lower sampling density or the larger footprint size con-
tribute to this increase in tree height underestimation. As it is
very hard to separate these effects in empirical studies such as
the one of Morsdorf et al. [2006a], one has to find alternative
solutions in retrieving information on the magnitude of these ef-
fects on biophysical parameter estimation. Modelling of laser
returns using geometrical-optical models might help here. Such
approaches have been carried out for large footprint data, where
the tree crowns where represented by cones filled with a turbid
medium [Sun and Ranson, 2000; Ni-Meister et al., 2001; Koetz
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et al., 2006], but so far not for small-footprint ALS data. For
small footprint data, the tree models need to be more complex
and should explicitly resolve the tree structure at the leaf level,
whereas for modeling large footprint data it was sufficient to spa-
tially resolve the canopy at the crown level [Sun and Ranson,
2000]. In recent years, fractal models of tree geometry have
been developed which resolve the tree geometry at the leaf level.
These models are used for ecological studies as well as for pro-
ducing realistically looking computer rendered images of vege-
tation. Thus, our objective is to use such fractal models of tree
geometry and a commonly used ray-tracer to study the effect of
footprint size and laser wavelength on ALS return distributions,
which are the basis for most ALS based biophysical vegetation
products. This approach should enable one to simulate individu-
ally the effects of acquisition properties such as incidence angle,
point density, terrain slope, laser footprint size, laser wavelength
and canopy reflectance on the accuracy of biophysical vegetation
data products opposed to real-world scenarios, where all these ef-
fects contribute indifferently to differences between ground truth
and ALS based estimations of biophysical parameters. A spe-
cial challenge will be to model the sensor characteristics of the
Toposys FALCON II system used for validation. This needs to
be done, since we use discrete return data for validation, which is
highly susceptible for the methods of echo detection applied by
the system provider.

2 METHODS

2.1 Modeling of ALS data

2.1.1 Ray-tracing using povray Povray1 is an open-source
ray tracing software that is widely used in computer graphics for
the visualization of scenes with arbitrary complex geometry. It
has as well been used for scientific visualizations [Solenthaler
et al., 2007], but so far not for simulating optical devices, ex-
cept for optical benches. However, we believe that it might be
used for the simulation of ALS return signals, since it allows for
representing complex geometries as well as differences in object
reflectance and transmission. Povray uses backward ray-tracing
to infer whether a beam from a light-source is reflected from an
object in a scene into the camera. The description of the scene in-
cluding object, light and camera location and properties, is done
using it’s own scene description language. A series of commands
is written into include files (.inc) and is then parsed by the pro-
gram. Povray allows for several lights and camera modes, we
use a spotlight with a defined beam divergence resembling that of
the Toposys instrument. Inside the beam, the energy distribution
is not uniform, but of Gaussian shape. According to the system
manufacturer, the beam divergence defines the point where the
intensity of the beam has fallen off to 1/e of its peak (center) en-
ergy. The spotlight used in our simulations has been configured
accordingly. An orthographic camera is used which is placed di-
rectly above the object. The spotlight distance was set to 500 me-
ters, the incidence angle to zero degrees, and for each of the ex-
periments the tree was sampled at a regular grid of 25 cm spacing
in both x and y direction, summing up to about 1000 waveforms.

2.1.2 Constructing an ALS return signal We use a special
version of povray, MegaPov2, which additionally is able to write
a depth image from the rendered scene based on the camera po-
sition. The resolution of the images was 400 by 400 pixels, re-
sulting in a spatial resolution in the model domain of about 1.5
mm. A combination of the intensity image (povray’s primary
rendering product) with the depth image will then yield a return

1www.povray.org
2http://megapov.inetart.net/

waveform. This is achieved by summing up the pixels P for each
range bin Ri − Ri+1 based on the depth image and multiplying
it with the respective mean intensity Ī from the intensity image
according to Equation 1. This method is based on the assumption
that the leaves are behaving in a lambertian manner.

σ(Ri, Ri+1, ) = 4 ∗
Ri+1X

Ri

P ∗ Ī
Ri+1
Ri

(1)

This waveform, however, represents the range dependent descrip-
tion of the cross-section of the scattering elements in the path
of the laser beam rather than the real return waveform of a laser
pulse. For obtaining a real waveform, this cross-section still needs
to be convoluted with a specific laser pulse [Wagner et al., 2006].
For the Toposys system (see Table 1), this pulse is Gaussian shaped
and has a duration of 5 nanoseconds, which equivalents to 1.5
meter in range. Such a pulse is used for the simulations in this
study. An illustration of the waveform generation process from
the rendered images can be found in Figure 2.

Falcon II Specifications
Maximum Range 1600 m
Range Resolution 2 cm
Scanning Angle ±7.15◦

Line-scan Frequency 653 Hz
Pulse Frequency 83 kHz
Laser Wavelength 1560 nm
Number of Fibers 127
Beam Divergence 1 mrad
Pulse length 5 ns

Table 1: Specifications of Falcon II Sensor Platform

2.1.3 Converting the waveform to discrete return data Since
most of the currently available ALS systems are discrete return
systems, which do not record the full waveform, but trigger dis-
tinct echos in real time from the return signal, we had to simulate
this feature as well. For detecting discrete returns from the mod-
elled waveform, we use a Gaussian decomposition as proposed
by e.g. Wagner et al. [2006] or Hofton et al. [2000]. This Gaus-
sian decomposition will as well have the advantage of describing
the physically meaningful cross-section of the scatterer opposed
to plain echo locations in the range dimension. The algorithm we
implemented first detects local maxima’s from a smoothed ver-
sion of the return waveform. The location of these maxima’s is
then used to fit Gaussian functions to the waveform using non-
linear least squares regression. An illustration of the decompo-
sition process can be found in Figure 3. From the reconstructed
waveform, adaptive thresholding is used to detect first and last
returns as is done for most time-of-flight based LIDAR systems.
The height of the threshold is adapted to the maximum intensity
of each peak to avoid trigger walk. Using a constant threshold
would produce range errors for peaks of different intensity, even
if they are at the same location in the range dimension.

2.1.4 Validation For simulating discrete ALS return data, we
faced two challenges. One was the modeling of the return signal
(the full waveform) itself and the other was to model the sensor
and detector characteristics correctly. For the latter, we were able
to use ALS data from an experiment with geometric reference
targets on an airstrip close to Zürich. This study was published
as Wotruba et al. [2005] and dealt with determining the effects
of target size and reflectivity on echo detection and echo sepa-
ration. We used this data to qualitatively validate our approach
by comparing modeled and measured point clouds and studying
the effect of target size and reflectance on the echo distribution.
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Figure 2: Illustration of waveform generation process based on intensity and depth image and using convolution (denoted by asterisk
in middle panel) with a laser pulse of 5 nanoseconds length.
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Figure 3: Illustration of Gaussian decomposition for triggering of
first and last returns.

In Figure 4 point clouds both from modeled and real data are
displayed, the targets consisted of slats of different width and
reflectance’s. Reflectance values were measured using an ASD
field-spec and assigned to the scene description in povray, which
as well contained the explicit geometry of the targets. The mod-
eled scene was sampled at exactly the same location as the real
data, based on the location of the real echo locations. In order to
obtain this modeled echo distribution, we needed to emulate noise
in the echo detection process, which will lead to small peaks in
the return signal not being detected. We used a simple intensity
threshold to eliminate peaks that are to small to be detected. Do-
ing so, we were able to reproduce the measured thicknesses of
the slats, which is a function of slat width and slat reflectance
in conjunction with the characteristics of the detection methodol-
ogy. We were able to reproduce the effect of target reflectivity of
the dark slats in the modeled data. A slat being 5cm wide, and
white (third from right in Fig. 4,ρ at 1560 nm : 0.52) will trig-
ger more returns than a black one with a reflectance of only 0.02
(right most in Fig. 4). For more details regarding the experiments
on the airstrip, please refer to Wotruba et al. [2005].

2.2 Simulating effects of ALS system specification

Two parameters which are supposed to severely influence ALS
return statistics are the footprint size, that is the size of the illu-

minated area on the earth’s surface and the different laser wave-
lengths used in ALS systems. The footprint size depends on beam
divergence γ and flight altitude h (and in some cases the aperture
D of the transmitter/receiver optics):

A = D + 2h tan(
γ

2
) (2)

Since D can be neglected in most cases, and γ is generally very
small, Equation 2 can be rewritten to:

A = h ∗ γ (3)

It is known that the size of the footprint alters the ability of the
laser pulse to penetrate vegetation [Nilsson, 1996; Chasmer et
al., 2006]. The smaller the footprint is, the larger is the chance
of not receiving a last echo from the ground in denser vegeta-
tion. Thus, for systems recording first and last echo, the penetra-
tion of vegetation will in fact be better for systems using larger
footprints [Schnadt and Katzenbeisser, 2004]. We will alter the
footprint size with the factors of 0.5 and 2, which yields three
footprint sizes in total together with the nominal footprint size of
the Toposys FALCON II system. The other effect we wanted to
study is the effect of using different laser wavelengths. Two com-
monly used wavelengths are 1064 (e.g. Optech ALTM series) and
1560 nm (e.g. Toposys and Riegl systems), and when one stud-
ies spectra of canopy elements, one will find large differences in
reflectance for these two wavelengths (see Table 2).

Reflectance Transmission
1064 nm 1560 nm 1064 nm 1560 nm

Bark 0.172 0.365 0 0
Leaf 0.559 0.217 0.188 0.033
Understory 0.332 0.152 0 0

Table 2: Spectral properties of canopy elements for two laser
wavelengths.

How sensitive the return statistics are in respect to laser wave-
length is yet not known. Thus, we construct two different pine
trees for both 1064 nm and 1560 nm wavelength and sample those
in the same way as we did for the footprint diameter analysis. The
trees are constructed being gray scale as we use for all three of
R,G,B the same values of reflectance at the particular wavelength,
as they are displayed in Table 2.

2.2.1 Fractal models of tree geometry Fractal models (also
known as L-systems) have a long tradition in computer graphics
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Figure 4: Real ALS data for slats target (right) and modeled data (left). The slats are grouped in 4 colors, with three different widths
(15,10 and 5 cm from left to right). The white slats are left, the black ones right. Note the difference in sampled width due to both
difference in reflectance and difference in actual width.

Figure 5: Rendered image of modelled pine tree.

for the generation of realistically looking plants. Several Open-
Source tools exist which can produce such models for the use in
rendering software such as povray. One of these tools, namely
Tomtree3 will be used in this study. A pine tree constructed
of the canopy elements leaf and bark is virtually planted on a
horizontal patch of soil. These three scene elements (bark,leaf
and understory) are assigned with reflectance’s and transmissions
according to model output of a model for leaf optical proper-
ties (PROSPECT, Jacquemoud and Baret [1990]) and ASD field-
spec4 measurements. These values are displayed in Table 2. A
side-view rendering of the pine tree used in this study is displayed
in Figure 5. The leafs are represented by simple triangles, which
are rotated randomly around their elongated axis.

3 RESULTS

3.1 Full waveform

The results for full waveform data are depicted in Fig. 7. The
waveforms are averaged from the single simulations and not treated
for first and last echo detection as in the previous section, and

3www.aust-manufaktur.de/austtx.html
4www.asdi.com
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Figure 7: Averaged waveforms for two wavelengths and three
footprint sizes.

thus resemble a height distribution that are being used for e.g.
biomass estimation. The different waveforms have been normal-
ized to their ground return, in order to visualize relative differ-
ences in the canopy part of the waveforms. We can do this here,
since we know that exactly the same area containing the same
object has been sampled in our modeling study. In a real world
application, normalizing waveforms with the ground peak would
not be suitable. For different footprint size, only little (and not
significant) differences of about 3 to 5 % in the magnitude of
the canopy maximum can be observed. However, for different
wavelengths, a significant increase of return energy (about 25 %)
below the canopy maximum at about 4.5 m can be observed. The
mean energy of the vegetation peak does not significantly change
between laser wavelengths of 1064 and 1560 nm. Thus, except
for a difference in total energy not shown here (due to normaliz-
ing of waveforms), the only significant difference in waveforms
is between the 1064 and 1560 nm laser wavelength.

3.2 Discrete returns

In Table 3 the mean height differences of the discrete return statis-
tics for different footprint size are depicted. Bold values indicate
that first or last echo distributions are significantly differing from
each other based on a two sided Kolmogorov-Smirnow test. First
echo statistics are lower on average for large footprint sizes, with
this effect being in the order of almost 20 cm, when comparing
the returns for 0.5 and 2 mrad beam divergence. For these two
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Figure 6: First and last echo distribution inside modelled tree for three different footprint sizes. Note the increased number of ground
returns and the smoothing effect due to increase in footprint size.

beam divergences, the difference in first echo distributions is sig-
nificant. For smaller differences (factor 2) of beam divergence
the mean height difference of the first return statistics is not sig-
nificant. However, last echo distributions are more affected by
differences in footprint, as for all three combinations of footprint
sizes the distributions are significantly different. Furthermore, a
systematic height difference exist when comparing the different
footprint sizes. Opposed to first echo statistics, for last echo a
positive difference is found when comparing distributions gath-
ered from smaller footprint with those of larger footprints. Thus,
one can state that for larger footprint diameters, last echo distribu-
tion will be biased upwards. Changing the laser wavelength from
1064 to 1560 nm did not produce significantly different return
statistics, neither for first nor for last echo. Thus, these results are
not included in Table 3.

Height difference of return statistics [cm]
Returns Beam diverg. [mrad]. 0.5/1 1/2 0.5/2
First echo @ 1064 nm -10 -6.7 -17
First echo @ 1560 nm -9.6 -5.3 -15.2
Last echo @ 1064 nm 19.3 10.1 29.5
Last echo @ 1560 nm 18.7 9.3 28.4

Table 3: Mean height differences in return statistics comparing
different footprint diameters. Bold values denote significantly
different echo distributions

4 DISCUSSION AND CONCLUSIONS

Using povray and fractal models of tree geometry, we were able
to study the effect of two ALS sensor settings on both discrete re-
turn statistics and the full return waveform. The model was vali-
dated using discrete return data from an experiment on an airstrip,
where geometric targets where used to infer information on the
effect of target size and reflectance on target visibility. We were
able to reproduce the distribution of real data with our model, and
could demonstrate that it is sensitive not only for the geometric
structure of the modelled objects, but as well for differences in
object reflectance. In a sensitivity analysis using a modelled pine
tree, we tested the impact of footprint size and laser wavelength
on two types of return statistics, discrete return and full wave-
form. For discrete return data, the return distribution of both first

and last echo do not significantly change in respect to the two
laser wavelengths used in this study. For first echo data, the ef-
fect of altering footprint size is only significant when changing
the footprint diameter by a factor of 4, otherwise the difference
of return statistics is not significant. For the last echo statistic,
however, even smaller changes in footprint size lead to signifi-
cantly different return statistics. Furthermore, our results were in
conjunction with the statement from Schnadt and Katzenbeisser
[2004], showing an increasing number of ground returns when
footprint size was increased. First echo distributions will be bi-
ased towards the ground, when increasing the footprint size, in
the order of some decimeters for our modelled tree. This effect
could partly explain the observed increase in tree height underes-
timation, as was found by Morsdorf et al. [2006a] or Gaveau and
Hill [2003], which was in the order of about 30 cm for doubling
the flying altitude (and thus the footprint size). Another finding
from Morsdorf et al. [2006a] was that there are more last echos
triggered inside the canopy for higher flying altitudes. This was
said to be related to illumination issues due to the larger footprint,
and our modeling results back this behavior to some extent by the
observed positive bias in last echo return statistics for larger foot-
print sizes. In our simulations, first echo data seems to represent
an outer hull of the tree crown and does not penetrate deeper into
the canopy. This effect was as well observed by Chasmer et al.
[2006] in real data, and it might explain why it can be hard to de-
rive canopy density metrics from first echo data alone. For the full
waveform, the lower part of the canopy seems to contribute more
energy to the return signal at 1560 nm than for 1064 nm laser
wavelength. This could be explained by the significantly higher
reflectance of leafs at 1064 nm. The canopy elements higher in
canopy would already scatter back a large part of the energy of
the laser pulse, which in turn would not be available for illumi-
nating the lower part of the canopy.

These forward simulations are a first step in the direction of phys-
ically based derivation of biophysical ALS data products and could
improve the accuracy of the derived parameters by establishing
correction terms for different sensor settings. The model pre-
sented in this work can be further used to study the effect of
point density, sampling distribution and scanning angle on var-
ious canopy types. However, the model might need ecologically
calibrated fractal tree models (e.g. AMAP, Castel et al. [2001])
and needs to be validated not only for geometric reference tar-
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gets, but as well using real world trees. This will be a difficult
task and will most likely be accomplished by incorporating ter-
restrial laser scanning data. Such modelling will become increas-
ingly important with the availability of small-footprint full wave-
form data, which needs to interpreted in a meaningful way. If one
knows how much ALS system settings contribute to differences
in these waveforms, it should be easier to derive accurate descrip-
tions of biophysical parameters from this highly anticipated data,
which might provide an even more detailed insight into the verti-
cal structure of vegetation than discrete return data ever could.
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ABSTRACT:  
 
High-resolution datasets from Airborne Laser Scanning (ALS) provide information to extract the outline of single tree crowns. La-
ser echoes with spatial coordinates inside these single-tree crowns give the ability of measuring biophysical properties and to clas-
sify species of these single-trees. Species classification by ALS-data is based on differences in crown shape, crown density, reflec-
tivity and distribution of foliage and branches between tree species. All of these parameters may be expressed by spatial 
coordinates of the point cloud or by the intensity of the backscattered signal measured by ALS.  In this study we investigate mean 
intensity and standard deviation of intensity computed for single trees by explorative data analysis and linear discriminant analysis. 
We explore differences in spruce, birch, and aspen trees for different echo categories from a multiple return ALS system. We found 
that intensity could assist species discrimination. The overall classification accuracies obtained were from 68 to 74 %, depending 
on number of variables considered. In spite of the heterogeneous structure of the forest studied, the classification accuracy was 
fairly high. Intensity metrics computed from different echo categories influence overall accuracies by 3 to 4 %, depending on the in-
tensity metric used in the classification.  Both species reflectivity and structural characteristics within the tree crown will influence 
intensity recorded by ALS.  
 
 

1. INTRODUCTION 

In the past two decades, the capabilities of Airborne Laser 
Scanning (ALS) in forest structural assessment have been 
documented in a many research studies as well as in opera-
tional inventories. Today, ALS-sensors provide high-resolution 
datasets with 5-10 points per square meter. From these high-
density datasets single trees can be extracted and measured 
(e.g. Persson et al. 2002; Morsdorf et al. 2004; Solberg et al. 
2006). The distribution of laser echoes in a tree is a result of 
crown shape, crown density, distribution of foliage mass and 
branches, surface reflectivity, etc. Since many of these parame-
ters may represent distinct characteristic of different tree spe-
cies, ALS have been proposed and tested to support single-tree 
species classification. In addition to the distribution of the spa-
tial coordinates x, y, and z for the returned echoes, most pro-
prietary airborne lasers are also capable of measuring the re-
flectivity of the surface hit by the laser pulses. The reflectivity 
measured by pulse lasers represents the intensity of the maxi-
mum energy of the returned echo (Wehr and Lohr 1999). This 
intensity recorded by ALS could also assist tree species classi-
fication if species are separable in the spectral domain at the 
wavelength emitted by the laser (e.g. 1064 nm). Already in 
1985, Schreier et al. (1985) found that the mean reflection and 
reflection variability measured by a airborne laser system could 
be used to differentiate between coniferous and deciduous 
trees. Later, intensity metrics derived from ALS have been 
used in tree species classification studies in boreal conifer for-
est in Scandinavia (Holmgren and Persson 2004), North 
American deciduous forest (Brandtberg et al. 2003; Brandtberg 
2007), and sub-tropical Australian forest (Moffiet et al. 2005). 
In some of these classification studies the echo categories, i.e., 
first and last echoes, are treated separately, in other studies 
echo categories are joined together. However, combining all 
echo categories are not recommended because separate echo 
categories may play an important role in achieving better total 
classification accuracies (Brandtberg 2007). As use of ALS 

systems capable of record multiple echoes become more com-
mon, knowledge of intensity behavior of different echo catego-
ries will be important in further species classification studies. 
The objectives of the present study were to characterize and 
analyze ALS-derived intensity metrics for (1) different tree 
species and 2) for different echo categories, and 3) to test and 
report classification performance of ALS-derived intensity met-
rics in a heterogeneous boreal forest. 
 

2. MATERIAL 

2.1 Study area 

The study area is located in the Østmarka natural reserve, in 
southeastern Norway (59°50’N, 11°02’E, 190-370 m a.s.l). The 
area has not been logged or managed over the last 60 years. 
Today the forest appears with large within-stand variation of 
tree ages and tree sizes. The dominating species are Norway 
spruce (Picea abies L.) and Scots Pine (Pinus silvestris L.). In 
addition, deciduous species, mainly Birch (Betula ssp.) and 
Aspen (Populus tremula L.), are found scattered in the land-
scape.  
 
2.2 Field data 

The field inventory was carried out during summer 2003 on 20 
sample plots of size 0.1 ha. The sample plots were located in 
the spruce-dominated areas. Polar coordinates relative to plot 
center of all trees with diameter at breast height greater than 3 
cm were registered. Plot center coordinates were determined 
by differential Global Navigation Satellite Systems (GNSS). 
On each plot, sample trees were selected according to two dif-
ferent sampling schemes. First, eight trees were selected by 
choosing the first dominant tree in each cardinal direction and 
the nearest tree to each of the four dominant ones. Second, all 
deciduous trees on the plot and some deciduous trees just out-
side the plot were selected. This was done to increase the 
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number of deciduous trees in the sample. On sample trees 
height, diameter in breast height, and crown radius were meas-
ured. Crown radius was determined as the mean of the radii 
measured in the four cardinal directions. Further details about 
the field work and the georeferencing procedures can be found 
in Solberg et al. (2006) and Bollandsås and Næsset (2007). 
 
2.3 Airborne laser scanner data 

ALS-data used in this study were acquired 18 June 2005 with 
the Optech ALTM 3100 sensor. Table 1 provides information 
about laser scanner settings planned for the acquisition. The 
initial processing of laser data was accomplished by the con-
tractor (Blom Geomatics, Norway). First, all echoes outside a 
half scan angle of 8 degrees were deleted. Ground points were 
classified using the Terrascan software (Anon. 2004) and the 
ground-classified points were used to build a Triangular Irregu-
lar Network (TIN) terrain model. The TIN heights were then 
subtracted for each laser echo to produce height above the 
ground surface. Furthermore, all echoes with height less than 
1.3 m where deleted from the dataset. In previous studies, this 
Ground Threshold Value (GTV) has typically been set to 2 m 
(Nilsson 1996; Næsset 2002, 2004). The choice of 1.3 m as 
GTV is based on the requirement of consistency with other 
measurements on the trees. For example, stem diameter and 
age are usually measured at breast height (1.3 m). In this 
multi-layered forest, we also wanted to keep as much informa-
tion about small trees as possible and for that reason we did 
not want to exclude tall under-vegetation.  
 

Parameters  
Flying altitude AGL (m) 750 
Pulse repetition frequency (Hz) 100000 
Scanner frequency (Hz) 70 
Half scan angle (deg.) 10 
Flying speed (m/s) 75 
Swath (m) 264 
pt/m2  5.09 
Beam divergence (mrad) 0.26 

 
Table 1. Planned laser scanner settings for data acquisition 

 
The elapsed time between field measurements and ALS data 
acquisition represented two years of growth. The forest in the 
nature reserve is in general old and little growth is seen. 
Hence, the field measurements were not adjusted for growth. 
 
The Optech ALTM 3100 sensor is a multiple return system ca-
pable of recording up to four echoes per pulse. Older systems 
(e.g. Optech ALTM 1233) record two echoes for each pulse, 
i.e., first and last echoes. The number of echoes recorded by 
the ALTM 3100 depends on the returned energy of the laser 
pulses and the vertical resolution, i.e., the minimum distance 
between separate echoes. For the ALTM 3100, the vertical 
resolution is 2.1 m between the two first returns and 3.8 m for 
the other returns.  If four returns are detected the sensor label 
them as “first echo of many”, “second echo”, “third echo” and 
“last echo”. If only two echoes are identified, these are labeled 
“first echo of many” and “last echo”. If three echoes are re-
corded, these are labeled “first echo of many”, “second echo” 
and “last echo”. If only one significant return is identified, this 
is labeled as an “only echo”. In this study, the ALS data were 
delivered by the contractor to be as close as possible to the 
structure of data provided by the old ALTM 1233 sensor. This 

was done by combining “first echoes of many” and “only ech-
oes” in one dataset and “last echoes” and “only echoes” in an-
other dataset. The reason for this was to be able to compare the 
two different sensors, i.e., the ALTM 1233 and 3100 instru-
ments. However, in this particular study we split the dataset 
into the original echo categories, i.e., “first echoes of many”, 
“last echoes”, and “only echoes”. We did this by extracting and 
labeling echoes with the same spatial coordinates in the two 
datasets as “only echoes” and deleting them from the two 
original datasets. These three echo categories were used in our 
analysis and for short they are denoted “first”, “only” and 
“last” echoes.  
 

3. METHODS  

In this study, no single-tree detection based on the ALS-data 
was carried out. Instead we buffered the field-derived tree stem 
positions with the mean crown radius. Laser echoes inside 
these circular crown segments were then tied to the buffered 
tree. The forest in the natural reserve is partly multi-layered 
and in case of overlapping tree crowns echoes were tied to the 
tallest tree.  
 
For each tree we computed the mean intensity (MI) and the 
standard deviation of intensity (SDI) based on the laser point 
cloud. These two metrics are selected for this study because 
thet are the most frequently used in other single-tree species 
classification studies (Schreier et al. 1985; Brandtberg et al. 
2003; Holmgren and Persson 2004; Moffiet et al. 2005; 
Brandtberg 2007). These two intensity metrics were computed 
for each echo category. In total, six variables where therefore 
derived. In this paper, the last character of the variable name 
represents the echo category, i.e., F=first, O=only and L=last. 
For example, mean intensity of first echoes of many are de-
noted MIF, mean intensity of only echoes MIO, etc. To be able 
to calculate the SDI at least two echoes are needed. Thus, in 
order to have a consistent dataset without missing values, all 
trees hit by less than two echoes in an echo category were dis-
carded from further analysis. In addition, only Norway spruce 
(S), birch (B), and aspen (A) trees were considered. 
 
Explorative data analysis was performed using graphical meth-
ods by means of box-and-whisker plots (Tukey 1977; Anon. 
2006). The box-and-whisker plot will give an overview of the 
data showing first and third quartile as the box (“hinges”), the 
median as the horizontal line dividing the box and extreme val-
ues as points outside the “whisker” defined as: 
 
 

n
IQR58.1/−+             (1) 

 
 
where  n = number of observations  

IQR = Inter Quartile Range (i.e. difference between 
first and third quartiles) 

 
In addition to this graphical representation of summary statis-
tics, we explored relationships between intensity metrics by 
computing Pearson correlation coefficients. We also carried out 
a Principal Component Analysis (PCA) to explore and visual-
ize variance in all computed metrics. The PCA calculation was 
done by a singular value decomposition of the centered data 
matrix. 
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The investigation of classification performance was conducted 
with Linear Discriminant Analysis (LDA). LDA was carried 
out using equal prior probabilities and leave-one-out cross 
validation by lda function of the R-package MASS (Venables 
and Ripley 2002). Classification was tested for all variables on 
independent basis. Overall accuracy was calculated as the per-
cent trees correctly classified over total number of trees in the 
analysis. Then two to six (all) variables were combined and the 
combination(s) with the highest overall accuracy were selected. 
These overall accuracies are reported in Table 4. An error ma-
trix for the combination of variables that produced the highest 
overall accuracy is also reported (Table 5). 
 

4. RESULTS 

Of the 260 field measured trees a total of 224 trees were of the 
tree species considered and hit by at least three echoes of each 
category and included in the analysis. Summary statistics of 
trees used in analysis appear in Table 2. 
 

 Spruce Birch Aspen 
Number of trees 133 70 21 

Tree height (m) 23.1 
(4.7) 

18.6 
(4.2) 

23.8 
(3.9) 

Stem diameter (cm) 31.7 
(8.3) 

22.8 
(7.5) 

33.4 
(8.3) 

Crown radius (m) 1,78 
(0.46) 

2.02 
(0.56) 

2.51 
(0.81) 

 
Table 2.    Mean values and standard deviations (in parenthe-

sis) of field measured trees used the in analysis. 
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Figure 1.  Mean intensity for different echo categories and tree 

species 
 
Explorative data analysis by means of box-and-whisker plot of 
MI and SDI provides an overview of the variables (Figures 1 
and 2).  
 
The correlation matrix of intensity-derived metrics (Table 3) 
unveiled two relationships, i.e., (1) a positive correlation be-
tween MI and SDI in each echo category and (2) a positive cor-
relation between metrics computed from first echoes and only 
echoes. Correlations between first and only echoes are found 
between MI and SDI computed from these echoes and between 

MIO and SDIF. All correlations in the matrix are stronger for 
birch and aspen compared to spruce when correlation analyses 
were preformed on subsets containing separate tree species. 
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Figure 2.  Standard deviation of intensity for different echo 

categories and tree species 
 

 MIF MIO MIS SDIF SDIO SDIS 
MIF 1.00      
MIO 0.57 1.00     
MIS -0.17 0.13 1.00    
SDIF 0.44 0.59 0.02 1.00   
SDIO 0.29 0.47 0.06 0.45 1.00  
SDIS -0.08 0.01 0.42 0.11 0.14 1.00 

 
Table 3. Correlations between intensity metrics 
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Figure 3.   PCA score plot of first and second principal compo-

nent. Class centers indicated by crosses. 
 
The two first components of the PCA explained 73 % of the 
variation in intensity-derived metrics whereas the first compo-
nent explained 46 % only. The score plot of the two first com-
ponents is displayed in Figure 3 labeled with tree species. 
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LDA classification was performed both by using only one vari-
able at a time and for combinations of variables (Table 4). The 
best classification obtained included mean intensity for first 
and last echoes and standard deviation of intensity for all echo 
categories. The error matrix (Table 5) for this classification 
provided an overall accuracy of 74.1 % and a Kappa coefficient 
of 0.49.  The classification accuracies for the single species 
were 87.2 % for spruce, 64.3 % for birch and 23.8 for aspen. 

 
Combination of intensity metrics Overall 

accuracy (%) 
MIF 68.3 
MIO 65.2 
MIS 66.5 
SDIF 64.3 
SDIO 62.5 
SDIS 60.3 
MIF, MIS 71.4 
MIF, MIS, SDIF  72.8 
MIF, MIS, SDIO 72.8 
MIF, MIS, SDIF,  SDIS 73.7 
MIF, MIS, SDIF,  SDIO 73.7 
MIF, MIS, SDIF , SDIO, SDIS   74.1 
All intensity metrics 73.2 

 
Table 4.   Overall accuracy of species classification for differ-

ent combinations of laser intensity metrics 
 

 Field reference 
Classification Spruce Birch Aspen 
Spruce 116 25 12 
Birch 13 45 4 
Aspen 4 0 5 

 
Table 5. Error matrix for tree species classification  

 
5. DISCUSSION 

The distribution of trees on different species and size classes in 
the natural reserve is different from what we will find in a 
managed forest. The structure of the forest limits the number of 
deciduous trees. The birch trees in this study are also some-
what smaller than the spruce trees and the aspen trees are in 
general large and old with tick branches that dominates the 
crown. However, our goal was to get some basic experience 
with intensity metrics for three species discrimination and for 
this purpose we found the data relevant. 
 
In the box-and-whisker plots, the most pronounced pattern is 
the higher values of mean intensity of only echoes (Figure 1). 
The mean intensities of only echoes are about the size of the 
sum of first and last echoes. This is reasonable size only echoes 
are recorded when there is not enough energy to produce a sec-
ond return (or vertical distance is too short). However, both 
first and only echoes should be returned from the same canopy 
surface. The difference in intensity from these echoes indicates 
that they have different origins not only depending on species 
reflectivity. Thus, it seems that laser intensity is a result of 
other tree characteristics than the species-specific reflectivity 
(Moffiet et al. 2005). It is therefore likely that only echoes are 
returned from denser parts of the tree like the stem or thick 
branches. However, the observed differences between echo 
categories are important and indicate that treating different 

echoes separately in species classification may provide more 
information than combining them.  
 
The box-and-whisker plots (Figures 1 and 2) indicate that the 
differences between tree species are relatively small. The me-
dian values of each species are in general between the first and 
third quartile of the other species they are compared to. The 
exception is first echoes which are different in both MI and 
SDI for spruce compared to birch. We expected that deciduous 
species would have nearly the same reflection in the wave-
length emitted by the laser. Surprisingly, intensity metrics from 
first and only echoes of aspen trees were more similar to 
spruce than birch. This similarity may be explained by reflec-
tivity of bark (branches and stems) and by crown characteris-
tics such as density and structure in addition to foliage reflec-
tivity. Last echoes of spruce have higher mean intensity than 
the two deciduous species. A likely reason is the relation to 
first echoes where spruce trees have more energy left to pro-
duce a second return. However, the correlations between met-
rics derived from first and last echoes are weak (Table 3).  
 
Correlations between mean intensities and standard deviations 
within echo categories at plot level are also reported by Moffiet 
et al. (2005). They explain the correlation between mean inten-
sity and standard deviation of intensity by the interaction of the 
features of forest and trees on the footprint. A permeable sur-
face will return a small portion of the pulse energy and it will 
need more time before a significant return will be recorded. 
This will lower the mean intensity and increase the standard 
deviation of intensity compare to a denser surface. However, 
we found that these relationships are stronger in deciduous 
species. Hence, the effect is different between tree species. The 
correlations between metrics from first echoes and only echoes 
are also interesting, especially as first echoes seem to be more 
important in separating species than only echoes. The correla-
tions between metrics of first echoes and only echoes indicate 
effects which influence both echo categories in the same way.  
However, first echoes are better in discriminate species. 
Hence, first echoes are probably less affected by these overall 
effects.  
 
The explorative data analysis and the principal component 
analysis indicated large variation in the intensity metrics. Only 
parts of the variation were explained by the first two compo-
nents of the PCA, indicating that much of the variation in these 
metrics will be difficult to explain. A factor of variance that 
may be used in further studies is the incident angle of the laser 
pulse. However, as shown in Figure 5, some of the variation is 
explained by tree species. The birch and spruce trees are nearly 
separated into two groups in the PCA score plot.  This separa-
tion of tree species in the score plot supports the use of laser 
intensity in discriminating between these two species.  The 
score values for aspen trees are found more scattered and 
mixed with score values of spruce trees in the plot.  The scat-
tered score values of aspen trees may be an effect of the special 
crown structure or by the limited number of observations in the 
dataset. However, the observation of different score values in 
aspen and birch trees indicate that these tree species should be 
treated separately and not as a common group.  In addition, 
both the box-and-whisker plots and the score plot point out that 
the variance in intensity metrics, e.g. MIO, is smaller for 
spruce than for deciduous species. This may be due to the fact 
that spruce trees have a more uniform crown than deciduous 
trees.  
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The study site is located in a heterogeneous forest with a num-
ber of suppressed trees. They are indeed difficult to detect and 
segment by automated single-tree segmentation as well 
(Solberg et al. 2006), and these trees may also be the most dif-
ficult ones to classify. In spite of the complex stand structure, 
the classification accuracy was fairly high. The cross validated 
classification indicated that intensity of first echoes are the 
most appropriate ones to separate spruce, birch, and aspen 
trees. In addition, intensity metrics from last echoes and the 
standard deviation of intensity from only echoes will contribute 
with information separating the three species. The classifica-
tion is explorative and more appropriate training- and testing 
datasets are required to verify these initial findings. 
 

6. CONCLUSION 

The results of this study indicate that intensity from high-
resolution airborne laser could assist species discrimination. Of 
the tested echo categories the ”first echoes of many” provided 
most information for discriminating between species. Last ech-
oes provided additional information and ”only echoes” pro-
vided least information for separating species. Intensity meas-
ured by ALS is also highly variable. The high intensity of ”only 
echoes” compared to first echoes and relationships between 
echo categories indicated that other tree structural characteris-
tics than species reflectivity are of importance for the intensity 
value. The classification accuracies obtain were form 68 to 74 
%, depending on number of variables considered. Using addi-
tional ALS-derived metrics, like canopy density- or height met-
rics, will probably improve classification performance. Hence, 
additional metrics and information will be use in and opera-
tional application. In the near future, use of integrated systems 
like sensors combining laser and image sensors are likely to 
become more common. Data from such systems will have a 
great advantage in tree species classification (Persson et al. 
2004). 
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ABSTRACT:  

Quality of 3D reconstructed roads strongly depends on input data and following processing steps. Quality analysis is essential for 

building up a reliable reconstruction process and for a proper use of 3D data. It is therefore of interest to analyse which error sources 

influence the final result, and what is the sensitivity of each of these error sources. In this paper we explicitly describe quality of 3D 

reconstructed roads as a function of input data. These 3D roads have been reconstructed automatically by a fusion process of two 

input data sets: topographic map data and airborne laser data. Heights of map points are calculated by least squares plane fitting 

through a selection of neighbouring laser points. We determine the precision of map point heights by using error propagation 

techniques and properties of least squares adjustment. Map points heights have been calculated with a precision varying from a few 

centimetres to a few decimetres, depending on the point density and distribution of laser data. Even more important is that 

independent reference data showed the correctness of predicted quality by testing the actual quality against the predicted quality.  

 

 

1. INTRODUCTION 

Reconstructing 3D topographic objects has been an active 

research topic in the last decade, driven by the growing need for 

3D geo-information and the growing technical possibilities. 

Researchers proposed several acquisition techniques varying in 

terms of level of automation, focus on specific objects, and 

kinds of data sources like stereo imagery or laser altimetry data. 

Quality parameters of these 3D reconstructed models strongly 

depend on input data and how well these objects can be 

extracted from the data. (Kaartinen et al, 2005) reviewed the 

quality of building models submitted by 11 participants, and 

relate this to the acquisition methods, divided into image based 

and laser altimetry based approaches. In other individual papers 

sections on quality assessment are often limited to a value of 

success rate and completeness or a table of differences between 

reference data and reconstructed models. 

 

While users of 3D geo-information also gained experiences in 

their applications, requirements on data quality became more 

specific. For one purpose users need a higher accuracy than for 

others. Quality descriptions are therefore essential for a proper 

use of data. For users as well as for researchers it is of interest 

to analyse which error sources influence the final result, and 

what is the sensitivity of each of these error sources.  

 

In this paper we explicitly describe quality as a function of 

input data, using error propagation techniques and properties of 

least squares adjustment. Our focus is on the quality of 3D road 

reconstructions. We will examine the precision of only the 

height component in these models. Three-dimensional roads are 

important features for infrastructural analysis, like traffic noise 

simulations, but are also essential features in 3D city models, 

besides 3D buildings. Roads can automatically be reconstructed 

in 3D using airborne laser scanner data in combination with 

existing 2D map data (Oude Elberink and Vosselman, 2006). 

Their method recognises and models height discontinuities to 

allow roads to cross in 3D. Results have been shown for a 

complex interchange, but quality assessment was limited to a 

section about completeness of the reconstructed model. First we 

will generally describe the reconstruction approach, which is an 

extension to the method of (Oude Elberink and Vosselman, 

2006). By using formulas from least squares adjustments and 

error propagation techniques, we are able to analyse the 

precision and reliability of our reconstructed model. Finally, we 

check our reconstructed model by comparing it with 

independent reference data. Differences between these two 

datasets should be explainable by the predicted quality 

measures. Detailed insight in the quality of 3D reconstructed 

roads is important to analyse critical steps in the reconstruction 

process. This is especially true in situations in which laser 

points are scarce like on lower parts at interchanges. This paper 

gives insight in the quality of the 3D road reconstruction 

process and results.  

 

2. 3D ROAD RECONSTRUCTION 

Essential in our quality analysis is the integration of functional 

and stochastic information, using error propagation and least 

squares adjustment techniques. In this section we describe the 

functional information, covering the subsequent steps to 

reconstruct 3D roads. Our aim is to reconstruct 3D road models 

by adding height values from laser data to 2D planar 

coordinates of map polygons. 

 

2.1 Pre-processing 

In a pre-processing stage laser data has been segmented into 

piecewise smooth laser segments. We have filtered small 

segments to remove points on objects like cars and traffic signs. 

 

2.2 Assigning laser data to map data 

Roughly, our approach assigns laser points to a map polygon 

and then reconstructs its 3D boundaries by fitting a plane 

through a selection of the assigned laser points. When 

reconstructing complex interchanges, assigning laser points to 

the map needs extra attention. Simple points-in-polygon 

operations will fail because the existence of roads on multiple 

height levels. Laser points should be assigned to a road part on 

the correct height level. In Figure 1 a part of an interchange is 

shown, visualizing map polygons bounded by black lines, and 

laser points coloured by height. Colours indicate height above 

mean sea level varying from yellow (~0 meter), green (~6 

meter), blue (~14  meter) and purple (~21 meter).  
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Figure 1. Laser points and map polygons at four height levels of 

a complex interchange, see text for explanations of 

P1, P2 and P3. 

 

Looking at a complex infrastructural object like in Figure 1, 

the following characteristic problems may occur: 

P1. Due to a horizontal displacement between map and 

laser data, laser points will be assigned to the wrong 

(neighbouring) polygon.  

P2. Height data might be acquired at different levels at the 

same horizontal location because of the across track scanning 

angle. When reconstructing this map polygon at different height 

levels, we have to select the right laser points for the right 

height level, and remove the false laser points.  

P3. Problems arise when handling polygons with only a 

few points, due to the size of the polygon or due to the surface 

material of the object feature resulting in a low point density.  

 

Problems mentioned above are solved in a special map growing 

algorithm. Map polygons are merged together if they belong to 

the same road. Geometric and topological information from two 

neighbouring polygons decides if they belong to the same road. 

Laser points are added during map merging if they fit to the 

height and slope of the growing map polygon. This assignment 

procedure is a recently added step to the approach of (Oude 

Elberink and Vosselman, 2006), making it possible to 

reconstruct complex interchanges completely and automatically, 

at all height levels. Now that laser points have been assigned to 

map polygons, the actual reconstruction consists of adding 

height values to each map point. To correctly capture the 3D 

shape of polygons, additional map points have been generated 

and inserted at every 10 meters. This height value is calculated 

by fitting a plane through a selection of laser points within a 

certain radius, see Figure 2. This plane is calculated by least 

squares adjustment. To reduce influences of single laser points, 

only points from the largest segment have been used. The 

height of the plane at the location of the map point is taken as 

map point height. At road crossings multiple heights will be 

calculated and stored to make a full 3D description possible.  

 
Figure 2. Laser points assigned to map polygon (left); map 

points (orange bullets) and search radius for 

selecting laser points (right). 

 

Our plane parameters (p) can be written in the form: 

 

321),( pypxpyxfz +−−==          (1) 

Where p1 and p2 are two slope parameters and p3 a distance 

parameter. We can write the plane calculation in a system of 

linear equations: 

 

{ } .AxyE =                (2) 

 

In equation (2), y contains observations (z-values of laser 

points), x is a vector of the three unknown plane parameters and 

matrix A contains information about the configuration of laser 

points. Each row consists of the horizontal location of a single 

laser point (-x, -y, 1).  
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To solve these equations in a least squares adjustment, 

observations are given a weight, and plane parameters are 

estimated by: 

.)(;)(ˆ 11*
ˆ

1*11* −−−−− == AQAQyQAAQAx yxyy     (4) 

 

After map height calculation, 3D boundaries are triangulated to 

get a solid surface description of the road. In the next section a 

quality description is given concerning the height values of 3D 

roads. 

  

3. QUALITY DESCRIPTION 

By using formulas from network design analysis, we can predict 

the quality of our reconstructed model before the actual 

reconstruction. For researchers quality prediction is useful for 

optimizing parameters used in their algorithms (“designing the 

network”). For users, predicting quality is important because it 

answers the question whether the input data and the processing 

steps can fulfil the user requirements.  

We distinguish three components in the precision of the map 

point: 
2

_
2

_
22

_ mdlplaneblocklaserplanepntmap σσσσ ++=     (5) 

 
2
planeσ  is the uncertainty caused by variations in the plane 

parameters, which are influenced by laser point noise. 
2

_blocklaserσ  represents a stochastic value for systematic errors 

in laser data, and 
2

_ mdlplaneσ  stands for discrepancies between 

the fitted plane and the actual shape of the road.  

 

3.1 Quality of plane at map point location 

To predict uncertainty in the plane parameters we need 

information about the quality and configuration of the input 

data. (Crombaghs et al., 2002) present a practical method to 

describe quality of laser data sets as a function of four error 

sources (error 1 to 4, denoted as E1 to E4). These error sources 

are point noise (E1), GPS (E2) and INS noise (E3) and strip 

adjustment noise (E4). Influence of each of these error sources 

depend on the size of the area of interest. Within the radius for 

selecting laser data, it can be expected that all laser points are 

influenced by the same E2, E3 and E4. When using least 

squares adjustment, these three error sources act as systematic 

errors, not stochastically influencing the quality of the plane 
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equation. These error sources will be added later to the 

precision of the map point (see eq. 9). When only assuming 

influence of point noise in equation (4), Qy turns into a diagonal 

matrix and (4) can then be written in the form: 

 

.)(ˆ *1*
yAAAx

−=              (6) 

 

Equation (6) shows that a diagonal matrix Qy does not have an 

effect on the estimation of plane parameters. However, it does 

affect the quality of the plane parameters. 
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In order to avoid singularity when inverting the 3x3 normal 

matrix, columns of A*A have to be linearly independent. This 

can be achieved by selecting at least three laser points that do 

not lie in a straight line. For a stable calculation we proceeded 

with local coordinates by subtracting the mean location of the 

laser points. Once the quality of plane parameters is known, we 

can calculate the height precision of the plane at the location of 

the map point. 

.
222222

321 pppplane yx σσσσ ++=         (8) 

 

3.2 Quality of laser block 

Remember that equation (5) consisted of multiple components: 

plane uncertainty, systematic errors in laser data and model 

uncertainty. Laser point noise was taken into account in the 

plane uncertainty; other errors in laser data (E2, E3, and E4 as 

mentioned in section 3.1) did not reflect the plane equations. 

However, they influence the precision of the map point height. 

We can group these errors by  
2222

_ 432 EEEblocklaser σσσσ ++=          (9) 

 

3.3 Quality of plane model 

Plane model quality covers the discrepancy at the map point 

between the actual shape of the road and the modelled plane. If 

the horizontal distance between map point and laser points is 

small it can be expected that a plane through these laser points 

accurately represents the road height at the map point. Model 

uncertainty becomes of interest when we need to extrapolate 

over a certain distance, in case we are short of laser points. We 

can quantify the differences between a local plane and the 

actual shape, by analysing the curvature of roads. This 

quantification is a function of horizontal distance between plane 

origin and map point. To estimate the idealisation precision, we 

have to use height differences between plane and reality instead 

of curvatures. For distances smaller than a few hundred meters, 

we can approximate the difference between the road and a plane 

by a quadratic term.  

  
Figure 3. Extrapolation error caused by model uncertainty. 

 

Figure 3 can be translated into a stochastic measure for model 

uncertainty by calculating the standard deviation of 

extrapolation errors as a function of the distance. We have 

approximated this value by dividing maximum extrapolation 

error, calculated by integrating curvatures, by three. 

 

Now that we have described three components that contribute 

to the uncertainty in map point heights, we analyse the 

influence of one of the reconstruction parameters –radius– to 

this uncertainty. Increase of the radius results in the increase of 

laser points. Generally this will improve the quality of the fitted 

plane, because the number of observations in the plane 

calculation increases. However, increasing radius results in 

larger extrapolation uncertainties. Remember that this 

extrapolation error increases quadratically with larger radius. 

The optimum value can be found by minimizing the sum of 

these two components as a function of the radius value. For 

practical reasons, our program starts with an initial radius value, 

which will be increased if there are too few laser points to 

precisely fit a plane. 

 

4. TESTING WITH REFERENCE DATA 

In the previous sections we have described our 3D road 

reconstruction method and its stochastic model. To be able to 

test our –functional and stochastic– model, heights on 

reconstructed roads have been compared with independent 

reference data.  

 

4.1 Reference data 

Accurate geometric information of highways in the Netherlands 

is stored in a photogrammetrically derived topographic 

database, called DTB. Terrestrial measurements have been 

added to complete road information underneath interchanges 

and in tunnels. The DTB contains 3D geometric and semantic 

information of points, boundaries, centrelines and surface 

features of national roads, at a map scale of 1:1000. This also 

includes information on road details like locations of paint 

strips, traffic lights, road signs and other detailed infrastructural 

objects. DTM information (2.5D) has been integrated into the 

DTB by photogrammetric measurements on breaklines in the 

terrain. An example of DTB data is given, showing a complex 

interchange Prins Clausplein near The Hague. 

 
Figure 4. DTB data is used for reference information. Paint 

strips, shown as blue lines, have been selected to test 

reconstructed roads. 

 

Paint strips have been measured by manual photogrammetric or 

tachymetric measurements. Paint strips belong to the so-called 

‘hard topography’ category, what means that this object can be 

identified and measured with high precision. The standard 

deviation of heights of these points is required to be 9 cm or 

better.  
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4.2 Quality of 3D roads by comparing to reference data 

In this section we will describe our testing configuration by 

comparing reference data with our reconstructed model. As we 

have seen in section 2 roads are represented as a TIN surface, 

using 3D map points on the boundary as TIN nodes. Figure 5 

explains the set-up of our height testing procedure. Orange 

bullets represent three map points that form one TIN triangle. 

Green plus marks represent 3D positions on paint strips, which 

are measured with high accuracy in the reference dataset. At 

these green plus marks height differences have been calculated. 

 
Figure 5. Configuration of height testing: TIN patches and 

points on paint strips. 

 

Our expectation is that the height difference between reference 

data and our 3D model should vary around zero. Deviations 

should be explainable by uncertainty in the 3D model and in the 

reference data.  
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The term 
2

modi
hσ  contains the height variance of the model, at 

the location of the reference point. We therefore have to 

propagate precisions of the map points, calculated as described 

in section 3.2, to the location of the reference point. Looking 

again at Figure 5, we see that the precision of three map points 

influence the precision at reference point location. 

 

First, the location of the reference point within the TIN mesh is 

important to describe the influence each of the map points. If 

the reference point is close to one of the three map points, the 

precision of the TIN height is highly influenced by the precision 

of the height of this single map point.   

 

Then we investigate the influence of covariance between the 

three map points. Extreme cases here are no covariance and full 

covariance. If the three map point heights have been calculated 

by three different groups of laser points, we can assume that the 

correlation equals zero. This occurs when using a small radius 

to select laser points. If the three map point heights have been 

calculated by the same group of laser points, the correlation 

equals one. 

.
)( int_
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σ
σ
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=           (11) 

Equation shows the calculation of the precision of the 

reconstructed model, at locations of reference points, by TIN 

interpolation of 3 precision values of three map points, divided 

by a correlation term α (1< α < 3 ). 

 

4.3 Testing our predicted quality 

In section 3 we have calculated the precision of map point 

heights by using error propagation techniques and properties of 

least squares plane fitting, in this section followed by an actual 

quality check using reference data. To test the stochastic model 

we check if the actual differences can be explained by the 

predicted accuracy.  With the outcomes of equation (10), we 

test if the difference is significant by using a modified version 

of the w-test statistics or local error detection as described by 

(Baarda, 1968 and Teunissen, 1991). In their approaches, the 

w-test calculates normalized residuals of geodetic observations. 

If the test exceeds a critical value, this observation will be 

recognized as a possible outlier. In an iterative procedure the 

observation with the highest w-test value has been removed 

from the adjustment. 
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A closer look at the wi learns that it indicates how well one can 

predict the actual quality. This is an informative measure to 

show if the predicted quality represent the actual quality. If the 

stochastic model is correct, the total of all w-test values should 

have a standard normal distribution. To rely on predicted 

quality is important for future users who want to predict the 

quality of 3D reconstructed roads, without checking on highly 

detailed reference data. Besides this, reference data might not 

be available at some locations. Large w-test values indicate that 

the actual quality is worse than predicted. In our approach it is 

of interest to find reasons for large w-test values, because the 

functional or stochastic model might not be correct at those 

locations.  

 

5. RESULTS 

5.1 Data specifications 

For a complex interchange we assigned coarse laser data (~1 

point/ 9m
2
) to a medium scale topographic map (1:10.000). 

Laser point noise has been determined in a quality control 

procedure at the Survey Department of Rijkswaterstaat. For this 

project the laser point noise (E1) has been stated to be 8 cm, 

GPS noise (E2) 3 cm, INS noise (E3) 4 cm and block 

uncertainty (E4) 3 cm. To estimate extrapolation errors due to 

model uncertainty, we analysed curvature of road heights. 

Maximum slope differences on highways can be found near 

interchanges, hillsides and exits. Terrestrial measurements show 

that slope differences at such locations are about 2% per 100 

meter.  

ddy
4' 102)( −⋅=∆              (13) 

 

We can derive the formula for maximum height difference as a 

function of distance by integrating formula (13).  
24

101)( ddy
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And its standard deviation: 
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Theoretically, we have to optimize the radius for each map 

point, because of varying laser point configuration and (thus) 

plane uncertainty. Instead, we decided to use a default radius of 

15 meter, which will be doubled in case less than three laser 

points are found in this radius. 

 

5.2 Predicted standard deviation of map point heights 

Figure 6 shows predicted standard deviations of map point 

heights. The figure shows the position of map points, coloured 

by predicted standard deviation of the map point height. For 
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visibility reasons the standard deviation has been classified into 

three categories: standard deviations larger than 50 cm (shown 

in red), larger than 20 cm (yellow), and below 20 cm (green). 

To better understand the cause of large variations at some 

locations, the blue box in Figure 6 shows the laser points used 

for 3D road reconstruction. The relation between lack of laser 

data and large height variations can easily be seen for locations 

in black ellipses. Point densities in these black ellipses drop to 

1 point per 100 m
2
, with extremes to 1 point per 600 m

2
. At 

map point locations in those areas, map point heights show 

standard deviations of more than 50 cm. Two factors play an 

important role here. First, the plane has been determined by just 

a few laser points; standard deviations of laser points will have 

a great influence because they are not averaged out. Secondly, 

the search radius for finding enough laser points increases up to 

50 or even 100 m. This results in extrapolation errors rising up 

to 50 cm or more. 

 
Figure 6. Standard deviations of map point heights. Compare 

with available laser points (lower right corner). 

 

Bad configuration of the laser points leads to large standard 

deviations. Figure 7 shows a situation where the majority of 

laser points lie on a straight line, in this case clearly measured 

in just one or two scan lines. Fitted planes are badly determined 

in the direction perpendicular to this scan line. Blue circles 

have a radius of 15 meter.   

 
Figure 7. Bad configuration of laser points (left) leads to large 

predicted standard deviations (right). 

 

5.3 Comparison with reference data 

 
Figure 8. Visual inspection of 3D roads by superimposing 

reference data. 

 

Results of calculated differences at paint strip locations can be 

seen in Figure 9, where differences are coloured as red (larger 

than 50 cm), yellow (larger than 20 cm) and green (below 20 

cm). Note that reference data is not completely covering the 

interchange. Some parts of flyovers have not been measured in 

the reference data, test results are therefore locally missing. Still 

we calculated over 10.000 height differences for this area of 1.2 

x 1.2 km.  

 
Figure 9. Height difference between reconstructed model and 

reference data. 

 

A further look at Figure 9 learns that in the centre of the 

interchange (highlighted in the lower right corner box), where 

laser points were scarce at all height levels, the calculated 

differences are remarkably small. A few differences are more 

than 50 cm, some below 50 cm and many below 20 cm (green). 

In the lower left corner box, two situations are highlighted 

which show large height differences with a systematic character. 

In the higher circle height differences could be expected, due to 

the lack of laser points, see Figure 6. The reason for differences 

in the lower circle is that the search radius selects laser points 

from both road parts, which happen to curve strongly at those 

locations. Therefore, fitting a plane through the selected points 

will differ from reality.   

 

Number of reference points inside test area 10922 

Mean difference 0.5 cm 

Standard deviation of vector of differences 15.4 cm 

Maximum absolute difference 121 cm 

Table 1. Statistical results of comparing heights of 3D roads. 

 
Table 1 summarizes most important statistic information of 

height differences between reference data and 3D reconstructed 

model. The mean difference includes systematic errors between 

reference data and our reconstructed model. Normally, it is 

expected to be in the order of 0-5 cm, due to systematic errors 

in laser data (Crombaghs et al., 2002). In this case, the mean 

difference happens to be very small (0.5 cm). Looking at the 

standard deviation of the differences of 15.4 cm, and knowing 

that it includes uncertainty in the reference data (σref = 9 cm), 

we can calculate the uncertainty of our reconstructed model 

(σmod = sqrt (15.4
2
 – 9

2
) = 12.5 cm). It should be noted that this 

value is biased by some systematic errors in the reconstructed 

model. 
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5.4 Testing predicted standard deviations 

Now that the actual difference is known, we divide each 

difference with the expected standard deviation of the 

difference. In Figure 10 large w-test values have been coloured 

yellow (larger than 3) and red (larger than 4). At these points 

the actual height difference was three or four times larger than 

expected, meaning that either the standard deviation was too 

small or the calculated height was significantly wrong. Note 

that the former case deals with the stochastic model, and the 

latter case with the functional model. Due to the systematic 

character of large w-test values, we assume a functional error 

causes the problems at those locations, mostly where one road 

splits into two roads. However, the distribution of all w-tests is 

close to the standard normal distribution, as 68% of the w-test 

values are less than 1 and 92% are less than 2. If we remove 

outliers, standard deviation is 1.06 (with outliers 1.22). This 

means that the predicted stochastic model is a bit too optimistic, 

but still realistic. 

 
Figure 10. W-test values at reference point locations. 

 

6. DISCUSSION 

In this paper we have described a method to calculate quality of 

3D reconstructed roads by error propagation. These 3D 

reconstructed models have automatically been acquired by a 

fusion process of map data and airborne laser data. After 

assigning laser data to map polygons, heights of map points 

have been calculated by least squares plane fitting through a 

selection of laser points inside the polygon. These 3D map 

points are nodes in the 3D boundary description. Precision of 

the map point have been calculated by error propagation of 

laser point noise and the configuration of the laser points used 

for plane fitting. Also, influences of model uncertainty have 

been taken into account. Average predicted standard deviation 

of map point heights is about 10 cm.  

Our method combines a 2D topographic data set with an 

airborne laser scanner dataset (2.5-3D). Even at locations where 

no height information is available, our method can reconstruct 

3D roads with a height precision in the order of 10-15 cm. Input 

data sets used in this project are parts of national databases. 

Now that we can predict quality of 3D roads, we can predict the 

height quality for all roads in the national database without 

actually having to reconstruct them, and without testing them 

with reference data. 

Independent reference data has been used to test our 

reconstructed model and its derived quality parameters. 

Predicted standard deviations realistically represent the actual 

quality for most of the situations. Exceptions are found at road 

splitting situations, where actual differences are more than four 

times higher than expected. The reason is the wrong assumption 

that a least squares fitted plane through the selected laser points, 

realistically represent the shape of the road. Future work will 

focus on improvement of reconstruction of these splitting roads. 

This can be achieved by selecting only those laser points that lie 

on the front side of the map point. The search algorithm for 

laser points should therefore not cross the polygon border. 

Quality analysis as presented in this paper is not limited to 3D 

road reconstruction, but can be extended to other reconstruction 

applications. For example, building reconstruction can benefit 

from quality measures by error propagation. Decisions on 

conflictions between building knowledge and data driven 

information can be made more reliable if data driven 

approaches come with quality measures.  
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ABSTRACT:

This paper reviews the current state of laser scanning from airborne and terrestrial platforms for geometric reconstruction of object
shape and size. The current performance figures of sensor systems are presented in an overview. Next, their calibration and the
orientation of the acquired point clouds is discussed. For airborne deployment this is usually one step, whereas in the terrestrial
case laboratory calibration and registration of point clouds are (still) two distinct, independent steps. As laser scanning is an active
measurement technology, the interaction of the emitted energy with the object surface has influences on the range measurement. This
has to be considered in order to explain geometric phenomena in the data. While the problems, e.g. multiple scattering, are understood
well, there is currently a lack of remedies. Then, in analogy to the processing chain, segmentation approaches for laser scanning data
are reviewed. Segmentation is a task relevant for almost all applications. Likewise, DTM (digital terrain model) reconstruction is
relevant for many applications of airborne laser scanning, and is therefore discussed, too. This paper reviews the main processing steps
necessary for many applications of laser scanning.

1 INTRODUCTION

Laser scanning, often also referred to as LiDAR (light detection
and ranging), has been operational for surface and object recon-
struction since the mid 1990s. It is continuously developing in
sensor as well as in data processing aspects. Higher measurement
rates, increased precision, wider range spectrum, and extraction
of target or object properties beyond the range are some of the
developments on the sensor side. The development of calibration
procedures for both airborne and terrestrial devices is one impor-
tant development for the early stages of data processing. Addi-
tionally, a diversification in applications can be seen. The first
applications were in capturing terrain elevation (Kilian, Haala,
and Englich 1996), but forestry (see e.g. the overview in (Hyyppä
et al. 2004)) and industrial reconstruction became standard areas
of application (e.g. Rabbani, Dijkman, van den Heuvel, and Vos-
selman (2007)) in the meantime, too.

This paper reviews the state of art in airborne and terrestrial laser
scanning. The first publications on laser scanning (and laser pro-
filing) in photogrammetric journals and conference proceedings
were often linked to one or more applications: laser profiling for
terrain elevation (Lindenberger 1989; Lindenberger 1993), laser
scanning (Lohr and Eibert 1995), terrain elevation and buildings
(Kilian, Haala, and Englich 1996), power lines (Reed and Lynch
1996), forest stand parameters (Naesset 1997), terrain elevation
(Flood and Gutelius 1997), surface characteristics (Lin 1997; Rit-
chie and Pachepsky 1998), digital terrain modeling (Kraus and
Pfeifer 1998), and a wide range of applications in Vol. 54(2-3)
of the ISPRS Journal, special issue on airborne laser scanning.
Only later dedicated data pre-processing algorithms were pub-
lished, especially on strip adjustment and segmentation (Burman
2000; Crombaghs, Brügelmann, and de Min 2000; Behan, Maas,
and Vosselman 2000; Filin 2002). Terrestrial laser scanning went
through a similar history but matured and entered the photogram-
metric community a bit later. A special issue of the ISPRS Jour-
nal on terrestrial laser scanning is in preparation. With over ten
years of development it stands to reason to review the current

state of these pre-processing algorithms, give an overview of the
relevant literature, and judge the development.

The so-called intensity measurements are rarely used (Höfle and
Pfeifer 2007), and also full waveform laser scanning (Wagner
et al. 2006), and even more so, multispectral laser scanning (Wehr
et al. 2006; Wehr et al. 2007), still have to proof their value
for exploitation in different applications. Thus this review will
be confined to the geometrical aspects of airborne laser scanning
(ALS) and terrestrial laser scanning (TLS) and will not go into de-
tails of retrieving material properties of objects scattering back an
incident laser beam. For the physical principles of laser radar the
reader is referred to Jelalian (1992) and Wehr and Lohr (1999).
With the diversification of applications, it would also be impos-
sible to review the state in each application, and this review will
concentrate more on laser scanning itself and procedures useful
or necessary in all applications.

We are therefore mainly treating the point cloud, starting from
the sensors acquiring the data, and proceeding, in steps, to model
generation. While reporting the state of the art according to our
best knowledge, we allow ourselves to point out fields, where
we expect research to concentrate in the coming year(s). This is
solely the opinion of the authors and necessarily speculative. The
paper is structured by first reviewing the state of the art in data ac-
quisition and pre-processing, where the latter term means that the
original measurements are processed and a specific application is
not the driving force behind the processing. Next, the geometrical
consequences, i.e., effects on the point cloud, of the interaction
of the laser signal with the object are investigated. Naturally, this
has physical causes, formulated in terms of multiple scattering
properties, object transparency, and the like. However, at least
currently, this cannot be handled on a physical basis and has to be
analyzed, and if possible corrected, in a data driven manner. Then
generic processing steps as segmentation are reviewed, including
also DTM reconstruction. The latter, while being an application
itself, is used in many further applications, which justifies includ-
ing it in this review.

311

IAPRS Volume XXXVI, Part 3 / W52, 2007



2 DATA ACQUISITION

This section presents the state of the art in laser scanning systems,
their calibration and transformation of the point clouds acquired
into a superior, possibly global, coordinate system.

Due to the fact that the sensor technology is developing fast we
will not describe specific scanners of different vendors, as at the
moment of printing the article, the information may be outdated
already. Therefore, rather the main performance parameters are
given. Surveys of currently available devices are regularly pub-
lished (GIM 2007; POB 2007). Airborne and terrestrial (also
called close-range) deployment will be treated separately, as the
different deployment of the scanners, at fixed positions over pe-
riods of time vs. on a moving platform, has a large impact on the
first steps of data processing. However, with the advent of scan-
ning from moving platforms on the ground (also termed mobile
laser scanning), and the longer history of using profile scanners
on trains, it would be more appropriate to distinguish between dy-
namic and static scanning. In the first case scanning is performed
by a univariate beam deflection unit and area wise data acquisi-
tion is established by the dynamics, i.e. the movement, of the
scanning platform (aircraft, land vehicle or a boat). In the sec-
ond case the exterior orientation of the platform is constant for
one scan position, and two dimensional coverage in the angular
domain is performed by rotating components of the device (e.g.,
a mirror or the upper instrument part). Profiling (Lindenberger
1989), on the other hand, is what is obtained by univariate beam
distribution, e.g. obtained from satellite platforms (Zwally et al.
2002) or used for continuous monitoring or elongated structures
(Hesse, Neuner, and Kutterer 2005).

2.1 Airborne Laser Scanning

2.1.1 Current Systems ALS systems use almost solely the
pulse time of flight measurement principle for ranging (Riegl
2007; Optech 2007; Leica 2007; TopEye 2007; TopoSys 2007;
Fli-Map 2007). One exception is the research system ScaLARS,
which applies the phase difference measurement principle (Hug
and Wehr 1997). Currently, there are two different types of com-
mercial ALS sensor systems available: discrete echo and full-
waveform scanners. While discrete echo scanners detect a rep-
resentative trigger signal for multiple echoes in real time using
analogue detectors, full-waveform ALS systems digitize the en-
tire analogue echo waveform, i.e. the time-dependent variation of
received signal power, for each emitted laser pulse. Digitization
is performed typically with an interval of 1 ns (corresponding to
15cm one-way distance) and the determination of the individual
echoes has to be performed in post-processing (Wagner, Ullrich,
Melzer, Briese, and Kraus 2004). In ALS mainly two laser wave-
lengths are in use: 1.06µm and 1.5µm. The pulse repetition rate
(PRR) of current “top end” devices is 100kHz to 200kHz1. The
operating altitude of the systems is different, with some systems
restricted to a flying height of less than 1000m above ground,
whereas others can be used 5km above ground level. Many ALS
systems are currently only able to record the reflections of one
laser pulse before the next is emitted. This restricts high PRR
to lower flying heights (not more than 100kHz for 1500m max-
imum one-way slant range). Recent sensor developments lead
to the ability of multipulse systems which allow to have multiple
laser signals in the air simultaneously (Optech 2007; Leica 2007).

The maximum field of view in ALS data acquisition, measured
perpendicular to the forward movement of the aircraft is depend-
ing on the scanner used and reaches from ±7◦ to ±30◦. ALS

1Next to increasing the pulse generation rate of the laser, an option
to increase the measurement rate is mounting two laser scanners on one
platform, as offered currently e.g. by (Diamond Airborne Sensing 2007).

systems are used on fixed-wing aircraft as well as on helicopters.
While fixed-winged aircraft are typically used for the acquisition
of large project areas, helicopters are preferred for following a
linear feature (e.g. for corridor mapping) or for difficult topogra-
phy.

The scanning mechanisms applied are mainly those deflecting the
laser beam in a plane perpendicular to the flying direction, using
an oscillating or a multi-faceted rotating mirror (Latypov 2005).
For rotating mirror scanners the PRR is typically only a burst
measurement rate, and the number of pulses used for measuring
ranges, i.e. the effective measurement rate, is lower (Riegl 2007).
The rays with larger nadir angles are not provided to the users or
are reflected within the scanner housing. Oscillating mirrors have
the advantage that the turning points can be set to angles appro-
priate for a specific project. However, as the mirrors have to be
accelerated the point distribution on the ground can be less homo-
geneous than for rotating mirror scanners, especially when using
a harmonic angle acceleration. By using mirrors with different
angles at the facets, forward, nadir, and backward looking can be
performed with one scanner (Fli-Map 2007). The fiber scanner
used in one of the TopoSys scanners is special in the sense that no
angle position of the mirror has to be measured as the emission di-
rection is fixed and governed by the single fibers directly. Palmer
scanners (Wehr and Lohr 1999) are used by TopEye, ScaLARS
and NASA’s ALTM (Finnegan et al. 2005). While generating a
less regular ground point pattern they offer an advantage in cali-
bration, as each “point” is measured twice.

2.1.2 Calibration and Strip Adjustment For the transfor-
mation of the ALS data (range and angle observations) into one
common coordinate system the position and angular attitude, i.e.
the exterior orientation, of the platform have to be known in or-
der to allow direct geo-referencing. Typically, this is realized by
a combination of a global navigation satellite system (GNSS) re-
ceiver and an inertial measurement unit (IMU). Together with the
laser scanner they form a multi sensor system. During data ac-
quisition data streams are recorded by each instrument at differ-
ent frequency and are synchronized via the GNSS time measure-
ments. Calibration of this multi sensor system is the process of
determining the relative orientation, i.e. shifts and rotations, be-
tween the components (GNSS antenna, IMU, and laser scanner)
and time lags in the synchronization. To some extent these pa-
rameters can be determined by total station measurements on the
ground, but a number of parameters, e.g. the IMU–laser scan-
ner relative orientation or time lags, are better determined dur-
ing flight. Scanner vendors provide special software that allow
derivation of these parameters if dedicated flight patterns are per-
formed. Typically only flat surfaces are used for this alignment,
but as Filin (2003) has shown, inclined surfaces with different
aspect are a prerequisite for determining all relative orientation
parameters of the multi sensor system.

Approaches for the calibration have been presented in (Burman
2002; Filin 2003; Kager 2004). In Skaloud and Lichti (2006) a
method for dedicated determination of the three bore-sight an-
gles and the range finder offset is described. These models are
all based on the observations range, angle (of beam deflection),
and observations of exterior orientation (i.e. position and angular
attitude). The points measured by the ALS system are either re-
lated to ground truth and/or to points of another strip (control and
tie information in the form of surface patches, respectively). The
discrepancies encountered in those are minimized by determining
the calibration parameters.

In calibration the task is, as described above, to reconstruct the
geometric layout of the multi sensor system. For applications of
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ALS data, the effects of an insufficient calibration and of errors
in the exterior orientation determination are more of interest. The
task of strip adjustment is to correct these errors. This can be
done either by calibration, or by applying corrections to the points
directly: p′i,j = pi,j + cj(pi,j). The point pi,j with index i in
strip j is corrected by applying a correction function cj for strip
j. The first publications on strip adjustment chose that approach.

In the simplest case the functions cj are only shift vectors, cj =
(xj , yj , zj) and do not depend on the location within the strip.
In (Crombaghs, Brügelmann, and de Min 2000) and (Kraus and
Pfeifer 2001) the correction function applies to the height com-
ponent only, using a linear function (vertical offset and tilts in
and across flight direction), and polynomials, respectively. The
approach of Kraus and Pfeifer (2001) allows correcting shorter
wavelength deformations, too. A method that is not restricted to
vertical correction, but also removes discrepancies in planimetry
was developed by Kilian, Haala, and Englich (1996), where the
function cj has parameters for constant offset and time depen-
dent drifts for shift in and rotation around the three coordinate
axes, requiring that the time of the measurement is known. Vos-
selman and Maas (2001) describe a similar method, mentioning,
that this model does not allow to correct short time effects caused
by the limited GNSS accuracy. Knowledge on the measurement
time is not required but replaced by parameterization along the
strip axes.

Contrary to these approaches which model effects, not causes,
calibration procedures can be extended to perform strip adjust-
ment, too. This has been demonstrated by Burman (2002) and
Kager (2004).

In ALS there is still a process of model identification going on.
Calibration methods and strip adjustment should be generic en-
ough to allow handling all airborne laser scanners on the one
hand, and correct the causes of the errors, and not only effects,
on the other hand. Specialized developments are often beneficial
for data acquisition (e.g. the roll angle compensation of Optech),
but less practical for implementation of on-the-job sensor cali-
bration techniques. Especially the lack in the availability of the
original observations (i.e., trajectory, angles, and ranges) compli-
cates these efforts from a scientific point of view.

Although methods have been published, and the increase in preci-
sion is notable, on-the-job calibration is not standard yet. There is
a lack of software available to data providers. Next to calibration,
also efforts to improve the flight path are necessary. The global
navigation satellite system can be seen as correction for the low
frequency errors in the high frequency observations of the flight
path and sensor attitude by IMU measurements. However, the
GNSS component itself is subject to errors that occur over the en-
tire strip or parts of it (e.g., wrong ambiguity fixes)2. Under such
circumstances an offset and drift component as unknowns in strip
adjustment are not enough (Ries, Kager, and Stadler 2002). Also
polynomial models do not work satisfyingly, and spline models
for modeling the dynamic exterior orientation require careful bal-
ancing of the number of knots and their placing. Summarizing,
solutions modeling the flight path have not been very successful
yet, which may be attributed partly also to unexpected behavior
encountered in flight path information, e.g. “jumps” in the flight
path (Ries, Kager, and Stadler 2002).

The authors hold the view, that a tighter integration of the de-
termination of the sensor trajectory with Kalman filtering of the

2It shall be noted that satellite positioning is performed in a geomet-
rical coordinate system (geocentric cartesian or ellipsoidal coordinates)
whereas IMU measurements depend also on the local geoid.

GNSS/IMU data with the determination of sensor calibration and
exploitation of homologous patches on the ground will provide
the most precise solution. It allows to introduce redundancy in
the determination of the flight path, which is absent in direct geo-
referencing (Skaloud 2006). Introducing redundancy increases,
at least in theory, reliability and allows estimating the precision.
There is also a potential to account for changing satellite constel-
lations, GNSS outages, or periods with less than four satellites
visible. In aero-triangulation the combined adjustment of images
and GNSS observations is investigated in (Schmitz, Wuebbena,
Bagge, and Kruck 2001) and (Ellum and El Sheimy 2006).

For well defined surfaces the precision of ALS, applying a rigor-
ous model of laser strip calibration as described above, can reach
a few centimeter. The determination of the flight path with GNSS
gives a precision of ±5cm to ±10cm in each coordinate direc-
tion and becomes a limiting component of ALS precision (Csanyi
and Toth 2007). Solutions may come from improvements in the
GNSS, also by using multiple reference stations, or from more
ground control. The latter can be in the form of surface patches,
which is economically and practically less viable. Alternative
navigation systems may emerge, although the current alternatives
to GNSS for navigation in cities or inside buildings, e.g. based on
mobile communication and other wireless networks (Karimi and
Hammad 2004) are far from the accuracy provided by GNSS yet.

For full exploitation of the measurements of ALS not only the
geometric aspects should be considered, but also the radiometry.
The backscattered energy, in the form of photons, is typically
converted to a voltage or current and then converted further into
a digital number, not necessarily by a linear function. This is
discussed in (Wagner et al. 2006; Ahokas et al. 2006; Höfle
and Pfeifer 2007). Many airborne systems have two receivers
(so-called low channel and high channel for detection of echoes
with small and large amplitude, respectively), which has not been
considered in calibration efforts so far.

2.2 Terrestrial Laser Scanning

2.2.1 Current Systems In contrast to ALS systems more vari-
ation in the sensor design of TLS systems can be observed. The
wavelengths used are between 0.5µm and 1.5µm. Longer wave-
lengths are affected less by the atmosphere, but shorter wave-
lengths can provide smaller footprints. Terrestrial laser scanners
use the pulse time of flight measurement principle (Riegl 2007;
Leica 2007; Trimble 2007; Optech 2007; Callidus 2007; I-SiTE
2007) as well as phase based ranging (Zoller+Fröhlich 2007; Faro
2007; 3rdTech 2007). The second systems use the phase differ-
ence between the emitted and received backscattered signal of
an amplitude modulated continuous wave (AM CW) to infer the
range. Pulse time of flight ranging scanners are suited better for
outdoor operation where longer ranges have to be measured and
are typically panoramic scanners, with a field of view of 360◦ by
e.g. 80◦. The PRR of these sensors is around 10kHz and less,
and precision lies between ±5mm and ±2cm.3 Some systems
offer the possibility to either measure the first or last echo, but
simultaneous recording is usually not available.

Scanners applying the phase based ranging are typically hemi-
spherical scanners that allow to scan into almost all directions
(e.g. 360◦ by 135◦). However, due to their ranging principle (lim-
ited range uniqueness, mostly below 100m) they are well suited
for indoor usage and outdoor environments with a larger number
of objects (e.g. piping installations, inner city areas), restricting

3Leica recently introduced a terrestrial laser scanner with 50kHz PRR,
but at the time of writing (August 2007) no independent reports of per-
formance were available.
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the view. The measurement rate is typically above 100,000 points
per second, and the precision is ±2mm or better. With this rang-
ing principle only one distance can be determined, because the
backscattered signals from different reflectors are always over-
laying each other. This results in a phase angle corresponding to
a distance between the two or more reflectors.

Triangulating scanners, similar to structured light systems, are
not discussed here. In (Blais 2004) a review is given. Addi-
tionally it shall be noted that currently efforts are on the way to
generate standards for terrestrial scanners (Beraldin et al. 2007;
Breuckmann et al. 2007).

2.2.2 Calibration Terrestrial laser scanners are, from the con-
struction principle, similar to theodolites and total stations. This
holds especially for strictly monostatic systems, where the axis
of laser beam emission and the optical axis of the receiver are
the same. Additionally, if the rotation around the vertical axis
is performed by instrument rotation and the beam deflection in
the vertical plane is performed by a rotating mirror inclined 45◦

against the beam, then an analogy between the instrument axes of
a terrestrial laser scanner and a theodolite can be established.

Lichti (2007) models deviations in the observations by correction
functions, some of which are based on the sensor model (e.g.,
trunnion axis error), whereas other parameters are found empiri-
cally (e.g., sinusoidal error in horizontal angle as a function of
elevation angle). The physical corrections for the range mea-
surement errors are a constant offset and harmonic functions at
the wavelengths used in the amplitude modulation for the phase
based ranging (Rueger 1990). This approach is driven by the
model of the sensor and for a Faro laser scanner it resulted in an
improvement of about 30% in each coordinate direction (Lichti
2007).

Abmayr et al. (2005) use the similarity of a terrestrial laser scan-
ner to a theodolite and determine for a Z+F Imager 5003 consec-
utively trunnion axis error, collimation axis error and vertical cir-
cle index error. In (Parian and Gruen 2005) a different approach
for the same scanner is presented. The TLS observations in the
spherical coordinate system are transformed to observations of a
cylindrical coordinate system, which is possible if not the entire
hemispherical field of view is used. Then a calibration approach
for panoramic cameras is applied, reducing systematic errors in
the angle observations. By this method residuals at target points
identified in intensity images for a Z+F Imager 5003 are reduced
by 90%.

The approaches presented so far rely on targeted points. While
such a well-controlled experiment allows to make observations in
the entire (angular and range) domain, it is not typical for project
execution. As the stability of the parameters cannot be guaranteed
(Lichti 2007), the development of on-the-job calibration methods
appears to be necessary (Reshetyuk 2006).

It should also be noted that special device constructions, e.g. the
dual window design of the Leica Scan stations, have not been
investigated, yet.

2.2.3 Registration/Orientation In TLS relative orientation,
also termed registration, is currently performed standard-wise by
either of two methods: ICP type algorithms on the one hand and
explicit tie features on the other hand. With a sufficient number of
homologous tie features (points, lines, or surfaces) the transfor-
mation parameters can be computed. For points this is possible
without approximate values (Horn 1987). ICP algorithms do not
require homologous points, and the exact correspondence is re-
placed by iteratively determined approximate correspondence of
points or small surface elements.

The terms relative orientation and registration are used almost
synonymously. Brenner, Dold, and Ripperda (2007) note that
‘registration’ is putting more emphasis on the active role of the
point cloud in the process itself (Brenner, Dold, and Ripperda
2007). The term ‘relative orientation’, on the other hand, also
refers to the relation between device coordinate systems. Next
to registration and orientation also the terms (co)-alignment, con-
solidation, and stitching are regrettably in use.

If only the object itself is of interest, it is sufficient to determine
the relative orientation between scans. If the object also has to
be placed in a superior coordinate system, absolute orientation
becomes necessary, too. If the superior coordinate system is earth
fixed it becomes the task of geo-referencing.

Using homologous features for relative orientation, they have to
be extracted first. This becomes simple, if artificial targets are
placed in the scene, e.g. with retroreflective material. In that
case, due to the high intensity value, they can be found automati-
cally. Natural tie elements can be identified with lower accuracy
in the intensity images by visual inspection or automatic proce-
dures. Alternatively, object surfaces can be used as tie elements
(e.g., cylinders and planes). A method for automatic extraction of
these patches and computation of transformation parameters has
been presented by Rabbani, Dijkman, van den Heuvel, and Vos-
selman (2007), Dold and Brenner (2006), and Brenner, Dold, and
Ripperda (2007). Finding the correct correspondences between
features of two scans automatically can be seen as a graph search
problem and methods for pruning the graph become necessary to
reduce the search time, e.g. by computing and comparing param-
eters as patch boundary length. Another way to increase automa-
tion is relying on high resolution images, where the task has been
studied for a longer time and (e.g.) the technique of coded targets
has been developed. Al-Manasir and Fraser (2006) presented an
approach where artificial targets are automatically found in a dig-
ital image, taken with a camera with known relative orientation
to the laser scanner. Böhm and Becker (2007) suggests using the
SIFT operator (Lowe 2004) to find homologous points in the in-
tensity image. For two scans from notably different viewpoints of
a house, including even repetitive texture, the relative orientation
could be computed correctly, although with limited precision.

The ICP (iterative closest point) method does not require homol-
ogous points and performs the orientation of two scans, given
approximate values of sufficient quality, entirely automatically.
This is advantageous, because placing targets can be impossi-
ble, especially if the object is not accessible, additionally it can
become time consuming. ICP has been suggested by Besl and
McKay (1992) and variants are studied in (Rusinkiewicz and Le-
voy 2001). Much research effort is currently spent in order to
automate finding approximate parameters for ICP. This leads to
finding corresponding features as described above, possibly with
lower quality requirements.

The authors believe that the registration task will run fully auto-
matically for certain applications in some years. However, in the
general case (including terrestrial scanning in a forest, etc.), or
not relying on domain knowledge, the task will remain difficult.
An alternative may come from cheap exterior orientation devices,
allowing to obtain approximate exterior orientation, which can be
used for reducing search spaces.

In order to transform one or multiple scans, generally one point
cloud, into a superior coordinate system control points and/or
patches are required. This control information can either be dis-
tributed in the scene or the coordinates of a laser scanner stand
point can be observed, e.g. by centering over a known point or
by mounting a GNSS antenna on top of the scanner. Deviation of
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the stand axis from the vertical, defined by the local gravity field,
may be observed and corrected with an electronic spirit level (in-
clinometer). Such a device is built into many terrestrial laser
scanners. Concerning the targets used for absolute orientation
the same as mentioned for relative orientation applies.

3 GEOMETRICAL ASPECTS OF SIGNAL–OBJECT
INTERACTION

In laser scanning backscattered energy is used for range measure-
ment. If the backscattering surface is flat, reflecting diffusely,
oriented orthogonal to the laser beam, reflection appearing only
at the material top surface (i.e., there is no penetration of the in-
cident energy into the material), and the surface is not too close
to the scanner (especially in the case of bistatic systems)4, the
systems in use measure the quantity of interest. Furthermore, no
other targets may be in the instantaneous field of view. In many
cases in ALS and TLS these requirements do not hold.

• Depending on the echo detection method (Fox, Accetta, and
Shumaker 1993; Katzenbeisser 2003; Jutzi and Stilla 2003b)
used, the angle of incidence or surface roughness may have
an impact on the range. For flat, slanted targets, discrete
return systems that analyze the leading edge of the signal
may report ranges shorter than the range to the beam center
(Jutzi and Stilla 2003a). This effect is diminished for smaller
footprints and shorter pulses.

• In TLS the dynamic range of the backscattered energy is
quite high. This originates in the larger range spectrum of
1:100 to 1:1000 (e.g., minimum distance 2m, maximum dis-
tance 1km), and in the variety of backscattering surfaces,
too. The surfaces reach from dark materials to retro reflec-
tive targets. Quantized in terms of Lambertian scatterers, the
detectable reflected energy may vary from 5% to 1000%5.
This results, using the laser range equation (Jelalian 1992),
in return energies with a ratio of 1 : 109. Effects depending
on the intensity have been reported by many authors for ter-
restrial scanning (Hanke, Grussenmeyer, Grimm-Pitzinger,
and Weinold 2006; Valanis and Tsakiri 2004). It is also re-
ported that runway markers found on air-strips have caused
similar effects in ALS.

It shall be noted that most airborne and terrestrial systems
require a measure of the return energy for applying a range
correction. Some preliminary results on the relation be-
tween observed intensity and range (and between intensity
and object reflectivity) for a pulse time of flight terrestrial
laser scanner have been presented by Pfeifer, Dorninger,
Haring, and Fan (2007).

• In TLS penetration of the energy into different materials is
generally not very well studied. For marble surfaces and
red light Godin et al. (2001) have demonstrated the effect.
This effect can reach significant magnitude, in the order of
millimeter, for close ranges, typically encountered for trian-
gulating laser scanners and for phase-based range measuring
laser scanners.

• In ALS the terrain and (vegetation) objects upon it are the
object of interest, but often it is impossible to measure only
one, either the ground or the vegetation. Low (herbaceous)

4For bistatic (two-eyed) systems the emitter and receiver field of view
overlap only after a certain distance.

5Lambertian scatterers have a maximum backscatter of 100% (no ab-
sorption), but retro-reflective material scatters back more energy into the
direction of the source.

vegetation offsets the ground measurements. While the cause
is basically well understood, i.e. scattering at all objects within
the footprint and multiple scattering, the amount and the in-
fluencing factors are not very well known. They can be re-
ported for a specific experiment, but prediction is not pos-
sible yet. In any case, the effects are in the order of cm to
dm.

Ahokas, Kaartinen, and Hyyppä (2003) have reported sys-
tematic influences of grass on the measured range. Boll-
weg and de Lange (2003) reported systematic upward shifts
for long dense grass. In (Oude Elberink and Crombaghs
2004) it is shown that upward shifts occurred up to 15cm on
low vegetation areas (creeping red fescue, thrift). A relation
could be seen between the density of the vegetation cover-
age and the systematic error: 0% coverage meant no upward
shift, 100% coverage showed a 15cm shift. The study of
(Hodgson and Bresnahan 2004) fits less well into that pic-
ture, as the systematic shifts reported are all very small, i.e.
below 6cm. Pfeifer, Gorte, and Oude Elberink (2004) re-
ported shifts of 7cm for long dense grass and 10cm for a
young forest.

Hopkinson et al. (2004) have correlated height of low veg-
etation with standard deviation of heights and other textural
characteristics. Concentrating on the experiments over low
vegetation (below 0.5m) the errors are comparatively large
with respect to the vegetation height and a functional rela-
tionship is not obvious.

Contrary to the research efforts and solutions presented in the
sections 2.1.2 and 2.2.2 (ALS and TLS calibration) these prob-
lems cannot be confined to the measurement system itself, but
target properties have to be considered, too. Even when record-
ing the full waveform of the backscattered echoes, not much in-
formation beyond spatial and absorption/scattering characteris-
tics can be extracted. The echo width holds information on the
range distribution within the footprint, but this is not necessarily
connected to the discrepancy between ground elevation and sys-
tematically shortened range measurement. Thus, material prop-
erties can only be derived if additional knowledge is provided by
external sources as imagery, maps, or possibly range information
at another wavelength.

Phantom points, also called virtual points, also hinder automatic
exploitation, especially in TLS data sets. These points are en-
countered, when the footprint is distributed over different, hard
targets in close proximity6. The measured range is then between
those two or more surfaces. First steps for automatic removal of
these points were made (e.g. Sotoodeh (2006)) by analyzing the
spatial distribution of points (without consideration of the scanner
position). There is no reliable method available yet. Considering
the geometry of the measurement setup can contribute in identi-
fying these points, as they are aligned along bundles or rays with
the origin in the laser scanner.

Furthermore, multi-path reflections can occur (not only in TLS,
but also in ALS data), resulting in too long ranges. A typical situ-
ation is that a surface along the propagation path of the laser beam
features (some) specular reflection onto another, diffusely reflect-
ing surface. A portion of its diffuse backscatter travels via the
specularly reflecting surface back to the detector. In (Lichti, Gor-
don, and Tipdecho 2005) an overview of errors in TLS, including
the influence of geo-referencing and beam width, is given.

6For pulse time of flight systems this depends on the pulse duration,
whereas phase-based systems are always affected.
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We believe that the above items will continue to play a role. For
natural surfaces, thus rather in the airborne case, the “range er-
rors” induced change spatially, as the vegetation is not entirely
homogeneous. Surfaces encountered in terrestrial scanning are
often more homogenous, especially compared to the measure-
ment density, and the “error” is more of systematic nature. Ap-
plications requiring higher precision will become possible when
tackling and solving these problems.

4 DATA PROCESSING

The early steps of data processing, which are not directly linked
to an application, are typically segmentation or clustering of the
laser scanning point cloud, removal of erroneous points, and thin-
ning.

Segmentation and clustering are means to organize points, mea-
sured by laser scanning, into homogeneous groups. Points of a
group shall be neighbors, and in this way larger entities are gen-
erated and the data is organized on a higher level. A classification
of such groups or sets is then in the domain of a certain applica-
tion, which provides a “meaning”, a class attribute (e.g. “house
roof”, “vegetation”, or “tree”) for each segment. In many pub-
lications segmentation is presented as one step for a certain ap-
plication, e.g. building reconstruction. In this section we want to
specifically concentrate on general purpose approaches.

Segmentation and clustering have been studied for a long time in
image processing where the neighborhood of elements, i.e. pixel,
is given implicitly by the matrix layout. For point clouds of laser
scanning, on the other hand, neighborhood is often defined via
Euclidean distance, TIN topology, or a number k defining the k
nearest points as neighbors (kNN). An overview for neighbor-
hood in ALS data is given in (Filin and Pfeifer 2005).

A general overview on segmentation algorithms is provided by
(Hoover et al. 1996), and overviews dedicated to laser scanning
data are given in (Vosselman, Gorte, Sithole, and Rabbani 2004)
and (Geibel and Stilla 2000). Most often region growing from
a seed point is applied (Vosselman, Gorte, Sithole, and Rabbani
2004) where the features used as similarity measure are

• height difference for airborne laser scanning data,
• normal vector similarity, or
• distance to a plane.

Differences and similarity may either be measured from the seed
point to a currently investigated point, or from the previously ac-
cepted segment point to its new neighbors. The latter strategy
allows to grow over bent surfaces, the first one not. These region
growing approaches generally deliver smooth (gently curved) or
planar (flat) regions.

The watershed transform is used to segment digital surface mod-
els, not point clouds, by a notably different approach. In forestry
it is one standard method to extract the single trees from a canopy
model. While most general purpose approaches are preformed
on the point cloud, Vögtle and Steinle (2004) and Rottensteiner,
Trinder, Clode, and Kubik (2005), for example, apply 2.5D tech-
niques on gridded versions of the original data. This is only ap-
plicable for ALS data and reduces the range of extractable struc-
tures. Operating on the point cloud enables also the extraction
of vertical planes or planes stacked on top of each other, thus the
full 3D content of the data.

Clustering performs the grouping of point sets not in object space,
but in a feature space. The features used may be an estimated
normal vector for each point, a local roughness measure, the in-
tensity measure, etc. The connectivity in object space is realized
by adding the coordinates of the points as elements of the fea-
ture vector. Such approaches have been presented for laser point
clouds by, e.g., Filin and Pfeifer (2006) and Melzer (2007).

The normal vector, a frequently used feature, is often estimated
by computing an orthogonal regression plane. In this eigenvec-
tor/eigenvalue approach all three eigenvalues can be used to clas-
sify points as belonging to a surface, a volumetric distribution of
points, a single point or a linear feature (Medioni, Lee, and Tang
2000). In (Belton and Lichti 2006) also the recognition of surface
boundaries is discussed.

Voting schemes such as the Hough transform are hardly applied
on large data sets. Their disadvantage is that connectivity is not
considered. Such approaches are more typically used, if some
organization of the entire point cloud into smaller entities has al-
ready been performed. Rabbani and van den Heuvel (2005), e.g.,
first apply segmentation based region growing, and then use a
Hough transform to detect and reconstruct cylinders in the in-
dividual segments. von Hansen, Michaelsen, and Thonnessen
(2006) apply the RANSAC algorithm (Fischler and Boller 1982)
for detecting planes. In order to overcome the problem of con-
nectivity, they first divide the space into larger 3D cells and apply
RANSAC plane detection to the point cloud within the cell. Then
a grouping step connects similar planes of neighboring cells.

There is a number of strategies to reduce the volume of the data.
Modeling itself, especially model reconstruction with the help of
analytical surfaces, can be seen as a means to reduce the data
volume, and by fitting surfaces also a means of reducing noise.
The same holds for the interpolation of a digital surface model
(DSM) or a DTM by qualified interpolation methods that con-
sider the stochastic properties of the data. Methods to decimate
dense point clouds and reduce noise are given in (Pauly, Gross,
and Kobbelt 2002). An overview on decimation of polygonal
meshes is given in (Heckbert and Garland 1997).

Close range scanning systems based on the phase shift measure-
ment principle are capable of producing very dense point clouds,
e.g. 5 points per cm2. The footprints of the laser beam on the
object surface are then overlapping. It is therefore justified to re-
duce the volume of the data and also reduce the noise in the data
in one step. According to the authors view there is currently a
lack of studies that investigate these possibilities considering the
properties of laser scanning data (next to noise e.g. measurement
position, or missing points) and not treating the measurements as
a set of discrete points.

5 DTM DETERMINATION FROM ALS DATA

During the ALS data acquisition process no interpretation or clas-
sification of the determined echoes, which were reflected from
different objects, is performed. However, for the generation of a
DTM the classification of the ALS data into terrain and off-terrain
points is essential. This separation, which is important for other
applications (e.g. vegetation and power line mapping), is often
also entitled as “filtering”.

In the past, many different solutions for the filtering of the ALS
data were published (cf. Sithole and Vosselman (2004)). On one
hand these methods can be classified by the input data they use
(one type of methods uses rasterized ALS data while others use
the original ALS point cloud) whereas on the other hand they can
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be grouped by the different concepts they use in order to clas-
sify the data. One group of algorithms are the morphological
filters (e.g. Vosselman (2000)), which use a structure element,
describing admissible height differences as a function of the hor-
izontal distance. Another group are the progressive densification
methods (Axelsson 2000; von Hansen and Vögtle 1999). They
start with a rough approximation of the DTM with initial terrain
points (typically the lowest point within a certain grid cell) and
iteratively densify the DTM by the evaluation of a set of rules
(e.g. maximal distance to the DTM approximation, angle crite-
ria, etc.). The third group of filter methods work surface based
(Kraus and Pfeifer 1998; Elmqvist, Jungert, Lantz, Persson, and
Söderman 2001). They use a surface model that iteratively ap-
proaches the DTM calculated based on the entire point set by
adapting the influence of the individual input points. Finally, re-
cently a set of segmentation based methods were published (e.g.
Sithole and Vosselman (2005) and Tóvari and Pfeifer (2005)). In
the first step, these methods segment the ALS data with a local
neighborhood analysis and subsequently classify the segments by
different strategies. Most of the existing methods do not consider
further input data (e.g. ortho photos) and only analyze the geo-
metric relation between neighbored ALS points. A comparison
of the performance of different methods can be found in (Sithole
and Vosselman 2004).

Doneus and Briese (2006) studied the advanced possibilities for
DTM generation using full-waveform ALS data. They used the
echo width, which was determined with the help of a Gaussian
decomposition of the full-waveform (FWF) signal for each echo
(Wagner, Ullrich, Ducic, Melzer, and Studnicka 2006). The po-
tential of this further information for the elimination of low veg-
etation could be demonstrated. With the help of a pre-filter step
that eliminates echoes with a higher echo width a significant im-
provement of the DTM could be achieved. However, up to now it
is not studied in detail how (and if) the additional FWF informa-
tion can be used for advanced modeling tasks.

6 SUMMARY

In this paper an overview on data acquisition and the first pro-
cessing steps was given for airborne and terrestrial laser scanning.
There is a small number of standard products, e.g. the DTM, that
are produced routinely and efficiently. In order to increase au-
tomation for other applications, further development of the first
processing steps, especially registration, segmentation, and er-
ror/outlier removal, is necessary. For calibration, geometric and
physical aspects will have to be considered simultaneously. Also
the application-specific approaches are still matter of research,
e.g. building reconstruction. The hardware development in the
recent years has been fast, considering for example the increase
in pulse repetition rate. However, the success rate in object recon-
struction did not grow linearly with it. Therefore, most research
effort will have to be spend in these application specific fields.
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Höfle, B. and Pfeifer, N., 2007. Correction of laser scanning intensity
data: Data and model-driven approaches. ISPRS Journal of Photogram-
metry and Remote Sensing. Accepted for publication.

Hoover, Jean-Baptiste, Jiang, Flynn, Bunke, Goldgof, Bowyer, Eggert,
Fitzgibbon, and Fisher, 1996. An experimental comparison of range im-
age segmentation algorithms. IEEE Transactions on Pattern Analysis and
Machine Intelligence 18(7), 673–689.

Hopkinson, D., Chasmer, L., Zsigovics, G., Creed, I., Sitar, M., Treitz, P.,
and Maher, R., 2004. Errors in lidar ground elevation and wetland vege-
tation height estimates. In: IAPRS, XXXVI, 8/W2, Freiburg, Germany.

Horn, B., 1987. Closed-form solution of absolute orientation using unit
quaternions. Journal of the Opical Socienty of America A 4, 629–642.

Hug, C. and Wehr, A., 1997. Detecting and identifying topographic ob-
jects in imaging laser altimetry data. In: IAPRS, XXXII, 4/W2, pp. 16–29.
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ABSTRACT: 
 
With the high density point clouds obtained with terrestrial laser scanning, detailed building facade structures, such as windows, can 
be recovered. There are usually only a few laser points available for windows, because window frames are small parts on walls, and 
window glass reflects no laser beam. Insufficient raw laser information makes it very difficult to recover reliable geometry of a 
window without human interaction. In this paper, we describe an approach to automatically extract windows from terrestrial point 
clouds. First, a segmentation process will group laser points in planar segments. Walls, doors and extrusions will be detected by 
applying feature constraints. Then, two detection strategies for windows are presented, depending on whether a window is covered 
with curtains or not. Windows which are not covered with curtains reflect no laser beam during the scanning process, and therefore 
cause holes on the wall segments. Laser points are available for windows which are covered with curtains, but they usually are not on 
the same plane as its wall and will therefore be grouped into other segments than wall segments. This again results in holes on wall 
segments. Holes on the wall are recognized by searching long edges from the TIN, generated for wall segments. After filtering out 
the holes caused by doors and extrusions, the remaining holes are believed to be caused by windows, and hence fitted to rectangles. 
The result from our approach is evaluated and discussed with examples of reconstructed building facades. 
 
 
 

1. INTRODUCTION 

Recently, the topic of building reconstruction has become a 
popular research of interest. This is because various 
applications, such as virtual tourism, urban planning, and 
cultural documentations, require realistic building models. 
Many algorithms and systems have been proposed towards the 
topic of building reconstruction after several years’ research. 
According to the position of data acquisition, the reconstruction 
algorithms can be categorized to airborne based (Brenner 2005, 
Maas 2001, Suveg and Vosselman 2004) and terrestrial based 
(Haala et.al. 2006, Remondino and El-Hakim 2006). 
 
Taking the airborne images or airborne laser points as primary 
data source, airborne reconstruction approaches are able to 
reconstruct building roofs well. However, it is very difficult to 
recover facade structures from airborne approaches, because the 
oblique acquisition aspect makes it very difficult to retrieve 
sufficient raw data for facades. Only a few pixels or laser points 
are available for facade is the usual case.  In contrast, terrestrial 
approaches are able to provide abundant facade information. In 
particular, terrestrial laser scanning gives explicit 3D 
information, which enables the rapid and accurate capture of the 
geometry of a complex building facade; terrestrial laser 
scanning also provides high density point clouds, which gives 
enough raw data from which accurate and detailed 3D models 
can be obtained. 
 
Many researchers are active in the field of extracting geometry 
features from laser point cloud. Edge based approaches (Gross 
and Thoennessen 2006, Sotooth 2006, Wani and Arabnia 2003) 
aim at detecting boundary points from point cloud, and then fit 
to lines. The surfaces based approaches use local surface 

properties as a similarity measure, and merge together the 
points which are spatially close and have similar surface 
properties. These surfaces can be either planar surface (Dold 
and Brenner 2004, Schuster 2004), or curved surfaces such as 
cylinder, sphere and cone (Rabbani et.al. 2006).  
 
With the extracted geometry features, we can extract higher 
level of features with semantic meanings. In (Pu and Vosselman 
2006) the authors described an automatic method to extract 
building features from terrestrial laser scanning. The method 
first defines several important building features (walls, roofs, 
doors, extrusion) with building constraints. Then the terrestrial 
laser point cloud for a building facade is segmented, so that 
points belonging to the same planes are grouped together. 
Finally each segment is compared with different building 
feature constraints to determine which feature this segment 
represents. It is possible to extend this approach, so that more 
detailed structures, such as windows, can be extracted. The 
recognized wall segments usually contain many holes, which 
mostly result from windows. A feature based method is 
employed to recognize door and extrusion segments. This can 
be used to discard holes caused by doors and extrusions. 
Combination of feature extraction and holes detection leads to a 
robust algorithm for extracting windows.  
 
In section 2 we first give a brief introduction on building feature 
extraction. Section 3 describes how windows are extracted from 
holes on wall segments, and evaluates this approach. Some 
concluding remarks are given in section 4. 
 
 

320

ISPRS Workshop on Laser Scanning 2007 and SilviLaser 2007, Espoo, September 12-14, 2007, Finland



2. FEATURE EXTRACTION 

2.1 Building feature extraction 

An automatic method to extract building features has been 
demonstrated in a previous paper. Here we give a brief 
introduction because of its strong relevance to the window 

extraction approach. There are three main steps: 
 
• Segmentation. The planar surface growing algorithm by 

(Vosselman et.al. 2004) is adopted because it is suitable 
for segmenting planar surfaces. The planar surface 
growing algorithm first selects  
 

 

       
 

Figure 1. Left: terrestrial laser scanned building facade; right: segmentation result 
 

 Size Position Direction Topology 

Wall Segment(s) with larger area  Vertical May intersect ground 

Roof Segment(s) with large area Above wall Not vertical Intersects a wall 

Door Area within certain range On the wall Vertical Intersects the ground 

Extrusion  A little outside the wall/roof   

 
Table 1. Constraints for building features 

 
seed surfaces which consist of a group of nearby points 
that fit well to a plane. Then seed surfaces are grown to 
their nearby points. Only the points within certain distance 
to the seed surface and with a perpendicular distance to the 
seed plane below some threshold can be added to the seed 
surface. Figure 1 shows a terrestrial laser scanned building 
facade, and its segmentation result.  
 

• Feature constraints. Some important building features 
(wall, roof, door, extrusion) are defined with feature 
constraints, related to size, position, direction and 
topology. All feature constraints are derived from human 
knowledge about building structures. For example, we 
know that a wall is a large vertical patch, and that a wall 
intersects the ground. The feature constraints for wall 
feature can be defined as: a large area (size) on a vertical 
plane (direction) with an intersection with the ground plane 
(topology). Table 1 gives the constraints for different 
features. Most of the tolerance values are independent of 
different data set because of the semantics. For example, 
the tolerance for how vertical can a wall be, is at least 80 
degree with XOY plane. An extrusion must be at least 25 
centimeters outside the wall plane. These tolerance values 
are set appropriate for most buildings.  

 
• Feature extraction. Convex hulls for all segments are 

computed first to approximate segments, because it is 
much easier to derive geometry properties (area, 
directions, etc.) from polygons than point sets. Next, the 
convex hull for each segment is checked with the feature 

constraints defined in Table 1, to determine which of the 
four features (wall, roof, door, and extrusion) the segment 
is. Figure 2 gives the recognition results. Sometimes a 
feature might be over-segmented, when the global 
threshold value is too strict. Therefore all attached feature 
segments are found and merged to combine a bigger 
feature segment. For example, the two wall segments in 
Figure 2 attach to each other, so they will be combined to a 
bigger wall segment. 

         
2.2 Feature based window extraction 

Theoretically, windows can also be extracted as a feature, with 
the similar method of extracting wall, door, roof, and extrusion.  
From knowledge about windows, a window feature can be 
defined as: area not too large (size), on the wall (position), on a 
vertical plane (direction). Figure 2 also gives the recognized 
window feature segments.  
 
The result in Figure 2 is not satisfactory. Not all windows are 
recognized, and even recognized feature segments give 
incomplete and inaccurate geometry. The main reason for the 
failure is that the feature extraction algorithm mainly counts on 
a relatively good segmentation. Window frames are usually 
small parts of wall, so terrestrial laser scanning retrieves only a 
few laser points for windows. When a window is not covered 
with a curtain, the terrestrial laser beam will just penetrate the 
glass, and no laser points will be reflected in the window center. 
Insufficient information leads to bad segmentation for windows, 
and in turn leads to bad window recognition.  
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3. WINDOW EXTRACTION 

3.1 Hole-based extraction method 

The feature based approach is able to recognize large building 
features such as walls and roofs, but doesn’t work well for 
windows, because of the lack of laser points on windows or 
window frames. Figure 2 illustrates the recognized wall feature 
segment, with some holes on it. It is obvious that these holes are 
caused by windows,doors and extrusions on the wall. An 
alternative method, which extracts windows from wall holes, is 
developed. The main steps are: 
 
• Triangulation. A TIN for each wall segment is generated 

first, as shown in Figure 3. 
• Extracting boundary points. Long TIN edges appear 

only at the outer boundary (wall outline) or inner boundary 
(holes) of a wall. Boundary points are just the end points 
for the TIN edges with long length. Figure 4a gives the 
extracted boundary points. 

• Clustering. Points belonging to the same hole are grouped 
together. The clustering algorithm is given as follows:  
1) Choose a boundary point A which has no label value 

yet.  Label A with an integer value: i.  
2) Finds all the long TIN edges which connect to this A. 

For all of these long edges, determine the other end 
points: B. 

3) Give B the same label value: i, if B is not labeled yet. 
4) Make B the new A, iterate step 2) to step 4), until no 

more unlabelled points can be found. 
5) Choose another unlabelled boundary point A, give it a 

label value: i+1, repeat step 2) to step 5), until all 
boundary points are labeled.  

The different colors in Figure 4a, 4b, 4c, 4d are because 
different point clusters are colored with their labels. 

 
• Extracting holes. Among a TIN mesh, the interior 

triangles always have three neighbor triangles, while the  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
triangles on the outer boundary have only one or two 
neighbor triangles. Therefore we first get all the triangles 
that have a boundary point as a vertex, and check these 
triangles about the number of their neighbor triangles. If 
three, then the checked triangle is an interior triangle, and 
the boundary point is an interior boundary (hole) point. 
Otherwise the boundary point is an outer boundary (wall 
outline) point. Figure 4b and 4c illustrates the two kinds of 
boundary points. 

• Removing holes caused by extrusion and door. The 
holes in Figure 4d are compared with the extrusion and 
door segments in Figure 2. If a hole doesn’t have overlap 
with any extrusion or door segment, it is considered a 
window hole. Figure 4d gives the result after this step. 

• Filtering. Remove some noise holes which have irregular 
shapes, such as extremely long and narrow, or very small 
(longest edge shorter than 40 centimeter). 

• Fitting rectangles. Assuming windows to be rectangular, 
the window holes are finally fitted to rectangles as shown 
in Figure 4e. This is done by choosing the most left point 
(L), most right point (R), top point (T) and bottom point 
(B) from each point cluster. The x, y coordinates of the 
left-bottom corner of the rectangle equal the x, y 
coordinates of point L, and the z coordinate equals the z 
coordinate of B. In this way the coordinates for the other 
three corners can also be determined. We are aware this 
method is only accurate for the following assumption: 
� The wall is vertical.  
� The left and right border of the window is vertical. 
� The window is rectangle.  
The first two assumptions are true for most windows. If a 
window is not rectangle, then a minimum bounding 
rectangle will be fitted.  

Figure 2. Feature recognition results (extrusion, roof, wall, door, window) 
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3.2 Method evaluation 

The hole-based extraction method provides a robust approach to 
extract windows from terrestrial laser scanning. Our 
experiments on 12 building facades show that more than 90% of 
the windows can be accurately recognized. Figure 5 illustrates 
some experiment result. As the rule “windows are holes on 
walls” is valid for almost every building, we can expect the 
method achieving high accuracy also for other data sets. The 
algorithm only takes a few seconds, because no heavy 
computation is involved. 
 
Sometimes a few windows are extracted which don’t exist in 
reality, such as the indicated error window in Figure 4d. These 
error windows usually appear at places of a building extrusion. 
This is because the feature recognition algorithm still doesn’t  

 
 
 
 

 
 
 
 
 
 
work perfectly for extrusion. When an extrusion has a complex 
shape, e.g. the extrusion in Figure 2 has a curved patch on the 
bottom, not all segments of this extrusion can be recognized. 
The extrusion segments, which are not correctly recognized, 
still result in holes on wall segments. These extrusion holes are 
not removed when all the holes are compared with extrusion 
segments, so they remain and are treated as window holes. This 
kind of error windows seldom appears for doors, because doors 
have simple shapes and recognition of doors is very reliable. 
 
Another unsolved issue is that the real holes on the wall are 
recognized as windows. For example, the building in Figure 5 
left has 3 holes on the wall bottom. These holes satisfy all the 
definitions for windows in our approach: they are holes on the 
wall segments; they don’t overlap with any door or extrusion 

Figure 3. TIN of a building facade, with zooming in a hole corner 

 

Figure 4.  Extracting windows from wall holes (from left to right, top to down): (a) boundary points (b) outer boundary points (c) 
hole points (d) hole points after filtering (e) reconstructed windows by fitting points to rectangles 
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segments. Further research is required to distinguish the real 
holes and holes caused by windows, door and extrusions. 
The extracted windows can be smaller than reality, when there 
are obstacles on these windows. In Figure 6, the most right 
window on the ground floor is partly covered with some 
decorations. This is why the fitted rectangle is actually only the 
top half of this window. In Figure 7 the bigger window on the 
1st floor is fitted to a thinner rectangle, because actually this 
window is firstly extracted as three holes as a result of the frame 
decorations. The left and right holes are filtered out because 

they have very narrow shape. Only the middle hole is fitted to 
rectangle. In the same façade, the second most right window on 
the ground floor is also smaller than reality, because some 
plants obstacle a big part of this window. 
 
Furthermore, only windows on walls can be extracted so far. 
Extracting windows from dormers and extrusions are still need 
to be investigated. 
 

                  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4. CONCLUDING REMARKS 

In this paper we have presented an automatic method to extract 
windows from terrestrial laser scanning. First, terrestrial laser 
points for a building facade are segmented and then wall 
segments are recognized by comparing each segment with 
feature constraints. A TIN of the wall segments is generated and 
both exterior boundary points and the hole boundary points are 
extracted from the end points of long edges in the TIN. After 
filtering out exterior boundary points, the hole points are further 
classified into window points, extrusion points and door points. 
This is done by comparing each hole with the recognized 
extrusion and door segments. 
 
The hole-based window extraction method proved to be a very 
promising approach. In the future we will focus on how to add 
semantic knowledge to improve the extraction accuracy. 
Especially, knowledge about windows will be helpful to remove 
wrong windows which is caused by miss recognized extrusions, 
holes on walls, and other unpredictable cases. Next, considering 
terrestrial imagery provides confident edge information, we will 
explore the possibility to reconstruct more detailed building 
structure by fusing terrestrial laser points and terrestrial 
imagery.  
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ABSTRACT: 

 

Due to the possibility of acquiring precise height data of large areas rapidly, airborne laser scanning systems are particularly suitable 

for obtaining information about the damage situation immediately after a disaster in large scale. This paper presents a technique for 

the detection and classification of damages occurring on buildings in affected areas. It is based on the comparison of pre-event 

building models composed of planar surfaces with planar surfaces extracted from laser scanning data acquired directly after the 

disaster. In a first step, segments are created by superposing the pre- and post-event surfaces. Subsequently, for every segment the 

geometrical characteristics of the corresponding pre- and post-event surface are compared. Finally, the segments are assigned to 

damage types using a fuzzy logic classification approach. The results achieved for each processing step by applying the method on 

data containing real building damages are presented and analysed. 

 

 

1. INTRODUCTION 

Disasters like earthquakes cause many casualties every year. In 

many cases people are trapped in collapsed buildings and have 

to be rescued. Mostly, time plays a very critical role in this 

process. Furthermore, resources are short and have to be 

employed efficiently to save as many lives as possible. This 

shows the necessity of a fast and extensive damage analysis. 

Therefore, one project of the German Collaborative Research 

Centre (CRC) 461 “Strong Earthquakes: A Challenge for 

Geosciences and Civil Engineering” deals with the development 

of methods for the automatic detection and classification of 

building damages. Since the resources required for rescue 

activities depend among others on the damage types of the 

affected buildings (Schweier and Markus, 2004), it is not only 

important to find out whether a building is damaged or not but 

also to receive information about how it is collapsed.  

 

The damage analysis described in this paper is based on the 

comparison of planar surfaces composing pre-event building 

models and planar surfaces derived from post-event airborne 

laser scanning data. Airborne LIDAR data are used because 

laser scanning allows a rapid and extensive acquisition of height 

data without the necessity of entering destroyed areas. The use 

of laser scanning data for the detection of building damages 

after disasters has already been proposed in several 

publications, e.g. (Murakami et al., 1998),  (Vögtle and Steinle, 

2004), (Vu et al., 2004). Most of these approaches have 

originally been developed for the detection of changes in urban 

areas. Until now, they have never been tested on data containing 

real building damages. 

 

The results of this damage interpretation represent one main 

input of the Disaster Management Tool (DMT) also developed 

within the CRC 461 (Markus et al., 2006). The aim of the DMT 

is the support of decision makers, surveillance and intervention 

teams during disaster response. 

 

In this paper a building damage detection and classification 

technique is presented. It is based on a segmental fuzzy logic 

approach. However, only the situation of the buildings 

contained in the pre-event data set can be regarded. The results 

achieved by applying this method on data containing buildings 

with different damage types are demonstrated and interpreted. 

 

 

2. DAMAGE TYPES 

During a classification process unknown patterns are assigned 

to a priori given classes. Therefore, the classes which shall be 

discriminated have to be defined before the classification. Due 

to this, a damage catalogue was developed containing the 

different damage types of entire buildings after earthquakes 

(Figure 1) (Schweier and Markus, 2004; Schweier and Markus, 

2006). Moreover, the damage catalogue includes for every 

damage type a description and some geometrical features like 

volume and height reduction, the change of the inclination of 

building surfaces as well as the surface structure and the size of 

the recognisable planes. For these features qualitative or 

quantitative values were determined by analysing pictures of 

more than 100 damaged buildings. Quantitative information is 

defined by numeric values, e.g. a heap of debris has a volume 

reduction of 60-80%. To express qualitative information 

linguistic terms are used, e.g. the volume reduction of a multi 

layer collapse is small. For the development of the damage   

catalogue  the  special  characteristics  of  aerial  data  acquisition  

 
 

 
 

Figure 1:  Compilation of damage types (Schweier and 

Markus, 2004) 
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were taken into account. This means that attention was paid to 

the fact that the geometrical features characterising the single 

damage types can be derived from aerial data (e.g. laser 

scanning). 

 

As in the presented approach only changes inside the pre-event 

building outlines are examined (see section 1), features like 

debris structure outside the footprint cannot be used for the 

discrimination of the various damage types. This implicates that 

damages characterised very well by these features (e.g. overturn 

collapse) may not yet be identified within the current 

classification procedure which should be extended in future. 

 

Concerning damage types 4a), 4b), 4c) and 5, 5a), 5b), 5c), 

respectively, it seems to be impossible to find out which storey 

has collapsed by using aerial data only. Hence, these damage 

types were summarised as follows: 

 

• Pancake collapse of one storey 

• Pancake collapse of more than one storey 

 

The difference of a pancake collapse of one storey and a 

pancake collapse of more than one storey is characterised by 

the quantity of the volume and height reduction. Obviously, 

damage type 5 has a higher volume and height reduction than 

damage type 4. But since the number of collapsed storeys can 

only be determined reliably if the height of a floor is known, 

this discrimination is very fuzzy if it is unknown. 

 

Furthermore, the different types of debris heaps (7a), 7b), 7c)) 

are also very difficult to distinguish. As a consequence, they are 

merged as well. Damage type number 10 (overhanging 

elements) cannot be recognised if only aerial data (e.g. LIDAR) 

are used. As a result, the following damage types are 

distinguished in the classification process: 

 

0. Unchanged 

1. Inclined plane 

2. Multi layer collapse 

3. Outspread multi layer collapse 

4. Pancake collapse of one storey 

5. Pancake collapse of more than one storey 

6. Heap of debris on uncollapsed storeys 

7. Heap of debris 
8. Overturn collapse, separated 

9a. Inclination 

 

 

3. DATA 

The test site of this study is an area of the Swiss Military 

Disaster Relief used for practising search and rescue activities 

(Figure 2). It is located close to Geneva and has a size of about 

500 m × 800 m. The specialty of this area is that undamaged 

buildings as well as damaged buildings with different damage 

types are located on it. Table 1 summarises the damage types 

occurring on the buildings marked in Figure 2. 

 
 

Building no. 1 2 3 4 5 6a 6b 7 

Damage type 5 5 + 9a 1 0 5 0 5 7 

Building no. 8 9 10 11 12 13 14 15 16 

Damage type 7 3 7 7 0 0 0 0 0 
 

Table 1: Damage types of the buildings marked in Figure 2 

 
 

Figure 2: Aerial image of the test site 

 

In 2004 a laser scanning flight was carried out in order to 

acquire height data of this test area. Therefore, a TopoSys 

Falcon II sensor was used. The original point clouds were 

transformed into DSMs (1 m raster width) having an accuracy 

of ± 0.5 m in position and ± 0.15 m in height. The described 

approach is based on raster data because of the better 

performance concerning memory access and the well defined 

neighbourhood. But it has to be mentioned that in principle the 

method can also be adapted to point clouds. 

 

Normally it is a problem to get LIDAR data of areas containing 

damaged buildings. In this study it is exactly the other way 

round. This means that no real laser scanning data of the pre-

event state are available. On this account CAD models of the 

undamaged buildings were reconstructed by means of 

construction plans and photographs. 

 

 

4. CLASSIFICATION OF BUILDING DAMAGES 

In this section the whole workflow of the approach for 

classifying building damages is described. First of all a 

normalised DSM (nDSM) is needed for the post-event date. An 

nDSM contains only the 3D objects on the Earth’s surface like 

buildings and vegetation. It can be derived from the DSM by 

subtracting a digital terrain model (DTM) (Oude Elberink and 

Maas, 2000; Steinle and Vögtle, 2001). For the generation of 

DTMs from laser data many methods have been proposed (e.g. 

Weidner and Förstner, 1995; Axelsson, 2000; Vosselman, 

2000; Tóvári and Pfeifer, 2005). In this study the approach of 

(von Hansen and Vögtle, 1999) is applied which uses a convex-

concave hull (TIN densification). 

 

Figure 3 displays the pre-event data of the test site. In Figure 4 

the post-event nDSM derived from last echo data is visualised. 

It has to be indicated that terrain and vegetation have not been 

modelled in the pre-event data based on CAD models. 
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Figure 3: Pre-event data generated from CAD models 

 

4.1 Generation of pre-event building models 

As already mentioned in section 1, pre-event building models 

are needed as basis for the classification. These models can be 

created by using different methods such as photogrammetry, 

terrestrial measurements or construction plans (Figure 5(a)). 

Airborne laser scanning itself is a suitable technique for the 

extraction of building models (Brenner and Haala, 2000; 

Vosselman and Dijkman, 2001; Rottensteiner et al., 2005; 

Schwalbe et al., 2005). For this purpose, (Steinle, 2005) 

proposed a method which starts with the extraction of planar 

surfaces from a laser scanning derived nDSM (see section 4.2). 

Afterwards, the neighbourhood relations (topology) of these 

surfaces are analysed and adjacent planes are intersected. This 

results in building edges which can be intersected again in order 

to determine the corners of the building (CAD model). 

 

Since only changes within buildings included in the pre-event 

data are inspected during the classification step, the building 

outlines have to be extracted from these building models before 

the further analysis can start. 

 

4.2 Creation of segments for the classification 

Two main features that characterise the different damage types 

are the size of the recognisable planes and the change of 

inclination of the building surfaces (see section 2). For this 

reason, planar surfaces are extracted from the post-event nDSM 

(see Figure 5(b)) by applying a region growing algorithm 

starting from a seed region which fulfils the condition that the 

assigned points are approximately lying in a plane (Steinle, 

2005; Rehor and Bähr, 2006). For testing the affiliation of a 

neighbouring pixel to the currently considered plane, a global 

test and a test for blunders in a Gauss-Markov model are used 

as homogeneity criterion. For every detected segment the plane 

of best fit is estimated by least squares adjustment. Due to 

taking into account only planar surfaces lying inside building 

contours (section 4.1) during the further processing steps, the 

segmentation algorithm is only applied on points lying inside a 

building outline plus a buffer of 3 m. 

 
 

Figure 4: Last echo post-event nDSM 

 

After planar surfaces have been extracted from the post-event 

laser data, new segments are created by superposition of the 

pre- and post-event planar surfaces (Figure 5(c)). This means 

that each of these new segments corresponds to one of the pre- 

and one of the post-event surfaces. As a consequence, for these 

segments features like the change of inclination or the volume 

and height reduction can be calculated (see section 4.3).  

 

During the segmentation of planar surfaces not all pixels are 

assigned to segments. Some pixels remain unsegmented. For 

these pixels no plane of best fit can be estimated. In 

consequence, the change of inclination cannot be determined. 

So these pixels are excluded from the building damage 

classification and treated in a special way. For each pixel 

staying unsegmented the difference of its pre- and its post-event 

elevation is calculated. This height difference hdiff is analysed 

and classified as follows: 
 

|hdiff| <  t1 : unchanged 

hdiff >  t1 : reduction 

hdiff < - t1 : increase 
 

Due to the fact that damage types like heaps of debris, 

outspread multi layer collapses or overturn collapses have a 

very irregular structure of surface, the assumption can be made 

that many unsegmented pixels occur in areas affected by these 

damage types. 

 

4.3 Feature extraction 

In order to assign the segments to a priori determined classes 

(see section 2), features have to be defined and extracted for 

each segment (see section 4.2). These features should be chosen 

in such a way that they cause a high discrimination between the 

different classes. With respect to the damage catalogue the 

following parameters were determined for every segment: 
 

• Volume reduction 

• Height reduction 

• Change of inclination 

• Size 
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The volume reduction expresses the ratio of the difference 

between pre- and post-event volume of the segment and the pre-

event volume. The height reduction is defined as the ratio of the 

difference between the maximum pre-event and the maximum 

post-event height of the segment to the maximum pre-event 

height. The change of inclination is defined as the angle 

between the normal vectors of the corresponding pre- and post-

event planes. Due to the usage of raster data, the segment size 

can be calculated easily by multiplying the number of pixels 

associated with the segment by the pixel size.  

 

4.4 Fuzzy logic classification of building damages 

For the classification of building damages a fuzzy logic based 

technique has been developed. The theory of fuzzy sets was 

introduced by (Zadeh, 1965) in order to model uncertainties. 

While in ordinary Boolean logic an element either belongs to a 

class or not, fuzzy logic enables to define a grade of 

membership (Tilli, 1993). 
 

A fuzzy logic classification always starts with the definition of 

membership functions for every class and every feature 

(fuzzification). To simplify matters in this study, they are 

composed of line segments although in general they do not have 

to be linear. Furthermore, the a priori knowledge about the 

damage types defined in the damage catalogue is taken into 

account during this step (see section 2). This means that the 

qualitative and quantitative descriptions of the features are 

converted into membership functions for every damage type. By 

means of membership functions a degree of membership µi,j can 

be calculated for every segment with every parameter j (here j=4 

(section 4.3)) according to every class i (here i=10 (section 2)). 
 

The combination of the single membership values µi,j for the j 

different features results in the degree of match µi for every 

class i (inference process). It can be realised by different 

operators (e.g. minimum and maximum operator (Zadeh, 1965), 

algebraic product (Tilli, 1993), etc.). (Weidner and Lemp, 2005) 

propose the employment of the mean or the median of the single 

values. Among a lot of other possibilities these five operators 

have been tested in this study. 
 

Finally, a decision for one class is made by applying the 

maximum operator, i.e. the currently considered segment is 

assigned to the class i with the highest value µi. 
 

 

5. RESULTS 

In the following the results obtained by applying the whole 

approach on the data of the test site are presented. Figure 5(a) 

shows the planar surfaces of the pre-event buildings (section 

4.1). The post-event planar surfaces are visualised in Figure 

5(b). The segments resulting from the superposition of the pre- 

and post-event surfaces are displayed in Figure 5(c). The 

classification is based on these segments. 
 

The comparison of the five different operators for the inference 

process shows that the best results are achieved by the algebraic 

product, while the other operators prove to be less suitable. 

Therefore, the results obtained by the product operator are 

visualised in Figure 5(d). This verifies the achievements of 

(Tóvári and Vögtle, 2004). During their investigations 

concerning the classification of 3D objects in laser scanning 

data the product operator also provided the results with the 

highest classification rate.  

A closer look at Figure 5(d) in combination with Table 1 shows 

that main parts of the buildings 1, 3, 4, 6a, 6b, 7, 8, 10, 11, 12, 

13, 14 and 16 are classified correctly. For building 5 a pancake 

collapse of one storey was determined instead of a pancake 

collapse of more than one storey. As mentioned in section 2 the 

discrimination between these two damage types is very difficult 

if the height of a floor is not known. But if the two types of 

pancake collapse would be fused, a correct decision would be 

gained.  

 

A similar case occurs at building 2 (Figure 5(e)). Its real 

damage type is a combination of a pancake collapse of more 

than one storey and an inclination. The classification proposes 

damage type number 4. Due to the fact that each segment can be 

assigned to only one damage type the general solution pancake 

collapse would be acceptable. Furthermore, it has to be 

mentioned that the class with the second highest degree of 

match for the main segment of building 2 is inclination. As a 

consequence, further research should examine if an 

improvement can be achieved by taking not only the class with 

the highest degree of match into account but also the one with 

the second highest value. This means that for example specific 

combinations of damage types could be allowed. 

 

Figure 5(d) in connection with Table 1 and Figure 2 confirms 

the assumption that many unsegmented pixels showing a height 

reduction occur in case of debris heaps (section 4.2). If this is 

taken into account the determined damages of the buildings 7, 

8, 10 and 11 can be considered as correct. 

 

Building 9 is one of the misclassified buildings (Figure 5(f)). In 

reality it is affected by an outspread multi layer collapse but it 

is classified as an inclination. This can be explained by the fact 

that an outspread multi layer collapse is characterised by the 

extension of debris outside the former building contour line 

which is not yet regarded in this status of the approach. 

Therefore, it is not surprising that the classification is not 

correct. 

 

Building 15 is an exception because it has a barrel-shaped roof 

(Figure 5(g)). Hence, this roof type is not composed by planar 

surfaces in the CAD model (section 2). Since the whole 

approach is based on the comparison of planar surfaces, the 

region growing algorithm described above (section 4.2) is 

applied on the pre-event data of this building. But although 

building 15 is unchanged (Table 1), the surfaces extracted from 

the pre- and post-event data are not the same. Thus, the 

inclination change of the corresponding pre- and post-event 

planes is significantly larger than zero and the segments are 

classified as inclined planes instead as unchanged. As the only 

difference between the damage types 0 and 1 is the change of 

the orientation that is a bit larger for damage type 1, it is 

obvious that building 15 is the only misclassified building 

without any damage. In addition, more pixels remain 

unsegmented during the segmentation of planar surfaces than in 

case of buildings with gable or flat roofs.  
 

 

6. CONCLUSION 

A new approach for the classification of building damages after 

disasters like earthquakes was presented. It is based on the 

comparison of building models derived from pre- and post-

event data. It starts with a segmentation of planar surfaces, 

followed by the generation of segments on which the fuzzy 

logic  classification  can  be  applied.  Finally,  these  segments  are  

329

IAPRS Volume XXXVI, Part 3 / W52, 2007



 

     
(a)                                                                  (b)                                                                   (c) 

 

  

(d)                                                                  (e)                                                                   (h) 
 

Figure 5: a) Planar surfaces of the pre-event buildings. b) Planar surfaces extracted from the post-event data. c) Segments used for 

the classification; they are created by a superposition of the pre- and post-event planar surfaces. a) - c) Each segment is 

displayed in another random colour. d) Classification results achieved by using the product operator for the inference 

process. e) Photograph of building 2. f) Photograph of buildings 4 and 9. g) Photograph of building 15. h) Photograph of 

building 6. 
 

 

assigned to damage types according to there height and volume 

reduction, their size, and there change of inclination. 

 

The results achieved for data of a test area containing real 

building damages are very promising although only changes 

inside the pre-event building contour are analysed so far. Thus, 

in future further investigations should be carried out to extend 

the approach in order to include the situation outside the former 

building areas into the analysis. 

During the classification process each of the segments is 

classified on its own. As a result, different segments belonging 

to one building may be assigned to different damage classes. On 

the one hand, this is advantageous because one building can be 

affected by more than one damage type (e.g. building 6 (Figure 

5(h)). On the other hand, the possibility exists that most of the 

segments belonging to one building are classified correctly as 

the same damage type but some small segments are 

misclassified (e.g. building 13). As a consequence, it should be 

(f) 

(g) 
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investigated in further research if an improvement can be 

achieved by considering the damage types of adjacent segments. 

Besides, the results might be optimised if the class with the 

second highest degree of match is also taken into account. 

  

Another aspect requiring further research is the treatment of 

pixels not assigned to a planar surface in one of the two states. 

It was pointed out that they concentrate in areas affected by 

specific damage types. Hence, they should also be classified 

based on triangulated surface description instead of planes. 
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ABSTRACT: 
 
The study highlights a new method for the delineation of tree crowns and the detection of stem positions of single trees from dense 
airborne LIDAR data. At first, we combine a method for surface reconstruction, which robustly interpolates the canopy height model 
(CHM) from the LIDAR data, with a watershed algorithm. Stem positions of the tallest trees in the tree segments are subsequently 
derived from the local maxima of the CHM. Additional stem positions in the segments are detected in a 3-step algorithm. First, all 
the points between the ground and the crown base height are separated. Second, possible stem points are found by hierarchically 
clustering these points. Third, the stem is reconstructed with a robust RANSAC-based adjustment of the stem points. The method 
was applied to small-footprint full waveform data, which have a point density of 25 points per m2. The detection rate for coniferous 
trees is 61 % and for deciduous trees 44 %, respectively. 7 % of the detected trees are false positives. The mean positioning error is 
0.92 cm, whereas the additional stem detection improves the tree position on average by 22 cm. The analysis of waveform data in 
the tree structure shows that the intensity and pulse width discriminate stem points, crown points and ground points significantly. 
Moreover, the mean intensity of stem points turned out to be the most salient feature for the discrimination of coniferous and 
deciduous trees. 
 

                                                                 
*  Corresponding author.  

1. INTRODUCTION 

Laser scanning has been widely used in mapping the Earth’s 
surface and especially in forest application. Conventional 
LIDAR, which records the first and last pulse, was successfully 
applied to retrieve forest parameters like tree height, crown 
diameter, number of stems, stem diameter and basal area on the 
tree level (Hyyppä et al., 2004). Also, tree species classification 
became feasible with first/last pulse scanning systems providing 
high point density (Holmgren et al., 2004; Heurich, 2006; 
Brandtberg, 2007). Recently, studies reported about the 
successful application of novel small footprint full waveform 
systems to DTM generation (Doneus et al., 2006) or to tree 
species classification (Reitberger et al., 2006) using 
advantageously the intensity and the pulse width. 
 
Approaches to tree species classification are usually based on a 
single tree segmentation that delineates the tree crown from the 
outer geometry of the forest surface. The methods have in 
common to reconstruct – at least locally – the CHM to find the 
local maximum as the best guess for the stem position and to 
delineate a segment polygon as the tree crown. For example, the 
CHM is locally interpolated from the highest laser reflections 
(Hyyppä et al., 2001), derived with the active contour algorithm 
(Persson et al., 2002), or is interpolated with special gridding 
methods (Solberg et al., 2006). Stem positions are determined 
from the interpolated CHM at the highest positions (Solberg et 
al., 2006) or from a special local tree shape reconstruction 
(Brandtberg, 2007). Tree crowns are typically derived with the 
watershed algorithm (Pyysalo et al., 2002), by a slope-based 
segmentation (Persson et al., 2002; Hyyppä et al., 2001) or by a 
region growing method that starts from local surface maximums 
and finds crown polygons optimised in shape (Solberg et al., 
2006).  

The drawback of the segmentation methods is that they solely 
base on the CHM, which is reconstructed from the raw data in 
an interpolation process that smoothes the data to some extent. 
The degree of smoothing directly affects the success rate in 
terms of false positives and negatives. Moreover, in some cases 
neighbouring trees do not appear as two clear local maximums. 
Thus, approaches that solely use the CHM will be restricted in 
the success rate anyway, especially in heterogeneous forest 
types where groups of trees grow close together. So far, little 
focus has been given to reconstruct trees using information like 
laser hits on the stems or the reflectance, mainly because of the 
low spatial point density and the lack of information about the 
reflecting characteristics of the tree structure. Detected tree 
stems could be used to improve the CHM-based segmentation 
in terms of the detection rate and the position of the trees. 
Moreover, the analysis of the internal tree reflecting 
characteristics will gain more insight about salient tree features 
which are significant for instance for tree species classification 
or DTM generation. New full waveform systems have the 
potential to overcome these drawbacks since they detect 
significantly more reflections in the tree crown and provide the 
intensity and the pulse width as reflecting parameters. 
 
The objective of this paper is (i) to present a method that 
segments single trees with a robust surface reconstruction 
method in combination with the watershed algorithm, (ii) to 
introduce a novel approach to stem detection that clusters 
hierarchically potential stem reflections and reconstructs the 
stem with a RANSAC-based adjustment, (iii) to show how the 
detection rate and position of single trees is improved, and (iv) 
to analyse the distribution of the parameters intensity and pulse 
width of the reflections in the tree structure. 
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The paper is divided into five sections. Section 2 focuses on the 
segmentation of the single trees and the reconstruction of the 
tree stems. Section 3 shows the results which have been 
obtained from full waveform data acquired in May 2006 by the 
Riegl LMS-Q560 scanner in the Bavarian Forest National Park. 
Finally, the results are discussed with conclusions in sections 4 
and 5. 

2. METHODOLOGY 

2.1 Decomposition of full waveform data 

Let us assume that full waveform LIDAR data have been 
captured in a region of interest (ROI). A single waveform is 
decomposed by fitting a series of Gaussian pulses to the 
waveform which contains NR reflections (Figure 1).  
 

 
Figure 1. 3D points and attributes derived from a waveform 
 
The vector ),...,1)(,,,,( Riiiii

T
i NiIWzyx ==X  is provided for 

each reflection i with ),,( iii zyx  as the 3D coordinates of the 

reflection. Additionally, the points iX  are given the width 

ii σW ⋅= 2  and the intensity iii AσI ⋅⋅⋅= π2  of the return 
pulse with iσ  as the standard deviation (= half pulse width at 

eAi / ) and Ai as the amplitude of the reflection i (Reitberger 
et al., 2006; Jutzi and Stilla, 2005). Note that basically each 
reflection can be detected by the waveform decomposition. This 
is remarkable since conventional LIDAR systems – recording at 
most five reflections – have a dead zone of about 3 m which 
makes these systems effectively blind after a reflection.  
 

Class Single First Middle Last 
Definition NR=1 

i=1 
NR ≥ 2 
i=1 

NR ≥ 3 
i=2,…, NR-1 

NR ≥ 2 
i=NR 

Table 1. Subdivision of points into classes in dependence on the 
number of reflections NR and the position i of the reflection in 
the waveform 
 
The sensor data are calibrated by referencing Wi and Ii to the 
pulse width eW  and the intensity eI  of the emitted Gaussian 
pulse and correcting the intensity with respect to the run length 
si of the laser beam and a nominal distance s0.  
 
 e

i
c

i WWW =    (1) 

 )()( 2
0

2 sIsII e
ii

c
i ⋅⋅=    (2) 

 
Note that the correction assumes a target size larger or equal to 
the footprint (Wagner et al., 2006). The points from a waveform 

are subdivided into 4 point classes depending on the number of 
reflections within a waveform (Table 1). 
 
2.2 Segmentation 

The segmentation of the tree crowns is achieved by deriving the 
CHM from 3D points which are best representing the outer tree 
crown geometry. The ROI is subdivided into a grid having a 
cell spacing of cp and NC cells. Within each cell of size cp2, the 
highest 3D point is extracted and corrected with respect to the 
ground level ground

jz , i.e.  ),...,1( C
ground
jj

CHM
j Njzzz =−= . The 

ground level ground
jz  is estimated from a given DTM by bilinear 

interpolation. In the next step, all the highest 3D points 
),...,1)(,,( C

CHM
jjj

T
j Njzyx ==X  of all NC cells are robustly 

interpolated in a grid that has NX and NY  grid lines and a grid 
width gw. The special adjustment approach (Krzystek et al., 
1992) interpolates the NCHM  = NX * NY grid points 

),...,1)(,,( CHMj
CHM
Intj

CHM
Intj

CHM
Int

T
j

CHM
Int Njzyx ==X  and filters 

the 3D points Xj in a 2-phase iterative Gauß-Markoff process. 
Thanks to constraints on the curvature and torsion of the 
surface, the interpolation smoothes and regularises the surface 
in case of an ill-posed local situation. The iterative adjustment 
scheme is similar to an edge preserving filter that discards 
outliers, closes gaps in the surface if no 3D points could be 
found in the cells, and preserves surface discontinuities. The 
result is a smoothed CHM having NCHM equally spaced posts. 
Finally, the tree segments are found by applying the watershed 
algorithm (Vincent and Soille, 1991) to the CHM. The local 
maximums of the segments define the Nseg tree positions 

),...,1)(,( segi
CHM

stemi
CHM
stem NiYX = . 

 
2.3 Stem detection 

Tree stems in the individual tree segments are detected in a 3-
step procedure:  
 
Step 1: The NS points ),...,1( S

Seg
j NjX =  within a tree segment 

are cleared from ground points by discarding all points within a 
given height bound Zthreshold = 1 m to the DTM. 
 
Step 2: The goal of the second step is to derive the crown base 
height hbase of the tree in order to subdivide the tree into the 
stem area and the remaining crown area. This coarse tree 
subdivision is achieved by (i) splitting the tree into l layers with 
height of 0.5 m, (ii) calculating the number of points ni per 
layer, (iii) forming the vector ),...,1}({ liNn Si ==PN , (iv) 
smoothing PN  with a 3x1 Gaussian filter and, finally, (v) 
defining hbase as the height that corresponds to 0.15 % of the 
total number of points per segment. All the Nstem points below 
hbase are potential stem points. Note that the remaining points 
can result from one or even several stems or from the 
understorey. The following hierarchical clustering scheme is 
applied to these points after calculating the Euclidian distance 

matrix Dstem = { ( ) ( )22
jijiij yyxxd −+−= ; i=1,…,Nstem; 

j=1,…,Nstem; i#j} (Heijden et al., 2004).  
 

1. Assign each point to its own cluster, resulting in Nstem 
clusters. 

2. Find the closest pair of clusters and merge them into 
one cluster. The number of clusters reduces by one. 
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3. Compute the distance d between the new clusters and 
each of the old clusters.  

4. Repeat steps 2 and 3 until all items are clustered into 
a single cluster of size Nstem or a predefined number of 
clusters is reached. 

 
In this clustering process the distance between two clusters Ci 
and Cj is defined as the shortest distance from any point in one 
cluster to any point in the other cluster. The clustering yields a 
dendrogram which shows at which distance the clusters are 
grouped together. By defining a minimum distance dmin between 
the cluster centres the number of clusters Ncluster is selected. The 
value of dmin must be larger than the maximum distance of stem 
points and smaller than the distance of points belonging to 
different stems. A value of 1.2 m was found to be most useful. 
 
Step 3: The final finding of the stems is achieved by applying a 
RANSAC-based 3D line adjustment to all the Ncluster clusters 
and labelling all 3D lines with an incident angle smaller than α 
= 70 and a minimum number of 3 points as stems gstem. This 
robust procedure eliminates clusters that result from the 
understorey and do not show a vertical main direction. Also, it 
cleans the cluster points from non-stem points. The detected 
stem positions }{),( detdet

stemstemstem gDTMyx ∩=  are calculated as 
the intersection of the stem gstem with the DTM. Note that 
several stems can be found within a tree segment. 
 

3. EXPERIMENTS 

3.1 Material  

Experiments were conducted in the Bavarian Forest National 
Park which is located in south-eastern Germany along the 
border to the Czech Republic (49o 3’ 19” N, 13o 12’ 9” E). 11 
sample plots with an area size between 1000 m2 and 3600 m2 
and a mean tree density of 390 trees per ha were selected in the 
mixed mountain forests. The plots comprise forest in the 
regeneration phase, the late pole phase and the optimal phase. 
Reference data for all trees with diameter at breast height 
(DBH) larger than 10 cm have been collected in May 2006 for 
438 Norway spruces (Picea abies), 477 European beeches 
(Fagus sylvatica), 74 fir trees (Abies alba), 20 Sycamore 
maples (Acer pseudoplatanus) and 3 Norway maples (Acer 
platanoides). Several tree parameters like the DBH, total tree 
height, stem position and tree species were measured and 
determined with the help of GPS, tacheometry and the ’Vertex’ 
III system. A DTM with a grid size of 1 m and an absolute 
accuracy of 25 cm was available (Heurich, 2006). Full 
waveform data have been collected by Milan Flug GmbH with 
the Riegl LMS-Q560 scanner in May 2006 after snowmelt but 
prior to foliation with an average point density of 25 points/m2. 
The vertical sampling distance was 15 cm, the pulse width at 
half maximum reached 4 ns and the laser wavelength was 1550 
nm. The flying altitude of 400 m resulted in a footprint size of 
20 cm. 
 
3.2 Single tree detection 

The procedures for segmentation and subsequent stem detection 
were applied to all the plots in a batch procedure without any 
manual interaction. Figure 2 shows a typical sample area 
containing several coniferous trees. The tree tops derived from 
the local maximums of the CHM correspond in some cases with 
the reference trees reasonably. However, some tree tops are 
deviating considerably from the true position. Moreover, some 

segments contain more than one reference tree. The main 
reasons are that (i) a group of trees form locally a well-defined 
maximum and (ii) the surface reconstruction smoothes too 
much so that neighbouring trees cannot be isolated. In both 
cases the single trees are not detected and hence the segment 
represents a group of trees rather than a single tree. 
 
The stem detection takes advantage of additional high-density 
point information the waveform decomposition provides 
underneath the CHM. In case that only sparse understorey is 
below the base height stem points are successfully detected by 
the hierarchical clustering and the RANSAC-based stem 
reconstruction. Figures 3a and 3b show the stem points for the 
segment in the centre of Figure 2 found by the clustering 
scheme given in section 2.3. The two stems are clearly isolated 
by applying the angle constraint of 70 to the stems 
approximated with RANSAC. Moreover, the single stem 
position derived from the CHM maximum is significantly 
improved by the new stem position. Thus, the stem detection 
provides additional single trees that constitute no local 
maximum in the CHM and improves the position of trees 
derived from the CHM maximum in the majority of cases. 

 
Figure 2. Orthophoto of sample area with segments (green 
lines), reference coniferous trees (white dots), detected stems 
(yellow crosses) and the local CHM maximums (red crosses) 

Figure 3a. Stem point clusters 
and stems reconstructed with 
RANSAC

Figure 3b. The neighbouring 
trees and the reconstructed 
stems 

 
Let us now evaluate the accuracy and reliability of the 
presented method. Table 2 contains the percentage of detected 
trees for all the plots. The trees are subdivided into 3 layers 
with respect to the mean height htop of the 100 highest trees per 
ha. The lower layer contains all trees below 50 % of htop, the 
intermediate layer refers to all trees between 50 % and 80 % of 
htop, and, finally, the upper layer contains the rest of the trees. 
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Number of reference trees in lower layer 229 
Number of reference trees in intermediate layer 161 
Number of reference trees in upper layer 622 
Percentage of deciduous [%] 49 

Detected trees lower layer [%] 3 
Detected trees intermediate layer [%] 13 
Detected trees upper layer [%] 74 
Total number of detected trees [%] 49 

Without 
“stem 
detection”  

False detected trees [%] 5 
Detected trees lower layer [%] 3 
Detected trees intermediate layer [%] 21 
Detected trees upper layer [%] 78 
Total number of detected trees [%] 53 

With 
“stem 
detection” 

False detected trees [%] 7 
Table 2. Detection of trees in the reference plots 
 

Mean positioning 
error 

Without “stem 
detection” 

With “stem 
detection” 

Coniferous 0.80 m 0.70 m 
Deciduous 1.65 m 1.22 m 
Total 1.16 m 0.92 m 

Table 3. Accuracy of the tree position 
 
At first, we focus on the detection rate of trees that are derived 
from the CHM without stem detection and hence refer to a local 
maximum in the CHM. The overall detection rate of 74 % 
evidences that most of the trees are detected in the upper layer. 
In comparison, in the intermediate and lower layer the detection 
rate is considerably smaller. Especially, in the lower layer only 
a few trees can be found since most of these trees are covered 
by taller trees. The mean number of false detected trees 
amounts to 5 % and indicates a remarkable reliability. When 
applying the stem detection we get an overall improvement of 
the detection rate in the intermediate layer of 8 % and in the 
upper layer of 4 %. However, no improvement is achieved in 
the lower layer since (i) laser hits at the stem of small trees 
happen rarely, (ii) the base height hbase is inaccurate for trees 
beneath taller trees, and (iii) some trees have no clear hbase since 
their green branches start close to the ground. Additionally, we 
found that the detection rate is on average for coniferous trees 
61 % and for deciduous trees 44 %, respectively. Finally, Table 
3 shows the absolute positional improvement of the trees 
derived from the stem positions ),( detdet

stemstem yx  and the position 
of the reference trees. As expected, the mean positioning error 
of deciduous trees gets better by 26 %, which corresponds to 43 
cm. The overall improvement of the tree position amounts to 24 
cm, which is equivalent to 21%. 
 
3.3 Analysis of full waveform data 

Based on the segmentation, the stem detection, and the known 
DTM all the points within a tree segment were subdivided into 
the three categories “stem points” below the base height, 
“ground points” and ”crown points” representing the tree 
crown. Possible stems points in the tree crown were excluded 
by discarding all the points within the stem cylinder Vstem, 
where Vstem is defined by the 3D stem line gstem as the centre 
line of the cylinder and the radius R = 1 m. Ground points were 
found within a height bound of 1 m to the DTM. Furthermore, 

c
iI  and c

iW  of the points were analysed with respect to the 

incident angle of the laser beam. Because of the scanning angle 
of 450 the maximum incident angle amounted to 22.50. Thus, 
mean values and standard deviations were calculated in an 
angle interval of 50 for the point classes given in Table 1 and 
are used in the following for visual analysis in Figures 4 to 10. 
 

 
Figure 4.  Mean pulse width and standard deviation (single and 
last points) for the three point categories 
 

 
Figure 5. Mean intensity and standard deviation (single and last 
points) for the three point categories 
 

 
Figure 6. Mean intensity and standard deviation (single points) 
for the three point categories 
 
In general, we found that roughly 75 % of the stem points are 
single and last points. Since ground points are also only 
composed by single and last points we focussed primarily on 
these point classes. The Figures 4 and 5 show for these point 
classes the mean values for pulse width and intensity and their 
standard deviations in dependence on the incident angle. 
Apparently, the ground points differ from stem points and 
crown points considerably. Both crown and ground points show 
no angle dependence. The undulating ground, the undergrowth, 
and the varying reflecting targets in the crown average the 
individual values for pulse width and intensity. As expected, the 
pulse width for the stem points decreases with increasing 
incident angle since with increasing incident angle the angle 
between laser beam and the normal to the stem surface gets 
smaller. This leads to a smaller broadening of the pulse. 
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Accordingly, the slight increase of the intensity with increasing 
incident angle can be interpreted the same way. Figure 6 
focuses especially on the intensity of single points. Apparently, 
the three point categories differ fairly well for an angle range of 
100 and 22.50. This was the only point class that indicated the 
best discrimination between the stem points and crown points. 
Most notably, ground points and crown points can be clearly 
separated. These results correspond with experiences of the 
study (Doneus et al., 2006), which recommends the use of 
intensity and pulse width along with point coordinates to 
generate a DTM from full waveform data. 
 
We focus now on the important question in how far intensity 
and pulse width discriminate tree species. We restrict ourselves 
to coniferous and deciduous trees, which are the dominating 
trees in the study area. Crown points and stem points are 
assigned to the two tree species using the reference data. Again, 
the mean values and the standard deviation for c

iI  and c
iW are 

analysed with respect to the incident angle. From Figure 7 we 
can conclude that the mean pulse width c

iW  of single crown 
points is different for coniferous and deciduous trees and is 
independent on the incident angle. Interestingly, we found that 
the difference in the pulse width was significant especially for 
single points. However, the difference of the mean intensity c

iI  
was distinctive for all the four point classes, again without any 
dependence on the incident angle (Figure 8).  
 

 
Figure 7. Mean pulse width and standard deviation (single 
points) for coniferous and deciduous crown points 
  

 
Figure 8. Mean intensity and standard deviation (all point 
classes) for coniferous and deciduous crown points 
 
Finally, we concentrate on the stem points. The mean pulse 
width c

mW  is practically the same for the two tree species using 
all four point classes and decreases slightly with increasing 
incident angle (Figure 9). Apparently, the shape of coniferous 
and deciduous tree stems influences the pulse width the same 
way. Of course, the incident angle still plays a role likewise in 
Figure 4. Surprisingly, the mean intensity for single points is 

clearly different for coniferous and deciduous tree stems 
(Figure 10). Probably, the absorption and reflecting 
characteristics of stems have a clear impact on the mean 
intensity. 
 
We have corrected the intensity of all point classes according to 
equation (2) assuming that the target size is equal or larger the 
laser footprint. This assumption is true for ground points and – 
probably – for most of the stem points. Since the target size of 
the crown points is not known we corrected them like stem or 
ground points. 
 

 
Figure 9. Mean pulse width and standard deviation (all point 
classes) for coniferous and deciduous stem points 
 

 
Figure 10. Mean intensity and standard deviation (single points) 
for coniferous and deciduous stem points 
  

4. DISCUSSION 

Conceptually, the presented approach to single tree detection 
from airborne LIDAR data goes one step further by using the 
CHM and additional information inside the tree. It leads to an 
improvement of the detection rate of single trees in the 
intermediate and upper forest layer by detecting tree stems. This 
refinement of the detection rate could be expected since (i) in 
many cases neighbouring trees do not appear as two clear 
maximums in the raw data and (ii) the smoothing of the CHM 
blurs the maximums. Apparently, as already pointed out by 
some other authors (e.g. Solberg et al., 2006), the smoothing of 
the reconstructed CHM influences the quality of the single tree 
detection considerably. The second advantage of the presented 
method is that the position of detected trees is improved. This is 
also not very surprising since the intersection of the detected 
tree stem with the DTM must be more precise than the tree 
position derived from the CHM maximum. Thirdly, the stem 
detection checks the hypothesis of a stem position which has 
been derived from the CHM. The restrictions of the approach 
are that only trees in the upper and intermediate forest layer can 
be additionally detected. It fails in the under layer where stem 
hits are rare and stems points can not be clearly clustered. 
Moreover, so far we have not implemented to go back to the 
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raw data and to find a new segmentation of the tree crowns 
using the stem information. 
The analysis of the waveform data shows that the intensity and 
pulse width can be advantageously used for the discrimination 
of crown, stem and ground points, if the reflections are 
distinguished with respect to their position in the waveform. 
This information can be helpful for a true 3D segmentation. 
Moreover, we found that the mean pulse width and the mean 
intensity are characteristic for coniferous and deciduous trees. 
Thus, these experiences are very useful for (i) a DTM 
generation in forest areas, (ii) an improvement of the stem 
detection, (iii) and a tree species classification. For instance, 
ground or stem points can be more reliably detected using the 
intensity and pulse width as explained in the Figures 4, 5 and 6. 
Furthermore, the classification of coniferous and deciduous 
trees in leaf-off situation can advantageously use features that 
are composed from the mean intensity and pulse width of the 
tree crowns. If stem points can be detected the mean intensity of 
single points is the most meaningful feature. The pulse width of 
stem points is useless for classification purposes.  
 

5. CONCLUSIONS 

The study presents a novel single tree detection based on a 
combined surface reconstruction and stem detection. The results 
attained in heterogeneous forest types show that the detection 
rate and position of single trees can be improved in the upper 
and intermediate layer. Based on the stem detection the analysis 
of the waveform data shows a clear dependency of the intensity 
and the pulse width with respect to crown points, stem points, 
ground points, and tree species, resp. Future research should be 
focussed on the improvement of the segmentation of the tree 
crowns using the stem information. 
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ABSTRACT: 
 
The automatic modeling of precise structures from randomly distributed laser points derived from laser scanner data is a very hard 
problem, not completely solved and problematic in case of incomplete, noisy and sparse data. The generation of polygonal models 
that can satisfy high modeling and visualization demands is required in different applications, like architecture, archaeology, city 
planning,  virtual reality applications and other graphics applications. The goal is always to find a way to create a computer model of 
an object which best fits the reality. Polygons are usually the ideal way to accurately represent the results of measurements, 
providing an optimal surface description. While the generation of digital terrain models has a long tradition and has found efficient 
solutions, the correct 3D modeling of closed surfaces or free-form objects is of recent nature, a not completely solved problem and 
still an important issue investigated in many research activities. 
 
In this paper we develop an approach for converting a laser scanner point cloud into a realistic 3D polygonal model that can satisfy 
high modeling and visualization demands. Close range photogrammetry deals since many years with manual or automatic image 
measurements. Now laser scanners are also becoming a standard source for input data in many application areas, providing millions 
of points. As a consequence, the problem of generating high quality polygonal models of objects from randomly distributed laser 
points is getting more and more attention. After reviewing some results in this context, we will describe a full approach for turning a 
usual unstructured point cloud into a consistent polygonal model. Finally, the polygonal model is turned into a hierarchical nodes 
network similar to VRML. A novel laserscanning processing tool, LSM3D (Laser Scanner Modeling 3D), has been developed and 
tested over different examples related with architectonic buildings. 
 
 

1. INTRODUCTION 

The automatic 3D modeling of precise structures from 
randomly distributed laser points is a problem which has been 
approached in several ways in computer graphics and computer 
vision literature and which has currently produced a growing 
interest in close range photogrammetry due to the emergence of 
terrestrial laser scanner. The generation of polygonal models 
which can satisfy high modeling and visualization demands is 
required in different applications, like architecture, 
archaeology, virtual reality applications and other graphics 
applications. The goal is always to find a way to create a 
computer model of an object which best fits the reality, 
remember that the models, if they are even very accurate, are 
idealizations of the reality. Polygons are usually the ideal way 
to accurately represent the results of measurements, providing 
an optimal surface description. While the generation of DTMs 
has a long tradition and has found efficient solutions, the 
correct 3D modeling of closed surfaces or free-form objects is 
of recent nature, a not completely solved problem and still an 
important issue investigated in many research activities. 
 
Several methods and approaches have been developed for the 
recognition of object surfaces in laser scanner point clouds. 
Following the proposal of (Vosselman et. al., 2004), methods 
for the extraction of surfaces can roughly be divided into two 
categories: those that segment a point cloud based on criteria 
like proximity of points and/or similarity of locally estimated 
surface normals and those that directly estimate surface 

parameters by clustering and locating maxima in a parameter 
space.  
 
The first approach shares large similarities to the image 
segmentation problem, so equivalent techniques and algorithms 
of image processing could be extrapolated and adapted. For 
example, an important type of 2D image processing operators 
and filters like neighborhood, labeling, skeletonisation or even 
morphologic operators could be adapted for the detection of 
three dimensional linear structures and boundaries: (Palagyi and 
Kuba 1999), (Jiang and Bunke, 1994) and (Sithole and 
Vosselman, 2003) are several examples where scan line 
segmentation and growing surfaces methods could be 
comparable in strategy to the split-and-merge methods and 
region growing algorithms in image segmentation respectively.  
 
In this line, polygonal meshes, volume grids and parametric 
piecewise functions NURBS (Non Uniforms Rational B-
Splines) are others alternatives to obtain a final description of 
the surface: (Polis and McKeown, 1992) and (Oda et. al., 2004) 
develop several methods for creating simple polygonal meshes 
linked to surveying applications; (Chew, 1997), (Shewchuk, 
2001) and (Watson, 1981) present several approaches based on 
3D polygonal meshes; finally, (Han and Medioni, 1996) 
develop several parametric piecewise functions based on 
NURBS. Nevertheless, one of the main drawbacks of complex 
polygonal meshing is that requires high rates of computing time 
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and do not always represent the wealth of information 
contained in the original points cloud.  
 
On the other hand, regarding the second category of methods, 
these are more robust but can only be used for modeling basic 
primitives supported by a few parameters. There are several 
authors (e.g. (Krishnamurthy and Levoy, 1996), (Curless and 
Levoy, 1996), (Pottmann et. al., 2002) and (Vosselman et. al., 
2004)) who have developed automatic methods and algorithms 
for polynomial 3D modeling, but only applied to structured or 
small points clouds corresponding to independent objects. In 
these approaches, the use of a parameter space based on the 
generalized Hough  transform (Ballard, 1981) and Gaussian 
Sphere (Barnard, 1983) have been the most successful 
techniques for modeling basic primitives such as plans, 
cylinders, spheres, etc. Nevertheless, the main disadvantage of 
these methods is its high computational cost, as well as the 
presence of outliers. Outlier detection in point clouds is not a 
trivial task since there are: geometrical discontinuities caused 
by occlusions, no prior knowledge of the statistical distribution 
of points, existence of noise, and different local point densities. 
  
The approach that we propose follows a combination of both 
categories, since segmentation and clustering techniques are 
applied over unorganized laser scanner dataset. In order to 
avoid outliers, RANSAC robust estimator (Fischler and Bolles, 
1981) has been adapted before the fitting step.  
 
The complete full pipeline process in 3D modeling structures 
from laser scanner dataset is illustrated in Figure 1. 
 

 
 

Figure 1. Full pipeline process. 
 
The paper presents the following structure and organization: 
after this introduction, Section 2 explains in detail the 
segmentation approach of point clouds. Section 3 develops the 
basic primitives fitting process. Section 4 describes the novel 
laserscanning processing software developed. Section 5 shows 
the experimental results tested with our own software. A final 
section is devoted to give some conclusions and future works. 
 
 

2. SCAN SEGMENTATION  

In the process of 3D modeling structures from randomly 
distributed laser points, a number of steps are involved. One of 
the critical steps is segmentation, which contributes to segment 
the structures from the background of the original laserscanning 
point cloud. The reliability and accuracy of the segmentation 
method affect the result of the final structures extraction to a 

large extent. Therefore, image segmentation plays an important 
role in laserscanning modeling. Recently, several segmentation 
techniques for laser scanner have been reported (Min et. al., 
2004) and (Bellon and Silva, 2002).  In the first approach, the 
authors develop an automated framework for evaluating the 
performance of range image segmentation algorithms. This 
framework should make it possible to objectively and reliably 
compare the performance of range image segmentation 
algorithms; allow informed experimental feedback for the 
design of improved segmentation algorithms. The framework is 
demonstrated using range images, but in principle it could be 
used to evaluate region segmentation algorithms for any type of 
image. In the second approach, the authors present new 
improvements for range image segmentation based on edge 
detection techniques. The developed approach better preserves 
the object's topology and shape even in noisy images. The 
algorithm also does not depend on rigid threshold values, thus 
being useful in unsupervised systems. Experiments are 
performed in a popular range image database and the results are 
compared to four other traditional range image segmentation 
algorithms, demonstrating the efficiency of the proposed 
algorithm. 
 
In our case, laser points have been processed with various well-
known segmentation algorithms following a triple process.  
 
In a first step, orthogonal sections to the vertical are obtained 
(Figure 5). This segmentation requires a previous definition of 
the Z axis which coincides with the vertical, due to the vertical 
is the mainly character of the shapes of the buildings. 
Afterwards, sections and profiles are simplified automatically 
based on Douglas-Peucker algorithm (Douglas&Peucker, 1973) 
which keeps the basic geometric features of every section 
(Figure 2). This step also includes a process to localize 
circumferences, and in this way, the final results of all these 
sections are polygonal lines and circles.  
 

 
 

Figure 2. Simplification of laser sections based on Douglas-
Peucker. 

 
In a second step, a clustering of different sections allows us to 
extract partial primitives such as planes, cylinders and cones, 
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working recursively with groups of three sections to verify the 
results.   
 
The algorithm is completely automatic. Two adaptative 
thresholds are selected: 
 

• The threshold α is used to decide whether two 
sections have a similar orientation.  

 
• The threshold d is used to decide whether two 

sections have a logical position in space, in order to 
discriminate between sections which are in different 
parts of the scene, like regular patterns.  

 
For each straight segment belonging to the first section, similar 
features such as position, orientation and size are searched in 
segments belonging to the second and third sections. This 
processing is based on the regularity of the facade, and for 
every three segments which verify the previous condition, a 
new partial extraction of planes is obtained. The process with 
cylinders and cones is similar, but this time, values such as the 
position and radius are the main goal. Discrimination between 
cylinders and cones is established based on the radius variation.  
 
To improve the efficiency and reliability of the process, 
RANSAC robust estimator is implemented with a twofold 
purpose in order to check for possible outliers. Firstly, through 
Douglas-Peucker simplification, allowing that possible outliers 
do not take part during the process. Secondly, in the clustering 
of sections, determining the best three combinations of sections 
and profiles for extracting basic primitives.  
 
The final step is a growing clustering of each partial primitive 
in order to obtain a global primitive. To do this, geometric 
characteristics of each primitive such as the diedric angle 
between planes, the angle between the axes of the cylinders, or 
the relationship between the radius of cylinders, as well as its 
neighbouring relations are checked. Moreover, each threshold 
of geometric characteristics can be modified by the user 
interactively. 
 
 

3. PRIMITIVES FITTING 

At a final level, the segmented range dataset is fitted to basic 
surfaces. Particularly, the results from segmentation give 
potential architectural elements, but it is required to fit these 
features to the real object accurately.  
 
Particularly:  
 
3D planes are extracted by an automatic fitting of planar 
primitives with points of the object. 
 
3D lines are extracted as a result of planar surface intersections. 
The extraction of 3D lines involves two steps: 
 

i) Intersection of neighbouring 3D planes to 
produce 3D lines of infinite extent. 

 
ii) Verification of the infinite 3D lines. This step 

involves the computation of the distance 
between the bounded primitives and the 
produced 3D line. 

 

Cylinders and cones are processed in the same way that planes, 
using the segmentation results to limit the workspace that is 
used in the fitting. 
 
At last, an analytical and simplified parameterization of the 
basic extracted geometries is performed.  
 
On the other hand, the visualization of a 3D model is often the 
only product of interest for the external world and remains the 
only possible contact with the model. Moreover, an interactive 
visualization of the object enables us to obtain impossible views 
and perspectives to support further analysis tasks. Therefore, a 
realistic and accurate visualization is often required. However, 
working with laser scanner dataset complexity increases 
considerably, especially if we consider the volume of 
information, so the modeling pipeline described before remains 
crucial to transform our laser polygonal models to VRML 
automatically. 
 
The VRML (Virtual Reality Modeling Language) format was 
the standard chosen to provide an interactive visualization of 
the results guaranteeing flexibility and scalability in the 
visualization at the same time, so different 3D models can be 
incorporated and managed easily. In this way, an automatic 
transformation of the reconstructed 3D model into a topological 
structure (points, lines and surfaces) sorted hierarchically in a 
nodes network was performed, allowing three different levels of 
visualization: wireframe, shaded and textured. Materials 
defined by their colours and radiometric properties 
(opaqueness, transparency, diffusion, reflection and emission) 
and photographic textures, are mapped through a uniform and 
continuous renderization supported internally by VRML.  
 
 

4. THE LSM3D SOFTWARE 

Nowadays, laser scanner technology continues relying on a 
strong hardware and software dependence. In fact, some 
companies have invested heavily on digital implementations of 
laserscanning principles, and lead the market in order to obtain 
massive range data production. Consequently, prices remain 
high and the access to laser scanner equipment continues being 
limited only to those who can afford it. 
 
Our aim tries to improve this ‘bottleneck’ through the 
development of free laser scanner software and tools. The basic 
idea is to develop laserscanning tools that can be used as 
didactical elements for Computer-assisted teaching and training 
on Internet, regular Classes, Summer Courses and Seminars, in 
order to ease the students’ assimilation of main laserscanning 
concepts.  
 
In principle, the laserscanning tool LSM3D consists of two 
parts: Knowledge and Tasks. In the 'Knowledge' part, LSM3D 
describes the synergies between disciplines such as close-range 
photogrammetry, computer vision and computer graphics, as 
well as the methodology developed for laser scanner modeling. 
These contents are interlaced with hyperlinks to a glossary of 
technical terms and definitions, as well as supported with 
graphic illustrations. In the ‘Tasks’ part, LSM3D allows to 
carry out exercises and simulations (Figure 3). This interface 
allows to work in different levels, from students who use the 
program only with learning purposes to PhD students who 
develop new tools and even professionals who are interested in 
applying the software to an specific context. 
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Figure 3. LSM3D: ‘Tasks’ interface. 
 
Particularly, LSM3D allows: 
 

• Importing and exporting point clouds and high 
resolution digital images; 

• Projecting the texture of high resolution image onto 
the point cloud. 

• Obtaining sections over the point cloud (Figure 4). 
• Modeling simple structures through the extraction of 

basic primitives. 
• Modeling complex structures through mesh 

triangulation algorithms and using the previous 
structures as geometric constraints. 

• Gaining feedback between image re-projection and 
primitive extraction to improve the results. 

• Exporting results to VRML language. 
 

 
 

Figure 4. LSM3D: laserscanning segmentation. 
 
As a result, LSM3D represents a clear contribution in the 
laserscanning context, destined to the synergic integration of 
different methodologies and tools. Therefore, teaching and 
research work can be presented as an interactive learning 
program. The ‘knowledge’ is presented by dynamic figures and 
hypertexts, while ‘tasks or experiments’ can be carried out with 
different free tools such as LSM3D.  
 
 

5. EXPERIMENTAL RESULTS 

In order to determine the accuracy, limitations and advantages 
of the 3D modeling approach proposed, a series of experiments 
are tested using our own developed tool. 

 
5.1 The medieval wall of Avila 
 
Problem and goal 
 
The aim of this study is the automatic 3D modeling of the basic 
structures of the medieval wall of Avila. A time of flight laser 
scanner, Trimble GX200, is used to obtain laser scanner dataset. 
The main problems are focused on the own complexity and 
irregularity of an emblematic object like that. 
 
Methodology and results 
 
A first segmentation approach based on orthogonal sections 
with an equidistance of 1 meter and a tolerance of 200 
millimeters for Douglas-Peucker is applied (Figure 5). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5. Laserscanning segmentation with orthogonal sections 

and Douglas-Peucker simplification before circle extraction 
 
A second segmentation approach based on the clustering of 
sections allows us to extract partial primitives (Figure 6), which 
are transformed into global primitives following a growing 
surface strategy.  
 

 
 

Figure 6. Partial extraction of primitives.  
 
A maximum threshold of 3º corresponding to the diedric angle 
between planes has been used to clustering adjacent planes, 
preserving the basic geometric characteristic of each primitive. 
Regarding cylinders, a maximum threshold of 2º and 1 meter 
between cylinders axis have been considered to validate them. 
 
Finally, a fitting of basic primitives is performed using object 
coordinates as reference. Particularly, 3D planes corresponding 
to the main wall and cylinders corresponding to towers are 
extracted by an automatic fitting of basic primitives with points 
of the object (Figure 7). 
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Figure 7. Automatic medieval wall 3D modeling. 
 

The final fitting error for 3D planes and cylinders is around 50 
millimetres. However, some problems remain in the 
battlements, due to their irregular shape and discontinuity in the 
transition with towers. 
 
5.2 The romanesque church of San Pedro 
 
Problem and goal. The workspace is focused on the two main 
façades of the church.  The aim of this study is the automatic 
modeling of the basic structures of the romanesque church of 
San Pedro. A time of flight laser scanner, Trimble GX200, is 
used to obtain laser scanner dataset. 
 
Methodology and results 
 
A first segmentation approach based on orthogonal sections 
with an equidistance of 1 meter and a tolerance of 100 
millimetres for Douglas-Peucker is applied (Figure 8). 
 

 
 

Figure 8. Laserscanning segmentation with orthogonal sections 
and Douglas-Peucker simplification. 

 
A maximum threshold of 2º corresponding to the diedric angle 
between planes has been used to clustering adjacent planes, 
preserving the basic geometric characteristic of each primitive.  
 
Finally, a fitting of basic primitives is performed using object 
coordinates as reference. Particularly, 3D planes corresponding 
to the main facades are extracted by an automatic fitting of 
basic primitives with points of the object (Figure 9). 
 

 
 

Figure 9. Automatic romanesque church 3D modeling. 
 

The final fitting error for 3D planes is around 30 millimetres.  
 
 

6. CONCLUSIONS AND FUTURE PERSPECTIVES 

The presented paper has investigated and developed a range 
segmentation and 3D feature modeling from laser scanner 
dataset. We proved the applicability of these algorithms in 
architectural scenes. A consistent and reliable full process 
pipeline has been developed and presented. It was demonstrated 
with different practical examples tested through our own 
software, LSM3D.  
 
We feel that we have attacked one of the most difficult 
problems in laserscanning. Regarding the most relevant aspects 
of the proposed approach, we could remark on: 
 

• Automation in the modeling of basic primitives. 
• Creation of geometrically correct solid models. 
• Simplification of laser scanner models through 

VRML transformation. 
• More reliability in segmentation step through the 

incorporation of RANSAC robust estimator. 
• Original approach which provide a new point of view 

to solve the problem of laserscanning 3D modeling. 
 
Due to the scope of the system, there are still a number of open 
technical issues that need to be addressed: 
 

• A number of thresholds have to be tested by the user 
before obtaining good results. 

• The object must be linear in order to apply orthogonal 
sections. 

 
As for the future perspectives, we believe that this novel laser 
scanner tool could be improved towards the automatic, accurate 
and reliable construction of CAD models of urban structures 
from laser scanner dataset. 
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ABSTRACT: 

 

Methods of estimating stemwood volume from ICESat/ GLAS lidar waveforms are explored for a mixed temperate forest, the Forest 

of Dean, Gloucestershire, UK. Previous methods have used maximum canopy height estimations incorporating a digital terrain 

model (DTM) and requiring calibration using a sample of within-footprint tree heights. This study focuses on deriving methods 

which do not require such supplementary data. Maximum canopy height is estimated as the distance between Signal Begin and the 

ground peak within the waveform. The ground peak is determined using the centroid of either Gaussian Peak 1 or 2, identified by 

whichever has the greatest amplitude. This canopy height estimation was used to isolate the region of the waveform returned from 

the vegetation, from which heights of cumulative energy percentiles were calculated. For the tallest species within footprints, 

stemwood volume estimates for conifers produced R2 of 0.59, RMSE 98.3 m3/ha and for broadleaf species, R2 of 0.75, RMSE 59.1 

m3/ha were found. Stemwood volume estimates taking account of the mixed species composition within stands were also calculated. 

For mixed stand estimates, R2 of 0.66, RMSE 82.5 m3/ha was found for stands dominated by conifers whilst stands with greatest 

percentage cover provided by broadleaf species produced R2 of 0.47, RMSE 75.6 m3/ha. Potential is shown for satellite lidar 

stemwood volume estimates to be derived directly from waveforms and therefore suggests that similar techniques could be applied 

where a suitable DTM or field measurements are not available. 

 

 

                                                                 

*  Corresponding author.  

1. INTRODUCTION 

Quantifying changes in biomass distribution is acknowledged 

by the Global Climate Observing System as an essential 

variable for the monitoring of global climate. Satellite-derived 

estimates can contribute to biomass estimation on a global 

scale; the aim being to achieve an accuracy of 10-20% which is 

comparable with in situ methods (GCOS 2006). 

Airborne lidar has been shown to offer a means of estimating 

biophysical parameters such as above ground biomass at a local 

scale. This has been demonstrated using discrete return lidar 

(e.g. Hyyppä et al. 2001, Patenaude et al. 2004) and waveform 

recording devices (e.g. Lefsky et al. 1999, Drake et al. 2003). 

Opportunities for USA state-wide biomass estimation using first 

return lidar profiling are also shown by Nelson et al. (2004) and 

Nelson et al. (2006), whilst Bufton (1989), Gardner (1992), 

Harding et al. (1994), Brenner et al. (2003) and Hese et al. 

(2005) discuss the concepts of full waveform satellite lidar. 

Therefore, given the near-global coverage of the Ice, Cloud and 

land Elevation Satellite (ICESat), there is potential for satellite 

lidar to contribute to regional or national scale forest 

monitoring and quantification (e.g. GCOS 2004, Hese et al. 

2005, Helmer and Lefsky 2006). However, previous methods of 

estimating above ground biomass/ volume have relied upon 

supplementary data to estimate maximum canopy heights. This 

has involved a two-stage process, deriving maximum canopy 

height from a multiple regression using the Waveform Extent 

(distance between Signal Begin and Signal End) plus a terrain 

index (using a DTM centred on the footprint co-ordinates) and 

calibrating against field measurements of within-footprint tree 

height. These maximum canopy height estimates were then used 

to develop methods of estimating stemwood volume (Lefsky et 

al. 2005, Rosette et al. submitted). 

This paper explores an alternative means of estimating 

stemwood volume which does not necessitate additional 

information and therefore aims to simplify the process, 

potentially allowing broader application. 

 

2. METHODS 

2.1 Study Site 

The Forest of Dean, Gloucestershire, UK covers an area of 

approximately 11,000 hectares and was crossed by ICESat 

between 51.74° N and 51.88° N latitude and 2.54° W and 2.51° 

W longitude. The data used for this study were captured on 22nd 

October 2005 while vegetation was predominantly still in leaf. 

Most frequently occurring species within stands sampled by 

ICESat were Norway Spruce (Picea abies), mixed broadleaf 

species, Oak (Quercus spp), Corsican Pine (Pinus nigra var 

maritima), Douglas Fir (Pseudotsuga menziesii), Scots Pine 

(Pinus sylvestris) and European Larch (Larix decidua). It is a 

highly mixed, temperate forest managed by the Forestry 

Commission of Great Britain. Forest Enterprise is responsible 

for maintaining a sub-compartment database for management 

purposes which lists details of species, habitat conditions and 

management criteria for each discrete component contained 

within sub-compartments (Forestry Commission 2006).  
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2.2 Yield Models 

The sub-compartment database allows reference to be made to 

yield models which predict stand parameters including top 

height, individual tree volume, volume per hectare and mean 

diameter at breast height by age (Edwards and Christie, 1981). 

These models are empirically-derived and initial spacing of 

individuals, species, yield class (annual increment m3/ha/year) 

and management (e.g. thinning regime) determine the 

anticipated growth curve. 

Stemwood volume is defined as living over-bark volume in 

m3/ha (for conifers this comprises the main stem diameter 

greater or equal to 7cm). Forestry Commission yield models 

were used to calculate stemwood volume for stands covered by 

ICESat footprints and, for this study, two calculations of 

stemwood volume were used: 

 

2.2.1 Single species stemwood volume: Few footprints 

covered stands containing a single species and therefore, to 

indicate the potential for pure stands, a proxy was used. 

Stemwood volume was calculated for the tallest species within 

each footprint (identified from the sub-compartment database). 

This was based on the principle that this species could also be 

identified within waveforms (maximum canopy height 

estimates). Differentiation was then made between footprints in 

which the tallest species was broadleaf or coniferous to consider 

whether this would improve the relationship with waveform 

parameters described in 2.3.2. 

 

2.2.2 Mixed stand stemwood volume: Sub-compartments 

may contain several distinct components and additionally, a 

number of ICESat footprints crossed sub-compartment 

boundaries. The second measure of stemwood volume therefore 

represents the mixed composition of stands and is calculated 

using the percentage cover of species within all components of 

each sub-compartment sampled by footprints. Footprints were 

then discriminated according to whether broadleaf species or 

conifers formed the greatest percentage cover and correlations 

with waveform parameters (section 2.3.2) were calculated.  

 

2.3 GLAS Data 

2.3.1 Data description: The Geoscience Laser Altimeter 

System (GLAS) is carried on the Ice, Cloud and land Elevation 

Satellite (ICESat) and is operated at intervals to capture 

measurements for three seasons each year: usually for 

approximately month-long periods during February-March, 

May-June and October-November. GLAS simultaneously emits 

1064nm and 532 nm pulses which produce NIR elliptical 

footprints of 64m average equivalent circular area diameter at 

172m intervals along the ground track. Footprint horizontal 

geolocation is unknown for the laser operation used in this 

study (L3D), however is expected to vary between 0.0 ± 2.7 

metres (L3A) and 17.4 ± 22.8 metres (L3B). 

Footprints are broader than the ideal diameter for vegetation 

analysis (approximately tree crown width) and this increases the 

likelihood of vegetation and ground signals being combined 

within the returned waveform thereby complicating 

interpretation. For footprints containing complex topography 

and vegetation distribution, apparent vegetation heights derived 

from waveforms may therefore differ from actual vegetation 

heights. A further consideration when studying the vegetation 

profile within waveforms is that laser energy diminishes 

towards the margins of the footprint and therefore waveforms 

are most representative of the footprint centre. 

Zwally et al. (2002), Brenner et al. (2003), Kichak (2003), 

Abshire et al. (2005), Harding and Carabajal (2005), Schutz et 

al. (2005) and NSIDC (2006) provide further details regarding 

the ICESat mission and data. 

For this study, the following products were used from data 

release V026 (Zwally et al. 2006): level 1A GLA01 (Global 

Altimetry data - raw waveform) and level 2 products GLA06 

(Global Elevation data – footprint geolocation) and GLA14 

(Global Land Surface Altimetry data – alternate model fit). 

Waveform structure is formed by the returned energy for 

intercepted surfaces at and above the ground surface within 

footprints. Signal Begin and Signal End positions within the 

waveform indicate the highest canopy surface and lowest 

ground elevation within footprints and are identified by the 

signal exceeding a background noise threshold. Waveform 

amplitude is determined by both area of intercepted surfaces 

and the intensity of the returned laser pulse. Vegetated 

footprints on relatively flat terrain are expected to produce a 

bimodal waveform with a narrow peak from the ground surface 

and a broader, more complex return from the overlying canopy. 

The canopy return represents, in part, the surface area of 

intercepted canopy elements and is therefore explored with 

regard to the potential to estimate vegetation volume. To 

facilitate interpretation, the GLA14 product provides a model fit 

to the waveform using the sum of six Gaussian peaks (Figure 1). 

These are used in the identification of waveform parameters for 

this study. 

 

 
Figure 1. Raw waveform showing alternate fit Signal Begin and 

Signal End waveform positions plus model 

decomposition (the sum of six Gaussian peaks) 

 

2.3.2 Waveform parameters: Several waveform parameters 

were used to explore their potential to estimate stemwood 

volume for the Forest of Dean. Firstly a method of estimating 

maximum canopy height presented in Rosette et al. (in press) 

was used. Of the lowest two Gaussian peaks (Figure 1), the 

centroid of that with the greatest amplitude was used to identify 

the ground surface. Maximum canopy height was then estimated 

as the elevation difference between this location within the 

waveform and the Signal Begin position. 

This estimated maximum canopy height was used to isolate the 

region of the waveform assumed to be returned from the 

vegetation. Percentiles of cumulative energy within the 

vegetation return were calculated (adapted from Harding et al. 

2001).  

Waveform-derived maximum canopy height, plus heights of 

cumulative energy percentiles were then explored as potential 

estimators of stemwood volume (2.2.1 and 2.2.2). 
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Previous work has shown that, for this site, area under the 

canopy return of the waveform did not provide a robust 

estimator of stemwood volume. However, multiple regression 

was carried out using the maximum canopy height and heights 

of percentiles together with area under the canopy return, to 

assess whether an improvement on the relationships could be 

achieved. Canopy return area was assumed to be the sum of 

areas under Gaussian peaks 2-6 if peak 1 had been identified as 

the ground peak or the total of areas under Gaussian peaks 3-6 

if the ground position was assumed to be the centroid of peak 2. 

 

 

 

3. RESULTS 

3.1 Tallest species stemwood volume estimation 

Using the waveform parameters described in 2.3.2, regression 

analysis was carried out against yield model stemwood volume 

estimates for the tallest species within each footprint (section 

2.2.1). The results for key parameters are shown in Table 1. 

 

 

Parameters All species Conifers Broadleaf 

Max. canopy 0.59  (100.8) 0.59    (99.0) 0.75   (61.0) 

99th percentile 0.58  (100.5) 0.59    (98.3) 0.75   (59.9) 

98th percentile 0.58  (101.2) 0.58    (99.4) 0.75   (59.1) 

95th percentile 0.56  (103.5) 0.56  (102.2) 0.74   (59.1) 

90th percentile 0.47  (113.1) 0.46  (114.9) 0.74   (59.0) 

Table 1. Waveform-derived estimation of stemwood volume for 

the tallest species within footprints. Results shown 

are: R2 (RMSE m3/ha) 

 

For stemwood volume estimation of the tallest species within all 

footprints, the estimated maximum canopy height produced the 

best relationship with R2 of 0.59 and RMSE of 100.8 m3/ha. 

 

3.1.1 Coniferous species: Differentiating between 

coniferous and broadleaf species did not significantly improve 

the estimation of stemwood volume for conifers. Using the 

height of the 99th percentile of cumulative energy produced R2 

of 0.59 and RMSE of 98.3 m3/ha. This relationship is shown in 

Figure 2. 

 

 
Figure 2. Relationship between stemwood volume estimates and 

height of 99th percentile of cumulative energy for 

footprints in which conifers form the tallest species. 

 

3.1.2 Broadleaf species: Considering broadleaf species in 

isolation however, resulted in a substantial improvement in 

correlation (R2 of 0.75 and RMSE of 59.1 m3/ha using height of 

the 98th percentile of cumulative energy). This is shown in 

Figure 3. 

 
Figure 3. Relationship between stemwood volume estimates and 

height of 98th percentile of cumulative energy for 

footprints in which the tallest trees are broadleaf. 

 

3.2 Mixed stand stemwood volume estimation 

Weighted stemwood volume estimates accounting for the mixed 

species composition of stands (section 2.2.2) were used to 

regress waveform-derived maximum canopy height estimates 

and heights of cumulative energy percentiles. Key results of 

these calculations are found in Table 2. 

 

Parameters All species Conifers Broadleaf 

Max. canopy 0.46  (102.1) 0.63   (86.6) 0.46   (76.6) 

99th percentile 0.47  (100.7) 0.64   (85.5) 0.47   (75.8) 

98th percentile 0.48    (99.6) 0.65   (84.3) 0.47   (75.6) 

95th percentile 0.50    (97.8) 0.66   (82.5) 0.46   (75.8) 

90th percentile 0.49    (97.6) 0.65   (83.7) 0.36   (82.3) 

Table 2. Waveform-derived estimation of mixed stand weighted 

stemwood volume. Results shown are: R2 (RMSE 

m3/ha) 

 

Greatest correlation was seen for all mixed stand weighted 

stemwood volume estimates using the height of the 95th 

percentile of cumulative energy. This produced R2 of 0.50 and 

RMSE of 97.8 m3/ha. 

 

3.2.1 Coniferous species: Height of the 95th percentile of 

cumulative energy also produced the best estimate when only 

considering coniferous species. R2 of 0.66 and RMSE of 82.5 

m3/ha was seen and the relationship is shown in Figure 4. 
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Figure 4. Relationship between mixed stand stemwood volume 

estimates and height of 95th percentile of cumulative 

energy for footprints dominated by conifers. 

 

3.2.2 Broadleaf species: However, considering broadleaf 

species separately produced a poorer correlation with R2 of 0.47 

and RMSE of 75.6 m3/ha for height of the 98th percentile of 

cumulative energy (Figure 5). 

 

 
Figure 5. Relationship between mixed stand stemwood volume 

estimates and height of 98th percentile of cumulative 

energy for footprints dominated by broadleaf trees. 

 

3.3 Area under the waveform 

Area under the waveform canopy return (2.3.2) did not produce 

a statistically significant improvement on the results using either 

stemwood volume estimate for either broadleaf species or 

conifers. 

 

4. DISCUSSION 

A previously developed method of estimating maximum canopy 

height (Rosette et al. in press) has enabled a new approach to 

estimating stemwood volume using waveform-derived 

parameters to be explored. Percentiles of cumulative energy 

were calculated using the region of the waveform returned from 

vegetation. Using the heights of these percentiles has allowed 

different elevations within the canopy return to be considered 

with respect to their ability to estimate stemwood volume 

derived from yield models. It is anticipated that, whilst higher 

elevations are largely the result of returns from the tallest 

species within footprints, returns from lower canopy elevations 

might better represent the mixed species composition within 

stands. 

Overall, results for the Forest of Dean are less consistent than 

previous methodologies which produced similar correlations for 

both broadleaf and coniferous species (Rosette et al. submitted). 

Stemwood volume estimates for the tallest species within 

footprints are considerably better for broadleaf species than for 

conifers (a possible effect of upper canopy shape), whilst for 

mixed stand estimates, greater correlation is seen for stands with 

greatest cover formed by conifers than by broadleaf species. 

However, improvements are noted on previous methods for 

stemwood volume estimates for the tallest broadleaf trees (from 

R2 of 0.65, RMSE 68.2 m3/ha to R2 of 0.75, RMSE 59.1 m3/ha) 

and for mixed stands dominated by conifers (from R2 of 0.57, 

RMSE 92.3 m3/ha to R2 of 0.66, RMSE 82.5 m3/ha). Mixed 

stand estimates show marginally higher correlations at higher 

percentiles of cumulative energy for broadleaf species than for 

conifers, possibly due to canopy structure and leaf area affecting 

laser penetration. 

Area under the waveform canopy return failed to significantly 

improve estimates of stemwood volume. An explanation for this 

could be the considerable variation in reflectivity that may be 

expected between species. Therefore, for such a species diverse 

forest, the principal reason for differing waveform amplitude 

may be reflectivity as opposed to intercepted surface area 

(anticipated to be related to volume). 

Where multiple scattering within the canopy produces a ‘tail’ 

below the visible ground peak (Figure 1), this method may offer 

a more constant means of identifying the ground surface within 

the waveform as it is not dependent on the assumption that the 

Signal End position represents the lowest ground surface or on 

the accuracy of a DTM. However, sufficient laser penetration to 

produce a ground peak may be problematic under dense 

canopies whilst combined vegetation and ground returns may 

prevent reliable identification of the ground surface for steep 

vegetated slopes. For the Forest of Dean, only the greatest 

slopes (15.5m – 18m within-footprint elevation difference) with 

continuous vegetation cover did not produce a clear ground 

return. A further source of error may be dense ground cover 

vegetation which could cause misidentification of the ground 

peak. 

Limitations of stemwood volume estimations using yield 

models to assess the potential of using waveform-derived 

parameters are recognised. Stands are unlikely to respond 

precisely as anticipated within yield models due to habitat 

anomalies or changes to management practices for example. In 

terms of long-term production forecast, Edwards and Christie 

(1981) suggest this may result in errors of 20% (however, 

updates are made to the sub-compartment database annually).  

Forestry Commission yield models are not dynamic and 

therefore do not take account of changes in growth or stand 

composition due to competition, damage affliction or mortality. 

Estimates for coniferous stands for example, have been found to 

overestimate actual volume. 

Stemwood volume estimates used in this study include some 

common stands which were contained within the sub-

compartment database but not listed as planted. These zero 

volume values may have improved the relationships and may go 

some way to explaining the spread among lower waveform 

estimates: initial observations at footprints locations have 

revealed the presence of unmanaged trees, shrubs or buildings 

in some cases which are contributing to waveforms. 

An assumption is also made in the calculation of stemwood 

volume for mixed stands, that components are regularly 

distributed within sub-compartments rather than individuals 
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forming clusters or being dispersed along a linear feature such 

as a footpath. 

Nevertheless, at a stand level, calibration of yield model 

estimates using field measurements has produced vegetation 

height accuracy of 98%. Furthermore, in the course of this 

study, tree height measurements within 21 footprints at the 

Forest of Dean produced R2 of 0.94 when compared with 

corresponding yield model estimates. 

The Forestry Commission sub-compartment database and yield 

models are widely used in forest management and have 

provided the best available indication of vegetation distribution 

throughout the forest. They have therefore formed useful points 

of reference against which to explore methods of estimating 

stemwood volume from waveforms. 

The study presented in this paper refers to relationships using 

waveforms acquired whilst vegetation was predominantly still 

in leaf. Correlation may be anticipated to vary with seasonal 

differences in LAI. 

 

5. CONCLUSION 

This paper has described a method of estimating stemwood 

volume directly from ICESat/GLAS waveforms. Waveform-

derived maximum canopy height and heights of cumulative 

energy percentiles for the estimated waveform canopy return 

were compared with yield model stemwood volume coincident 

with footprints. 

Stemwood volume estimates for the tallest species within 

footprints produced R2 of 0.59, RMSE 98.3 m3/ha for conifers 

and for broadleaf species, R2 of 0.75, RMSE 59.1 m3/ha.  

Further stemwood volume estimates taking account of the 

mixed species composition within stands were calculated. 

Footprints were distinguished depending on whether the 

greatest percentage cover was formed by coniferous or 

broadleaf species. For mixed stand estimates, R2 of 0.66, RMSE 

82.5 m3/ha was found for stands dominated by conifers whilst 

stands in which broadleaf species are prevalent produced R2 of 

0.47, RMSE 75.6 m3/ha. 

The results demonstrate the opportunity for waveform-derived 

stemwood volume estimates from satellite lidar to be applied 

where an appropriate digital terrain model and field data are not 

available. 
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ABSTRACT: 
 
Lately, laser scanning even of huge areas has become economically sensible due to new airborne laser-scanners delivering higher 
resolutions and measurement frequency. In this paper we will describe a novel approach for single tree delineation based on airborne 
laser-scanner-data for use in forestry applications. This currently leads into the development a forestry management tool as a part of a 
new three-dimensional geoinformation system (3D-GIS). 
By enhancing the well-known watershed-algorithm by adding a third dimension, we developed a novel volumetric approach, which 
is able to accurately — and robustly — detect positions and dimensions of the individual trees in a forest. Each tree’s “business card” 
is then stored in a database, the “Virtual Forest” which serves as the integration platform for a new single-tree-based forestry 
management system currently being developed in Northrhine-Westfalia, Germany. Combining the single-tree-data with known 
statistical methods, the system will provide the user with a detailed view on forestry units, on single trees or on the complete forest 
within an administrative district. The presented algorithms and methods were integrated into our 3D-GIS and successfully tested in a 
82km² test-area close to Arnsberg, Germany.  
 
 

1. INTRODUCTION 

In recent years, laser-scanner technology has responded to 
the demands of the market by increasing resolution and 
measurement-frequency. Today’s devices are capable of 
performing up to 150.000 measurements per second at 
helicopter flight level (Leica) or up to 100.000 measurements 
per second at airplane flight-level (Riegl). Multiple echoes or 
even a full-waveform recording provide information not 
limited to the surface of a forest (fig. 1). Lower levels are also 
monitored. Using the first echo it is possible to calculate a 
digital surface model (DSM), an (interpolated) grid-based 
representation of the vegetation surface. On the other hand 
the last received echo can be processed into a digital terrain 
model (DTM). The DTM calculated this way might contain 
remains of vegetation as well as buildings and other objects 
that are not penetrable by laser. By removing this 
perturbation and by interpolating the resulting gaps a so-
called filled digital terrain model (FDTM) is calculated. The 
difference between the DSM and the FDTM is called 
differential model (DM). It is the DM that is actually used to 
locate and parameterise individual trees. 
 
Adding high-resolution aerial photos it is possible to 
calculate “true-ortho-photos”, which are free of paralactic 
distortions. In true-ortho-photos the roof of a building covers 
exactly the buildings footprint. The image looks like every 
pixel was taken with a perpendicular optical axis.  
 
This paper introduces our new single tree delineation 
algorithm which takes the differential model or true-ortho-
photos as input data. The results of the algorithm using DM-
data and true-ortho-photos will be compared later in this 
paper. 
 

2. PROCESSING OF THE DATA 

2.1 Data Acquisition 

All examples in this paper are based on data recorded in 
spring 2004 and summer 2005 using a Toposys Falcon II 
scanner (Schnadt, 2004, Toposys). The data shows the area 
around “Glindfeld”, a small town located close to 
Winterberg, Germany. The size of the recorded area was 
about 82km². The dominating tree species in the forestry 
units used for examination of the presented algorithm is 
spruce, but there were also other coniferous species like 
Douglas Fir and European Larch.  
 

 
Figure 1. Multiple Echoes in LIDAR Data Recording 
 
The resolution of the LIDAR data was specified to be one 
point per square-meter, the true-ortho-photos were specified 
to have a resolution of four pixels per square-meter. 
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Furthermore, a smaller area was recorded with a nominal 
resolution of 4 points per square meter.  
 
The pointcloud of the first echo has been rastered into a 
digital surface model grid (DSM), while the last echo has 
been converted into a digital terrain model raster (DTM). 
Due to the limited penetrability of the canopy, there may be 
(small) regions where no ground echo occurred. For these 
points the last echo is identical with the first echo. During the 
process of the DTM generation a semi-automatic filter was 
applied by the data provider in order to eliminate trees and 
bushes as well as artificial objects like buildings and bridges. 
This leads to a DTM representation with gaps. The DTM 
with interpolated gaps is referred as filled digital terrain 
model (FDTM). The difference between the DSM and the 
FDTM is a differential model (DM, also known as canopy 
height model CHM or normalized digital surface model 
nDSM). 
 
The overlapping high-resolution photos captured by a rgb-ir 
line-scanner were projected on the DSM. The result is a set 
of “true-ortho-photos”, which are free of paralactic 
distortions. 
 
2.2 LIDAR Processing 

A popular way for single-tree-delineation in LIDAR maps is 
the use of the watershed-algorithm. (Diedershagen, 2003) 
With a standard watershed-algorithm the z-axis of the three 
dimensional data is only used to generate gradients and 
calculate affiliations, resulting in a set of areas, each 
annotated with its size. So the size of the region would be the 
only criterion to decide whether a region represents a tree or 
a branch of a tree. We decided to look at the volume of a 
peak pointing out of the canopy, rather than restricting the 
investigation to 2-D simplifications.  
 
By increasing the amount of raindrops simulated in the 
watershed-algorithm up to a level that floods the whole 
canopy, this algorithm can easily be modified to work on 
three-dimensional data. To illustrate the volumetric algorithm 
we will use a sectional drawing — a cut through a three-
dimensional DM. Fig. 2a shows several trees and the canopy 
above them. To make it easier to associate this drawing with 
rainfall and water-flow, we turned the canopy upside down in 
the subsequent images with the most significant points – the 
maximum heights in the original data that may represent tree-
tops – as local minima of the graph. Fig. 2b illustrates the 
idea of a standard watershed algorithm. Water is poured 
across the area uniformly. The water-flow is simulated and 
the amount of arriving water is measured at all local minima. 
The amount of water is equivalent to the area covered by the 
peak. 
 
To get the volumetric information, we fill the DM with water. 
Then, in each cycle, we puncture the point with the highest 
water-pressure acting on it and measure the amount of water 
flowing out of this opening. (Fig. 2c) The result is a value, 
which is always greater than or equal to the real volume of 
the peak. The interesting feature is that the result is far away 
from the real volume for the most extreme points (for the 
most likely treetops) but very close to the real volume for the 
critical peaks that are hard to decide. For each opening which 
receives a volume greater than a user-specified threshold a 
tree is generated in the map. The tree is annotated with its 
height that can be read out of the DM. Fig. 2d shows a 

situation where only one peak is left. The remaining volume 
is below the threshold, so no tree will be generated at this 
position. 
 
a) 

 
 
 
b) 

 
 
 
c) 

 
 
 
d) 

 
 

Figure 2. Single Tree Delineation a) Laser-Surface and Trees, 
b) Watershed-Algorithm, c) Volumetric Algorithm, d) Last 

Decision for the Volumetric Algorithm 
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The volumetric approach introduces an additional dimension 
to the data used for the calculation and makes it easier to 
decide whether a peak is a tree or just a branch of a tree. This 
is especially valuable for our test-data because the z-axis of 
the rasterized LIDAR data features a resolution of 1cm 
compared to the 1m-resolution of the x- and y-axis.  
 
Especially for coniferous forests, the detection results using 
the volumetric approach were significantly better compared 
to the ones of the standard watershed algorithm applied to the 
same data. Not surprisingly it turned out that the results for 
the four points per square meter data were better than the 
ones for the 1m data. 
 

 

 
 

 
 

Figure 3. RGB True-Ortho-Photo and Image after Colour-
Tone-Based Brightness Reduction 
 
2.3 Arial Photo Processing 

While analysing the source of the LIDAR DM, the point-
cloud recorded by the laser-scanner, we encountered some 
gaps in the coverage, which led us to the question whether 
homogeneity of the source data is also important for the 
detection results. The true-ortho-photos are stored at a 
resolution of four pixels per square meter. So they are 
comparable to the high-resolution LIDAR data as far as 
resolution is concerned. But the true-ortho-photos have a 

better homogeneity compared to the LIDAR data so they are 
a good candidate for the comparison. In order to transfer the 
volumetric watershed idea to the ortho-photos, we simply 
associated brightness-levels of the photos with an artificial 
height and directly applied the same volumetric algorithm to 
the images. The results were amazingly promising.  
 
A minor problem was, that in addition to the trees, a few 
artificial landmarks like white road markings were 
“detected”. We implemented a colour-tone-depending 
brightness-reduction-filter (fig. 3). The filter takes four 
channels (R, G, B and IR) as its input. Each pixel in the 
destination image is mixed of the rgb-values of the source 
and a defined brown colour. The ratio between the source 
and the constant brown colour is determined by the values of 
the four input channels. Basically it can be said that bright 
objects with a colour different to all typical green-tones are 
reduced in brightness by adding the brown colour. In the 
resulting image, we chose the green-channel of the RGB 
image – obviously a sensible choice for trees – for detection. 
At the first glance, this data looks very similar to a greyscale 
representation of the LIDAR-data. We associated height-
levels with brightness-levels in the green-channel and applied 
the volumetric algorithm described above to this data in order 
to find the tree-positions. The true-ortho-photos are geo-
referenced so we read the height of each detected tree out of 
the DM again. 
 
The detection rate was significantly improved compared to 
the volumetric approach on LIDAR-data. In older forestry 
units, close to their harvesting age, we achieved detection 
rates of about 95%. 
 
2.4 Extraction of Forestry Attributes 

In addition to the position and the height of an individual 
tree, attributes like diameter at breast height (DBH) and 
timber volume are interesting when judging the value of the 
log. In addition to the height of a tree, the diameter (of the 
visible part) of its crown can also be calculated using the DM 
by performing a gradient descent for all detected trees. Note 
that this must be done simultaneously for all trees in order to 
divide areas that are reachable by gradient descent from 
several trees centres correctly between the adjacent crowns. 
The DBH was the most important characteristic of a tree in 
former times and is still very important for the forester. 
According to (Hyyppä, 1999), the DBH can be calculated 
using the height and crown-diameter of a tree by: 
 

γβα ++= hLDBH  
 
In this equation α, β, and γ are parameters depending on the 
local situation of the tree. L is the crown-diameter and h 
represents the height. The parameters α, β and γ can be 
calculated using regression formulas and measured data 
triplets DBH, L and h.  
 
Other important attributes like the timber volume of a stem 
can be derived by using the DBH and the height of the tree or 
other known attributes. In (Kramer, 1995) and 
(Landesanstalt, 1989) the authors specify – ordered by tree-
species – the relation between several attributes of an average 
tree. Knowing the DBH, the height of the tree and the quality 
of the habitat, it is possible to estimate the other attributes of 
the tree that are relevant in forestry management. 
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2.5 Implementation 

The described algorithms were integrated into the VEROSIM 
3D GIS, a software solution for virtual reality systems and 
GIS. The threshold needed for the decision in the volumetric 
algorithm is set interactively by using a slider (fig. 4). The 
varying results, depending on the threshold, are displayed in 
real-time in order to help the user to find the correct value for 
each forest unit. Older units will require higher thresholds 
because smaller peaks will most likely represent only 
branches whereas a peak with the same volume in a younger 
unit will most likely be a treetop.  
 

 
Figure 4. Detection Results and User Interface 
 
2.6 Results 

It turned out, that not only resolution but also homogeneity of 
the data improves the quality of the single tree delineation. 
Although the detection rate gets better using the additional 
visual information as explained above, LIDAR-data will 
mostly deliver better tree-positions. On the other hand RGB 
and CIR fotos depend on the actual lighting situation. At 
noon, the treetops will be the brightest point of a tree giving 
correct results. If the image was taken during the later 
afternoon, the lower sun will light one side of a tree moving 
the “optically detected centre” of the brightest part of a tree 
away from its treetop. Within the 82km² test-area, we found 
several places were lightning conditions made it hard to 
recognize trees – even for a human. 
 

3. ONGOING WORK 

The results shown in this paper are a first step towards the 
“Virtual Forest”, a database containing each individual tree 
in Northrhine-Westfalia. We already delineated a number of 
forestry units with a total of about 120.000 trees (Fig. 5). 
During this work we discovered several points which will 
need ongoing work and attention. 
 
• It turned out that the detection quality is best on 

homogeneous high-resolution data. Promising sensors 
that seem to be capable of delivering the required 
resolution at a homogenous point-distribution are 
DLR’s HRSC stereo-camera (Scholten, 1999), using an 
appropriate algorithm for stereo matching, as well as the 
latest rotating and oscillating mirror laser-scanners. We 
will implement import-filters for this data and evaluate 
its quality for single-tree delineation using the 
volumetric algorithm presented in this paper. 

 

• The boundaries of the units used for detection of the 
120,000 trees were based on current administrative units 
that consider ownership and historical borders as well as 
forestry office districts. In many units we found several 
species of trees or a huge spectrum of sizes. It became 
apparent that different classes of trees also need 
different parameters for the detection. In order to 
support the single-tree-delineation, we will integrate an 
algorithm that separates current units or even the whole 
forest into biologically reasonable areas that contain a 
homogeneous tree structure. 

 
• Some of the formulas used for the calculation of the 

individual tree’s attributes base on statistical data. The 
Hyyppä-formula uses constants α, β and γ as a 
description of the habitat. It turned out that the variance 
of these parameters is rather high. A promising approach 
to adapt the parameters to an area is to combine airborne 
measured data with terrestrial measurements. We will 
develop new methods to extract the DBH and position 
of individual trees from terrestrial laser-scanner data and 
match the positions of these trees with the ones detected 
in the airborne LIDAR data in order to get sample sets 
of completely characterized trees. These trees will serve 
as an input to a mathematical regression tool that can be 
used to determine the local parameters. 

 
• Other modules will be added to the Virtual Forest GIS. 

Some of these modules will be: Classifying the tree 
species out of aerial and satellite images, segmenting a 
forest into units with similar structure and species, 
calculating terrain attributes for each unit, simulating 
forest growth and calculating the profit of a harvesting 
action. 
 

 
Figure 5. View into the Virtual Forest 
 

4. CONCLUSIONS 

By using the novel volumetric approach the detection rate 
was significantly improved compared to the well-known 
watershed-algorithm. The algorithm works well on LIDAR 
data as well as on a combination of aerial photos (which 
deliver tree positions) and laser-scanner-data (for the 
determination of the tree-height). It works best on 
homogeneous high-resolution data.  
 
Additional attributes of the individual tree were estimated 
using the DBH formula invented by Hyyppä and Inkinen and 
statistical relations between DBH and other attributes of a 
tree. 
 
We stored the complete single-tree data set, the tree’s 
“business card”, in a geo-database. The user is now able to 
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select trees in the database using SQL-statements or a 
database GUI. Using this tool a forester is able to react on 
requests of the timber market faster and more efficiently, 
because it becomes possible to determine exact locations in 
the forest where the customer-ordered number of trees of a 
given species with a certain height and diameter can be 
harvested. The database is used as a warehouse management 
system for the natural warehouse forest. 
 
The tree attributes generated by the presented combination of 
algorithms make up the most significant part of the data a 
forester needs to collect to evaluate and to further develop 
forestry units. Thus, there is a strong demand to make our 
forest-optimized 3D-GIS available as a standard tool for 
foresters in NRW. 
 
By passing the gathered information to other modules of the 
3D-GIS, it will be possible to project the development of the 
forest into the future in a kind of “time-machine” (Klemmt, 
2004) and to be able to exactly calculate the cost and gain of 
a thinning. 
 
The generated virtual forests can also be used on harvester 
simulators during the training of new drivers to give them an 
impression of the areas they will work in (Fig. 6). 
 
Recapitulating, one can state that the volumetric approach for 
single-tree delineation in the VEROSIM 3D-GIS is a 
foundation for many different new applications in forestry 
management.  
 

 
Figure 6. Forest Machine Simulation in the Virtual Forest 
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ABSTRACT: 
 
The term “integration” can be defined as the fusion of two separate entities, resulting in a new entity. Integrating laser scanning with 
photogrammetry allows us to compensate for the individual weaknesses of each method alone, thus providing more accurate 
modelling, interpretation and classification of the surroundings. Laser scanners produce data that can vary in terms of point density, 
field of view, amount of noise, incident angle, and distribution method. Similarly, the accuracy requirements or level of automation 
may also vary. Therefore, no single registration method overcomes others. The most suitable method is usually case-specific. This 
paper presents a short overview of current registration approaches and proposes four levels of integration: object-level integration, 
photogrammetry aided by laser scanning, laser scanning aided by photogrammetry, and tightly integrated laser scanning and optical 
images. In addition, some examples are presented of integrated laser scanning and photogrammetric data.  
 
 

                                                                 
*  Corresponding author.   

1. INTRODUCTION 

Both terrestrial (TLS) and airborne (ALS) laser scanning (LS) 
offer improvements over photogrammetric methods (Hyyppä et 
al., 2000; Jansa et al., 2004). LS methods are based on using 
active sensors that transmit and receive light rays for range 
measurements. In addition to range information, LS data can 
also include information on the backscattered intensity of the 
returning light. If the full-waveform is available, the accuracy 
of the range information can be improved in the post-processing 
phase, and other information can also be derived, such as the 
length of the returned echo. Some advantages of LS include the 
immediate generation of a 3D point model, ability to partially 
penetrate through vegetation and water, accuracy of the range 
measurements, ability to measure areas without texture, the 
ability to measure even in the dark, and competitive expenses. 
 
Soon after LS devices had been developed to a commercial 
level, many people speculated that photogrammetry would be 
totally replaced by LS. After the initial enthusiasm, however, it 
has become more obvious that integrating optical information 
with LS has many advances. The major advantages of images 
are similarity to human vision, well-known internal geometry, 
good interpretability, ability to capture texture and multichannel 
reflectance information, ability to model moving objects, re-
measurability, and use of a frame-based acquisition method. 
Because of the geometric stability of images, they are the most 
suitable references for inspecting laser point clouds.  
 
The term “integration” can be defined as the fusion of two 
separate entities, resulting in the creation of a new entity. 
Properly integrating laser scanning with photogrammetry allow 
us to compensate individual weaknesses of each method alone, 
thus providing more accurate applications for modelling, 
interpretation and classification of surrounding objects.   
 

LS devices can be categorized into two major classes based on 
the physical measuring method: triangulation and time-of-flight 
(TOF) (Blais, 2004). TOF methods have two major variants: 
pulse-based systems and those based on the phase differences of 
modulated light rays. In the triangulation method, the camera 
comprises a constant part of the device. In the case of TOF 
systems, an external camera is usually attached to a scanner or 
images are taken separately. In addition to normal lenses, 
cameras can have panoramic or fish-eye lenses or the 
panoramic camera can be based on line sensor.   
 
Registration plays a key role when combining different types of 
data. If the registration fails or is incomplete, the integration 
may give misleading information. Since different laser scanners 
produce data that can vary in terms of point density, field of 
view, amount of noise, incident angle, distribution method, and 
the accuracy requirements or the level of automation may 
significantly vary, there is no single general registration method 
that would outperform the others. The most suitable method is 
typically case-specific.  
 
This paper presents an overview of various registration 
approaches, proposes four levels of integration and provides 
examples of integrated LS and photogrammetric data.   
 
 

2. REGISTRATION 

Registration can be considered the foundation on which the 
integration is based. In principal, registration is completed 
either by determining the sensor orientations of the images and 
LS separately for the common coordinate system or by directly 
determining the relative orientation of the data sets (Fig. 1). By 
default, the latter method ensures better mutual accuracy, 
because it includes only one transformation and always uses the 
common tie features. In those cases in which a camera is 
permanently mounted to the laser scanner, the system only 

355

IAPRS Volume XXXVI, Part 3 / W52, 2007



 

occasionally needs to be calibrated in order to ensure the 
registration of LS point clouds and images.  

 
Figure 1. LS point clouds and images can be registered either 

separately into the common coordinate system (left) 
or by directly determining one relative orientation 
(right). 

 
2.1 Registration through the common ground coordinate 
system 

ALS obtains the position and attitude information from the 
Global Positioning System (GPS) and Inertial Navigation 
System (INS) sensors. The accuracy of these direct orientation 
sensors even challenges the conventional photogrammetric 
aerial triangulation (Heipke et al., 2002). If transformation to a 
local coordinate system is needed, the datum is typically found 
using planar areas. GPS and INS observations are nowadays 
used as additional observations in the block adjustment for 
determining the camera locations in aerial triangulation. 
 
Both TLS and terrestrial images are typically registered to a 
known coordinate system using targets, since targets can be 
interpreted easier and measured more accurately than natural 
features.   
 
2.2 2.3 Direct registration between laser scanning data and 
images 

Registration of LS data and images basically follows the same 
workflow as registration of two or more images. According to 
Zitova (2003), the majority of registrations have four steps: 
feature detection, feature matching, transform model estimation, 
and transformation. Transformation may also include 
resampling.    
 
The main problem with feature detection lies in finding features 
that can be robustly interpreted from both LS data and images. 
Moreover, possible perspective differences can further hinder 
interpretation. Appropriate feature selection depends greatly on 
the density of the LS point cloud. The resolution of currently 
available terrestrial laser scanners is high, especially when 
measuring short distances. In such dense point clouds, even 
small details are visible, thus enabling the detection and 
measurement of photogrammetric targets, for example. 
Typically, the intensity information from LS is used for 
identifying centres of 2D circular targets (Parian and Gruen, 
2005) or natural features (Elstrom et al., 1998; Forkuo and 
King, 2004) that are also easy to identify from images. Most LS 
devices operate at an infrared band, which must be taken into 
account when natural tie features are selected from intensity 
images (Smith and Elstrom, 1999).  
 
The point density of ALS is usually sparser than TLS data and 
can vary significantly depending on the LS device and flying 
altitude. In addition, customers may have specific desires for 
point density. Noise, outliers and the large footprint of the 

single laser beam, as well, may prevent the identification of 
finding robust and accurate tie features.   
 
Several alternatives to the use of corresponding features have 
been proposed for the registration of LS data and images, 
including the edges of buildings (Schenk and Csatho, 2002; 
Zhang et al., 2005), conjugate straight-line segments (Habib et 
al., 2005), planar objects (Roux, 2004), and surfaces (Habib and 
Schenk, 1999; Postolov et al., 1999; Wendt and Heipke, 2006).  
 
In addition to numerical methods, manual methods can also be 
useful for registration. Rönnholm et al. (2003) describe how 
ALS data and terrestrial images can be registered using an 
interactive orientation method. Similar to numerical methods, 
the interactive orientation method requires enough tie features 
within the image footprint. LS data usually include many small 
details, such as hits from street lamps, pipes, antennas, and 
trunks. In numerical registrations, all these details are filtered 
out because they are considered to be outliers. Nevertheless, 
small details can be valuable during the registration using 
interactive methods.    
 
Physical models describe the geometrical aspects of the data 
acquisition process. In the case of images, the physical model is 
typically the collinearity model extended by suitable additional 
parameters. Physical models can also be determined for LS 
(Schenk, 2001).  
 
Finally, the data sets are transformed using the selected 
transformation model. If regularly spaced data (e.g., image or 
laser data organized in a grid) is transformed, the new 
coordinates are non-integer and will require some interpolation. 
In the case of irregularly spaced laser data, interpolation is not 
needed. 
 

Errors that affect registrations 

Both images and LS data can have internal errors which can 
affect registration. Frame-based photogrammetry uses interior 
orientation for solving these errors. The internal errors of 
cameras can be minimized by accurately determining the 
principle point, the principle distance and lens distortions. 
 
According to Schenk (2001), ALS data typically include LS 
range errors, scan angle errors, LS mounting errors, GPS 
mounting errors, INS errors, systematic GPS errors, error in the 
geoid normal, synchronization error, and interpolating error. 
These errors can be reduced using, e.g., overlapping laser strips, 
ground control features and photogrammetric references. 
Pushbroom images have GPS and INS errors similar to those 
for LS. It would be interesting to acquire simultaneously 
pushbroom images, frame-based images and LS data, and to 
investigate whether comparison of bushbroom and frame-based 
images could be used for eliminating GPS and INS errors from 
LS data. 
 
Terrestrial laser scanners can suffer from physical errors similar 
to those of total stations. Physical parameters, however, are not 
sufficient to describe all errors in TLS data. Therefore, also 
empirical parameters should also be used. Lichti and Licht 
(2006) give good information on calibrating terrestrial laser 
scanners.         
 
Different surface materials may cause systematic shifts in the 
LS data (Boehler et al., 2004). Pfeifer et al. (2004) pointed out 
that surface types other than those used for calibration cannot 
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be expected to have correct heights. One factor causing 
variation in the range with different surface materials is the 
selected triggering method of the returning echo. Katzenbeisser 
(2003) gives illustrative presentation of how LS echoes interact 
with various surfaces. Wagner et al. (2004) proposed that 
different triggering methods or a combination of methods 
should be used to achieve optimal performance for each surface 
type. If full-waveform LS data is not available, it is not possible 
to re-process the triggering phase. Nevertheless, the effect of 
false triggering can be reduced by class- or object-based 
registration. Fig. 2 illustrates how some ALS echoes from white 
road paintings are shifted downwards from the level of the 
asphalt.   
 

 
 

 
 
Figure 2. The cross-section of ALS data reveals how some 

echoes are shifted downwards from the asphalt level 
when hitting the white road markings. 

 
In addition to internal error sources, the interpretation of tie 
features can reduce the accuracy of registration. Interpretation 
can be difficult, if the data is coarse, noisy or difficult to 
perceive. 
  
 

3. LEVELS OF INTEGRATION 

The integration of laser point clouds and images can have 
different levels depending on the desired end-product, the 
nature of the original data or differences in emphasis. The four 
main levels of integration are: 
 

1. Object-level integration 
2. Photogrammetry aided by laser scanning 
3. Laser scanning aided by photogrammetry 
4. Tightly integrated laser scanning and optical images  

 
In this chapter, the levels of integration are described in greater 
depth and some examples from the literature are presented as 
examples to illustrate the applications of each integration type.  
 
3.1 

3.2 

Object-level integration 

In object-level integration, LS and photogrammetric data are 
processed and interpreted separately (Fig. 1). A typical example 
of object-level integration is the creation of hybrid 3D virtual 
models, in which digital terrain model is created from laser 
point clouds, but breaklines and buildings are measured from 
images. Integration is not limited to involve only either airborne 
or terrestrial data. Actually, the most complete 3D virtual 
models may integrate information from ALS, TLS, aerial 
images, terrestrial images, and geodetic observations. 
 
Orientation to the common coordinate system is usually done 
separately for LS and images. However, if common features can 

be found, registration of interpreted 3D objects can also be 
used. 
 

  

  

  

 

 

Laser scanning Image acquisition 

Orientation Orientation 

Interpretation Interpretation 

Registration 

Interpretation 

 
Figure 3. Object-level integration of LS and photogrammetry. 
 
 

Photogrammetry aided by laser scanning 

The second level of integration is photogrammetry aided by LS. 
Although the main focus is on images, LS data is also 
necessary. In this approach, LS data and images are either 
separately oriented or directly registered into a common 
coordinate system. A typical example of this level is the 
creation of orthophotos using LS-based surface modes (e.g., 
Wehr and Wiedemann, 1999). The relief displacement errors 
are eliminated from the original images using the information 
from the LS-based object models or, in the case of aerial 
images, digital terrain models.    
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Photogrammetry is aided by LS. 
 
By augmenting photogrammetry with laser data, the popularity 
of mono-plotting can be significantly improved. The principle 
is that the features can be selected from the image plane, and 
the depth information is derived from laser data. Mono-plotting 
applications have been proposed, for example, by Abdelhafiz et 
al. (2005) and Ressel et al. (2006). 
 
Kern (2001) made an interesting proposal to reduce the effects 
of shadows from the original images using LS-derived 3D 
models. The idea was that circumstances similar to those 
occurring during image exposure are reconstructed using 3D 
model and ray-tracing software. Although this approach has yet 
to be implemented, it could be beneficial both with aerial and 
terrestrial photogrammetry. 
 
Haala and Brenner (1999) used an ALS-derived normalized 
digital surface model with colour-infrared aerial images to 
improve image-based classification of streets, grass, trees, 
buildings, and shadows.  

  

 

 

 

Laser scanning Image acquisition 

Registration and 
Orientation Orientation 

Interpretation 
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Wendt (2007) used TLS point clouds for choosing planar tie 
features from image-derived set of interest points. This method 
enabled automatic registration of images and laser scans. 
  
Visualization of 2D images or videos in 3D is possible, e.g., 
using 3D depth maps (Harman, 2000; Fehn et al., 2002). 
Similar methods are used with some autostereoscopic displays, 
such as lenticular or barrier displays, in which several sub-
images are created from one 2D image and the depth map. With 
this technique, only one image and a depth map need to be 
stored, instead of five sub-images, for example. The conversion 
of regular 2D video stream with associated depth maps to 
autostereoscopic displays will be included in the new MPEG-C 
standard, ISO/IEC 23002-3 (Bourge et al., 2006). 
 
3.3 

3.4 

Laser scanning aided by photogrammetry 

The third level of integration is LS aided by photogrammetry. 
The main focus is on LS point clouds, though image data 
provide additional information. The most typical approach 
involves the colour coding of the laser point cloud. In this 
approach, the colour values are taken from registered images 
and are attached to 3D laser points. In addition, the textures can 
be extracted from images and attached to LS-derived 3D 
meshes. This approach is useful for creating detailed and 
photorealistic impressions even with quite an approximate 
mesh.  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. LS is aided by photogrammetry. 
 

One interesting approach is the registration of separate 
terrestrial laser scans using the relative orientations of images 
from a camera integrated into a laser scanner (Al-Manasir and 
Fraser, 2006; Kang et al., 2007). Image-based registration 
provided better registration than the commonly used Iterative 
Closest Point (ICP) method (Al-Manasir and Fraser, 2006).  
 
St-Onge and Achaichia (2001) proposed integrating laser-
derived digital terrain models and photogrammetric tree height 
models to bring out the temporal aspect that is essential for 
many practical applications. 
 
St-Onge (1999) overlaid the rectified multispectral videography 
onto the canopy height model to help in locating trees. He also 
suggested using imagery for providing information on tree 
species. Later (St-Onge and Achaichia, 2001), the canopy 
height models were extracted from historical aerial images 
bringing out the temporal variations of forests.  
 
Matikainen at al. (2003) used colour information from aerial 
images to classify segmented ALS point clouds with fuzzy 
logic. Lichti (2005) classified TLS point clouds using the 
colours of terrestrial images together with near infrared 
information from TLS as input for the thematic classifier.  
 

Persson et al. (2004) presented a method for tree species 
classification using integrated data. Individual trees were first 
extracted from the ALS data. Then, the corresponding spectral 
information was taken from near-infrared images and was used 
to separate different tree species.   
 
Rönnholm et al. (2004) suggests that terrestrial images can be 
used for understanding how ALS data interact with various 
structures. Their examples illustrated cases in which ALS data 
underestimated tree heights.  
 

Tightly integrated laser scanning and optical images 

The last level of integration contains tightly integrated LS and 
optical images. The main difference between this level and the 
previous ones is that registration after data acquisition is 
unnecessary. Typically, the laser scanner and camera are 
integrated at the device level by mounting both sensors rigidly 
on the same platform. After system calibration, the relationship 
between LS data and images is known. However, the data can 
be used identically to three other levels of integration. The trend 
in the development of laser scanners is towards tightly 
integrated systems. 
 
 

  
 
 
 
 
 
 
 
 
Figure 6. Tightly integrated laser scanning and photogrammetry 

with simultaneously data acquisition.  
 
The first impression is that in each case when the laser scanner 
and camera are attached to a common platform, the system is 
tightly integrated. In principle, this is the case. However, there 
is some doubt as to whether all TLS devices with externally 
mounted cameras and mobile systems can truly be categorized 
as tightly integrated, or whether they are only approximately 
integrated. In the case of TLS, the point density can be very 
high. Thus, the registration of images and LS data should be 
accurate. In many cases, the position of the camera slightly 
changes when the camera is remounted onto the system, 
creating the need for on-site system calibration. Laser scanners 
that are based on triangulation can be categorised with more 
certainly as tightly integrated systems.  
 
Despite a few exceptions (e.g. Zhao and Shibasaki, 2003), 
current air- and vehicle-borne mobile systems typically employ 
frame-based image acquisition and non-frame-based laser 
scanners. Even if the location of the laser scanner can be 
accurately known at the time of image exposure, the scanner 
can take only a few observations before the location is changed. 
Therefore, a laser point cloud that covers the footprint of the 
image can have non-homogeneous internal geometry, and the 
data acquisition perspective is changing continuously.  
 
The most desired application would be a simultaneously taken 
frame-based optical and range images. In applications that 
require high accuracy, the data acquisition of both methods 
should share the same line of collimation. The imaging system 
based on focal plane arrays fulfils these demands (Steinvall, 
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2003). Frame-based 3D range cameras using the time-of-flight 
principle already exist, such as SwissRanger, in which the 
optical image and range information can be collected 
simultaneously. Thus, the resolution of the range image is still 
low compared to optical images.  

4.2 

 
 

4. EXAMPLES OF INTEGRATING ALS DATA AND 
IMAGES, EXPERIENCES AT TKK 

In this section, we present our experiences in integrating LS 
with images at the Helsinki University of Technology (TKK). 
All registrations of ALS point clouds and terrestrial or oblique 
images are solved using the interactive orientation method 
(Rönnholm et al., 2003).  
 
4.1 Coloured point clouds 

Coloured point clouds can be very photorealistic if the viewing 
distance is set to meet the resolution of the LS data (Fig. 7). 
With some limitations, increasing the point size can fill the gaps 
between individual points in visualizations. Image data can also 
include information from various bandwidths. In Fig. 8 false-
colours from UltraCam-D are associated with the ALS point 
cloud. The point cloud is visualized with both ortho and 
perspective projections.     
 

 
 

 
 
Figure 7. Top: coloured 3D ALS point cloud looks 

photorealistic when viewed from a distance that 
meets the resolution of ALS data. Bottom: the 
structure of the ALS point cloud becomes visible 
when the viewing location is close enough. The 
images are created with TerraScan.  

 

  
 
Figure 8. False-colours from UltraCam-D’s digital aerial images 

have been associated with the laser point cloud. 
Left: the point cloud in ortho projection. Right: 
perspective side view. 

 

The significance of the perspective 

Typically, LS data and images are acquired as closely as 
possible from the same perspective. Such data acquisition is 
ideal for colouring LS point clouds, because each LS point is 
separately visible when superimposed onto an image. In 
addition, both sensors can see all objects identically with no 
shadows caused by perspective differences. Fig 9. illustrates the 
typical integration of ALS and an image. In this case, all low 
points are discarded leaving only upper tree canopies, street 
lamps, and signs visible. Because the perspective of both data 
sets is very close to each others, it is easy to detect planimetric 
correspondences. Using single images, the height 
correspondences can be inspected only at the sides of the 
images. For practical purposes, however, stereo images are 
needed. 
 

 
 
Figure 9. Typical integration of orthoimage and an ALS point 
cloud (TopoSys-1).  
 
If the LS point cloud is integrated with an image that has a 
different acquisition perspective, the vertical structure of LS 
data is seen (Fig. 10). Because of perspective differences some 
LS points have no corresponding feature in the image, because 
they are located at the backside of a solid object. 
 

 
 
Figure 10. The vertical structure of the ALS point cloud 
(TopoSys-1) is visible, when data is superimposed onto an 
oblique image. 
 
Fig. 11 illustrates the usefulness of stereo images when 
examining LS point clouds. Using stereovision enables 
comparison of the 3D correspondences between optical images 
and LS data. In addition, possible gaps in the LS data can be 
filled with photogrammetric stereo measurements. On the other 
hand, the LS can also assist in the interpretation of images. For 
example, the altitude-based colour coding of LS data attaches 
the height scale to the images, thus allowing the relative heights 
of objects, at very different distances from the camera, to be 
understood more easily.  
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Figure 11. Cross-eye stereo images with superimposed LS point 

cloud (TopEye MK-II).  
 
4.3 Comparing more than one LS data sets on the image 
plane 

Sometimes, it is advantageous to compare LS point clouds from 
different devices. Laser scanners produce point clouds that can 
differ in density, accuracy and distribution. Comparison with 
the image as a background (Fig. 12) can help significantly, 
when the usability of point clouds is evaluated for some specific 
purposes.  
 

 
 
Figure 12. Comparison of two TopEye’s laser scanners: yellow 

(TopEye MK-II), green (TopEye). 
 
In Fig. 13 Toposys-1 data from 800 m and Topeye data from 
200 m flying height are superimposed onto the image. Because 
the data sets are collected at different years, some temporal 
changes can be detected: two deciduous trees in the middle do 
not have any hits in TopEye data (black spots).   
 

 
 
Figure 13. White spots (TopoSys-1) are scanned from 800 m 

with a pulse repetition rate of 83 kHz and black 
points (TopEye) are scanned from 200 m at a 
scanning rate of 7 kHz. (Rönnholm et al., 2003) 

 
4.4 Understanding LS data using images 

In Fig. 14a, a perspective side view of the ALS point cloud 
gives the impression of a building. When the point cloud is 
superimposed onto the image (Fig. 14b), we gain additional 
information on the building, such as the textures of facades, the 
amount of floors and the temporary structure on the roof build 
to cover repairs, for example. After half a year, the temporary 
structure is removed from the roof, though its shape remains in 
the ALS data (Fig. 14c). This example reveals one disadvantage 

of LS, if it is used without any other information source: range 
information alone is not enough for advanced understanding of 
target.  
 

a)  b)  

c)  
 
Figure 14. a) Perspective view of the ALS point cloud b) ALS 

data is integrated with the terrestrial image c) after 
half a year, the temporary structure was removed 
from the roof. 

 
In Fig. 15, the full-waveform LS data is superimposed onto the 
image.  Close-range images are the most suitable reference for 
increasing our understanding of waveform data and extracting 
the most interesting echoes from the entity (Litkey et al., 2007). 
 

 
 
Figure 15. Full-waveform ALS data is superimposed onto the 

terrestrial image (Litkey et al., 2007). 
  
 

5. DISCUSSION AND CONCLUSIONS 

Integration of LS and photogrammetry is an essential step 
towards being able to provide accurate and photorealistic 3D 
modelling methods. LS alone does not include enough 
information for an advanced understanding of the target. 
Combined use of all variations of optical imagery and all 
properties of LS data will provide us with material for robust 
classification and interpretation of our surroundings. The 
intensity information for LS should be calibrated (Kaasalainen 
et al., 2007) if it is to be used for automatic classification. 
 
Registration provides the fundamental basis for any integration. 
Incompletely registered data sets may disturb automatic 
decision-based algorithms. In addition, misalignments are easily 
seen during visualizations giving an unreliable impression of 
the accuracy of the entire data. Accurate registration, especially 
automatic ones, is not an easy task. Although functional 
examples of registration methods exist, there is still need for 
developing more robust and computationally more feasible 
methods. 
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Integration, in this context, can be divided into four levels: 
object-level integration, photogrammetry aided by laser 
scanning, laser scanning aided by photogrammetry, and tightly 
integrated laser scanning and optical images. We have 
discussed these levels of integration and given some illustrative 
examples. More examples can be found, e.g., from Kaartinen et 
al. (2006). The full potential of integration is, however, not yet 
utilised and more research is needed on this subject.  
 
In the future, 3D modelling systems that have tightly integrated 
LS and images will become increasingly popular. The final 
revolution in 3D modelling will occur when frame-based LS 
devices are developed to meet the resolution of optical images. 
Although the resolution of frame-based range sensors is 
currently too coarse for accurate modelling, the direction of 
development is obvious. It will, probably, take considerable 
before such 3D ranging cameras can be used for commercial 
aerial data acquisition.  
 
In some conditions, LS and images must be acquired separately. 
For example, when the laser scanner is an active sensor, the 
lightning conditions do not prevent measuring campaigns. 
Commercially, it is not tempting to wait proper weather 
conditions for optical images, if LS could operate. To conclude, 
the need for robust registration methods will not disappear even 
if the devices become highly integrated. 
 
In addition to integrating of images and LS data, other sources, 
such as geodetic observations, maps, and CAD design models 
should also be used. Complete integration of all available data 
sources would be beneficial in the fields of mapping, planning, 
constructions, simulation, and in the entertainment industry, to 
just mention a few. 
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ABSTRACT: 
 
The laser scanning technology has become de-facto as a successful measuring mean in numerous applications of remote sensing and 
mapping. A development of hardware has been followed by a development of a new data file format standard know as the American 
society for Photogrammetry and Remote Sensing (ASPRS) Lidar Exchange Format (LAS). This data format standard has been 
designed in order to make the exchange of lidar data, (pre-/post-) processing, analysis, and storing less time consuming and more 
convenient. There are three versions of the ASPRS LAS standard: 1.0, 1.1, and 2.0 (draft). A number of the manufacturers of 
hardware and software, laser scanning service providers and end users have already accepted a concept of ASPRS LAS as an 
industry standard. However, a less experienced end user might be confused by the different definitions of the term LAS that appear 
in literature and are used by various software vendors. The following main LAS definitions in remote sensing and geomatics exist: 
Land Analysis System by USGS, Log ASCII Standard by the Canadian Well Logging Society, LAS image format by ER Mapper, 
and ASPRS LAS by the ASPRS Lidar Committee. This paper explains the different common meanings of those terms. Several 
popular software products used for lidar data processing are also reviewed and the terminology associated with the file format 
defined. At this time there is no common tool available for converting from one ASPRS LAS format to another, and this can be a 
challenge when working with multiple formats. Only in one study case a version number of ASPRS LAS was clearly identified in 
the Import/Export tool. This paper also provides a comparison feature matrix of the different versions of ASPRS LAS. 
 
 

1. INTRODUCTION 

1.1 Abbreviations 

ANSI – American National Standards Institute 
ALS – Airborne Laser Scanning 
ASPRS – The American Society for Photogrammetry and 

Remote Sensing 
ASTM – The American Society for Testing and Materials 
EDC – U.S. Geological Survey's EROS Data Center 
GIS – Geographic Information System 
GPS – Global Positioning System 
IEEE - The Institute of Electrical and Electronics Engineers 
INCITS L1 – InterNational Committee for Information 

Technology Standards 
ISPRS – The International Society for Photogrammetry and 

Remote Sensing 
ISWG - The IEEE Committee on Earth Observations Standards 

Working Group 
ISO – The International Organization for Standardization 
.LAS – the file extension of the ASPRS lidar data exchange 

format 
LAS – Land Analysis System 
LAS image USGS/AVHRR – raster image format in ERmapper 
LAS – Log ASCII Standard 
Laser – Light Amplification by the Stimulated Emission of 

Radiation 
Lidar – LIght Detection And Ranging 
NIST – The National Institute of Standards and Technology 
OGC – The Open Geospatial Consortium, Inc. (= OpenGIS®) 
PRR – Pulse Repetition Rate 
SPIE – The International Society for Optical Engineering 
TC211 – Technical Committee 211 “Geographic information/ 

Geomatics” in the ISO 

TC211 WG6 – ISO/TC211 Working Group #6 “Imagery” 
TLS – Terrestrial Laser Scanning 
U.S. ATEC – U.S. Army Topographic Engineering Center 
USGS – U.S. Geological Survey 
 
1.2 Background 

Laser scanning has become a new trend in the areas of 
applications where precise 3D data collection of a remote scene 
and capturing of high resolution elevation point data are 
required. During the last decade a large number of the projects, 
where this technique has been studied, evaluated and assessed, 
have been conducted. Numerous reports reported that it is an 
efficient and trustable method for 2.5D and 3D digitizing 
remotely located objects and large scenes, and mapping. The 
big advantage of this technique is that it can provide a much 
more reliable representation of the actual surface shape for 3D 
modeling and 3D mapping as compared to traditional remote 
sensing means like photogrammetry. 
 
The laser scanning technology continues to become more 
mature and advanced. Since the middle of 90th, when the first 
commercial airborne laser scanning systems penetrated a 
market (Samberg, 1996), progress in the development of 
hardware has occurred dramatically. Also laser data post-
processing, analysis, and utilization has been significantly 
improved and increased. There is already a variety of the areas 
of applications where both airborne laser scanning (ALS) and 
terrestrial laser scanning (TLS) are widely used. They are, for 
example, 3-D city modeling, man-made feature extraction, the 
forestry, flood mapping, plant industry, documentation of 
cultural heritage, and homeland security. Nowadays, a number 
of projects in mapping and civil engineering extensively utilize 
the laser/lidar data. 
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1.3 Lidar Data Acquisition Techniques 

Briefly, a laser source of laser scanning system can be operated 
in a pulsed or continuous wave mode. A narrow laser beam is 
deflected across a scene. A distance between a laser sensor and 
a target is typically determined based on the time-of-flight 
(TOF) principles. When this information is combined with 
information about scan angle and positional (i.e. INS/POS) and 
navigation (i.e. GPS, GLONASS, and GALLELIO) data, then a 
3D position of a footprint of the laser beam can be precisely 
calculated in a local co-ordinate system. Nowadays, both ALS 
and TLS provide a laser point cloud which is stored as a file 
which consists of XYZ coordinates, intensity, and time tags, at 
least. A 3D model is generated from that lidar dataset. Further, 
the post-processed lidar dataset is usually converted in a 
suitable format by using appropriate software. Thus, the lidar 
data can be taken to any commercial GIS or CAD software. 
 
In the middle of 1990, topographic laser scanning systems were 
much less powerful than modern systems. Their typical main 
operating performances were the following: a pulse repletion 
rate (PRR) in the order of 2-7 kHz, scan rate of 2-25 Hz, and 
the flight operating altitude above ground level up to 300 m (á 
1000 feet). The obtained average laser point density was 0.25 
points/m2 at the flight speed of a carrying platform of 70 m/s 
(136 knots). Although ALS was able to distinguish between 
multiple reflections, it was not capable of recording and storing 
the single returns (echoes) of the first and the last pulse 
simultaneously (Samberg, 1996). Commercial terrestrial laser 
scanners were not yet well studied and exploited in everyday 
practice at that time. 
 
Product specific technical information about currently available 
commercial hardware can be found from (Lemmens, 2007b; 
Lemmens, 2007c), and directly on the web sites of vendors of 
topographic and terrestrial laser scanning systems, i.e. Optech, 
Leica Geosystems, Riegl, Toposys, Blom, and Zoller+Fröhlich. 
Briefly, the summarized main operating performances of ALS 
are the following: PRR up to 200 kHz, scan rate up to 653 Hz, 
and the flight operating altitude above ground level up to 4000 
m (á 13120 feet). The achievable average laser point density is 
typically 40 points/m2 at the flight speed of a carrying platform 
of 70 m/s (136 knots). Furthermore, modern ALS can benefit 
from a full wavelength digitizing technology. TLS can today 
operate at PRR up to 190 kHz in pulsed mode, and up to 500 
kHz using phase shift measurements. Operating distance is up 
to 4000 m (á 13120 feet). Achievable scan angle step size can 
be as low as 0.00067° x 0.009° (Lemmens, 2007c). (Fowler et 
al, 2007) provides a comprehensive overview of the entire 
technologies. 
 
1.4 Existing Laser Data File Formats 

There are three major parts of a laser scanning process: data 
capture, data processing, and data archiving for future 
applications. In the beginning, various hardware manufacturers 
developed a number of their own propriety laser data file 
formats depending on the customer requirements of the 
commercial firms, and on the kind of product required. A 
continuing development of hardware and the new areas of 
applications demand more suitable file formats for the new 
purposes. 
 
There are many different laser data file formats existing. Table 
1 shows a summary of those file formats only which more often 
appear in the technical documentations, reports and literature. 

Additional data file formats, which are used in a production 
process of a digital elevation model (DEM) or a digital terrain 
model (DTM), are listed in (Maune et al., 2007), page 466. 
Among them is ASPRS LAS, which is a binary file format used 
for delivering and managing of laser scanner data. 
 
As it is well known, a typical output of a laser scanning 
campaign is raw point clouds which are stored in files. These 
file can be stored in generic ASCII format, i.e. .TXT, .CVS, and 
.DBF. In general, they are the text files containing lists of XYZ 
points arranged in columns. Any regular columned ASCII 
format can be used, if it consists, in general, of the following 
main information: number of lines to skip at the beginning of 
the file, X (Easting) column, Y (Northing) column, Z (Altitude) 
column, and, optionally, intensity column, and RGB columns. 
 

Format Type Notes 
.3DD binary Riegl 
.ASC ASCII text file 
.BIN binary TerraScan 
.CMP propriety Optech’s REALM, 

comprehensive format 
.CSD propriety Optech’s REALM 
.DAT ASCII text file 
.DVZ propriety project file in FUSION/LDV 
.IXF  Optech’s ILRIS parser 
.LAS binary ASPRS LAS 
.LDA binary FUSION/LDV 
.LDI propriety index file in FUSION/LDV 
.LDX propriety index file in FUSION/LDV 
.PTC  TerraScan classification file 
.PTS ASCII Leica Geosystems 
.PTX ASCII Leica Geosystems 
.QTC propriety QT Modeler, ungridded point 

clouds, no interpolation or 
approximation 

.QTT propriety QT Modeler, surface model, 
gridded data set 

.RAW ASCII raw lidar points 

.TEW binary TopEye Mark II 

.TS binary TerraScan 

.TXT ASCII text file 

.WRL ASCII used in 3D range imaging 

.XLS worksheet Microsoft Excel 

.XML  DTM file 

.XYZ ASCII text file 

.ZFC binary Zoller+Fröhlich 

.ZFS binary Zoller+Fröhlich 
 
Table 1. A summary of existing common laser data file formats 
 
Furthermore, lidar data can be also delivered for importing in 
the following file formats: 3dp, 3di, 3dv, dxf, dxb, dwg, obj, 
00t, dgd, pt, vml, iv, Cyclone native IMP object database 
format, Cyclone Object Exchange (COE) format, ASCII SVY, 
Leica’s X-Function DBX format, and Land XML. 
 
Other possible data export formats are 3dp, 3di, 3dv, txt, obj, 
dxf, dxb, dwg, ma, vrml, jpg, arch_d, 00t, zfs, zfc, pt, ptx, pts, 
ptc, rle, img, dxf, asc, vml, Cyclone Object Exchange (COE), 
ASCII (XYZ, SVY, PTS, PTX, TXT, customized format), 
BMP, TIFF, JPEG, SDNF 3.0 (Intergraph Steel Detailing 
Neutral File) PCF (Alias Piping Component File) Leica System 
1200, LandXML, ASCII point data (XYZ, SVY, PTS, PTX, 
TXT), DFX, Leica’s X-Function DBX format, and Land XML. 
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1.5 Motivation 

It is obvious that inputs and outputs can vary significantly. 
Thus, it is necessary to develop a friendly interface and have a 
unique flexible lidar data file standard which will support 
different inputs and outputs as well as the integration with 
different software packages for the distribution and 
management of complex information. 
 
There are several major reasons why ASPRS LAS has been 
proposed several years ago. 
 

− Manufacturers’ data file specifications vary from 
system to system. 

− As it was shown in Table 1, there are a large number of 
various lidar data file formats existing. This makes 
data exchange very challenging. 

− Uniform software support for different inputs and 
outputs is required for both ALS and TLS. 

− Originally lidar data file, which is a text file, can consist 
of ten of millions of points. Therefore, the text file 
can consists of ten of millions of lines what requires a 
significant amount of hard disk space. 

− Depending on lidar project specifications, lidar data 
files can be much larger than post-processed files, 
even, up to many Gigabytes, because, for example, 
there are too many decimals units as compared to 
actual lidar data accuracy. 

 
In addition, this particular study was motivated by the below 
following needs: 
 

− A less skilled and proficient end user can be confused 
by the different meanings of the term LAS which 
appears in literature. 

− Various vendors of lidar data processing tools refer to 
the ASPRS LAS file format in different ways in their 
products. 

 
1.6 Activities on Lidar Data Format Standardization 

The first steps towards lidar data format standardization were 
taken by the ASPRS Lidar Committee in the beginning of 2000. 
In 2003, the version 1.0 of ASPRS LAS, a binary file format, 
was approved by ASPRS and delivered to the remote sensing 
and mapping communities. Initially, it was designed and 
developed for the needs of ALS. In 2005, ASPRS LAS 1.0 was 
substituted by ASPRS LAS 1.1 with the minor changes. At the 
same time, TLS has become increasingly popular, in particular, 
for laser scanning of cultural heritage. 
 
As laser scanning techniques, ALS and TLS, are becoming 
more mature and everyday practice, they have been attracting 
more attention of various groups of professionals. For example, 
(Barber et al., 2003) reported about a lidar initiative started by a 
Heritage3d consortium (http://www.heritage3d.org). (Barber, 
2006) provided an interesting overview of a foreseeing 
application of ASPRS LAS for purposes of TLS, in particular. 
 
Also other professional organizations started to look over 
ASPRS LAS (Table 2). The participants of the different ISO 
projects in the working group 6 of geographic information and 
geomatics, i.e. 19101-2 (Preference model – Imagery), 19115 
(Metadata – Extensions for imagery and gridded data), and 
19130 (Sensor and data models for imagery and gridded data), 

have initiated work to update those projects with a lidar 
standard. In 2003, NIST in co-operation with ASTM has begun 
a research for lidar calibration, and evaluation of performances 
of 3D imaging systems. The aim of this research is to “facilitate 
the development of consensus-based standards for 3D imaging 
systems. These standards are expected to include terminology, 
test protocols for performance evaluation and reporting of test 
results, and data exchange formats. The availability of standards 
would i) help clarify manufacturers’ specifications to enable 
meaningful comparisons between various commercially 
available instruments, ii) encourage uniform guidelines for 
manufacturers’ specifications, testing, and reporting, and iii) 
facilitate interoperability”. ISWG has recently issued a call for 
developing lidar standards. SPIE and its lidar group of interest 
are more participating in co-operation with NIST, and have no 
initiative of its own in developing lidar standard. In 2007, the 
ANSI INCITS L1 committee initiated a project to make ASPRS 
LAS 2.0 a U.S. National Standard. 
 

 ALS TLS 
ANSI x x 
ASPRS x x 
ASTM na x 
ISO x o 
ISPRS x x 
ISWG o o 
NIST na x 
SPIE na na 

 
Table 2.  A participation of the different organizations in the 

development work of lidar standards (x – active, o – passive, na 
– no special activities) 

 
1.7 Materials 

From a list of commercial terrain visualization software tools, 
which consists of more than 500 products, we focused our 
attention on the most popular lidar data post-processing and 
management utilities (U.S.ATEC, 2006): 
 

− PCI Geomatica Focus 10.0 from PCI Geomatics, Inc. 
− PCI Geomatica Lidar Engine 1.0 from PCI Geomatics, 

Inc. 
− Leica Photogrammetry Suite 9.1 from Leica 

Geosystems 
− ERDAS Imaging 9.1 from Leica Geosystems 
− ERmapper 7.1 from Leica Geosystems (former ER 

Mapper) 
− MapInfo 8.5 Pro from MapInfo, Corp. 
− ENVI 4.3 from ITT Visual Information Solutions 
− IDL 6.3 from ITT Visual Information Solutions 
− TerraScan build 007.004 from Terrasolid Ltd. 
− LIDAR 1 CuePac 4.0 from GeoCue, Corp. 
− LAS Reader for ArcGIS 9 from GeoCue, Corp. 
− ArcGIS 9.2 Workstation from ESRI, Inc. 
− FME Pro 2007 from Safe Software Inc. 
− Quick Terrain Modeler 6.0.2 from Applied Imagery 
− Global Mapper 8.0 from Global Mapper Software, LLC 
− LIDAR Analyst 4.1 from Visual Learning Systems, Inc. 
− MARS Explorer Pro 4.0 from Merrick & Company 
− FUSION/LDV 2.51 by Robert J. McGaughey from 

USDA Forser Service 
− MATLAB R2007a from MathWorks, Inc. 
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Those software utilities can be divided in three groups: stand-
along, plug-ins, and development tools. PCI Geomatica Focus 
10.0, Leica Photogrammetry Suite 9.1, ERDAS Imaging 9.1, 
ER Mapper 7.1, MapInfo 8.5 Pro, ENVI 4.3, IDL 6.3, LIDAR 1 
CuePac 4.0, ArcGIS 9.2 Workstation, FME Pro 2007, QT 
Modeler 6.0.2, Global Mapper 8.0, MARS Explorer 4.0 Pro, 
FUSION/LDV 2.51, and MATLAB R2007a are stand-along. 
TerraScan build 007.004 and LIDAR Analyst 4.1 are optional 
modules for MicroStation, and ERDAS Imaging and ArcGIS, 
respectively. LAS Reader for ArcGIS 9 is a plug-in for ArcGIS 
9.x. PCI Geomatica Lidar Engine 1.0 is a plug-in for PCI 
Geomatica software. MATLAB is only mentioned, because it is 
widely used by the academic community and R&D people, who 
deal with laser scanning, although there is no ASPRS LAS 
support directly. From the other side, there is available a 
toolbox called SeisLab, which supports the Log ASCII Standard 
developed by the Canadian Well Logging Society: LAS 2.0 and 
LAS 3.0 (SeisLab, 2007). Those files also have .las extension.  
 

2. EXISTING LAS DEFINITIONS 

Remote sensing community including different vendors of 
hardware and software (U.S.ATEC, 2006; Lemmens, 2007) has 
already widely accepted a lidar data exchange file format 
standard called ASPRS LAS. However, the term LAS is widely 
used somewhere else too. This can be sometime confusing, 
especially, when end user is familiar with another application of 
the term LAS than in the ALS and TLS applications. In order to 
clarify a situation in this case, we gathered in this section the 
several most common definitions of LAS which were pulled out 
from the different open information sources too. 
 
2.1 ASPRS LAS 

The ASPRS LAS file format is a public binary file format for 
exchanging of lidar data between vendors and customers, and 
maintains information specific to the nature of the data. It is an 
alternative to proprietary systems or generic ASCII files, which 
can be very large and slowing down the interpretation of data as 
a consequence. Also in ASCII files lidar specific information 
can be lost.  
 
There are currently two active ASPRS LAS versions: 1.0 and 
1.1. The version 2.0 is undergoing a final revision and approval. 
The INCITS L1 project will consider ASPRS LAS as a basic 
lidar file format for approval as a lidar standard by ANSI. 

 

 
 

 
Figure 1. Simplified structure of ASPRS LAS ver. 1.1 

(adopted from (Barber, 2006)) 

 
In general, the latest release of ASPRS LAS version 1.1 has the 
following file structure (Fig. 1). There are three block: public 
header block, variable length records, and point data block. A 
name of generating software, version number, and statistics like 
minimum and maximum values of XYZ are stored in the public 
header block. Variable length records can consist of project 
specific information. Laser point data, i.e. XYZ values, 
intensity value, and the results of classification are recorded in 
the point data block. More detailed specifications can be found 
at 
http://www.asprs.org/society/divisions/ppd/standards/lidar_exc
hange_format.htm. 
 
2.2 Log ASCII Standard 

In 1990, the Canadian Well Logging Society designed a floppy 
disk format standard, and named it LAS (Log ASCII Standard). 
Its purpose was to complement the LIS (Log Information 
Standard) and DLIS (Digital Log Interchange Standard) formats 
which, in own turn, were designed for own specific purposes. 
Each LAS file had an extension ".LAS". The first official ver. 
1.2 was released in September 1990. The LAS file ver. 1.2 
consisted of the header information which described optical 
curves only (LAS format specifications for ver. 1.2, 1990). A 
media used at that time was a 3.5 inch 720K DOS compatible 
floppy disk. The floppy disks in the LAS format must be 
MS/DOS or PC/DOS compatible. Its version 2.0 was released 
in 1992. In 2000, the LAS file format standard received a 
version 3.0 with expanded features in order to meet the 
increasing demands of the end users (LAS format specifications 
for ver. 3.0, 2000). 
 
This type of the data file format standard was promoted and 
widely used by the members of the Canadian Well Logging 
Society, i.e. the petroleum industry and organizations involved 
in exploring mineral resources. However, this file format 
standard is not a common practice among the remote sensing 
and mapping communities. 
 
2.3 Land Analysis System 

In comparison with the data file format standards, an entirely 
specific use of the LAS term is the Land Analysis System 
(LAS). This is a software system which has been widely used 
by the U.S. Geological Survey's EROS Data Center (EDC) as 
an image processing, image and statistical analysis, and raster 
GIS system originally developed in co-operation with the 
NASA's Goddard Space Flight Center. The EDC has provided 
the LAS softawer to outside users since 1983. It is public-
domain software which is available to any government or 
private institution. 
 
The LAS installation package consists of three main modules: 
Transportable Applications Executive (TAE), Land Analysis 
System (LAS), and AVHRR Data Acquisition and Processing 
System (ADAPS). TAE acts as a user interface between the 
end-users and the system. It manages the execution of the LAS 
applications. The LAS consists of image analysis routines 
designed to ingest, manipulate, and analyze digital image data 
and provide the user with a wide spectrum of functions and 
statistical tools for image analysis. The ADAPS module has 
been originally used for receiving, archiving, and processing the 
data of Advanced Very High Resolution Radiometer (AVHRR) 
from Tiros-N polar orbiting satellites (System Manager’s Guide 
of the Land Analysis System, 2004). The last LAS version was 
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release 7.4 in November 2001. LAS 7.4 has been used on the 
computer systems that support the following configurations: 
SGI IRIX 6.5 using the SGI MIPSpro C and Fortran compilers 
(version 7.3.1.2m), SUN Solaris 2.7 on a SPARC processor 
using gcc and g77 (version 2.95.2), various RedHat, Mandrake, 
and SuSe Linux distributions with gcc 2.95 and 2.96 RH 
compilers. Previous versions of LAS have also been installed 
on DEC/VAX computers running VMS 4.7 or higher operating 
systems, SUN2 and SUN3 computers running SUN/OS 
operating system, Gould PowerNode computers running UTX 
2.0 or higher operating systems, IBM RS6000 computers 
running AIX operating system, IBM RT computers running 
AIX operating system, and Data General running DG/UX 5.4.1. 
 
This LAS development work stopped in 2004. Now, LAS 7.4 
distribution is available from the ftp site at the Pennsylvania 
State University: ftp://dbftp.essc.psu.edu/pub/code/las. 
 
2.4 LAS image format 

 
 

Figure 2.  Import tool in ER Mapper 7.1 
 
Import LAS Image reads LAS USGS/AVHRR Image file 
format data and creates an ER Mapper raster dataset. The 
source file must be a LAS Image format file (.img). This is the 
image file (raster) LAS format. 
 
The LAS 5.0 Image file format is supported for read access by 
the GDB library. The LAS image (USGS/AVHRR) format is 
used to store various types of geocoded image data. Typically, a 
LAS image will consist of several related files. The two used by 
the GDB library are the .ddr and .img files. The .ddr file 
contains header information and geocoding, while the .img file 
contains the actual imagery. Either file may be used to refer to 
the LAS image, but both must exist in the same directory with 
the same base name (ER Mapper online help). 
 

3. IMPLEMENTATION OF ASPRS LAS 

For a visualization purpose and demonstration, there are the 
following examples of different geospatial utilities which have 
integrated a lidar processing routing and support ASPRS LAS. 

3.1 FME Pro 2007 

FME Pro 2007 (Feature Manipulation Engine) typically allows 
reading from and writing to a supported data format. However, 
it supports ASPRS LAS reading only (Fig. 3). The lidar reader 
extracts features from a LAS file, and passes them on to further 
processing. 
 

 

 
 

Figure 3. ASPRS LAS support in FME Pro 2007 
 
3.2 Quick Terrain Modeler 6.0.2 

 
 

Figure 4. Import file formats in QT Modeler 6.0.2 
 

3.3 LiDAR Tools for ENVI 4.3 and IDL 6.3 

 
 

Figure 5. Import ASCII-to-LAS wizard in LiDAR Tools for 
ENVI 4.3 version dated 20 July 2007 
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3.4 LIDAR 1 CuePac 4.0 

 
 

Figure 6. Lidar data import wizard in LIDAR 1 CuePac 4.0 
 
3.5 Global Mapper 8.3 

 
 

Figure 7. Input file formats in Global Mapper 8.0.3 
 
3.6 PCI Geomatica Focus 10.0 

 
 
Figure 8.  Laser data import window in Geomatica Focus 10.0 

3.7 FUSION/LDV 2.51 

 
 

Figure 9. Import/Export tool in FUSION/LDV 2.51 
 
3.8 LIDAR Analyst 4.1 

 
 

Figure 10. Input LAS file in LIDAR Analyst 4.1 
 

 
 
Figure 11. Attributes of ASPRS LAS file in LIDAR Analyst 4.1 
 

368

ISPRS Workshop on Laser Scanning 2007 and SilviLaser 2007, Espoo, September 12-14, 2007, Finland



 

3.9 TerraScan 007.004 

 
 

Figure 12. Import laser points from LAS file in TerraScan 
 
3.10 MARS Explorer Pro 4.0 

 
 

Figure 13. Import wizard in MARS Explorer Pro 4.0 
 

3.11 Leica Photogrammetry Suite 9.1 / ERDAS Imaging 9.1 

 
 
Figure 14. Import/Export tool in LPS 9.1/ERDAS Imaging 9.1 

 
4. CONCLUSIONS AND RECOMMENDATIONS 

4.1 Conclusions 

19 software packages have been studied. It is obvious that the 
ASPRS LAS file format has reached its worldwide popularity. 
A number of stand-along lidar data processing utilities have 
already added the ASPRS LAS support to their import tools 
(Fig. 3, 4, 6, 7, 8, 9, 13, and 14). However, only few of them are 
capable of delivering of (post-)processed lidar data in the 
ASPRS LAS file format (Table 3). Also there are available 
optional modules for lidar data processing like LIDAR Analyst 
4.1 for ERDAS Imaging (Fig. 14), LIDAR Analyst 4.1 for 
ArcGIS, LiDAR Tools for ENVI (Fig. 5), and TerraScan (Fig. 
12), which runs on top of MicroStation. 
 
Only LiDAR Tools for ENVI clearly identifies the different 
versions of ASPRS LAS supported, for example, in its ASCII-
to-LAS importing tool what was a bit surprise (Fig. 5). 
 
There are the different lidar file format names. They appear in 
import/export tools of various SW packages as follows: 
 

− LAS 
− LAS files (*.LAS) 
− ASPRS LIDAR Data Exchange Format (LAS) 
− ASPRS LIDAR Data Exchange Format (*.las) 
− LIDAR LAS (ASPRS) Format Files (*.las, *.tar.gz) 
− LIDAR (LAS data) 
− LIDAR data files (*.lda, *.las) 
− LAS (ASPRS LAS data) 
− LAS format 

 
Advantages: 
 

− ASPRS LAS has been already recognized and accepted 
as in industry lidar standard worldwide 

− Binary file format allows to speed up entire lidar data 
processing and project management processes 
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− Applied binary file format allows to significantly reduce 
a space required for lidar data storage 

− Allows to share entire lidar data set between different 
end user’s over a net or the Internet, and manipulate 
in small pieces independently 

− The ANSI INCITS L1 committee initiated a project to 
make ASPRS LAS 2.0 a U.S. National Standard 

 
Disadvantages: 
 

− No ASPRS LAS conversion tool exist 
− Various vendors use different names of ASPRS LAS in 

their software packages 
− Absence of a version number in the import tools 
− Help documentation does not always well explain what 

ASPRS LAS version is supported by a particular 
software 

 
Software Read Write 

PCI Geomatica Focus 10.0 
PCI Geomatica LidarEngine 1.0 

+ 
+ 

- 
- 

Leica Photogrammetry Suite 9.1 + + 
ERDAS Imaging 9.1 + + 
ER Mapper 7.1 - - 
MapInfo 8.5 Pro - - 
ENVI 4.3 + - 
IDL 6.3 + + 
LIDAR 1 CuePac 4.0 + + 
ArcGIS 9.2 Workstation + - 
FME Pro 2007 + - 
QT Modeler 6.0.2 + + 
Global Mapper 8.0 + + 
MARS Explorer 4.0 Pro + - 
TerraScan build 007.004 + - 
LIDAR Analyst 4.1 + + 
LAS Reader for ArcGIS 9 + - 
MATLAB R2007a - - 

 
Table 3. A summary of reading and writing capabilities of 

ASPRS LAS by various geospatial software utilities 
 
4.2 Recommendations 

Initially, ASPRS LAS has been intended for the use with ALS 
only. However, its practical application and increasing 
popularity have proved that the ASPRS LAS concept can be 
used somewhere else. It seems to be already accepted as a 
defacto of industry standard worldwide. For example, the 
Heritage3D group has proposed to adopt ASPRS LAS as an 
attractive generic solution for the delivery, archiving, and 
exchange of both ALS and TLS data. However, in its present 
form (version 1.1) it is not suitable for storing and handling of 
TLS data. Some useful TLS practical examples and standard 
considerations are well presented in (Staiger, 2003; Aschoff, 
2004; Mamatas, 2004). 
 
There is one cosmetic issue. It appeared that a name of ASPRS 
LAS varies between various hardware and software 
manufacturers. Therefore, it is necessary to make this name 
unique like ASPRS LAS. We suggest updating their import and 
export tools, and simply changing the existing names to ASPRS 
LAS in the following releases or service packs. Also the version 
number of the ASPRS LAS file must be clearly identified in the 
import and export tools for a more convenience usage. 
 

It is expected that the designers and developers of the next 
version of ASPRS LAS will take in consideration other existing 
laser scanning systems like bathymetric and active 
hyperspectral lidar systems in addition to ALS and TLS. At 
least, it must be possible to store their attributes in the existing 
or forthcoming variables, which must be easily recognized and 
interpreted. 
 
It is expected that the proposed next version of the ASPRS LAS 
file format (version 2.0) will help establish a consistent 
understanding and should clear up a lot of the confusions 
(http://www.asprs.org/society/divisions/ppd/standards/lidar_exc
hange_format.htm). 
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ABSTRACT: 
 
Terrestrial laser scanners and digital cameras can be considered largely complementary in their properties. Several instruments 
combine a laser scanner and a camera, with the laserscanner providing geometry information and the camera supplying point of 
surface colour. These approaches of data fusion make sub-optimal use of the complementary properties of the two devices, as they 
assign a master-and-slave casting to laser scanner and camera. A thorough exploitation of the complementary characteristics of both 
types of sensors should start in 3D object coordinate determination with both devices mutually strengthening each other. For this 
purpose a bundle adjustment for the combined processing of terrestrial laser scanner data and central perspective or panoramic 
image data, based on an appropriate geometric model for each sensor, was developed. Since different types of observations have to 
be adjusted simultaneously, adequate weights have to be assigned to the measurements in a suitable stochastic model. For this 
purpose, a variance component estimation procedure was implemented, which allows to use the appropriate characteristics of the 
measurement data (e.g. lateral precision of image data, reliability of laser scanner range measurement), in order to determine 3D 
coordinates of object points. Finding optimal weights for the different groups of measurements leads to an improvement of the 
accuracy of 3D-coordinate determination. In addition, the integrated scanner and camera data processing scheme allows for the 
optimal calibration of the involved measurement devices (scanner+camera self-calibration). Moreover, it is possible to assess on the 
accuracy potential of the involved measurements. The presented paper describes the basic geometric models as well as the combined 
bundle adjustment with variance component estimation. First results, based on data in a 360° test field, are presented and analysed. 
 
 

                                                                 
*  Corresponding author. 

1. INTRODUCTION 

Several software packages nowadays provide the possibility of 
combined processing of terrestrial laser scanner data and 
photogrammetric image data, since the combination of three-
dimensional point clouds and images presents promising 
prospects due to their complemental characteristics.  For this 
reason manufactures of terrestrial laser scanners also integrate 
digital cameras in their scanning hardware (Ullrich et. al., 2003; 
Mulsow et. al., 2004). In these integrated systems, the laser 
scanner usually represents the dominant device, while the 
image information is only used secondarily for the colouring of 
point clouds, texturizing of surfaces or to support the 
interpretation in interactive laser scanner data handling. Beyond 
this, the use of images for the automatic registration of laser 
scanner datasets was suggested in previous approaches (Al-
Manasir & Fraser, 2006; Dold & Brenner, 2006), as well as the 
automatic generation of orthophotos on the basis of image and 
range data (Reulke, 2006). 

The integrated analysis of terrestrial laser scanner data and 
photogrammetric image data provides a much larger potential 
(Jansa et. al., 2004; Wendt & Heipke, 2006). Using the 
complementary characteristics of both sensor types consistently 
in a combined adjustment, laser scanner and camera may 
mutually benefit from each other in the determination of object 
geometry and in calibration (Ullrich et. al., 2003). 

In particular, high resolution cameras may be rather beneficial 
in a combined system, since the high angular accuracy of sub-
pixel accuracy image measurements may help to improve the 

lateral accuracy of laser scanners. Adapting to the operating 
mode of most laser scanners, which cover a 360° field of view, 
the use of panoramic cameras may be an interesting alternative 
to conventional central perspective cameras. Panoramic 
cameras often have a very high resolution and a large accuracy 
potential for the determination of 3D object coordinates 
(Luhmann & Tecklenburg, 2004; Schneider & Maas, 2005).  

Based on the geometric models of laser scanner and camera, as 
well as a geometric model of panoramic cameras, which was 
developed at the Institute of Photogrammetry and Remote 
Sensing of the TU Dresden (Schneider & Maas, 2006), a 
combined bundle adjustment tool for the integrated processing 
of terrestrial laser scanner data, central perspective and 
panoramic image data was developed. 

Since the procedure requires the simultaneous adjustment of 
different types of observations, it is necessary to assign 
adequate weights to the groups of measurements at the 
combined adjustment. These weights may be specified by the 
user, based on manufacturer specifications or practical 
experience. More rigorously, the weights can be determined 
automatically in the adjustment procedure by variance 
component estimation. Thus, the respective characteristics of 
the involved measurement devices will be optimally utilised, 
and an improvement of the adjustment results can be achieved 
(Klein, 2001; Sieg & Hirsch, 2000). Results of variance 
component estimation in a combined adjustment of laser 
scanner and image date are also presented in (Haring et. al., 
2003).  
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In this paper the implementation of a combined bundle 
adjustment with variance component estimation is described 
and analysed on the basis of multiple laser scans, central 
perspective and panoramic images in a 360° test field at TU 
Dresden. 

2. GEOMETRIC MODELS 

One precondition for the combined analysis of measurements 
from different devices (laser scanner, camera, panoramic 
camera) is the knowledge about the basic geometric models as 
well as their mathematical description. This allows for the 
calculation of object information (e.g. coordinates of object 
points) using different observations (range, angles, image 
coordinates) on the one hand and for the calibration of the 
involved measurement devices on the other hand, if the 
geometric models are extended by an appropriate set of 
additional parameters. 
 
2.1 Central perspective and panoramic images 

Cameras with area sensors comply with the known central 
perspective model (Figure 1). Mathematically this is described 
by the collinearity equations. Usually these equations are 
extended by correction terms, which contain additional 
parameters (Brown, 1971; El-Hakim, 1986) to compensate 
errors caused by lens distortion and other effects. 
 

 
Figure 1.  Central perspective camera model 

 
Panoramic cameras are able to record a 360° horizontal field of 
view in one image, which is in particular beneficial for the 
recording of bg interiors. Technically this is mostly realised by 
the rotation of a linear sensor. Panoramic cameras provide a 
very high resolution and accordingly a high accuracy potential. 
The panoramic camera model can be described by central 
perspective geometry only in one coordinate direction. The 
mapping process (Figure 2) can be represented by the projection 
onto a cylinder (Schneider & Maas, 2006; Amiri Parian, 2007).  
 

 
Figure 2.  Panoramic camera model 

The mathematical descriptions of the geometric models of 
central perspective and panoramic cameras (see Schneider & 
Maas, 2006 for the derivation) are: 
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The transformation into a uniform coordinate system occurs by: 
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where  c       = principal distance 
 x’,  y’       = image coordinates 
 x0’,  y0’       = principal point coordinates 
 x’pano, y’ pano = panoramic image coordinates 
 X0, Y0, Z0     = coordinates of projection center 
 X, Y, Z        = coordinates of object points 
 rij       = elements of rotation matrix 
 x, y, z      = coordinates of object points in the   
               local camera coordinate system 
  
 
The correction terms dx’, dy’ as well as dx’pano and dy’pano 
contain additional parameters for the compensation of 
systematic errors, which are caused by the physical 
characteristics of the cameras. 
 
2.2 Laser scanner 

Original measurement data of terrestrial laser scanners are 
spherical coordinates, i.e. range (D), horizontal (α) and vertical 
(β) angle. Therefore the geometric model can be described 
easily by the conversion of Cartesian into spherical coordinates 
(eq. 4). Applying equation (3), the local laser scanner 
coordinate system can be integrated into the uniform object 
coordinate system. 
 

 
Figure 3.  Laser scanner basic model 
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Analogous to the camera model, additional parameters can be 
considered within the correction terms dD, dα and dβ as an 
extension of the geometric model of terrestrial laser scanners. 
This allows for the compensation of systematic deviations from 
the basic model and thus for the calibration of laser scanners. 

However, the calibration of terrestrial laser scanners is 
complicated by the fact that the manufacturers already 
implement geometric corrections inside the scanner, whose 
underlying model equations are mostly not known. 
Subsequently, significant systematic effects can often not be 
detected in the residuals of the observations. Therefore only a 
distance offset (k0) and scale (kS) parameter were used in the 
geometric model (eq. 5) so far, but no corrections of the 
horizontal and vertical angle were considered. 

 
0kDkdD S +⋅=       (5) 

 
 

3. INTEGRATED BUNDLE ADJUSTMENT 

Bundle adjustment allows for the orientation of an arbitrary 
number of images, using the image coordinates of object points 
as observations. The results of the calculation are the 
orientation parameters of the images, the 3D coordinates of 
object points and possibly camera self-calibration parameters. 
Extending this approach to the combined bundle adjustment 
means the integration of all laser scans, central perspective and 
panoramic images of each involved measurement device 
(scanner, camera, panoramic camera). The calculation follows 
the geometric constraint that all corresponding rays between 
object point and the instrument should intersect in their 
corresponding object point. 

The spherical coordinates of object points measured with a laser 
scanner as well as the image coordinates of a camera 
respectively a panoramic camera are introduced as observations 
in one combined coefficient matrix. Figure 4 shows a synthetic 
example of the structure of a design matrix. 

The calculation is performed as a least squares adjustment. The 
results are the coordinates of object points, the position and 
orientation of each involved scan and image, the calibration 
parameters of the measurement devices as well as statistical 
values for the assessment of accuracies and correlations. 

For the calculation of the bundle adjustment a software was 
developed at the Institute of Photogrammetry and Remote 
Sensing of TU Dresden, which also allows exporting a protocol 
and a visualisation file. All settings are displayed in a graphical 
user interface (Figure 5) and can be changed if necessary. In 
order to detect and to eliminate outliers a data-snooping 
procedure following (Baarda, 1968) is applied. 

 
Figure 4.  Structure of design matrix (example) 

 
 

 
 

Figure 5.  User interface of combined adjustment 
 
Within a courtyard at TU Dresden a 360° test field with ca. 100 
retroreflective targets (circles with 5 cm diameter) was installed 
to practically verify the combined bundle adjustment. The 
dimensions of this courtyard are 45 m × 45 m, the surrounding 
façades are 20 m high. The scanner used in the practical tests 
was a Riegl LMS-Z420i, whose operating software allows for 
the automatic determination of the centre of retroreflective 
targets applying a centroid operator to the intensity image. 
Furthermore multiple panoramas were captured with the KST 
Eyescan M3metric panoramic camera (Schneider & Maas, 
2006), as well as a large number of images from digital SLR 
cameras Kodak DCS 14n and Nikon D100. The target image 
coordinates were determined using centroid and ellipse 
operators. In the following, the results of processing the data of 
several different sensor combinations in the test field will be 
shown.  

 
3.1 Example 1 

This example shows the calculation of the 3D coordinates of 10 
object points of a façade of the test field. Two laser scanner 
positions and two panoramic camera positions were stepwise 
introduced into the combined bundle adjustment in different 
constellations, and the standard deviation of the estimated 
object coordinates were analysed. Figure 6 shows the used 
configuration schematically. 

375

IAPRS Volume XXXVI, Part 3 / W52, 2007



 

 
Figure 6.  Imaging configuration 1 (schema) 

 
Using only 2 panoramic images for the bundle adjustment, the 
precision of the resulting object coordinates (mainly in imaging 
direction Y) is worse than the precision obtained from one laser 
scan (see Table 1). This can be explained by poor intersection 
geometry of the used panorama positions. Furthermore the 
potential of the high-resolution panoramic camera could not be 
exploited, since the retroreflective targets could not be 
illuminated properly und the subpixel potential of the image 
analysis operators could not be used to full extent. 
Nevertheless, the combination of both devices (at least one scan 
and one panoramic image) leads to a significant precision 
improvement.  
 

Number 
of scans 

Number 
of pano-
ramas 

σ̂D 

(mm) 
σ̂α,β 

(mgon) 
σ̂xp’,yp’ 

(pixel) 
RMSX 

(mm) 
RMSY 

(mm) 
RMSZ

(mm) 

1 – 7.45 4.92 – 2.82  6.83 3.36 
1* – 5.56  4.91 – 2.55 5.22 2.93 
– 2 – – 0.55 4.18 14.15 4.99 
1 1 5.56  4.85 0.59 2.25  5.07 2.61 
1 2 5.84  4.88 0.62 1.96  4.81 2.51 
2 – 6.87  6.30 – 2.53  4.83 2.95 
2 1 6.48 5.65 0.68 2.12 4.47 2.51 
2 2 6.21 5.42 0.65 1.91 4.33 1.88 

 
Table 1.  Example 1: Calculation results of different 

configurations (calculated with variance  
component estimation – see chapter 4) 

 
While the laser scanner measurements improve the accuracy in 
depth direction, the image observations of the panoramic 
camera ensure a better precision in lateral coordinate direction. 
If further scans or images are added, the RMS of the standard 
deviations of object point coordinates can be minimized 
accordingly, as long as good intersection angles are maintained.  

 
3.2 Example 2 

The next example analyses the precision improvement achieved 
by the use of additional central perspective images. For this 
purpose 4 laser scans, 5 panoramic images and a total of 62 
images with the Kodak DSC 14n were recorded (Figure 7 
shows a reduced number of camera positions). The recording 
configuration was chosen with regard to good intersection 
geometry. Furthermore additional images with a camera Nikon 
D100, which was mounted on top of the Riegl laser scanner, 

                                                                 
* with consideration of scale and offset, according to eq. (4) 

were captured and included into the calculation. Figure 8 shows 
the devices involved into this calculation example. 
 

 
Figure 7.  Imaging configuration 2 (schema) 

 

 
Figure 8.  Combined devices (Riegl laser scanner LMS-Z420i, 

panoramic camera Eyescan M3, Kodak 14n, Nikon D100) 
 

The results of this example show, that the integration of 
additional panoramic or central perspective images has the 
potential to improve the accuracy of the calculated results in 
general. This can be realized in practice, if the user takes 
additional images while the laser scan runs automatically, 
subsequently feeding the images into the calculation process. 
Similarly the images of a camera mounted on top of a laser 
scanner respectively a camera integrated within the laser 
scanner hardware can contribute to increase the accuracy. The 
large number of additional images of the last calculation 
example in Table 2 may be unrealistic for practical use, but 
shows the accuracy potential of the combined bundle 
adjustment. 
 
 

4. VARIANCE COMPONENT ESTIMATION 

The combined bundle adjustment uses different types of 
observations simultaneously in order to estimate the unknown 
parameters. For this reason it is necessary to assign suitable 
weights to the different groups of observations (image 
coordinates in central perspective and panoramic images, range 
measurement and angle measurements of the laser scanner). 
The definition of weights can be performed in terms of fix 
values, in case of known a-priori standard deviations of the 
measurements (e.g. specifications of the manufacturer) or if 
experience values are available. However, the information 
content of the observations is not fully exploited in this case.  
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Number of central 
perspective images Number of 

scans 
Number of 
panoramas 

Kodak Nikon 

Unknown 
object  
points 

σ̂D 

(mm) 
σ̂α,β 

mgon 
σ̂xp’,yp’ 

(pixel) 
σ̂x’,y’ 

(pixel) 
RMSX 

(mm) 
RMSY 

(mm) 
RMSZ 

(mm) 

3 – – – 35 5.22 5.62 – – 2.28 2.19 1.75 
3 4 – – 35 5.19 5.45 0.59 – 1.89 1.67 1.26 
3 – 18 – 35 5.27 5.76 – 0.30 1.86 2.08 1.55 
3 – – 18 35 5.19 5.70 – 0.18 1.81 2.04 1.52 
3 4 18 – 35 5.23 5.55 0.59 0.29 1.51 1.62 1.12 
3 4 – 18 35 5.20 5.63 0.60 0.19 1.50 1.61 1.12 
3 – 18 18 35 5.24 5.79 – 0.24 1.80 2.03 1.49 
4 5 62 42 8 5.59 5.91 0.63 0.25 0.49 1.12 0.60 

 
Table 2.  Example 2: Calculation results of different configurations (calculated with variance component estimation – see chapter 4) 

 
Using the variance component estimation procedure (VCE) it is 
possible to estimate optimal weights for each group of 
observations as well as standard deviations of the observations 
in the course of the bundle adjustment. This allows for the 
qualification of each group of measurement on the one hand 
and for an improvement of the adjustment results on the other 
hand, since the individual characteristics of the involved 
measurement devices can be optimally utilised (Klein, 2001; 
Sieg & Hirsch, 2000). By separating the horizontal and vertical 
angle measurement of the laser scanner as well as the horizontal 
and vertical image coordinates of the panoramic camera into 
different groups of observation, it becomes possible to draw 
conclusions on the characteristics of each instrument. 

Furthermore, also cameras or laser scanners with different 
accuracies can be considered simultaneously. 

The weights pi of the observations are determined by the ratio 
of the variance of the unit weight σ0

2 and the variance of the 
observations σi

2, which can be derived from manufacturer’s data 
or from empirical values. A constant value will be set for σ0 
(e.g. 0.01 in the presented examples). Subsequently, the 
standard deviation of unit weight σ̂0 shows if the a-priori 
standard deviations of the observations were defined too 
pessimistic (σ̂0<σ0) or too optimistic (σ̂0>σ0).  

 

Calculation 
example 

Weighting σ̂0 RMSX 

(mm) 
RMSY 

(mm) 
RMSZ 

(mm) 
RMSXYZ 

(mm) 
1 Balanced  (but too pessimistic overall) 0.00573 1.58 1.71 1.16 2.60 
2 Balanced  (but too optimistic overall) 0.02296 1.63 1.83 1.15 2.71 
3 Balanced and realistic constant weights  0.01046 1.59 1.74 1.19 2.64 
4 Unbalanced (range too optimistic) 0.01309 1.78 1.78 2.03 3.23 
5 Unbalanced (angles too optimistic) 0.01479 2.03 2.62 1.33 3.57 
6 Unbalanced (panoramic coordinates too optimistic) 0.01320 2.12 2.31 1.32 3.40 
7 Unbalanced (central perspective coordinates too optimistic) 0.01061 2.68 3.05 1.94 4.50 
8  VCE, 4 groups:  D   |   α, β   |   xP’, yP’   |    x’, y’ 0.01000 1.51 1.64 1.13 2.50 
9  VCE, 5 groups:  D   |   α   |   β   |   xP’, yP’   |   x’, y’ 0.01000 1.56 1.68 1.04 2.52 

10 VCE, 5 groups:  D   |   α, β   |   xP’   |   yP’   |   x’, y’ 0.01000 1.47 1.60 1.16 2.46 
11 VCE, 6 groups:  D   |   α   |   β   |   xP’   |   yP’   |   x’, y’ 0.01000 1.52 1.63 1.05 2.46 
12 VCE, 7 groups:  D   |   α   |   β   |   xP’   |   yP’   |   x’   |   y’ 0.01000 1.52 1.63 1.05 2.46 

 
Table 3.  Combined bundle adjustment with different stochastic models 

 
too optimistic/ 
too pessimistic 

Unbalanced weights Variance component estimation Standard 
deviation  

of observations 1 2 3 4 5 6 7 8 9 10 11 12 

Range 
(mm) 

(10.0) 
5.73 

(3.0) 
6.89

(5.3) 
5.54 

(2.0)
2.0

(10.0)
14.8

(10.0)
13.2

(10.0)
10.6

(7.5)  
5.23

(7.5)  
5.21

(7.5)  
5.24 

(7.5)  
5.22 

(7.5)  
5.23

Horizontal angle  
(mgon) 

(10.0)  
4.23

(10.0) 
4.21 

(10.0) 
4.21

Vertical angle 
(mgon) 

(10.0) 
5.73 

(2.0) 
4.59 

(5.6) 
5.86 

(10.0)
13.1 

(2.0)
3.0 

(10.0)
13.2 

(10.0)
10.6 

(10.0) 
5.57 (10.0)  

6.61

(10.0)  
5.58 (10.0) 

6.64 
(10.0) 
6.64

Panoramic xp’ 
(pixel) 

(0.5)  
0.52 

(0.5)  
0.52 

(0.5)  
0.52

Panoramic yp’ 
(pixel) 

(1.00) 
0.57 

(0.25) 
0.66 

(0.6) 
0.63 

(1.00)
1.31 

(1.00)
1.48 

(0.25)
0.38 

(1.00)
1.06 

(0.5)  
0.60 

(0.5)  
0.60 (0.5)  

0.66 
(0.5)  
0.66 

(0.5)  
0.66

Central 
perspective x’ 

(0.2)  
0.26

Central 
perspective y’ 

(0.5) 
0.29 

(0.12) 
0.29 

(0.24) 
0.25 

(0.5)
0.65 

(0.5)
0.74 

(0.5)
0.66 

(0.12)
0.13 

(0.2)  
0.24 

(0.2)  
0.24 

(0.2)  
0.24 

(0.2)  
0.24 (0.2)  

0.23
 
Table 4.  Combined bundle adjustment with different stochastic models (in brackets: standard deviation for the a-priori definition of 

observation weights; hereunder: estimated a-priori standard deviations of observations) 
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If observations of the same type have to be processed, the 
variance-covariance matrix Σ is calculated as product of σ0

2 and 
the cofactor matrix Q. In case of a combined adjustment of 
different observation groups the matrix Σ will be split into 
components Σi=σi

2Qi. The factors σi
2 are the variance 

components to be estimated which represent the a-priori 
measurement inaccuracies of each observation group. The 
calculation is carried out as described in (Koch, 1997; Sieg & 
Hirsch, 2000).  

Table 3 and 4 show the results of 12 different practical 
examples. The weighting of examples 1 and 2 was balanced but 
too pessimistic respectively too optimistic. For example 3 well 
balanced and realistic weights were used as constant values. 
Examples 4-7 started with unfavourable unbalanced observation 
weights, examples 8-12 were calculated with integrated 
variance component estimation, each with different 
constellations (compare table 4) of observation groups.  

Generally it is noticeable that the variance component 
estimation has the potential to contribute to the improvement of 
the accuracy, in particular, if the precision of the involved 
instruments is not sufficiently well known a-priori (see table 3). 
Table 4 demonstrates the capability of the calculation with 
variance component estimation to estimate the precision of the 
involved groups of measurements – widely independent from 
the definition of a-priori approximate weights.  

The values in brackets served for the definition of weights for 
each observation. The values below are the estimated a-priori 
standard deviations as results of the bundle adjustment. This 
value is better than the value in brackets if the weighting was 
too pessimistic and worse if the weighting was too optimistic. 
This is in particular noticeable with example 1 and 2. In 
Examples 4-7 only one group of observations started with too 
optimistic standard deviations which lead to overemphasized 
weights for this group of observations (in table 4 highlighted 
with boldface). Anyway, the adjustment results change for the 
worse in theses cases (see RMS of object coordinates in table 
3). The variance component estimation (examples 8-12) results 
in balanced weights and therefore in optimal adjustment 
outcomes. The values in brackets in table 4 serve in these cases 
only for the definition of a-priori approximate weights. The 
values below are the variance components estimated within the 
adjustment with VCE. These variance components give realistic 
information about the precision of each observation group.  

Furthermore, it is even possible to draw conclusions on 
differences of the horizontal and vertical angle precision of the 
laser scanner, as well as on differences in the horizontal and 
vertical image coordinate accuracy, in particular for panoramic 
cameras. In future the separation into more observation groups 
will be analysed (e.g. by use of different cameras or scans with 
different resolution, separation in constant and distance-
dependent variance components). In addition, the 
implementation and assessment of a free net adjustment 
(without datum points) with variance component estimation is 
planned. In order to assess the accuracy more realistically, 
independent test measurements respectively a comparison of the 
estimated object point coordinates with known object 
coordinates, measured with a higher accuracy, will be 
performed. 
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ABSTRACT:  
The aim of this article is to present a concept of using airborne laser scanning (LIDAR), with one scan only, to map defoliation as a 
forest health variable. The idea is to apply two independent algorithms on the LIDAR data set, to produce both actual and expected 
leaf area index (LAI) values for every cell in a grid over the area. LAI is estimated based on laser pulse penetration through the 
canopy layer, and expected LAI values are derived from stand density based on position and height of single trees as obtained from a 
single-tree segmentation algorithm. The results are preliminary findings from four ongoing and related studies. In the first study 
repeated laser scans had close to equal extinction coefficients for LAI estimation although the instruments and flight specifications 
were different. In the second study, based on the findings in the first we derived normal LAI values from extisting and large scale 
data sets with LIDAR and field data. The main independent variable was stand density, defined as the ratio between mean tree height 
and mean distance between the trees. The ratio between LAI and stand density was around 0.5, and this is a preliminary standard for 
a healthy pine forest. In a third study the woody area fraction of LAI was estimated from 14 total harvested trees, and turned out to 
be slightly below 50% for a healthy pine tree, which means that a totally defoliated pine forest would have an LAI/stand density 
ratio around 0.2. In the fourth study, these LAI standard values were confirmed with LIDAR data from a severe insect defoliation 
event in Norway 2005. In conclusion, the present preliminary results demonstrate a potential for application of airborne laser 
scanning for monitoring or mapping of defoliation as a forest health variable.  
 
 

                                                 
*  Corresponding author 

 
1. INTRODUCTION 

In two test cases with Norway spruce and Scots pine in 
Norway, it has been demonstrated that airborne laser 
scanning (LIDAR) can be used for mapping of leaf area 
index (LAI) (Solberg et al., 2005), and repeated scans can be 
used for mapping of defoliation events (Solberg et al., 
2006a). However, normally defoliation events are not known 
in advance, and it would be useful to be able to map 
defoliation based on one laser scanning after a forest damage 
event. This would be useful for obtaining an overview of the 
damage area for actions such as sanitary cutting, prevention 
of further spread of the damage, for forest insurance 
companies, and for general interests of having damage 
overviews. 
 
There are some problems that need to be resolved in order to 
realize such a one-scan defoliation mapping. First, there is a 
need for data on normal LAI values for the given site and 
stand properties of the forest in question. Second, the LAI 
obtained is so-called effective LAI which includes woody 
areas of branches and stems. Hence, there is a need for 
knowing the woody area faction of the actual forest, which 
would be the LAI value for a totally defoliated forest. This 
woody area is the area of branches and stems. Both the 
normal LAI values and the woody area will depend on the 
number of trees and their size. Hence, we see here a potential 
for modelling both the normal LAI values and the woody 
area as a function of single-tree data obtained from 
automated single-tree segmentation routines (Solberg et al. 
2006b).  

 
The major objective of this article is to present preliminary 
results of such a one-scan forest health mapping concept, 
applying two independent algorithms on the same LIDAR 
data set. First, LAI is estimated from LIDAR pulse 
penetration through the canopy layer, and second, expected 
LAI values are obtained for the forest if it was healthy and if 
it was totally defoliated based on modelling on single tree 
segmentation data. One specific aim was to test whether 
already existing LIDAR data sets could be used to generate 
normal LAI values, i.e., do technical differences between 
airborne laser scans influence the extinction coefficient of the 
laser pulses through a forest canopy layer (Næsset & Solberg, 
2007)? A second aim was to generate normal LAI with key 
stand and site property variables, mainly based on single tree 
data (Solberg & Næsset, 2007). Third, how can the woody 
area fraction be estimated (Solberg, 2007a)? The fourth and 
final aim was to apply the results of the above mentioned 
steps in a test case with severe insect defoliation on a Scots 
pine forest (Solberg, 2007b). 
 
 

2. MATERIALS AND METHODS 

Solberg et al. (2006) used calibration from point-based 
measurements on the ground with LAI-2000 and 
hemispherical photography to estimate LAI. The calibration 
was done with the formula: 
 
[1] LAI = (1/k) ln(Na/Nb)   
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where k is an extinction coefficient, and the term ln(Na/Nb) is 
the inverse of the gap fraction. Na is the total number of 
echoes and Nb is the number of below-canopy echoes for a 
30m-diameter circle around each ground measurement point. 
 
A number of studies have already addressed the effects of 
differences between laser data acquisitions using different 
sensors, flying altitudes, footprint sizes, and sensor specifica-
tions on basic laser-derived forest data metrics (e.g. Næsset 
2004, 2005; Chasmer et al, 2006). Significant effects of fly-
ing altitude, sensor and repetition frequency have been re-
ported, but the influence on biophysical properties may be 
limited by selecting operational parameters that are similar 
across acquisitions. For example, the effects of repetition fre-
quency for a given instrument can be more significant than 
effects of different instruments operated with similar settings 
(Næsset, in prep). It also seems to be a general tendency for 
first return data to be more stable across flight specifications 
than last return data. The current application is based on first 
return data only. It is therefore not unlikely that the technical 
properties of the laser scanning turns out to have a limited ef-
fect on the extinction coefficient. 
 
2.1 

2.2 

2.3 

Stability of laser canopy penetration across LIDAR 
campaigns 

In this part of the study, we utilized existing data sets from 
previous laser data acquisitions of forests in Norway, where 
the scanning is repeated over the same area with different 
technical properties. Important here is that we don’t need to 
calibrate the LAI data with ground measurements. It is 
sufficient to compare the ln(Na/Nb) term in equation [1], 
which is proportional to LAI. This is valid if the laser 
scanning is repeated for an area and LAI was the same on 
both occasions.  
 

Modelling normal LAI values 

The idea is that LAI will normally vary with tree species, site 
index and stand density, where the latter reflects both the 
number of trees per unit area and the spacing between them. 
For each species and site index the normal LAI should be 
proportional to stand density (SD) which we initially defined 
as: 
 
[3]   SD = h/dist ,  
 
where h is the mean tree height, and dist is the mean distance 
between the trees.  
 
We used existing and comprehensive data sets with airborne 
LIDAR to produce normal values of LAI for Scots pine, and 
for various values of stand density and site index. We had at 
hand a considerable amount of extensive airborne LIDAR 
data sets for forests in Norway. In each of these study areas, 
a number of field plots with complete measurements of trees 
and site productivity were available for analysis. 
 

Correction for woody area fraction 

From the forest area with insect attacks in 2005, 14 pine trees 
were sampled. They were located one in each of 14 sample 
plots in age classes from young, intermediate age and old 
stands. The sample trees, having heights of 10-30 m, were 
felled and all branches harvested. The branches, having a 
total mass of 591 kg d.w., were dried and separated into 

needles, twigs, and coarser branches for detailed 
measurements of hemisurface areas and clumping factors, 
mainly by photographing techniques (Fig. 1). From the total 
area, the area fraction of branches and stems, i.e., woody 
area, was calculated. Also, the woody area was modelled as a 
function of single-tree measurements, such as tree height and 
crown width. Such variables might be derived from single-
tree segmentation algorithms using LIDAR data.  
 

 
Figure 1.  Example of branch photography. 
 
 
2.4 

3.1 

Example of the method applied on insect defoliation 
event 

For testing the method, a laser scanning data set covering a 
21 km2 area with severe insect defoliation of Scots pine from 
2005 was applied. First, we used the single-tree segmentation 
algorithm (Solberg et al., 2006b) in order to detect all local 
maxima in the digital canopy height model (DSM), most 
likely being tree tops. The entire area was then divided into 
10m x 10m grid cells. For each cell, the stand density (SD) 
was calculated based on the height and position of the local 
maxima. Second, for each cell LAI was calculated according 
to model [1], where 1/k was set to 1.48 (Solberg et al., 
2006a). Finally, each grid cell was then provided with a 
forest health indicator value, c, defined as:  
 
[4]   c = LAI / SD  
 
This health proportionally factor was then assigned to forest 
health classes based on training sites within the damage area 
where the degree of defoliation was known based on  

a) field observations; 
b) changes in LAI during the insect defoliation period 

June – July obtained by repeated laser scanning;  
c) the normal LAI values obtained above from other 

sites; and  
d) minimum LAI values set to woody area as a 

function of single tree variables. 
 

3. RESULTS 
Stability of laser canopy penetration across LIDAR 

campaigns 

Fortunately, different laser scans had equal extinction 
coefficients for LAI estimation, although the instruments and 
flight specifications were different (Fig. 2).  
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Figure 2.  Relationship between ln(Na/Nb) for two laser scans 
done with two different scanners at two points of time over a 

forest reserve with no forest management. The 1:1 line is 
shown. The ln(Na/Nb) range is 0-7, which corresponds to an 

LAI range of about 0-14. The spatial resolution is 10m x 
10m, n=19399, and the no-intercept model was Y = 0.98X. 

 
3.2 Modelling normal LAI values 

The result of the modelling of normal LAI values for forests 
produced quite stable ratios between ln(Na/Nb) and stand 
density values. However, no effect of site index was found. 
Random errors might be present due to a limited number of 
plots for the lowest and highest site index classes. The ratios 
ranged from 0.29-0.38, which would correspond to health 
indicator ratios (c) in the range 0.43-0.56 after scaling with 
the 1/k factor being 1.48 (Solberg et al. 2006a). 
 

Site index, H40 facto
r 

6 0.34 
8 0.37 
11 0.32 
14 0.29 
17 0.38 
20 0.32 

Table 1. Proportionality factor between ln(Na/Nb) and stand 
density for various combinations of site index for Scots pine. 
 
3.3 Correction for woody area fraction 

The woody area fraction was around 50% for those trees not 
affected by the insect defoliation, and increased to 85% of 
the area for trees with severe defoliation. The woody area 
fraction of LAI can be estimated based on regression models 
with input variables such as crown size and tree height (Table 
2). It is notable that crown projected area was a stronger 
predictor for woody area than tree height, which indicates 
that the spacing between the trees are important for the 
amount of branching and woody area.  

 
Variable Paramete

r 
estimate 

R2

Height, m 1.25 0.46 
Crown volume, m3 0.96 0.61 
Projected crown area, m2 2.99 0.83 
Crown length, m 2.76 0.47 

Table 2.  Results of no-intercept regression models for 
woody area against various tree size measures that were 

derived from an automated routine for single tree 
segmentation on the LIDAR data for the 14 sample trees. 

 
3.4 Example of the method applied on insect defoliation 
event 

In total, 1.5 million local maxima were found over the 21 
km2 area, and the process was quite time-consuming with 35 
hours computing time with a Pentium 4 processor with a 3.2 
GHz clock frequency. From the training sites we obtained 
different values for the forest health indicator (c). First, the 
training sites subject to severe defoliation had c values 
around and lower than 0.25. A second set of training sites 
consisted of grid cells having no change in LAI from May to 
August. This is likely to be sites with a moderate degree of 
defoliation, i.e., where the amount of insect defoliation 
equalled the amount of new needles produced during the 
summer. These sites had a mean forest health indicator value 
c = 0.32. Finally, sites where we did not observe any signs of 
defoliation had c values in the range 0.3–0.6. All these results 
were from pine-dominated grid cells, having 90% or more of 
the standing volume being pine.  
 
It turned out that the pine forest in this case was in general 
quite defoliated, and in order to visualize some spatial 
variability we produced a map with more arbitrary threshold 
values for the forest health indicator c (Figure 3):  

• Class 1, most defoliated: c < 0.225 
• Class 2, moderately defoliated: 0.225 < c < 0.275 
• Class 3, least defoliated: c > 0.275.  

These values are lower than what was obtained from the 
normal LAI values, and visualizes degrees of defoliation 
severity. 
 

 
Figure 3.  Map of defoliation in 2005 with an extent of 2 km 
x 2.3 km. Red (dark grey) = severe defoliation; orange (grey) 

= moderate defoliation; green (light grey) = less severe 
defoliation; white = areas other than pure pine forest. 
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4. DISCUSSION 
The presented results are all preliminary. However, as a 
whole, they indicate a potential for using one laser scanning 
only for mapping defoliation. Two independent algorithms 
are used to process the laser datasets. First, LAI is estimated 
based on the degree of laser pulse penetration through the 
canopy layer. Second, tree heights and locations are derived 
by a single-tree segmentation algorithm, and these data are 
recalculated into a stand density variable. Then, a grid with a 
given spatial resolution is overlaid and the two variables are 
combined into a LAI/SD ratio which can be used as a forest 
health indicator. It appears that a healthy pine forest should 
have a LAI/SD ratio around 0.5, while a completely defoli-
ated forest would have an LAI/SD values around 0.2, which 
would be woody areas of branches and stems only.   
 
We will fine-tune the results further on. In our model of nor-
mal LAI values there is a linear relationship between LAI 
and tree height, and this needs to be refined. As trees grow in 
height, and the stand is closed, the canopy will be moved 
upwards, and LAI should not continue to increase linearly. 
Hence, we will try other non-linear models for tree height in 
future work. The denominator in the ratio is the mean dis-
tance between the trees, which can be recalculated to the in-
verse of the square root of the number of stems per unit area, 
and this is a non-linear function of LAI against the number of 
trees, which is reasonable.    
 

5. CONCLUSION 
In conclusion, the present preliminary results demonstrate a 
potential for application of airborne laser scanning for moni-
toring or mapping of defoliation as a forest health variable 
based on one scan only. Standard threshold values for LAI in 
healthy forests remains to be developed for various tree spe-
cies and for various combinations of site index and stand 
density.  
 

6. REFERENCES 
Chasmer, L., Hopkinson, C., Smith, B., and Treitz, P., 2006. 
Examining the influence of changing laser pulse repetition 
frequencies on conifer forest canopy return.  
Photogrammetric Engineering & Remote Sensing, 72, pp. 
1359-1367. 

Næsset, E., 2004. Effects of different flying altitudes on bio-
physical stand properties estimated from canopy height and 
density measured with a small-footprint airborne scanning la-
ser. Remote Sensing of Environment, 91, 243-255. 
 

Næsset, E., 2005. Assessing sensor effects and effects of leaf-
off and leaf-on canopy conditions on biophysical stand prop-
erties derived from small-footprint airborne laser data. Re-
mote Sensing of Environment, 98, 356-370. 
 

Næsset, E., and Solberg, S., 2007. LAI standards for healthy 
forests derived by airborne LIDAR. In prep. 

Solberg, S., 2007a. Detailed LAI measurements in defoliated 
Scots pine from destructive sampling and airborne laser 
scanning. In prep. 

Solberg, S., 2007b. Mapping areas with defoliated pine from 
a single laser scan. In prep. 

Solberg, S., Næsset, E., Aurdal, L., Lange, H., Bollandsås, 
O.M., and Solberg, R., 2005. Remote sensing of foliar mass 
and chlorophyll as indicators of forest health: preliminary 
results from a project in Norway. In: Olsson, H. (Ed.) 
Proceedings of ForestSat 2005, Borås, May 31-June 3. 
Rapport 8a. 

Solberg, S., Næsset, E., Hanssen, K.H., and Christiansen, E., 
2006a. Mapping defoliation during a severe insect attack on 
Scots pine using airborne laser scanning. Remote Sensing of 
Environment, 102, 364-376. 

Solberg, S., Næsset, E., and Bollandsås, O.M., 2006b. 
Single-tree segmentation using airborne laser scanner data in 
a structurally heterogeneous spruce forest. Photogrammetric 
Engineering & Remote Sensing, 72, 1369-1378. 

Solberg, S., and Næsset, E., 2007. Estimating LAI in 
multitemporal airborne LIDAR. In prep. 

 

ACKNOWLEDGEMENTS  

This paper is a result of studies from several projects, how-
ever, mainly from the ongoing REMFOR project funded 
mainly by the Norwegian Research Council.  

382

ISPRS Workshop on Laser Scanning 2007 and SilviLaser 2007, Espoo, September 12-14, 2007, Finland



HIERARCHICAL CLUSTERED OUTLIER DETECTION IN LASER SCANNER POINT
CLOUDS

S. Sotoodeh

Institute of Geodesy and Photogrammetry, ETH Zurich, Switzerland
Soheil.Sotoodeh@geod.baug.ethz.ch

Commission V/3

KEY WORDS: Point cloud, Laser Scanner, Outlier detection, EMST, Gabriel graph, Clustering

ABSTRACT:

Cleaning laser scanner point clouds from erroneous measurements (outliers) is one of the most time consuming tasks that has to be
done before modeling. There are algorithms for outlier detection in different applications that provide automation to some extent but
most of the algorithms either are not suited to be used in arbitrary 3 dimensional data sets or they deal only with single outliers or
small scale clusters. Nevertheless dense point clouds measured by laser scanners may contain surface discontinuities, noise and diffrent
local densities due to the object geometry and the distance of the object to the scanner; Consequently the scale of outliers may vary
and they may appear as single or clusters. In this paper we have proposed a clustering algorithm that approaches in two steps with the
minimum user interaction and input parameters while it can cop with different scale outliers. In the first step the algorithm deals with
large outliers (those which are very far away from main clusters) and the second step cops with small scale outliers. Since the algorithm
is based on clustering and uses both geometry and topology of the points it can detect outlier clusters in addition to single ones. We
have evaluated the algorithm on a simulated data and have shown the result on some real terrestrial point clouds. The results explain
the potential of the approach to cop with arbitrary point clouds and different scale erroneous measurements.

1 INTRODUCTION

Simple, efficient and direct capturing of 3D information are the
main reasons for the fast growing popularity of laser scanners.
Although the generated point clouds are direct and dense mea-
surement of objects, the appearance of single or cluster outliers
cause serious problems for the next modelling steps. Therefore,
a pre-process is required to detect and remove outliers. However,
the number of points in the generated point cloud is in the order
of million points, so (semi) automatic approaches are necessary.

Outlier detection in point clouds is not a trivial task since there
are: geometrical discontinuities caused by occlusions in silhou-
ette boundaries, no prior knowledge of the statistical distribu-
tion of points, the existence of noise, and different local point
densities. The typical outlier detection approaches are classified
as distribution-based, depth-based, distance-based, density-based
and clustering approaches (Papadimitriou et al., 2002).

In the previous work (Sotoodeh, 2006), we have introduced an
outlier detection algorithm for laser scanner point clouds, which
is categorized in density-based approaches, and have investigated
the advantages and the deficiencies of the algorithm in different
data sets. The algorithm needs a predefined minimum density for
inlier clusters and a threshold to distinguish outliers from inlier.
There it is shown that even though the algorithm is capable to
detect single and small clustered outliers but it simply does not
detect clustered outliers that are denser than the predefined cluster
density (large β-error). Also we have tried the algorithm in an
iterative manner however it removes a large amount of the inlier
and consequently results in a bigger value of α-error.

In this paper we have presented a new algorithm that applies more
sophisticated information of the point cloud to detect single and
clustered outliers with a minimum user interaction. It uses two
proximity graphs and performs in two steps. In addition to the
algorithm description, the results of applying the algorithm to a

real close-range data is reported in this article. Also some imple-
mentation issues are discussed.

This article contains a brief review of several outlier detection ap-
proaches in section 2. Section 3 presents the algorithm and some
implementation issues. Results of applying the algorithm on dif-
ferent data sets is presented and discussed in Section 4 and the
last Section concludes the article by discussing the achievements.

2 RELATED WORK

While an extensive amount of research has been presented in lit-
erature for outlier detection it is still a critical problem in laser
scanner point clouds. The proposed approaches have weak po-
tential to perform well with surface discontinuities, they need
some priory knowledge of the statistical distribution of the sam-
ples (Hawkins, 1980, Vanicek and Krakiwsky, 1982) or they are
sensitive to noise and different local densities (Breunig et al.,
2000). Nevertheless, the mentioned criteria are typical cases in
laser scanner point clouds.

According to (Papadimitriou et al., 2002) outlier detection ap-
proaches are classified into the distribution-based (Hawkins, 1980),
depth-based (Johnson et al., 1998), clustering approaches (Jain
et al., 1999), distance-based (Knorr et al., 2000) and density-
based (Breunig et al., 2000). Distribution-based approaches de-
ploy some standard stochastic distribution model (Normal, Pois-
son, etc.) and flag as outliers those objects that deviate from the
model according to a significant level (Vanicek and Krakiwsky,
1982, Rousseeuw and Leroy, 1987, Barnett and Lewis, 1994).
However, for arbitrary data sets without any prior knowledge of
the distribution of points, determination of the suitable distribu-
tion model which fits to the data set (if any) needs to perform
expensive tests (in laser point clouds the distribution of points
varies according to the distance of objects to laser scanner and the
object geometry). Local surface fitting approaches, for instance
moving least squares, is also used for outlier detection. The al-
gorithms perform well if the point cloud is dense and obtained
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from a smooth surface. However, discontinuities or high curva-
ture areas would get severe smoothing effect. The description of
these algorithms and their application is beyond the scope of this
article.

The depth-based approach is based on computational geometry
and computes different layers of k-dimensional convex hulls (John-
son et al., 1998). Objects in the outer layer are detected as out-
liers. However, it is a well-known fact that the algorithms em-
ployed cannot cope with large, arbitrary data sets in 3 dimensions.
The above two approaches for outlier detection are not appro-
priate for large, arbitrary data sets (Papadimitriou et al., 2002).
Nevertheless, this is often the case with laser point clouds.

The distance-based approach was originally proposed by (Knorr
et al., 2000). An object in a data set P is a distance-based outlier
if at least a fraction b of the objects in the object set is further
than r from it. This outlier definition is based on a single, global
criterion determined by the parameters r and b. This can lead
to problems when the data set has both dense and sparse regions
(Breunig et al., 2000).

The density-based approach was proposed by (Breunig et al.,
2000) for KDD (Knowledge Discovery in Database) applications
and (Sotoodeh, 2006) adopted the algorithm for application in
laser scanner point clouds. It relies on a local outlier factor (LOF)
of each object, which depends on the local density of its neighbor-
hood. The neighborhood is defined by the distance to the Mints-
th nearest neighbor. The MinPts is a predefined value, which
corresponds to the minimum number of points in the calculation
of density. The algorithm is not only independent of the prior
knowledge of the scanned objects, the distribution or density of
sampled points but also does not suffer from the different local
point densities. It is capable to detect single and small clustered
outliers. Nevertheless it does not detect clustered outliers that are
denser than the predefined cluster density (large β-error).

Many clustering algorithms detect outliers as by-products (Jain
et al., 1999). From the viewpoint of a clustering algorithm, out-
liers are objects not located in the clusters of dataset. These al-
gorithms, in general, consider outliers from a more global per-
spective, which also has some major drawbacks (Breunig et al.,
2000). Clustering algorithms, also called as classification meth-
ods, are performing by two main approaches: supervised and un-
supervised. In the supervised approach the algorithm needs some
representatives of different classes the supervisor expects. Pro-
viding such samples differs in various laser data set and so makes
the approach very dependent on the scanned objects.

In the unsupervised case, the goal is to cluster the input data in
such a way as to provide clusters Ck, k = 1, ..., K which cor-
respond to some underlying (interesting or useful) unobserved
class labels. A fundamental difficulty in clustering is determin-
ing K, the number of clusters. Once K is determined, one pro-
ceeds to group the observations. One may approach clustering
from a density estimation viewpoint. For instance, a common
approach is to model the density as a mixture of K components
(again, choosing K can be difficult) and then use these compo-
nents to determine clusters. A related method is k-means clus-
tering. The idea is to cluster the data into clusters centered on
k centers. The centers are initialized arbitrarily, and points are
assigned to the cluster associated with their closest center. The
centers are then recomputed using the assigned points, and this
continues until convergence. Besides the problem of selecting
the value of K, the k-means algorithm suffers from sensitivity
to the initial cluster centers. For this reason, some practitioners
advise trying several initializations, with various methods for se-
lecting or combining the result clusters. Others suggest various
methods for selection of initial centers (Marchette, 2004).

The minimum spanning tree can be used for clustering, using a
local criterion for defining clusters. This idea is described in some
detail in (Zahn, 1971). The idea is to break (remove edges from)
the minimum spanning tree at edges that are “inconsistent”. This
results in a collection of connected graphs, one for each cluster.
Many definitions of inconsistent are possible. One could compute
the standard deviation of the edge lengths incident on a vertex and
eliminate edges which are large relative to this scale. However
since this cutting is based on a global criterion, the clustering re-
sult would be rough and outliers close to the object surface cannot
be detected. This is described in more detail in Section 3.

(Sithole, 2005), has also applied minimum spanning tree to seg-
ment airborne laser scanner (ALS) data. The algorithm is scan
line based and performs in different directions. The author has
reported well performance of the algorithm in different ALS data
set to separate terrain, trees, house roofs and bridges (segmen-
tation). The outliers are detected as points that are not in the
predefined classes. It has a fast run time performance and runs
in case there are overlapping point clouds. However the exten-
sion of the algorithm to close-range data, in case either there is
no information about scan lines or if the point cloud is a com-
bination of different scan positions (topologically 3D data from
object surfaces), does not seem trivial and limits the application
to ALS datasets.

3 HIERARCHICAL OUTLIER DETECTION (HOD)
ALGORITHM

According to the general definition of outliers form (Hawkins,
1980), “Observations that deviate so much from other observa-
tions as to arouse suspicion that it was generated by a different
mechanism”, an outlier in a dense point cloud can be identified
using its sampling interval deviation from the others. In laser
scanner point clouds the sampling interval is not a fixed value
since the sampling is performed based on two fixed angular res-
olution and objects might have different distance to the measure-
ment instrument and so outliers might appear in various scales in
a scan; Therefore applying a global and then a local outlier de-
tection should provide useful results. Based on this observation
we have developed an algorithm that runs in two phases. The
first phase tries to capture some statistical information of a global
sampling interval, while the second phase provides a local criteria
to cluster the point cloud. Flowchart of the algorithm is depicted
in Figure 1.

First, a rough global approximation of the sampling intervals is
estimated over the Euclidean Minimum Spanning Tree (EMST)
edges. Then the tree edges that are not in a predefined confiden-
tial interval are pruned. The result is a rough clustering of the
point cloud. In the next step, each cluster is treated separately.
For points in each cluster a graph, so called Gabriel Graph (GG),
is generated. Edges of GG are used for estimating the sampling
interval statistics in each cluster. Then graph edges that are not in
a predefined confidential interval are pruned. This gives the final
clustering in which single outliers are removed as a by product.
The clustered outliers are also removed if they have less point
density than a predefined value.

Initially the algorithm computes the Delaunay triangulation of the
point cloud. The underlying topology of the Delaunay graph is
the base for the generation of the next graphs. In the first phase
of the clustering, EMST of the point cloud is generated and the
edges of the tree are pruned based on the statistical analysis of the
edge lengths. This gives a rough clustering of the point cloud and
might disconnect some big clustered outliers that their distance to
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Figure 1: Flowchart of the hierarchical outlier detection algo-
rithm

the other clusters are large. Clusters that are denser than a prede-
fined threshold are kept and the rest are removed. Second phase
starts with the generation of GG for the point clouds of each clus-
ter from the last phase. Having pruned the long edges of each
GG according to the statistics computed over edges of that GG, a
finer clustering of the point cloud is obtained. Removing clusters
less denser than a predefined value removes the final outliers and
cleans the data. In another viewpoint, the algorithm in the first
stage removes relatively large scale erroneous measurements and
in the second phase it detects and removes the outliers that might
not be as large as the first ones but according to the scanned ob-
ject surfaces they are considered as wrong measurements. In the
following sections, the above process is described in more details.

3.1 Global phase (rough clustering)

In the first step we use edges of EMST to obtain a global sam-
pling interval measure. The Euclidean minimum spanning tree
or EMST is a minimum spanning tree of a set of points in Rn,
where the weight of the edge between each pair of points is the
Euclidean distance between those two points. In simpler terms,
an EMST connects a set of points using edges such that the total
length of all the edges is minimized and any point can be reached
from any other by following the edges.

This definition gives a clue that edges of EMST contain some
global information about the sampling interval, since they span
the points by a global minimum edge weight (distance). Addi-
tionally in case of some clusters apart from each other, EMST
connects them by single edges that are logically longer than the
other edges of the tree (Figure 2b).

Having assumed that sampling intervals obey a normal distribu-
tion, an edge of the tree is statistically long if its distance to the
median of the all edge lengths is longer than the distance corre-
sponding to a predefined confidential interval. Median is used
since it is statistically less sensitive to outliers. Removing the
long edges of the tree according to such a threshold results in
some sub trees that each corresponds to a cluster of points (Fig-
ure 2c).

Since today laser scanners provide dense point clouds of objects,
splitted clusters that are less dense than a threshold are most prob-
ably outliers. In our implementation the minimum inlier cluster

Figure 2: Proposed algorithm steps in a simulated data. Steps
(a) to (c) and (d) to (f) illustrate the first and the second phases
of the algorithm respectively. (a)input data set (b)EMST of the
point set (c) pruned EMST by 99% confidential interval (d) GG of
the clusters of the first phase (e) pruned GG by 95% confidential
interval (f) ultimate result which is cleaned out of the outliers.

density (the threshold) is a user defined single value that might be
different for various scanning resolutions and object size.

In this stage the algorithm has cleaned outliers according to a
global criteria that is performing well in the scale of the whole
scan but might not be suitable to remove local outliers. So we
need a local and more rich measure of sampling intervals. The
next stage describes an approach to reach this goal.

3.2 Local phase (fine clustering)

Since EMST provides a rough skeleton of the scanned object,
the estimated sampling interval is also not so precise. Applying
a denser structure (graph) that has more edges on the underlying
scanned surface provides a denser sample of the edges and conse-
quently the estimation of the parameters of the related population
is more reliable. Gabriel Graph is such a structure.

Gabriel graphs, also known as Least Squares Adjacency Graphs,
were introduced by (Gabriel and Sokal, 1969) and named af-
ter their originator. GG has originally been defined for 2D and
has been used for geographic variation of data, but the defini-
tion is generalized to higher dimensions in a straightforward way
(Veltkamp, 1994). It also has widely been applied in the analysis
of labeled data (Aupetit, 2003) and widely in boundary/surface
reconstruction algorithms; (Veltkamp, 1994, Attene and Spagn-
uolo, 2000, Adamy et al., 2000) to name a few. A Gabriel Graph
on a point set P in Rn is defined to be the graph on P in which
two points are connected if the largest open ball passing through
the two points is empty. In a three dimensional Euclidean space
two points make an edge if the largest sphere passing through
these two points contains no other point. On the other hand since

385

IAPRS Volume XXXVI, Part 3 / W52, 2007



Figure 3: Gabriel graph edges and sampling intervals of a sam-
pled curve in a plane. Two points are connected by GG edges if
the largest circle passing through the points is empty (Only some
circles are shown in the figure).

GG is a sub graph of each Delaunay triangulation of the point set,
the edges of the GG are also edges of each Delaunay triangulation
and inherit their properties (Marchette, 2004).

According to the definition, the graph contains edges that resem-
ble the sampling intervals in three dimensions and the structure
is quit like a wireframe of the scanned object surface (Figure 2d).
Figure 3 illustrates the Gabriel Graph for a sampled curve in a
plane. It shows how the edges of GG are similar to the sampling
intervals.

Based on the above property the proposed algorithm performs
the second phase. For each cluster obtained in the previous stage,
GG is computed and its edges considered as the samples of the
sampling distance in that particular cluster. Like the first step, the
median value of the edge lengths is assumed as the estimation of
the sampling distance with a standard deviation equal to the stan-
dard deviation of the edge lengths. Considering the predefined
confidential interval, long edges of the graph are cut. It results
in sub graphs each indicating a cluster. Clusters that have a den-
sity less than the predefined cluster size are considered as outliers
(Figure 2e).

3.3 Implementation

Although the algorithm seems straight forward, computation of
EMST and GG needs some considerations. The simplest algo-
rithm to find an EMST, given n points, by constructing the com-
plete graph on n vertices requires O(n2) time. The same ap-
proach constructs GG in O(n3) in 3 dimensions. Having noticed
that EMST and GG are the subgraphs of every Delaunay trian-
gulation of a point set even in 3 dimensions, applying Delaunay
triangulation structure reduces the complexity to O(nlogn) for
each. Thus, we first compute the 3D Delaunay triangulation of
the point set and use that structure for computing the EMST and
then GG for each cluster resulting from the first phase. CGAL1 is
used as a geometric core library and for the Delaunay triangula-
tion computations. Boost Graph library2 is also employed for the
EMST computations.

4 RESULTS AND DISCUSSION

To assess the explained algorithm, it was examined on a simu-
lated data and some terrestrial laser scanner point clouds, with
dense clusters and most of typical outliers. Below the result of all
tests are reported.

1http://www.cgal.org
2http://www.boost.org

4.1 Simulated data

Figures 2a-f show the algorithm sequence on a simulated data
containing 656 points. Reference outlier and inlier are separated
manually and the result of the algorithm is compared with the
reference data. Table 1 shows some statistics, the number of out-
lier/inlier points and the first and second error types, of the result
in the two phases. At the first phase points and clusters that are
too far from the main clusters are detected while the second phase
deals with local outliers. High β-error value at the first phase ex-
planes that there are still some outliers among the intermediate
cleaned data that are not detected. Having run the second phase
remained outliers are detected and removed (the lower value of
β-error). Of course the second phase increases the α-error too
(some correct points are detected as outlier) however this is a
trade off one has to consider between decreasing β-error and in-
creasing α-error.

The HOD algorithm (phase-1)

R
ef

er
en

ce Inlier Outlier α-error
Inlier 569 3 572 correct outlier

Outlier 9 75 84 correct inlier
578 78 656 β-error

α-error 0.45% β-error 1.37%

The HOD algorithm (phase-2)

R
ef

er
en

ce Inlier Outlier
Inlier 565 6 571

Outlier 3 4 7
568 10 578

α-error 1.04% β-error 0.52%

Table 1: Result of the proposed algorithm on the simulated data,
phase one (upper table) and phase two (lower table).

4.2 Terrestrial case

Point clouds from Sternwarte3 building, which was measured by
Faro4 LS880 laser scanner, used as the terrestrial test data set.
Figure 4 left column, illustrates the original laser scanner data in
different scan positions with different object facets. The right col-
umn of the figure shows each data set after has been cleaned by
the algorithm. 99% and 95% confidential intervals are used for
the global and local clustering phases respectively. The minimum
inlier cluster density is considered as 100 points, according to the
object size, distance of the scanner to the object and sampling
resolution. Comparing the data set before and after outlier de-
tection clearly shows the importance of the process and how the
proposed algorithm performed. Close look at the results shows
that not only the algorithm detected single outliers, but also clus-
tered outliers with different densities have been detected.

The figure shows direct result of the algorithm on the data set.
However in some cases it might happen that some cluster of out-
liers denser than the minimum inlier size exist in the data set

3ETH Sternwarte in Zurich, an astronomical observatory planned and
constructed by the two ETH-Professors Gottfried Semper (Architecture)
and Rudolf Wolf (Astronomy and Mathematics) from 1859 to 1864

4http://www.faro.com
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Figure 4: Results of applying the proposed outlier detection al-
gorithm on some scans of the Sternwarte building which are cap-
tured by Faro laser scanner. Left column shows 3 different raw
point clouds and the right column shows the cleaned point clouds
after applying the algorithm.

which the algorithm consider them as inlier. This happens spe-
cially in case there are some real objects on the scene further than
the main object that has to be measured. In that case detecting
those objects as outliers is beyond the potential of the algorithm
and needs some further information other than the point cloud it-
self. User interaction to determine if the cluster is an outlier or an
object is required. The result of the algorithm seems quite handy
again; User just needs to select a cluster to remove the whole out-
lier cluster and comparing to the case that the user has to remove
the points of the outlier cluster separately, the user saves time for
editing.

5 CONCLUSIONS AND FUTURE WORK

Detecting outliers in laser scanner point cloud using a hierarchi-
cal algorithm is proposed and investigated in this paper. The al-
gorithm approaches in two stages. In the first stage it removes
relatively large scale erroneous measurements and in the second
phase it detects and removes the outliers that might not be as
large as the first ones but according to the scanned object sur-
faces they are considered as wrong measurements. The algorithm
has unconstrained behavior to the preliminary knowledge of the
scanned scene and it dose not suffer from the varying density of
the points. The algorithm efficiency is assessed by a test on a
simulated point cloud, which contained single and clustered out-
liers. The assessment is done with respect to a manual separation

of outlier/inlier points. The α-error and β-error (type I and II er-
rors) are estimated and the results show that most of the detected
outliers are really outliers according to the definition of the out-
liers (Hawkins, 1980). In addition some examples in terrestrial
laser scanner point clouds are presented and the behavior of the
algorithm on the data sets are shown and discussed. Results show
that the algorithm detects single and even clustered outliers al-
most without user interaction. Also, in case that the user editing
is required, the result of the algorithm provides easier editing pro-
cedure due to the selection of point clusters rather than individual
points. Test of the algorithm on airborn laser scanner data set is
another challenge that the author is currently working on.
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ABSTRACT: 
 
To meet obligations under Article 3.3 of the Kyoto Protocol, New Zealand is required to estimate, in an unbiased manner, forest 
carbon stock change, over the Protocol’s first commitment period (2008-2012). New Zealand has three categories of forest, namely: 
natural forest; forests planted prior to 1990; and forests planted in non-forest land after 1990. Carbon credits can be earned from net 
carbon accumulated in the last forest category: these forests are referred to as ‘Kyoto forests’. However, field access to these Kyoto 
forests for sampling is not guaranteed, and a plot-based forest carbon inventory system, which relies on the use of airborne scanning 
LiDAR, was therefore developed. Circular plots, 0.06 ha in area, will be located within these forests on a systematic 4 km grid. This 
paper describes investigations to confirm the relationship at the plot scale between LiDAR variables and (a) forest carbon, and (b) the 
key inputs (namely height, basal area, age, and silvicultural regime) to a New Zealand-specific forest growth model. The study has 
demonstrated that airborne scanning LiDAR provides an alternative approach to estimate carbon stock change for the first 
commitment period of the Kyoto Protocol, and can provide inputs to forest growth and carbon models enabling forecasts of carbon 
sequestration beyond 2012. The paper also describes some considerations for an operational forest carbon inventory system which 
will be implemented in early 2008. 
 

1. INTRODUCTION
 
New Zealand is a signatory to the Kyoto Protocol and the 
United Nations Framework Convention on Climate Change. A 
requirement under Article 3.3 of the Protocol is annual reporting 
of carbon stock changes arising from land use, land-use change 
and forestry (LULUCF) activities. Reporting is required for the 
Protocol’s first commitment period, from 2008 to 2012. Good 
Practice Guidance for LULUCF activities requires carbon stock 
changes to be estimated in an unbiased, transparent, and 
consistent manner. Further, uncertainties must be determined 
and these are required to be reduced over time. 
 
To meet LULUCF reporting requirements, New Zealand will be 
classifying forests into three categories: natural forest; forests 
planted prior to 1990; and forests planted after 1990 into non-
forest land. The latter category is referred to as ‘Kyoto forests’. 
Forests to be measured by New Zealand under the Protocol have 
been selected by the following parameters: minimum area of 1 
ha; at least 30 % canopy cover; at least 5 m in height; and a 
width of 30 m. Carbon credits (net carbon stock change) derived 
from Kyoto forests over the first commitment period can then 
be used to either offset greenhouse gas emissions and/or for 
carbon trading. New Zealand planted forests are comprised 
predominantly (89 %) of radiata pine (Pinus radiata), with the 
remainder made up of other species, mostly (6 %) Douglas-fir 
(Pseudotsuga menziesii) (MAF, 2006). 
 
A plot-based forest inventory system has been developed for 
Kyoto forests. Circular plots, 0.06 ha in area, will be located 
within these forests on a systematic 4 km grid across New 
Zealand. Field access to the mostly privately-owned Kyoto 
forests is not guaranteed. Accordingly, airborne scanning Light 
Detection and Ranging (LiDAR) will be used to inventory those 

plots without field access. Plot measurements are then used as 
inputs to a New Zealand specific radiata pine growth model, the 
300 Index (Kimberley et al., 2005) and a carbon allocation 
model, called C_Change (Beets et al., 1999). These two models 
can be linked, with the growth model used to parameterise the 
carbon allocation model. Under the Kyoto Protocol the four 
biomass carbon pools that must be reported are aboveground 
biomass, belowground biomass, dead wood, and litter. The 
amount of carbon in each of the four biomass carbon pools, at 
any stage of tree growth and stand development, is determined 
by running these two linked models. 
 
In recent years researchers have published a wide range of 
methods using remotely-sensed data to help identify forest type 
and forest structure. Much of this work has been focused on 
mapping at a small scale using satellite imagery.  New digital 
metric cameras and airborne LiDAR scanning instruments allow 
forest information to be measured in three dimensions with 
precision over moderately large areas at low unit cost. In some 
countries the data derived from digital airborne surveys and/or 
scanning LiDAR are being used (Næsset, 2002; Holmgren and 
Wallerman, 2006).  
 
Airborne LiDAR has been studied for its application in forestry 
since 1978. However, it is only in recent years that the 
combination of global positioning systems (GPS), inertial 
navigation systems and improvements in post-processing 
capabilities have allowed the scanning LiDAR and digital 
camera technology to progress to operational use (Næsset, 
2002; Nilsson, 1996; Watt, 2005).  
 
This study was undertaken to determine the potential of 
airborne scanning LiDAR to determine forest characteristics at 
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the plot scale (Watt and Haywood, 2007a). The criteria used to 
test the potential of airborne scanning LiDAR included accuracy 
with which the key inputs to the 300 Index growth model could 
be determined, and the accuracy of predicting total carbon at the 
inventory plot scale. The key inputs to this growth model 
include: mean top height; basal area; tree age; and silvicultural 
regime (stocking (trees per ha), pruning, and thinning). Mean 
top height is the mean height of the 100 largest diameter stems 
per ha, and its method of calculation is described by Dunlop 
(1995). Mean top height is derived from plot tree total heights 
and stem diameters measured in the field. 
 
 

2. MATERIALS 
 
2.1 Study Area 
 
The study was located in the central area of the North Island, 
New Zealand (39º S, 176º E) and consisted of both planted 
forest inventory plots and experimental trial plots for which we 
had unrestricted field access. Field and LiDAR data were 
collected between August and October 2006. The forests in 
these plots were representative of the radiata pine dominated 
forests in New Zealand. 
 
2.2 Field Plot Data and Carbon Stocks 
 
To determine how well LiDAR could predict inputs to the 
growth model, 121 plots were used ranging in size from 0.04 to 
0.245 ha, and arrangement: circular, square and/or rectangular. 
The circular plots had been measured in 4 plot clusters (a 
central plot with three satellite plots within 35 m of the central 
plot), while the square and rectangular plots were generally 
measured as part of existing experiments. Measurements 
recorded for each plot included: age; stocking; tree diameter at 
breast height; tree heights; and pruned height. Radiata pine 
plantations occurred in 117 of these plots. A summary of the 
field measurements and statistics is provided in Table 1. 
 
Field plot centres were located using a 12-channel differential 
GPS. The positional accuracy of the survey is expected to be 
within ± 3 m. In a majority of plots individual tree locations 
were also recorded in relation to the plot centre. 
 

 
Table 1. Summary of plot statistics (n=121). 

 
To determine the accuracy of LiDAR variables to predict total 
carbon per plot, 140 plots were used. Thirty six Kyoto forest 
radiata pine plantation plots with a pasture land-use history 
were added to the original (121) plot set, and 17 of the original 
plots, comprised of very young trees, were excluded. The total 
carbon for each of the 140 plots was determined by using field 
measured and derived inputs to the 300 Index growth model. 
The mean total carbon for the 140 plots was 117 t/ha, with a 
range from 36 - 261 t/ha. 
 
2.3 LiDAR and Photographic Data 

 
The LiDAR data were acquired using a small footprint (0.2 m) 
Optech ALTM 3100EA system at 8-10 returns/m². The 3100EA 
system is capable of recording the return time of up to four 
pulses, the first is usually reflected from the top of the canopy 
and intermediate pulses from the lower canopy or ground.  
Aerial photographic data were captured, for reference only, 
using a natural colour Rollei AIC medium format digital 
camera. These data had a pixel size corresponding to 20 cm on 
the ground.  
 
 

3. METHODS 
 
3.1 LiDAR Data Analysis 
 
The analysis of the LiDAR data involved a five-stage process, 
as listed below. 

1.Calculation of LiDAR plot-level variables, such as height 
percentiles and coefficient of variation of above ground 
pulse responses. LiDAR data were also used to determine 
ground height within the plots. 

2.Exploratory analysis of the two datasets - field 
measurements and LiDAR data - to investigate their 
underlying data structure.  

3.Generation, using bivariate and multiple regression 
methods, of relationships at plot level between field 
measurements (mean top height, stocking, and basal area) 
and total carbon per plot to LiDAR-derived variables. 

4.Determination of stocking using an individual tree detection 
method.  

5.Progressive decimation of the number of LiDAR returns on 
the ability of LiDAR to predict top height and basal area at 
the plot level. 

 
3.2 Variables Derived from LiDAR Data 
 
The following variables were calculated from the LiDAR data 
and extracted over co-located field plots for quantitative 
analysis: LiDAR height percentiles; mean intensity percentiles; 
standard deviation of laser dispersals; percentage of ground 
returns; coefficient of variation; skewness and kurtosis.  
 
LiDAR height percentiles provide information on the structure 
of the forest canopy at different height levels. Using the LiDAR 
data the pulses above 0.5 m were divided into quantiles 
corresponding to every 10th percentile from the 10th to the 100th, 
as well as the 5th, 95th and 99th percentiles. The 0.5 m was used 
as a threshold to account for undulations in terrain. This 
provided 13 variables of an average LiDAR canopy height by 
percentile. 
 
Laser intensity, the intensity of each return pulse (sometimes 
referred to as laser amplitude), represents this reflected energy 
and provides a concentrated measurement of the object’s 
reflectance unaffected by shadows or occlusions. This 
reflectance may vary based on the reflectance properties and 
porosity of the targeted material, path length and incidence 
angle of the pulse. Accordingly, for this study the data are 
regarded as uncalibrated, and is only used as a relative measure 
of intensity. For each plot the mean intensity for each of the 13 
height percentiles was calculated.  
 
The standard deviation of laser dispersals provides a simple 
measurement of the variation or dispersal within the laser height 
distribution of each field measurement plot. 
 

 Mean SD Median Min Max 
Top Height 
 (m) 

 
22.9 

 
8.6 

 
22.7 

 
2.8 

 
39.1 

Basal Area 
 (m2/ha) 

 
33.3 

 
13.6 

 
35.9 

 
0.4 

 
62.0 

Stocking 
 (trees/ha) 

 
468 

 
446 

 
468 

 
81 

 
4435 

Age  
(years) 

 
16.1 

 
5.5 

 
19 

 
4 

 
26 

390

ISPRS Workshop on Laser Scanning 2007 and SilviLaser 2007, Espoo, September 12-14, 2007, Finland



 

The percentage of ground returns (pczero) provides a measure 
of canopy density, and is calculated by dividing the sum of all 
above ground returns by ground observations with height values 
below 0.5 m by the total number of returns. All returns above 
this threshold are considered to be canopy hits. Areas with large 
numbers of ground returns will be those with sparser, more 
open canopies. 
 
The coefficient of variation (CV) summarises the relative 
variation, or dispersion, of the LiDAR height distribution within 
each sample plot. It is the ratio of standard deviation and mean, 
and is expressed as a percentage. As a measure of crown 
density, higher CV values indicate sparse, open canopies and 
low CV values dense, closed canopies (e.g. <20%). The 
inclusion of CV has proven useful to other researchers for 
estimating basal area, volume and biomass (Næsset, 1997; 
Nelson et al., 1997; Næsset & Økland, 2002).  
 
Skewness (skew) and kurtosis (kurt) of LiDAR height 
distribution also provide measures of canopy structure and 
density. If returns from the forest canopy only are considered, 
then as trees increase in height and the canopy develops, 
skewness and kurtosis of the laser height distribution change. 
 
3.3 Exploratory Data Analysis 
 
This analysis was used to explore, organise and summarise 
patterns in the LiDAR data, to explain variation and strength of 
relationships between the LiDAR-derived variables. Firstly, 
computation of summary statistics (Table 1) and the exploration 
of the distributional properties of all variables using histograms 
was undertaken. This was important to both detect and remove 
errors in the dataset and to identify factors such as outliers (due 
to uncertainty in location of field plots) that may potentially 
influence any modelling. Secondly, the correlation between 
each variable within the datasets was calculated as an initial step 
to the identification of potential relationships. 
 
3.4 Regression Modelling 
 
Regression equations were fitted to predict five forest structural 
variables, namely: top height; basal area; stocking; age; and 
total carbon. LiDAR data from the 117 radiata pine plots were 
used to calculate the predictor variables in these regression 
equations. Eight types of predictor variables were used in this 
analysis. These are: mean LiDAR height by height percentile; 
mean intensity by height percentile; standard deviation of 
LiDAR dispersion; percentage of ground returns (pczero); 
reciprocal of pczero (pcveg); coefficient of variation (CV); 
skewness (skew); and kurtosis (kurt).  
 
Two regression modelling approaches were used given the 
relationships between the datasets. These approaches were 
bivariate (for top height) and multiple regression (for basal area, 
stocking, age, and total carbon). 
 
Bivariate regression uses the different LiDAR derived data 
individually as predictor variables for the estimation of the 
structural parameters. For each variable, the laser height 
percentile with the highest R2 and lowest residual mean square 
(RMS) error values was used. Selection was guided first by the 
R2 and then RMS values. This approach was only applied to top 
height, as previous studies showed that that although bivariate 
regression worked well with top height, it would not be 
sufficient for the estimation of the other forest structural 
parameters (Donoghue and Watt, 2006; Watt and Haywood, 
2006). 

 
Multiple regression analysis was conducted to determine if 
further variation in the models could be explained by the 
inclusion of LiDAR-derived measures of intensity and canopy 
structure/density. 
 
3.5 Progressive decimation of LiDAR returns 
 
To test the sensitivity of the relationships to changes in LiDAR 
point density, returns classed as vegetation and ground data 
surrounding the plots were progressively decimated (reduced in 
number) using a randomised sampling routine (Watt and 
Haywood, 2007b). A ground surface model was generated for 
the area around each plot cluster for each iteration. It is 
necessary to process an area larger than the plot extent to ensure 
that there are an adequate number of LiDAR ground returns to 
generate the ground surface model. Using the surface model as 
a reference, relative height of each LiDAR return above the 
ground was calculated for the area in and surrounding the plot. 
 
The impact of progressively reducing the number of laser 
returns on regression model error was tested using tenfold 
cross-validation. In tenfold cross validation each dataset is 
divided into 10 subsets of approximately equal size; the model 
is re-run 10 times, each time leaving out one of the subsets and 
utilising it for testing the model. The sample error is then 
calculated each time and averaged to obtain an estimate of the 
true error. For each run the ‘optimal model’ was selected 
measured in terms of the model with the lowest RMS error. 
 
3.6 Automatic Tree Detection 
 
An individual tree detection algorithm was also used as a 
method for determining tree stocking. The algorithm uses 
canopy returns to detect individual tree crowns, and is based on 
the work conducted by Holmgren and Wallerman (2006). The 
algorithm was evaluated over 10 stands with the accuracy of the 
detection compared plot-level stocking. 
 

 
4. RESULTS 

 
4.1 Top Height Prediction Using LiDAR Percentiles 
 
The percentile height with highest R2 and lowest RMS error was 
selected as the predictor for estimation of top height. In this 
case, laser height values corresponding to the 70th percentile 
(p70) were used. Figure 1 illustrates there is a strong linear 
relationship (R2 = 0.96) between the 70th height percentile (p70) 
and field-measured top height. 
 
With an R2 of 0.96 using a single variable it is clear that a 
simple model that uses a single height percentile is the most 
effective approach to a predication of top height. Canopy 
density variables did not add any additional value to the 
predictive model in terms of explaining the remaining variation. 
 
4.2 Basal Area Prediction Using LiDAR Data 
 
Multiple regression showed that none of the intensity 
measurements were significant (with p >0.05). Accordingly, the 
30th height percentile (p30) measurement and skewness (skew) 
were the only variables included in the model. This model had 
an R2 of 0.66 with an RMS error of 8.02 m2 (25%). Figure 2 
shows the relationship between basal area and the two 
significant variables (p30 and skew). The 30th height percentile 
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is positively correlated with basal area, while skewness is 
negatively correlated. 
 
Figure 2 shows that there are no strong outliers in the dataset 
causing undue influence on the regression. There are no major 
patterns or structure in the residuals, which indicates that the 
model predicts basal area reasonably well at both high and low 
basal area. 

Figure 1. Top height against LiDAR 70th height percentile
 (p70) (n=117). 

Figure 2. LiDAR-derived basal area against field measured 
basal area (n=117). 
 
4.3 Stocking (Stems per ha) 
 
Multiple regression analysis showed that the only models found 
to be significant were models with a single height percentile 
measurement. The model with the highest R2 and lowest RMS 
error was the model that included maximum height (p100). The 
stocking model based on the highest R2 (R2 = 0.26 and RMS 
error = 167 stems/ha (35%)) does not provide a good 
relationship. There are no strong outliers in the dataset causing 

undue influence on the regression. The RMS error is high, 
limiting its practical use for providing stocking estimates. 
 
4.4 Tree Age Prediction Using LiDAR Percentiles 
 
The best model for predicting age included both height and a 
canopy structural measure. A model that includes height (p60) 
and kurtosis (kurt), explained 74% of the variation with an RMS 
error of 2.85 years (18%).  

 
4.5 Total Carbon Per Plot Using LiDAR Data 
 
Bivariate regression showed that there was a strong relationship 
between modelled total carbon per plot and tree height. A single 
LiDAR canopy height percentile (p30) explained 71 % of the 
variation in modelled total carbon. When combined with canopy 
structure (pczero) there was a significant improvement with fit, 
with 80 % variance explained (Figure 3). It was established that 
if a robust measure of stocking were available for LiDAR, then 
87% of the variation in modelled total carbon could be 
explained. 

Figure 3. Modelled versus predicted carbon using LiDAR-
derived inputs to the 300 Index growth model and the 
C_Change carbon allocation model (n=140). 
 
4.6 Decimation of LiDAR Returns 
 
Top height and basal area relationships behaved in a similar 
manner with the decimation model structure, remaining 
relatively stable throughout all runs. As expected the RMS error 
tends to increase as laser point density decreases with the 
greatest observed once densities fall below 1%, a nominal point 
density of 0.1 returns/m2. At densities below this the models 
start to perform poorly. 
 
4.7 Stocking Estimates From Automatic Tree Detection 
 
The ability of the algorithm to detect trees depends on the laser 
return density, crown size, tree height and growth stage. The 
RMS error of the non-linear least square regression is 140 
stems/ha. Overall the algorithm underestimated the number of 
trees, with larger errors observed in plots that contain higher 
numbers of trees. The proportion of detected trees saturates 
once stocking levels exceed 1200 stems/ha. 
 
 

5. DISCUSSION  
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This study sought to determine the potential benefit of airborne 
scanning LiDAR as an input to carbon models and to estimate 
carbon per plot for New Zealand Kyoto forests. It is anticipated 
that some of the methods described in this paper will become 
operational and that LiDAR data will be used routinely to 
provide plot-based estimates of carbon as well as some key 
carbon model parameters. Based on work reported here, we 
have demonstrated that LiDAR is able to provide estimates of 
total carbon per plot (R2=0.80), mean top height (R2=0.96), 
basal area (R2=0.66), and age (R2=0.74). The following 
discussion compares this research against an earlier South 
Island study in New Zealand (Watt and Haywood, 2006) and 
also attempts to place the results in a wider international 
context. 
 
Total carbon per plot could be predicted with a reasonable level 
of precision (R2=0.80; RMS error = 23 t (carbon) per ha (19%)), 
where LiDAR derived height at the 30th percentile (p30) has an 
R2 = 0.71. Predictive performance was improved by including 
stocking in the regression model (R2=0.87; RMS error = 19 t 
(carbon) per ha (16%)). These results were superior to results 
from the earlier South Island study (Watt and Haywood, 2006), 
where the regression model with three LiDAR variables had an 
R2=0.59 and an RMS error = 24 t (carbon) per ha (37%). This 
inferior result is likely to be due to difficulties in precisely 
matching ground and LiDAR plot locations, and a result of the 
time of LiDAR data acquisition being up to 1.5 years after the 
plot measurements were made for the 74 plots. 
 
In this study a strong relationship (R2 = 0.96; RMS error = 1.82 
m (8%)) between mean top height and LiDAR derived heights 
above the 70th percentile (p70) was established. This result is 
similar to that obtained in the earlier New Zealand study (Watt 
and Haywood, 2006) which yielded R2 values of � 0.87 with an 
RMS error of � 1.36 m. Again, the results from the Watt and 
Haywood (2006) study suggest that the linear model is 
relatively insensitive to LiDAR height distribution percentiles 
above 60%. Combined, these results agree with international 
findings where the accuracy of LiDAR-derived height is 
comparable to that of manual field survey methods (Donoghue 
and Watt, 2006; Næsset, 1997; Watt, 2005; Lim and Treitz, 
2004). To achieve a good level of accuracy the density of laser 
returns must be sufficient to (a) define the underlying terrain 
and (b) capture variations in terms of tree crop height and 
spatial arrangement. Generally a survey that records at least 1 to 
2 first returns/m2 at a scan angle of <= 10° either side of nadir 
should be sufficient to capture the detail required (Watt, 2005; 
Watt and Haywood, 2007b). 
 
Basal area estimates based on LiDAR measurements were 
found to be less accurate than top height; the best model found 
had an R2 of 0.66 with an RMS error of 8.02 m2 (25%). The 
error found in this study is of a similar magnitude to that found 
in the earlier New Zealand study (Watt and Haywood, 2006). 
The field-measured basal area was found to be strongly 
correlated with top height (R2 = 0.73). The final model included 
height (p30) and skewness. The height measure can be 
interpreted as being a measure of the development phase of the 
plot which is related directly to basal area. In European conifer-
dominated forest Næsset (2002) reported R2 values of 0.86 for 
basal area in southern Norway, and Lim et al. (2003) reported 
basal area estimates of R2=0.86 in a Canadian hardwood forest.  
 
Stocking was not reliably predicted using LiDAR measurements 
in this study. The RMS error is high (167 stems/ha (35%)) 
limiting its practical use for providing accurate estimates of tree 

density. This result is in contrast to other studies where the 
inclusion of measures of canopy characteristics derived from the 
LiDAR height distribution, in combination with selected 
LiDAR height percentiles, have proven useful for estimating 
stocking (Næsset, 2002). One explanation is that after stocking 
has changed (a standard silvicultural treatment) in New Zealand 
conifer forests the tree crowns expand to fill the canopy gaps 
and so while the stocking may change the distribution of 
LiDAR points may be similar to areas that have received no 
treatment once the canopy has closed. 
 
The evaluation of the single tree detection algorithm shows that 
the RMS error is marginally lower than the plot-based method. 
Overall the algorithm provides better results in stands less than 
1200 stems/ha. Above this stocking level the method saturated, 
especially in areas with coalescing crowns. To measure higher 
density stands it would be necessary to sharpen the tree top 
extraction algorithm. The detection rate would probably also 
improve if a higher density laser dataset was used. However, 
according to the simulations, the detection rate would still 
decrease as a function of stem density even if a high density 
laser dataset (20 returns/m2) were available. Therefore, it would 
be necessary to have a method for the estimation of the number 
of sub-dominant or suppressed trees. 
 
Estimates of age were improved by including more than just 
LiDAR-derived height. A model that includes height (p60) and 
kurtosis (kurt) explains 74% of the variation with RMS error of 
2.85 years (18%). Here, kurtosis provides a measure of canopy 
permeability which is related to tree crop development stage.  
Both variables included in the model are uncorrelated, so assist 
in explaining variation associated with the prediction. 
 
Any reduction in the point density (number of pulses/m2) of a 
LiDAR survey has the potential to reduce acquisition costs of 
data. This study evaluated for basal area and top height the 
effect of systematically reducing the laser point density and 
showed that basal area and top height estimates are stable even 
after 95% of the original data has been removed. This is 
equivalent to reducing the initial point density of 9 returns/m2 to 
0.5 returns/m2. A plausible explanation is the simple structure of 
top height and basal area models, as for both, height percentiles 
are the most significant variables. Consequently, the models are 
relatively insensitive to the decimation process. These findings 
are similar to other research that has evaluated different laser 
point densities and their impact on plot-level forest predictions 
(Næsset, 2002; Goodwin et al., 2006). Also of relevance to this 
work is that little change is observed in predictions if pulse 
density is kept constant and footprint size (0.2 to 0.6 m) and 
platform altitude are increased (Næsset, 2002; Goodwin et al., 
2006). 
 
While silvicultural status was not assessed in this study, an 
earlier study in New Zealand (Watt and Haywood, 2006) noted 
that for Kyoto forest plots, prune heights can be determined by 
visual assessment of LiDAR data. If automatic methods do not 
show promise in determining this aspect of management, then 
visual methods could be employed. 
 
 

6. CONCLUSIONS 
 
Where field access to forest plots is not possible, the study has 
demonstrated that airborne scanning LiDAR provides an 
alternative operational approach to estimate, at the plot-level, 
total carbon change for the first commitment period of the 
Kyoto Protocol. Forest top height, basal area, and age can be 
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determined with acceptable accuracy. It is expected that either 
visual assessment of either digital photography and/or LiDAR 
data can address the stocking (stems per ha) issue. 
 
This study suggests that laser point density can be taken as low 
as 0.5 to 1 returns/m2 without unduly affecting predictions of 
basal area and top height. Assessment of stocking using laser 
returns will require a much higher density. Given there will be 
variation in the number of returns across a survey area (in the 
study the range was 3-19 returns/m2 due to overlapping LiDAR 
swaths), it is prudent to acquire data at more than 4 returns/m2. 
This should provide a margin of safety and reduce the 
possibility of plots being excluded from the analysis due to 
insufficient laser returns, and to support use of LiDAR data to 
assess stocking should visual assessment of photographic 
imagery not be possible. 
 
The ability of LiDAR to provide inputs to the linked forest 
growth and carbon models with some degree of accuracy will 
assist in forecasting carbon sequestration beyond 2012. 
 
Operationally, adequate measurements to estimate carbon stock 
change for the first commitment period of the Kyoto Protocol 
could be achieved by surveying the Kyoto forest plot network 
located on a 4 km grid in 2008 and in 2012. The Kyoto forest 
plots will be circular, and 0.06 ha in area. During this five year 
period, as more data are acquired, the regression relationship 
between LiDAR variables and carbon per plot will be reviewed 
and improved. This will enable more accurate relationships to 
be applied to past plot data, which subsequently will lead to 
updated carbon assessments and a reduction in uncertainties, as 
is required under the Kyoto Protocol. 
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ABSTRACT: 
 

To map spatial patterns of floodplain vegetation structure for hydrodynamic modelling, airborne laser scanning is a promising tool. In 

a test for the lower Rhine floodplain, vegetation height and density of herbaceous vegetation were measured in the field at 42 

georeferenced plots of 200 m2 each. Simultaneously, three airborne laser scanning (ALS) surveys were carried out in the same areas 

resulting in three high resolution, first pulse, small-footprint datasets. The laser data surveys differed in flying height, gain setting and 

laser diode age. Laser points were labelled as either vegetation or ground using three different methods: (1) a fixed threshold value, 

(2) a flexible threshold value based on the inflection point in the normalised height distribution, and (3) using a Gaussian distribution 

to separate noise in the ground surface points from vegetation. Twenty-one statistics were computed for each of the resulting point 

distributions, which were subsequently compared to field observations of vegetation height. Additionally, the Percentage Index (PI) 

was computed to relate density of vegetation points to hydrodynamic vegetation density. The vegetation height was best predicted by 

using the inflection method for labelling and the 95 percentile as a regressor (R2 = 0.74 – 0.88). Vegetation density was best 

predicted using the threshold method for labelling and the PI as a predictor (R2 = 0.51). The results of vegetation height prediction 

were found to depend on the combined effect of flying height, gain setting or laser diode age. We conclude that high resolution ALS 

data can be used to estimate vegetation height and density of herbaceous vegetation in winter condition, but field reference data 

remains necessary for calibration until a standard measure of sensitivity is supplied together with the laser data. 

 
1. INTRODUCTION 

In response to the increased awareness of the socio-economic 

importance of river flooding in the past decades, considerable 

effort has been undertaken in recent years in the development of 

hydrodynamic models of overbank flow to predict extreme 

flood water levels for the design of flood defence structures. 

Hydrodynamic roughness of the floodplain surface is one of the 

key parameters of these models, and depends to a large extent 

on vegetation height and density (Baptist, 2005). Vegetation 

density is the projected plant area in the direction of the flow 

per unit volume (m2/m3 or m-1). For cylindrical vegetation, this 

equals the product of number of stems or stalks per unit area 

multiplied by the average stem diameter. Traditional methods to 

map vegetation patterns within the floodplain are based on 

classification of vegetation units or a uniform roughness is 

applied to the whole floodplain area. This leads to a 

considerable loss of within-class variation. There is thus a need 

for a fast and adequate approach to assess vegetation structure 

of floodplain surfaces. 

  

Airborne laser scanning (ALS) provides information on the 

distribution of vegetation directly, and therefore has been used 

extensively in forestry surveys to estimate forest characteristics 

(Straatsma and Middelkoop, 2006; Lim et al., 2003). It has been 

used to map vegetation height in floodplains as well, but only in 

summer when vegetation was in leaf-on condition (Davenport et 

al., 2000; Cobby et al., 2001; Hopkinson et al., 2004; Mason et 

al., 2003). However, the portability of the established relations 

in these studies was low. Moreover, in the Netherlands most 

floods occur in winter and relations derived for summer 

vegetation may therefore be unrepresentative. No studies were 

found on the extraction of vegetation density of herbaceous 

vegetation. The main goal of this study was to estimate 

vegetation height and density of dormant herbaceous floodplain 

vegetation on a field plot level using ALS data and assess the 

influence of flying height and amplification of the return signal 

at the receiver of the laser scanner.  

 

2. MATERIALS AND METHODS 

2.1 Study area and field measurements 

This study is based on laser data collected in three floodplain 

sections of the distributaries of the River Rhine in The 

Netherlands: ‘Duursche Waarden’ floodplain (DW) along the 

right bank of the River IJssel, and the ‘Afferdensche en 

Deestsche Waarden’ (ADW) and the ‘Gamerensche Waarden’ 

(GW) floodplains along the left bank of the River Waal. 

Vegetation consisted of hardwood and softwood forest and 

shrubs, but is dominated by herbaceous vegetation. Vegetation 

is characterized by a heterogeneous pattern of vegetation types 

and structure. Herbaceous vegetation consists mostly of sedge 

[Carex hirta L.], sorrel [Rumex obtusifolius L.], nettle [Urtica 

dioica L.], thistle [Cirsium arvense L.] and clover [Trifolium 

repens L.].  

 

We measured vegetation height and density in 42 field plots of 

homogeneous vegetation: 12 plots in the DW and ADW 

floodplain in March 2001, and 30 plots in the GW floodplain in 

March 2003. Field measurements were carried out 

simultaneously with the ALS survey. The plots were geo-

located using a Garmin GPS12 resulting in a horizontal 

accuracy of 5 meter.  

 

2.2 Laser scanning data 

The laser data were acquired by Fugro-Inpark using the FLI-

MAP system. FLI-MAP, Fast Laser Imaging and Mapping 

Airborne Platform, is a first-pulse scanning laser range finder 

combined with a dGPS and an Inertial Navigation System for 
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Table 1. Metadata for the three laser scanning campaigns 
 

Acquisition 

Time 

Floodplain 

location 

scan 

angle 

no. of 

sensors 

sensor 

age 

Flying 

height 
Gain 

point 

density 

Flight 

strips 

March 2001 DWADW ± 30° 1 old 80 m 100% 12 pts/m2 Single 

March 2003a GWhigh ± 30° 2 new 80 m 80% 75 pts/m2 Double 

March 2003b GWlow ± 30° 2 new 55 m 100% 60 pts/m2 Single 

 

 

c)

Gaussian fit

-0.2 0.0 0.2 0.4

Height above modus (m)

0

50

100

150

200

250

300

350
Ground
Vegetation
Gaussian fit

a)

Fixed threshold

-0.2 0.0 0.2 0.4

Height above DTM (m)

0

50

100

150

200

250

300

350

N
r 

o
f 

h
it
s
 p

e
r 

b
in

 (
-)

Ground
Vegetation

Inflection
point

b)

Harris fit

-0.2 0.0 0.2 0.4

Height above DTM (m)

0

50

100

150

200

250

300

350
Ground
Vegetation
Harris fit

 
Figure 1. Labelling of vegetation point (black bars) and ground points (grey bars); a) threshold value of 0.15 m, b) inflection point, c) 

difference between Gaussian fit and point distribution. 
 
positioning. FLI-MAP has an additional option to change the 

gain setting. The gain is the amount of amplification of the 

return signal before it is converted to a digital signal. Surveyors 

may increase the gain to compensate for the declining emission 

of energy due to ageing of the laser diode. Table 1 summarizes 

the characteristics of the three laser scanning campaigns carried 

out in three floodplain sections in the Rhine distributaries. The 

laser data collected in 2001 in the ‘Duursche Waarden’ and the 

‘Afferdensche en Deestse Waarden’ floodplains is referred to as 

‘DWADW’ dataset. Between 2001 and 2003, Fugro-Inpark 

added a second laser range finder to FLI-MAP, resulting in a 

doubling of the data collection rate and a re-orientation of the 

scanners. Instead of one nadir looking scanner, the two scanners 

were facing 7° forward and backwards to decrease the number 

of occlusions in built-up areas. With the new FLI-MAP 

configuration two datasets were collected in the ‘Gamerensche 

Waard’ floodplain in 2003. One was acquired from a height of 

about 80 m and with normal gain setting of the receiver, 

resulting in the ‘GWhigh’ dataset, the second from a minimum 

height of 55 m and with the maximum gain, called the ‘GWlow’ 

dataset. The GWhigh dataset covers the entire GW floodplain, 

while each flight line was flown twice to increase the point 

density resulting in a point density of 75 points/m2. The GWlow 

dataset only covers 10 field plots. The three datasets enable the 

evaluation of the resulting regression equations to estimate 

vegetation height, which are influenced by the different flight 

parameters (table 1). 

 

2.3 DTM extraction and labelling  

For the determination of the vegetation height, the effect of the 

undulations of the terrain was eliminated. We constructed a 

Digital Terrain Model (DTM) for each plot using iterative 

residual analysis based on a simplified version of the method of 

Kraus and Pfeifer (1998). In each step, a surface was computed 

as a local second order trend surface in a moving window. The 

window radius was 1.5 m to ensure enough points are available 

for a robust fit. The residual distance to this surface was 

computed for each point. Points with positive residuals are 

likely to be vegetation points. Since the range of values for an 

unvegetated, flat surface was computed and proved to be 

approximately 30 cm, a simple weight function was applied to 

compute the surface in the next iteration: points with an residual 

value of more than 15 cm were excluded from further analysis 

in the DTM processing. With the remaining points a new DTM 

surface was computed. Iterations were continued until all points 

had residuals less than 15 cm. The final DTM was a smooth 

surface running through the middle of these ground points. 

Heights relative to the DTM were used in subsequent 

computations.  

 

In a second step, a detailed study was carried out to decide 

which points should be labelled as vegetation. Three different 

methods were evaluated: (1) a threshold method, (2) an 

inflection method, and (3) a Gaussian method. The first method 

is based on a fixed threshold value above the DTM, the other 

two are based on histogram analysis of normalised heights. For 

the threshold method, we used 15 cm above the DTM as a 

threshold (figure 1a), similar to the DTM filtering setting. For 

the second and third method laser points were binned in 2 cm 

vertical bins. Narrower bin intervals led to very spiky 

histograms, wider intervals to a loss of detail. The vertical point 

distribution was considered as a combination of a noise 

distribution of ground points and a uniform distribution of 

vegetation points. The inflection method finds the point of 

maximum concave-up curvature in the upper limb of the 

histogram, the so-called inflection point. The rationale behind 

the selection of this point as a threshold value is that the sum of 
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a noise distribution of the ground points and the uniform 

distribution of the vegetation points gives a strong concave up 

curvature. Any point that lies above the inflection point value is 

labelled as a vegetation point, all points below are ground 

points. To find the inflection point, a Harris function was fitted 

through the upper part of the histogram for each field plot 

(figure 1b). The Harris function is defined as: 

 

  y(h) = (a+b*hc)-1    (1) 

  

where y(h) is the frequency of occurrence in a bin at height h. 

Parameters a, b and c are estimated from a least squares fit 

using a minimum of 15 bins to ensure stability of the fit. The 

inflection point was obtained by determining the height at 

which the second derivative of the Harris function reaches the 

maximum value. The height of the inflection point in the 

example is 0.09 m (figure 1b). The Gaussian method fits a 

Gaussian curve to the histogram. The Gauss curve is defined as: 

 

 

( )




















 −
−=

−

2

5.0

2

1
exp2)(

σ

µ
πσ

h
hp

 

(2) 

 

where p(h) is the frequency of noise occurrence at height h, µ is 

the mean, σ is the standard deviation. Fitting the Gauss curve 

boils down to finding the mean and standard deviation of the 

ground points. The mean of all points in the plot however also 

considers the vegetation points. Therefore, we used the mode of 

the distribution instead of the mean to estimate µ. The 

disadvantage of the mode is that the data have to be binned 

which introduces a dependence on the choice of the bin 

boundaries. Moreover, the mode can be undetermined. To 

counteract this effect we used the weighted mode, the average 

of the seven most frequent values in the point distribution, 

weighed by frequency. The standard deviation was based on the 

points lower than the weighted mode. The Gauss curve was then 

scaled by the product of twice the number observations below 

the weighted mode and the bin width (figure 1c). The difference 

between the histogram values and the fitted Gauss curve in the 

range above one standard deviation above the mode provided 

the number of points per bin that were assumed to represent 

vegetation. In each bin, points were labelled randomly as 

vegetation up to the predicted number of vegetation points. This 

ensured a spatially random distribution of the vegetation points. 

 

2.4 Normalized point height distribution and comparison 

with field data 

The three methods, described in the previous section, result in 

three height distributions of vegetation points for each plot. 

With respect to predicting the vegetation height, each point 

distribution was described by 21 different statistics: 

• Central tendency: mean, median, mode 

• Variability: standard deviation and variance 

• Shape: skewness and kurtosis 

• Percentiles: D10, D20,....., D100 + D95, D96, D97, D98, D99 

 

The observed vegetation heights in the field were subsequently 

compared to these statistics using correlation as an indicator of 

the strength of the relation. Forward stepwise linear regression 

was subsequently carried out to determine the strongest 

predictors (Wonnacott and Wonnacott, 1990). The effects of 

gain setting and flying height were tested using two statistical 

tests; a t-test on differences in means and a paired sample t-test 

of the D95 percentiles of the GWhigh and GWlow data set. 

Samples could be paired for the GW datasets since the same 

reference plots were used. To gain insight in the effect of laser 

diode age and the flight parameters, the slopes of the regression 

models for vegetation height were compared using three 

Student’s t-tests. 

 

Vegetation density was predicted using the Percentage Index 

(PI), which computes the percentage of laser hits that fall within 

the height range of the vegetation (h1 to h2): 

 

 tot

hh

hh
N

N

hh
PI 21

21 *
12

1 −
−

−
=

  

(3)

 
 

in which Nh1-h2 is the number of vegetation points between 

height 1 and 2 above the ground surface, Ntot is the total 

number of points in the field plot including vegetation points 

and ground surface points. The height interval for PI is equal to 

the height of the vegetation. The first term in the equation is 

added, because higher vegetation would increase Nh1-h2, but 

does not necesserily increase the vegetation density. Ideally, h1 

should be set to zero, and h2 to the maximum height of the 

vegetation. However, h1 should not include noise of the ground 

surface. Therefore we chose the lower limit of the vegetation 

point height distribution as a minimum value.  

 

3. RESULTS 

3.1 Vegetation height and density 

Vegetation height in the 42 sample plots ranged from 0.26 to 

1.66 m. Vegetation density varied between 0.0003 and 0.72 m-1. 

For each plot, three different labelling methods were applied 

and 21 laser-derived statistics were computed. The correlations 

between the field vegetation heights and the laser statistics were 

are shown in figure 2. The following parameters showed the 

highest correlations: (1) D30 for the threshold method (r = 0.72), 

(2) D90 to D98 plus the standard deviation and variance for the 

inflection method (r > 0.85), and (3) D70 for the Gaussian fit (r = 

0.70).  

 

The parameter with the highest correlation was chosen for 

vegetation height prediction for each labelling method. For the 

inflection method, a few parameters showed a high correlation. 

The 95 percentile was selected to maintain congruency in 

predictors even though the standard deviation and the variance 

showed a marginally better correlation coefficient. Figure 3 

shows nine scatter plots depicting the measured vegetation 

heights versus the predicted heights based on the selected laser 

percentiles. Forward stepwise regression was carried out to 

select the best regression model, starting with the selected 

percentile (D30, D95, and D70 for the threshold, inflection and 

Gaussian method respectively). This did not result in the 

selection of any additional parameters for any of the regression 

models, due to multicollinearity constrictions. Table 2 

summarizes the regressions. Results of the prediction of 

vegetation density using the Percentage Index (PI) are shown as 

scatter plots (figure 4). The threshold and Gaussian method 

show a positive relation with vegetation density (R2 = 0.51 and 

0.49 respectively). Conversely, prediction based on the 

inflection labelling shows a weak negative relation (R2 = 0.09). 

Table 3 summarizes the equations. 

 

3.2 Effect of flying altitude and gain setting 

The GWhigh and GWlow laser datasets share 10 field plots, 

which allowed to compare the combined effect of lower flying 

altitude and increased the gain setting (cf. table 1). The 

following tests were performed using the inflection labelling  

method and the D95 percentile: 
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Figure 2. Effect of point labelling methods on the strength of correlation between laser-derived statistics and field vegetation heights. 

Dx = X percentile of the vegetation points, cv = coefficient of variation, sk = skewness, kurt = kurtosis, var = variance, sd 

= standard deviation 
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Figure 3. Scatter plots of predictions of vegetation height per dataset using three different point labelling methods: a), b), and c) 

threshold method, d), e) and f) inflection method, g), h) and i) Gaussian method 
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Figure 4. Scatter plots of predictions of vegetation density per dataset using three different point labelling methods: a) threshold 

method, b) inflection method and c) Gaussian method 
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Table 2. Regression equations for vegetation height 

 
Labelling 
method / 

dataset 

Regression equation R2 
RSE 

(m)a 

Threshold    

 DWADW Hv = 17.20D30 - 2.45 0.58 0.17 

GWhigh Hv = 10.57D30 - 1.26 0.41 0.24 

GWlow Hv = 6.98D30 - 0.83 0.57 0.21 

Inflection    

DWADW Hv = 2.51D95 + 0.11 0.76 0.13 

GWhigh Hv = 1.47D95 + 0.28 0.74 0.16 

GWlow Hv = 1.06D95 + 0.40 0.88 0.11 

Gaussian    

DWADW Hv = 5.13D70 - 0.39 0.37 0.21 

GWhigh Hv = 2.67D70 + 0.02 0.46 0.23 

GWlow Hv = 1.80D70 + 0.19 0.65 0.19 
a 

Residual Standard Error 

 
Table 3. Regression equations for vegetation density using 

three different methods  

 

 Regression equation R2 RSE (m-1)a 

Threshold Dv = 1.18PI + 0.03 0.51 0.08 

Inflection Dv = -0.13PI + 0.14 0.09 0.11 

Gaussian Dv = 1.16PI +0.01 0.49 0.08 
a Residual Standard Error 
 

A paired sample t-test revealed significant differences 

between the height of the D95 percentile of the GWhigh and 

GWlow datasets (α = 90%, p = 0.08). These results indicate 

that a low flying height, combined with a high gain improves 

detection of the top of the vegetation.  

 

The slope of the regression lines between laser data and 

observed vegetation height also indicates the ability of the 

laser signal to detect the top of the vegetation. A steeper 

slope indicates a poorer detection of the vegetation top. 

Figure 3 shows the regression lines for the DWADW, 

GWhigh and the GWlow data sets. The slope of the 

DWADW is steepest, and the slope of the GWlow dataset is 

mildest. Based on three Student’s t-tests, all differences in 

slope were significant at the 95 % level of confidence.  

 

4. DISCUSSION 

4.1 Vegetation height and density estimation 

Vegetation height of herbaceous floodplain vegetation can be 

predicted reliably at the plot level using high-density first-

pulse airborne laser scanning data (R2 = 0.74 to 0.88 using 

the inflection labelling method), while estimation of 

vegetation density is less accurate (R2 = 0.51 using the 

threshold method). The inflection method shows the best 

predictions of vegetation height for all three datasets (figure 

3). The threshold and the Gaussian method in general 

selected fewer points, and are therefore more sensitive to 

outliers in the height distribution. Conversely, vegetation 

density was predicted better by the threshold and Gaussian 

method (figure 4). The PI relates point density of vegetation 

points to hydrodynamic vegetation density. The inflection 

method labels more points as vegetation than the two other 

methods, but the PI values did not correlate well with field 

reference values, and are even negatively correlated. This 

could be caused by the height at which the vegetation density 

was measured in the field, which was at least at 13 cm above the 

ground surface (half the minimum vegetation height). This is well 

above a typical inflection height of 5 cm. The threshold method 

performed marginally better than the Gaussian method. The 

inverse dependence of PI on h2 minus h1 (eq. 3) could lead to 

unrealistic values in case h2 nears or equals h1. This should not be 

a problem for vegetation higher than 25 cm as in this study. 

 

The quality of prediction of vegetation height in this study is 

similar to the results obtained in regression models for forests: 

Means et al. (1999), Naesset and Bjerknes (2001), and Naesset 

(2002) reported regression models explaining 74 to 95 percent of 

the variance in the field reference data of vegetation height. 

Similar to our study, forestry studies obtained better results for 

vegetation height than for parameters related to vegetation density. 

Given the small range in height of herbaceous floodplain 

vegetation, it is remarkable that the results obtained in our study 

are of similar quality as those obtained in forestry surveys.  

 

Davenport et al. (2000), Cobby et al. (2001) and Hopkinson et al. 

(2004) studied vegetation height of low vegetation in leaf-on 

condition. Conversely, in our study, we predicted vegetation 

height of dormant herbs. This means that the vegetation signal is 

much weaker, due to the smaller plant surface. Still, the predictive 

quality of vegetation height found in this study is comparable to 

the studies on low vegetation in leaf-on condition. The differences 

found in the regression equations from this study and previous 

studies (Davenport et al., 2000; Cobby et al., 2001; Hopkinson et 

al., 2004) demonstrate that portability of the derived relations is 

low. It points to the need for future field reference data. A 

standardized empirical measure of sensitivity could be provided 

together with the laser data by laser scanning of artificial objects 

with varying reflectivity as suggested by (Wotruba et al., 2005). 

Further improvements are expected from a decrease in laser point 

accuracy. Our data showed a 4 cm standard deviation, but present 

day scanners show standard deviations down to 1.5 to 2 cm, which 

might allow mapping vegetation heights of meadows. 

 

4.2 Effects of flight parameters; flying height, laser diode age 

and gain setting  

The DWADW and GWhigh data sets yielded different slopes of 

the regression models to estimate vegetation height, which was 

significant at the 99.9 confidence level. The reason for this 

difference might be the age of the laser diode age, the calibration 

settings or the larger average incidence angle in the GWhigh 

dataset, due to the reorientation of the laser scanners between 2001 

and 2003. The slope of the GWlow dataset was significantly 

steeper than for the GWhigh dataset. The paired sample t-test also 

showed significant differences between the GWhigh and GWlow 

datasets. Remarkably, the increase in the regression slope of the 

GWhigh and GWlow dataset was significant even though the field 

and laser data were collected on the same day. The reason for the 

difference in slope and 95 percentile must therefore be the 

combination of the reduced flying height and increased gain 

setting for the GWlow dataset. Together these effects result in a 

larger amount of energy reaching the analogue to digital converter 

in the laser scanner from an equally reflective object. 

Consequently, small objects are detected better, and the regression 

slopes are lower. Naesset (2004) concluded for spruce and pine 

forest that the effect of flying altitude is marginal and that the 

flying altitude can be increased by 60 % without any serious effect 

on the estimated stand properties. These conclusions for forests are 

contrary to our conclusions for herbaceous floodplain vegetation. 

The reason for this difference might lie in the shape and structural 

properties of the vegetation involved. Trees are larger and 

Naessets data were collected in leaf-on conditions, which make 
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detectability of trees better than thin floodplain herbs, which 

seem at the edge of detectability. With these datasets, it is 

impossible to assess the influence of the individual 

parameters. However, as long as the parameters influencing 

the regression equations are unclear, field reference data will 

remain necessary to establish the regressions.  

  

5. CONCLUSIONS 

Laser scanning provides detailed and accurate estimates of 

vegetation height and to a lesser extent of vegetation density. 

Three different vegetation labelling methods were evaluated 

(threshold, inflection and Gaussian). Vegetation height 

estimation was most successful using the inflection method 

for point labelling. The 95 percentile proved the best 

predictor, (R2 = 0.74 to 0.88). However, regression models 

differed significantly for datasets that were acquired with 

different flying height, gain, and laser diode age. The validity 

range for vegetation height is the height range order of 0.2 to 

2 m. Vegetation density was predicted using the Percentage 

Index (PI), which relates vegetation point density to 

hydrodynamic vegetation density. The PI based on the 

threshold (R2 = 0.51) and Gaussian (R2 = 0.49) labelling 

method proved better estimators of vegetation density than 

the PI based on the inflection method (R2 = 0.09). This might 

be caused by difference in reference heights between field 

and laser data. The validity range for vegetation density is in 

the order of 0.001 to 0.7 m-1.  

 

Because these herbs in winter are low and thin, height 

estimation is sensitive to the combined effect of flying height, 

gain setting and age of the laser diode. The common factor in 

these parameters is that they influence the amount of energy 

at the receiving end of the laser scanner. With increasing 

energy, the vegetation detection increases too. We conclude 

that airborne laser scanning data can be used to map 

vegetation height and density of dormant floodplain 

vegetation for floodplain roughness parameterization. Field 

observations of vegetation structure remain, however, 

necessary to calibrate the regression models until a standard 

measure of laser sensitivity is supplied together with the laser 

data. 
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ABSTRACT: 
 
In this study, the effects of different flight altitudes on tree height estimates with a small-footprint scanning lidar were investigated 
and assessed in mountainous forests with poor laser penetration rates. The study area was closed-canopy evergreen coniferous 
plantations dominated by Japanese cedar (Cryptomeria japonica) and hinoki cypress (Chamaecyparis obtusa) in Japan. The stand 
age ranged from 33 to 100 years and the area was undulating terrain with a variation in elevation ranging from 135 to 391 m above 
sea level. A total of 33 circular sample plots (0.04 ha) were established and predominant mean tree heights for each plot were 
calculated using individual tree heights within each sample plot. Data from three different flight altitudes (500 m, 1000 m, and 1500 
m) were acquired with Optech ALTM3100 sensor in late summer 2006. The settings of lidar system were paid attention as the laser 
footprints should cover the targeted area without omission, i.e. the laser spot spacing should be close to footprint diameter in the 
resultant data. Owing to this idea, we were able to theoretically avoid missing treetops and passing through the canopy gaps just by 
chance for a given transmitted laser pulse. The results of this study demonstrate that the higher platform altitude would reduce both 
the penetration rates and the intensities of laser pulses, and affect not only the quality of digital surface model, but also the quality of 
digital terrain model more significantly in forests with undulating topographies, thus indicating the less accurate estimates of lidar-
derived tree heights. 
 
 

                                                                 
*  Corresponding author.  Tomoaki Takahashi; E-mail: tomokun@ffpri.affrc.go.jp 

1. INTRODUCTION 

Small-footprint scanning lidar systems have been often used for 
forest measurements because such systems have become widely 
available on a commercial basis (St-Onge et al. 2003). In the 
previous studies, especially the accuracy of lidar-derived tree 
height estimates was really high and comparable with the 
accuracy of field measured tree heights in some vegetation 
types of forests (e.g. Hyyppä et al., 2001; Holmgren et al., 
2003; Magnussen and Boudewyn 1998; Maltamo et al., 2004; 
Næsset 1997, 2004; Persson et al., 2002; Popescu et al., 2002; 
Takahashi et al., 2005; Yu et al., 2004). Because it takes much 
time and energy to measure tree heights in the field, it seems 
that small-footprint scanning lidar has a good potential to 
become an operational technique for forest inventories if the 
costs of data acquisition can be reduced (Yu et al., 2004). 
 
For the purpose of reducing costs of data acquisition and 
measuring wider areas, one way is to increase the flight altitude. 
When the flight altitude increases, laser-sampling density 
decreases if both the pulse-repetition frequency and scan angle 
are kept fixed. On this point, some researchers have focused on 
the effects of laser-sampling density on the estimation of forest 
parameters using small-footprint lidar (Næsset, 2004; Hirata, 
2004; Yu et al., 2004). In general, when the sampling density 
decreases, not only does the number of detected trees decrease 
(Zimble et al., 2003), but also the accuracy of tree height 
estimates deteriorates because of missing treetops (Gaveau and 

Hill, 2003). Moreover, we also have to note that when the flight 
altitude increases, footprint size increases if the beam 
divergence is kept fixed. On this point, for example, Perrson et 
al. (2002) concluded that estimates of lidar-derived individual 
tree heights and crown diameters were not affected much by 
different footprint diameters of 0.26 m, 0.52 m, 1.04 m, and 
2.08 m in a boreal coniferous forest dominated by Norway 
spruce (Picea abies L. Karst), Scots pine (Pinus sylvestris L.), 
and birch (Betula spp.) on flat terrain. Moreover, Nilsson 
(1996), Yu et al. (2004), and Goodwin et al. (2006) also showed 
similar results for the estimation of tree height or canopy height 
profile with varying footprint sizes in some vegetation types of 
forests on comparatively flat terrain. Now, there is an 
interesting consistent report in both Yu et al. (2004) and 
Goodwin et al. (2006). Yu et al. (2004) found that as a result of 
increasing flight altitude, no reflections received by laser from 
most of tree canopies were observed for data from 1500 m 
flight altitude when using a Toposys Falcon lidar system. They 
assumed this relates to the problem of insufficient laser-
transmitted power (laser class I) or insufficient sensitivity of the 
receiver, as the received power strongly depends on the distance 
between the target and laser. Goodwin et al. (2006) found that 
the proportion of first/last return combinations were reduced by 
higher platform altitudes with more than 70 % of pulses 
recording a single return at 3000 m in some types of eucalyptus 
forests when using an Optech ALTM3025 sensor. They 
hypothesized that greater platform altitude and footprint size 
reduce the intensity of laser beam incident on a given surface 
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area, thus decreasing the probability of recording a last return 
above the noise threshold.  
 
Considering these reports, it is considered that the penetration 
rates of laser pulses would decrease as increasing flight altitude 
in any type of forest. Thus, the accuracy of a digital terrain 
model (DTM) derived from higher altitude data would be less. 
In our previous study, we showed that the difference of the laser 
penetration rates in between closed canopy, middle-aged 
Japanese cedar (Cryptomeria japonica) and hinoki cypress 
(Chamaecyparis obtusa) plantations that had similar levels of 
canopy openness was significant (P < 0.001). (Takahashi et al., 
2006). Although we acquired high laser-sampling density data 
(over 10 points/m2) with footprint diameter of 0.15 m from 
approximately 300 m flight altitude, the penetration rate within 
each stand was 8.1 % and only 1.1 % in the Japanese cedar and 
hinoki cypress plantations, respectively. Therefore, we 
concluded that the generation of accurate DTMs in dense hinoki 
cypress stands with complex topographies is likely to be 
difficult when using such poor laser penetration data, although 
DTMs were not created and validated in the study. In Japan, 
many dense Japanese cedar and hinoki cypress plantations exist 
in mountainous areas. Many of the forests have not been 
adequately thinned and the canopy in such instances would be 
closed. Therefore, in order to evaluate the potential of airborne 
small-footprint lidar as an operational technique for forest 
inventories in Japan, we should investigate the effects of lidar 
data from different flight altitudes on the estimation of forest 
parameters in such forests.  
 
Therefore in this study, we simply assessed lidar-derived tree 
heights estimated with data from different flight altitudes in 
closed-canopy Japanese cedar and hinoki cypress plantations 
with varying stand characteristics in mountainous areas. For the 
tree heights, we targeted predominant mean tree heights in this 
analysis because some previous researches have shown that 
lidar can usually give more information of predominant trees 
than that of lower trees in dense or closed-canopy coniferous 
forests (Persson et al., 2002; Takahashi et al., 2005). 
 
 

2. MATERIALS AND METHODS 

2.1 Study area and ground reference data  

The study area was a national forest located in Ibaraki 
Prefecture in central Japan (lat. 36˚ 10’ N, long. 140˚ 10’ E). 
The size of the area was approximately 75.2 ha and over 80 % 
of this area was dominated by planted hinoki cypress and 
Japanese cedar which are evergreen coniferous tree species, and 
the rest of the area was dominated by some deciduous 
broadleaved tree species. The stand age ranged from 33 to 100 
years in the coniferous area, and the area was essentially 
undulating terrain with a variation in elevation ranging from 
135 to 391 m above sea level (Figure 1). During fall and winter 
of 2006, we established 33 circular sample plots (0.04 ha) 
within the coniferous plantations and differential global 
positioning system was used to determine the position of the 
center of each sample plot. Twelve plots consisted of purely 
planted Japanese cedar and the understorey vegetations 
consisting of Aucuba japonica and Eurya japonica which are 
evergreen shrubs with a height of less than approximately 3 m. 
Meanwhile, 19 plots consisted of purely young to middle-aged 
planted hinoki cypress and the understorey vegetations hardly 
existing except short shrubs or herbs with a height of less than 
approximately 1 m. Especially in Japan, closed-canopy 

unthinned hinoki cypress plantations have so low light intensity 
on the floor that there is scarcely understorey vegetations 
(Hattori et al., 1992). On the other hand, the forest floors of two 
plots in old and matured hinoki cypress stands consisted of 
Aucuba japonica and Eurya japonica, and some types of 
deciduous shrubs with a height of less than approximately 3 m. 
Moreover, there is an important information about the 
topographic locations of Japanese cedar stands and hinoki 
cypress stands in this study site. In Japan, applying the idea of 
right tree on right site, Japanese cedar is usually planted around 
mountain valleys, while hinoki cypress is usually planted 
around mountain ridges. In this site, the same thing can be 
found as seen in Figure 1.  
  
 
 
 
 
 
 
 
 
 
 

Figure. 1. The topographic map created by a digital terrain 
model (500 m-altitude data) within the study area. The gray-

scale color represents the elevation ranging from 135 to 391 m 
a.s.l. (black to white). Black lines, black circles, and white 

circles denote the contour (10 m interval) and the field sample 
plots in Japanese cedar and hinoki cypress stands, respectively. 
       
 Japanese cedar Hinoki cypress 
 Min Max Mea

n 
Min Max Mea

n 
Stand age  38  100 59  33  99  44  
Density 
(per 1 ha) 

475 2800 1575  475  2575 1899 

No. of 
trees 

19  112 63  19  103 76  

No. of 
predomina
nt treesa  

9  58  33  11  63  43  

Mean DBH 
(cm) 

14  37  24  15  37  20  

Basal area 
(m2/ha) 

37.6 76.8 59.1  42.1  66.5 53.4 

Mean tree 
height (m)

10.8 24.8 18.8  9.6  22.2 14.7 

Predomina
nt mean 
tree heighta 
(m) 

11.5 26.8 20.2  11.1  22.8 15.5 

aFor trees whose heights were greater than the mean tree  
height within each plot 

 
Table 1. Summary statistics of field data for 33 sample plots 

 
Within each sample plot, all trees with diameter at breast height 
(DBH) > 4 cm were callipered. Tree heights were measured on 
sample trees within plots for young and middle-aged forests and 
all trees within plots for old and matured forests with Vertex 
hypsometer. For the young and middle-aged forests, sample 
trees were selected with equal probability and over 50 % of the 
number of trees within each plot. Next, height-diameter curve 
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was produced for each plot and unmeasured tree heights were 
estimated from each model. Then the arithmetic mean tree 
height (H) was calculated with all individual tree heights within 
each plot. Finally, the trees whose heights were greater than H 
within each plot were targeted and the arithmetic mean value 
was regarded as field measured predominant mean tree height 
(Hdom) in this study. A summary statistics for 33 field sample 
plots is shown in Table 1. 
 
2.2 

2.3 

2.4 

Lidar data collection 

Lidar data acquisition was performed on 31st August 2006 
using a helicopter-airborne laser scanner (Optech ALTM 3100) 
operated by Aero Asahi Co., Ltd., Japan. The study site was 
flown at three flight altitudes, namely, 500 m, 1000 m, and 
1500 m (a.g.l.), providing data with different point densities and 
footprint sizes. In this study, these data were referred to as 500 
m-, 1000 m-, and 1500 m-altitude data, respectively. Assuming 
that laser footprints should cover the targeted area without 
omission, i.e. the laser spot spacing should be close to footprint 
diameter in the resultant data, we changed flight speed, scan 
frequency, and pulse-repetition frequency at each flight altitude. 
At each flight altitude, several parallel flight lines were 
recorded to cover the entire area with average overlapping of 
64 % between adjacent flight lines. Maximum scan angle was 
11˚ and pulses transmitted at scan angles that exceeded 8˚ were 
excluded from the final data in order to avoid the low quality 
data at the edge of strips (Lovell et al., 2005) and be average 
overlapping of 50 % between adjacent flight lines. The beam 
divergence of 0.31 mrad produced footprint diameters of 0.16 m, 
0.31 m, and 0.47 m for 500 m-, 1000 m-, and 1500 m-altitude 
data, respectively. The resultant laser-sampling densities within 
the study area were approximately 57, 25, and 9 points/m2, 
respectively. Both first and last returns and also intermediate 
returns were recorded as well as the intensity of all returns for 
each flight altitude data.  
 

Processing lidar data and estimating predominant 
mean tree heights 

Firstly, the unevenly distributed laser reflection point data were 
converted into one raster layer with a pixel size of 0.5 m. The 
raster layer, referred to as DSMraw, was assigned the height 
value of the highest laser reflection point within each pixel 
using only first pulse data. To create a continuous surface 
model, the values of the no-data pixels in DSMraw were 
interpolated by an inverse distance weighting (IDW) method 
that does not change the original value (Popescu et al., 2002). 
The interpolated DSMraw was defined as DSM.  
 
Next, in the noise (i.e. lidar vegetation point) filtering processes 
for DTM creation, we firstly applied an automatic method used 
in Holmgren et al. (2003) and Takahashi et al. (2005). 
Parameter settings were not changed during the processing for 
all data within the study area in order to evaluate objectively the 
quality of the resultant DTM for all data. Firstly, the unevenly 
distributed laser reflection point data were converted into one 
raster layer with a pixel size of 0.5 m. The raster layer, referred 
to as DTMraw, was assigned the lowest laser reflection point 
within each pixel using only last pulse data which had a 
distance between the first and the last pulse in the same laser 
beam was more than 2.0 m in this study. Each center pixel of 
DTMraw was compared with the other pixels within a 6 m 
horizontal distance, and if the vertical angle of the neighbouring 
pixels from the center pixel exceeded 45°, the center pixel was 
classified as ground laser data and the neighbouring pixels were 

removed. Then, the remaining pixels were referred to as ground 
laser data. Finally, DTM was created with the remaining pixels 
by spline interpolation (Magnussen and Boudewyn, 1998). 
 
Then we also applied a semi-automatic method which requires 
human edits by the contractor (Aero Asahi Co., Japan) in the 
noise filtering processes for DTM creation. In this study, this 
semi-automatic method is denoted as a processing which 
requires a human operator to not only determine the input 
parameters for the noise removal algorithms (e.g. the 
parameters of 6 m and 45° as used in the automatic method), 
but also edit data manually with intensive visual checks. 
Normally, such methods seem to be often applied for DTM 
products by any contractor. Although such semi-automatic 
methods are nonobjective and largely depend on the operator’s 
experience and technical intuition, it is considered that the 
method can produce much better quality of DTM than that of 
automatic method when the ground laser data exist enough to 
discriminate high or low vegetation laser data and ground laser 
data visually (Raber et al., 2002). On the other hand, it seems to 
be difficult to distinguish objectively high or low vegetation 
laser data from ground laser data when the ground laser data is 
poor. In this study, we found that both 1000 m- and 1500 m-
altitude data had really poor ground laser data especially in 
some young and middle-aged hinoki cypress stands, conversely 
500 m-altitude data had little more than many ground laser data 
in the stands. Therefore in this study, firstly the semi-automatic 
method in the noise filtering processes was applied for 500 m-
altitude data by the contractor intensively, and a DTM was 
created with the remaining pixels by spline interpolation as 
mentioned above. Hereafter, the DTM was regarded as a 
reference terrain data and referred to as DTMref. Because the 
DTMref was created by similar noise filtering processes as 
mentioned above but a little bit different process by the 
contractor (Yokota et al., 2006), so we created DTM uniformly 
for three flight altitude data using the DTMref as follows. If a 
given pixel value of DTMraw of each flight altitude data is 
greater than that of corresponding pixel of DTMref, the pixel is 
ideally regarded as noise and removed. But in order to avoid the 
effect of the interpolation error (e.g. overestimation of 
elevation) within the DTMref on excessive removing pixels, if 
the difference between DTMraw and the DTMref is greater than 1 
m, such pixel of DTMraw is regarded as noise and removed for 
all data. Finally, DTM for each data was created with the 
remaining pixels by spline interpolation as mentioned above.  
 
To estimate lidar-derived predominant mean tree heights 
(Hdom_L), firstly a canopy height model (CHM) was calculated 
by subtracting DTM from DSM for each flight altitude data. 
Previous researches have shown that the raster-based CHM can 
usually give more information of predominant trees than that of 
lower trees in dense or closed-canopy forests (Persson et al., 
2002; Takahashi et al., 2005). We then smoothed the DSM with 
a low-pass filter (3 by 3 pixels) used in the previous researchers 
(Hyyppä et al., 2001; Maltamo et al., 2004) and applied a 3 by 3 
local maximum filtering (Wulder et al., 2000) to detect 
predominant treetops for each data. Then individual tree heights 
were derived from the CHM at the horizontal location of the 
local maxima of the smoothed DSM. Finally, the arithmetic 
mean value of the lidar-derived individual tree heights within 
each sample plot was calculated and regarded as Hdom_L. 
  

Assessment of lidar-derived tree heights 

Data assessments were made separately in Japanese cedar and 
hinoki cypress stands basically. Firstly, the relationships 
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between lidar-derived and field measured predominant mean 
tree heights were investigated by regression analysis. Next, 
systematic error (i.e. bias) and root mean square error (RMSE) 
for the tree height estimates were computed as follows:  
 

 
n

HH
RMSE domLdom

2
_ )( −

= ∑
                   (1) 

  
where Hdom_L and Hdom are lidar-derived and field measured 
predominant mean tree heights, respectively and n is the 
number of sample plots. Then, in order to understand the errors 
of the tree height estimates, DTMs for different flight altitude 
data derived from both the automatic and the semi-automatic 
methods were compared with a reference DTM, i.e. DTMref, 
and the systematic errors were evaluated for each DTM. Also 
the laser penetration rates of last pulses within each sample plot 
were calculated for each data. Additionally, the arithmetic mean 
laser-intensity of first pulses within each sample plot was also 
calculated. Then we assessed the statistical significant 
differences for each factor (i.e. penetration rate and intensity) 
among three flight altitude data. In this study, Friedman test and 
the Scheffe procedure as a multiple comparison post hoc test 
were applied in the statistical tests. Moreover, these two factors 
were tested in between Japanese cedar and hinoki cypress 
stands for each flight altitude data by Mann-Whitney U test. 
 

3. RESULTS 

       
 Japanese 

cedar 
 Hinoki 

cypress 
 

 500 
m 

1000 
m 

1500 
m 

500 
m 

1000 
m 

1500 
m 

All trees 756 756 756 1595 1595 1595
Predomina
nt treesa

393 393 393 902 902 902 

Local 
maximab

399  409 344 760  724  606 

aThe trees whose heights were greater than the mean tree 
height within each plot 
bLocal maxima derived from lidar data with 3 by 3 local 
maximum filtering were denoted as the number of 
predominant trees in this study 

 
Table 2. The number of trees in the field and lidar-detected 

trees within all (33) sample plots for each flight altitude data 
      
 Altitude Automatic Semi-automatic 
  Bias 

(m) 
RMSE 
(m) 

Bias 
(m) 

RMSE 
(m) 

Japanese  
cedar 

500 m -0.16  1.12  -0.46  1.11  

 1000 m -0.81  1.46  -0.74  1.28  
 1500 m -2.54  6.12  -1.15  1.63  
Hinoki  
cypress 

500 m 0.18  0.98  0.00  0.84  

 1000 m 1.50  3.78  0.39  1.23  
 1500 m 2.18  5.91  0.88  2.29  

 
Table 3. Bias and root mean square error (RMSE) for 

predominant mean tree height estimates when using DTMs 
created by an automatic and a semi-automatic method 

 
The number of detected predominant treetops, i.e. local maxima, 
for each altitude data is shown in Table 2. Although the number 
of local maxima within the DSM of 1000 m-altitude data was 
higher than that of 500 m-altitude data in Japanese cedar stands, 
there seems that greater platform altitude and footprint size 
reduced the number of local maxima. The magnitudes of the 
differences between the number of predominant trees in the 
field and lidar-detected trees were greater in hinoki cypress 
stands than in Japanese cedar stands.  
 
The relationships between field measured and lidar-derived 
predominant mean tree heights are shown in Figure 2. The 
results show that the number of the outliers increased as the 
flight altitude increased in both two methods. Bias and RMSE 
for predominant mean tree height estimates are shown in Table 
3. Japanese cedar stands had underestimates of height, 
conversely hinoki cypress stands had overestimates of height in 
both methods. Figure 3 shows that the cause of under and over-
estimations of predominant mean tree heights in Japanese cedar 
and hinoki cypress stands, respectively. That is, the 
underestimations of DTM would produce the overestimations of 
tree heights in hinoki cypress stands, in contrast, the 
overestimations of DTM would produce the underestimations of 
tree heights in Japanese cedar stands. In the semi-automatic 
method, the magnitude of the difference between maximum and 
minimum RMSEs in hinoki cypress stands was greater than that 
of Japanese cedar stands.   
 
According to the statistical tests, the penetration rates of last 
pulses in 500 m-altitude data were significantly greater than 
that of other altitudes in both stands (Table 4). Moreover, there 
were statistically significant differences among the intensities 
of first pulses of all three flight altitude data in both stands. 
  
 Altitude Penetration rate 

(%) 
Intensity 

Japanese  500 m 14.1  74.3  
 cedar 1000 m 3.2  16.9  
 1500 m 2.1  11.2  
Hinoki  500 m 2.3  99.0  
 cypress 1000 m 0.6  23.6  
 1500 m 0.4  16.3  

 
Table 4. Mean values of laser penetration rates of last pulses 

and laser-intensity of first pulses 
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Figure 2. The relationships between field measured and lidar-
derived predominant mean tree heights (Hdom_L) of three flight 
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altitude data. Solid and dashed lines denote regression lines of 
Japanese cedar and hinoki cypress data, respectively. Hdom_L in 
above three graphs (a, b, and c) and below three graphs (d, e, 

and f) are the estimates when using DTMs created by an 
automatic and a semi-automatic method, respectively. 

 
 
 
 
 
 
 
 
 
 

Figure 3. The relationship between the errors of DTM of 
1500m-altitude data derived from a semi-automatic method and 

the errors of predominant mean tree height estimates for all 
sample plots. The errors of the DTM denote as the difference 
between the mean elevation within each plot of the DTM and 

that of a reference DTM (DTMref) created by a contractor. 
 
 

4. DISCISSIONS AND CONCLUSIONS  

In order to investigate the effects of different flight altitudes on 
the estimation of tree heights in forests with poor laser 
penetration rates, we used lidar-derived predominant mean tree 
heights derived from the information of local maxima in DSM 
and heights in CHM in this study. The validity of this approach 
seems to be ensured by the results of regression analysis and the 
errors of the tree height estimates as shown in Figure 2 (d) and 
Table 3. In this study, the settings of lidar system were paid 
attention as the laser footprints should cover the targeted area 
without omission, i.e. the laser spot spacing should be close to 
footprint diameter in the resultant data. Owing to this idea, we 
were able to avoid theoretically missing treetops and passing 
through the canopy gaps just by chance for a given transmitted 
laser pulse. But in fact, the no-data pixels of DSMraw (50 cm 
resolution) were found for all flight altitude data even though 
the mean laser-sampling density is high (at least over 9 
points/m2). This problem is considered to be inevitable for any 
scanning lidar system as long as using airborne platform and 
targeting uneven surface, especially in mountainous forest areas.  
 
On the assumption that the targeted area was fully covered with 
laser shots for all flight altitude data, the results of this study 
indicate that the higher platform altitude would deteriorate the 
quality or accuracy of lidar-derived variables such as the 
number of detectable local maxima in DSM, penetration rates 
and intensities of laser pulses, the elevation of DTM, and tree 
height estimates. These findings are partly similar to those 
previously reported in Yu et al. (2004) and Goodwin et al. 
(2006), even though the vegetation species and topographies 
were different from that of this study area. But there were some 
dissimilar points in this study. The most crucial failing at higher 
flight altitude seems to be less penetration rates of laser pulses, 
thus indicating the less accuracy of the resultant DTM in 
mountainous forests with undulating topographies. Judging 
from the low penetration rates in Table 4 and the outliers in 
Figure 2 (e and f) in hinoki cypress stands, lidar ground laser 
data did not seem to exist enough to recover the shape of the 
field topographies. Therefore, the results in Figure 2 (b and c) 
indicate that it is difficult to remove lidar vegetation points 
properly and correctly in such forests by using fixed input 
parameters for the noise removal algorithms, i.e. automatic 

methods when the laser penetration rates are poor. Although we 
could use a good reference DTM (DTMref) in this study, 
whether another semi-automatic method which depends on 
human edits manually and visually without using such reference 
DTM can produce an equivalent to the quality of the DTMs 
created in this study for 1000 m- and 1500 m-altitude data 
remains unknown. However, judging from the results in Figure 
2, it would be necessary semi-automatic noise filtering methods 
to acquire better DTM of such forests even if the resultant DTM 
is not objective product. 
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Figure 3 shows the positive and negative errors of tree height 
estimates would be mainly caused by the negative and positive 
errors of the DTM, respectively. Moreover, the tendencies that 
many hinoki cypress stands had lager negative errors of the 
DTM while many Japanese cedar stands had lager positive 
errors of the DTM can be understood by the topographic 
locations of each stand as seen in Figure 1. That is to say, 
because most hinoki cypress stands located around the 
mountain ridges, poorly penetrated laser pulses would be 
missing the top of the ridges, thus resulting in the lower 
elevation of the DTM and the greater estimates of tree heights. 
Meanwhile, although Japanese cedar stands in this study area 
might have the opposite effect from hinoki cypress stands, it is 
also considered that the existence of understorey bushes might 
be involved in the overestimations of the DTM. As indicated in 
Goodwin et al. (2006) and Hyyppä et al. (2005), the all results 
of this study are highly site dependent as lidar-derived 
relationships will be influenced by its structural complexities. 
But the relationships between the topographic locations and the 
penetration rate of laser pulses would effect significantly on the 
resultant DTM in any type of forest. 
 
Although lidar data was acquired in late summer (growing 
season) in evergreen Japanese cedar and hinoki cypress stands 
in this study, the assessment of different flight altitude data 
acquired in winter (leaf-off season) for the estimation of tree 
heights should be performed because the leaf biomass of 
evergreen forests differs between summer and winter (Tsutsumi 
1989). Therefore, if such low laser penetration rates were 
improved in hinoki cypress stands in winter, the acquisition of 
lidar data should be performed in winter. Anyhow, the results of 
this study demonstrate that the higher platform altitude would 
reduce both the penetration rates and the intensities of laser 
pulses, and affect not only the quality of DSM, but also the 
quality of DTM more significantly in forests with undulating 
topographies, thus indicating the less accuracy of lidar-derived 
tree height estimates. In fact, the errors of tree height estimates 
increase with increasing flight altitude as shown in Table 2, and 
there are some hinoki cypress stands whose tree height errors 
are over 4 or 5 m in 1500 m-altitude data (Figure 2 (f)). 
Although the accuracy of tree height estimates in Japanese 
cedar stands was high in all flight altitude data, the penetration 
rates of laser pulses are not enough magnitude of 1500 m-
altitude data (Table 4). Considering these results, if we ensure 
the accurate lidar-derived tree height estimates (the error is 1 m 
or so) in summer in both Japanese cedar and hinoki cypress 
plantations with varying stand characteristics, the flight altitude 
should be set lower than at least 1000 m.  
 
Further work should be performed to investigate the effect of 
laser-sampling density on the accuracy and quality of DTM and 
tree height estimates in this study site, especially in closed-
canopy hinoki cypress plantations, to establish optimal settings 
of lidar system for an operational technique for forest 
inventories in mountainous forests in Japan.   
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ABSTRACT:  
 
Airborne laser scanner technique is broadly the most appropriate way to acquire rapidly and with high density 3D data over a city. 
Once the 3D Lidar data are available, the next task is the automatic data processing, with major aim to construct 3D building models. 
Among the numerous automatic reconstruction methods, the techniques allowing the detection of 3D building roof planes are of 
crucial importance. Three main methods arise from the literature: region growing, Hough-transform and Random Sample Consensus 
(RANSAC) paradigm. Since region growing algorithms are sometimes not very transparent and not homogenously applied, this 
paper focuses only on the Hough-transform and the RANSAC algorithm. Their principles, their pseudocode - rarely detailed in the 
related literature - as well as their complete analyses are presented in this paper. An analytic comparison of both algorithms, in terms 
of processing time and sensitivity to cloud characteristics, shows that despite the limitation encountered in both methods, RANSAC 
algorithm is still more efficient than the first one. Under other advantages, its processing time is negligible even when the input data 
size is very large. On the other hand, Hough-transform is very sensitive to the segmentation parameters values. Therefore, RANSAC 
algorithm has been chosen and extended to exceed its limitations. Its major limitation is that it searches to detect the best 
mathematical plane among 3D building point cloud even if this plane does not always represent a roof plane. So the proposed 
extension allows harmonizing the mathematical aspect of the algorithm with the geometry of a roof. At last, it is shown that the 
extended approach provides very satisfying results, even in the case of very weak point density and for different levels of building 
complexity. Therefore, once the roof planes are successfully detected, the automatic building modelling can be carried out. 
 
 

1. INTRODUCTION 

The quick acquisition of 3D data as well as the automatic data 
processing are two key-tasks for the majority of surveying 
fields. Airborne laser scanning systems generate 3D data with 
high speed, good accuracy and density. Thus, the use of this 
technique in urban region is more and more frequent.  
In order to construct automatically 3D city models, two 
successive steps have to be considered. The first one is the 
automatic segmentation of the point cloud into three classes 
which are terrain, vegetation and buildings. Once the city cloud 
is segmented, the modelling of buildings can start. Two types of 
approach called model-driven and data-driven approaches in the 
literature are proposed for constructing building models. The 
model-driven approaches search the most appropriate model 
among primitive building models contained in a model library 
(Maas and Vosselman, 1999). They consider that a primitive 
building can be described by a set of parameters. That implies to 
calculate the values of the parameters before constructing the 
3D model. On the other hand, data-driven approaches try to 
simulate each part of the building point cloud for obtaining the 
nearest or the more faithful polyhedral model (Rottensteiner, 
2003).  
In the context of data-driven approaches which provide more 
universal models, the automatic detection of planes is a crucial 
operation. Many methods are proposed in order to carry out this 
procedure such as region growing, 3D Hough-transform and 
RANSAC. Only the two last techniques are studied in this paper 
since region growing algorithm are sometimes not very 
transparent and not homogenously applied. Furthermore, the 
principles and the pseudocodes of 3D Hough-transform and 

RANSAC algorithms are detailed and compared. In order to 
clarify their operating mode and assess them, they are applied 
on samples of buildings with different forms and complexity 
levels. At last, the RANSAC algorithm is extended to be able to 
solve the majority of building cases.   
 
 

2. 3D HOUGH-TRANSFORM 

 2.1   Related works and principle  

The 2D Hough-transform technique (Hough, 1962) is normally 
used in the field of digital image processing in order to detect 
geometric primitives. Many applications in this field as well as 
its algorithm are presented by (Davies, 1988; Gonzalez et al., 
2004; Nguyen et al., 2005). This technique is used to detect the 
straight lines like building contour polygons, and curves such as 
circles and ellipses. With the 3D point cloud, the demand is 
increased for detecting 3D planes. In this context, the 2D 
Hough-transform has been extended to 3D (Vosselman and 
Dijkman, 2001; Oda et al., 2004; Overby et al., 2004). Later, its 
principle has been extended to the extraction of other 3D 
geometric forms like cylinders (Rabbani and Van den Heuvel, 
2005).   
The principle of the 2D Hough-transform is the representation 
of a points set, defined initially in the Euclidian space, in 
another space. This transform allows detecting the points 
composing specific geometric primitives. For example, in 
(OXY) space, the equation of a line has the form (1). 
 

Y = a. X + b                                (1) 
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where (a, b) are the line parameters. 

This line can be represented by a point with coordinates (a, b) in 
the parameter space (O’ a b). In an opposite way, one point (Xi, 
Yi) belonging to the space (OXY) is represented by a line in the 
parameter space (O’ a b) as expressed in Equation 2.  
 

b = - Xi .a +Yi                                 (2) 
 

where (Xi, Yi) are the parameters of this line.  

Supposing that M1, M2, … Mn are a set of points in the space 
(OXY) and that they belong to the line P following Equation 1. 
Each one of these points represents a line in the parameter 
space. The intersection of these lines in the parameter space is 
the point (a1, b1) which represents the parameters of the line P 
in a 2D-space.   
 
If the line equation has the form X = constant, then it can not be 
presented in the parameter space (O' a b), because the Y-axis 
coefficient is equal to zero. In order to solve this problem, it is 
suggested to use the normal form of the line (Equation 3). 
 

cos θ. X + sin θ. Y = ρ                               (3) 
 

where θ and ρ are the parameters of the normal passing through 
the origin (see Fig.1). 
 
 
 
 
 
 
 
Figure 1. Presentation of one line and its normal in a 2D-space 

 
So, θ and ρ are constant for one line. The parameter space in 
this case is (O’ θ ρ). Hence, one point (X1, Y1) in the 2D-space 
represents a sinusoid in the parameter space (see Fig.2).  
 
 

 
 
 
 

 
Figure 2. Presentation of a point in the parameter space using 

the normal form 
 
The same principle can be applied in a 3D case in considering 
that one plane belonging to the (OXYZ) space (Equation 4) can 
be represented by a point (a, b, c) in the parameter space 
(O’abc).  

Z = a. X + b. Y +c                                (4) 
 

In the same manner, if the plane equation has the form (5), then 
it can not be presented in the parameter space because the Z-
axis coefficient is equal to zero. In order to solve this problem, 
(Overby et al., 2004) suggest to use also the normal form of the 
plane (Equation 6).   

a X+ b Y + c = 0                                       (5) 

cos θ. cos φ. X + sin θ. cos φ. Y + sin φ. Z = ρ         (6) 

where θ, φ and ρ are the parameters of the plane normal passing 
through the origin (see Fig.3). 
 

So, θ, φ and ρ are constant and the parameter space is (O’ θ φ 
ρ). In this case, one point (X1, Y1, Z1) in the 3D-space 
represents a sinusoidal surface in the parameter space. 
Since the principles of the 3D Hough-transform are explained, 
the aim of the next section is to deliver its algorithm. 
 

 
 
 
 
 
 

 
 
 

 
Figure 3. Representation of plane equation elements in the 

normal form 
 
 2.2   3D Hough-transform algorithm  

The input data are the steps on θ, φ and ρ axis (discrete 
intervals), called θ_step, φ_step and ρ_step respectively. The 3D 
point cloud is represented by three coordinate lists X, Y and Z. 
Algorithm 1 presents the pseudocode of the 3D Hough-
transform.  
 
 
 
1. X_min = min(X); Y_min = min(Y); Z_min = min (Z)  
2. X_max = max(X); Y_max = max(Y); Z_max = max (Z) 
3. Calculation of: Dis_min; Dis_max 
4. θ = from 0 to 360, step = θ_step; n_θ = length(θ)  
5. φ = from -90 to +90, step =  φ_step; n_φ = length(φ)   
6. n_ ρ = 2* (Dis_max - Dis_min) / ρ_step 
7. ρ = from Dis_min to Dis_max; step = ρ _step 
8. θ_mat (n_φ, n_θ) = [θ  θ  θ … θ]’ *π/180 
9. φ_mat(n_φ, n_ θ) = [φ φ φ …. φ] * π /180 
10. H(n_θ, n_φ, n_ ρ) = 0 
11. ratio = (n_ ρ – 1)/( ρ (n_ ρ) – ρ (1))  
12. for k = 1 to length(X) 
13. ρ_mat = cos (φ_mat)*cos (θ_mat)* X (k) + ... 
        cos (φ_mat)*sin (θ_mat)* Y (k)+ sin(φ_mat)* Z (k) 
14.  ρ_indix = round (ratio *( ρ_mat  – ρ (1)+1)) 
15.  for  i = 1 to n_φ 
16.  for  j = 1 to n_ θ  
17.  H (j, i, ρ_index (i, j)) = H (j, i, ρ_index (i, j)) +1  
18. next j ; next i ; next k 
 
In this algorithm, Dis_min and Dis_max are the distances 
between the origin and the two extremities of the cloud points 
calculated at lines 1 and 2; H is a 3D matrix; θ_mat, φ_mat and 
ρ_mat are 2D matrices; θ, φ and ρ are three lists. 
 
The result of the algorithm is the 3D matrix H which contains 
the representation of the original cloud in the parameter space. 
Each point of (OXYZ) space gives a sinusoidal surface in the 
parameter space.  
 
Fig.-4a shows the visualization of one horizontal plane in the 
3D matrix H. Fig.-4b shows the result of the roof planes 
detection. For improving this result, it is necessary to use 
parameter values as small as possible. But, in this case the 
processing time and the needed memory will be much higher. 
The sample used for this figure is a building whose 
characteristics are detailed in section 3.3. 
 

X Y 

Z
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Algorithm 1: 3D Hough-transform for plane detection  
P : cosθ. X+ sin θ. Y = ρ 
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Figure 4. a) Horizontal plane in the 3D matrix H, (with plane 
number ρ = 75); b) Roof plane detection result using the 3D 

Hough-transform. 
 

The next step consists in detecting the peaks from the 3D matrix 
H as marked by red circles in Fig.-4a. Each peak represents one 
plane in (OXYZ) space. This operation can be performed by 
searching voxels having the maximum values in the matrix H) 
and then applying a 3D region growing algorithm.    

 2.3   Analysis 

The 3D Hough-transform uses a pure mathematical principle in 
order to detect the best planes from a 3D point cloud. That 
means that it looks for point sets which represent statistically 
the best planes without taking into account their signification in 
the building point cloud. In this context, the best plane does not 
mean the most probable plane calculated according to the least 
squares theory. But it means the plane containing the maximum 
number of points. Therefore, it detects perhaps a set of points 
which represents several roof planes or which belongs to several 
planes.  
 
Moreover, the 3D Hough-transform spends a long time for 
calculating the matrix H and for detecting the peaks in it. 
Furthermore, the application of 3D Hough-transform requires 
the use of four parameters. The first three one are the steps 
(discrete intervals) on θ, φ and ρ axis. When the used step 
values are small, the quality of the detected plane is improved, 
but the processing time and the needed memory are much 
higher and vice versa. The fourth parameter is a threshold 
entering in the 3D region growing algorithm. It represents the 
difference between the voxel value and its neighbours. The 
determination of the four threshold values are related to the 
characteristics of the point cloud and of the building roof 
planes. Thus, it is very difficult to determine them 
automatically.  
 
 

3. RANSAC ALGORITHM FOR PLANE 
DETECTION       

 3.1   Related works and principle 

In the digital image processing domain, RANdom SAmple 
Consensus (RANSAC) algorithm is used to detect mathematical 
features like straight lines and circles. Its principle is well 
explained by (Fischler and Bolles, 1981; McGlone McGlone et 
al., 2004; Nguyen et al., 2005). In the field of automatic 
buildings modelling based on Lidar data, many authors suggest 
its use for achieving different tasks. For example, (Ameri and 
Fritsch, 2000; Brenner, 2000) use RANSAC algorithm for 
detecting the building roof planes. (Forlani et al., 2004; Forlani 
et al., 2006) apply RANSAC algorithm in order to correct the 
building roof segmentation result which are obtained using a 
partition in 8 classes of the gradient orientation. Moreover, to 
carry out the 2D segmentation of the building contour polygon 
pixels in straight lines, the same technique is also applied. 
(Bretar and Roux, 2005) use the Normal Driven RANSAC 

(ND-RANSAC) for extracting 3D planar primitives. For this 
purpose, they calculate the normal vectors for each point. Then, 
they select randomly three points but having the same 
orientation of normal vectors. In our case, RANSAC algorithm 
is used with the aim of roof planes detection. 
 
The principle of RANSAC algorithm consists to search the best 
plane among a 3D point cloud. In the same time, it reduces the 
number of iterations, even if the number of points is very large. 
For this purpose, it selects randomly three points and it 
calculates the parameters of the corresponding plane. Then it 
detects all points of the original cloud belonging to the 
calculated plane, according to a given threshold. Afterwards, it 
repeats these procedures N times; in each one, it compares the 
obtained result with the last saved one. If the new result is 
better, then it replaces the saved result by the new one.  
 
 3.2    RANSAC algorithm 

This algorithm needs four input data which are:  

- The 3D point cloud (point_list) which is a matrix of three 
coordinate columns X, Y and Z;  

- The tolerance threshold of distance t between the chosen 
plane and the other points. Its value is related to the 
altimetric accuracy of the point cloud;  

- The forseeable_support is the maximum probable number 
of points belonging to the same plane. It is deduced from 
the point density and the maximum foreseeable roof plane 
surface.  

- The probability α is a minimum probability of finding at 
least one good set of observations in N trials. It lies 
usually between 0.90 and 0.99. 

Algorithm 2 details the pseudocode of RANSAC algorithm. 
 
 
1. bestSupport = 0; bestPlane(3,1) = [0, 0, 0] 
2. bestStd = ∞; i = 0 
3. ε = 1 – forseeable_support/length(point_list)             
4. N=round (log (1 – α)/log (1 – (1 –  ε) ^3))  
5. while (i <= N)  
6. j = pick 3 points randomly among (point_list) 
7. pl = pts2plane(j)  
8. dis = dist2plan(pl, point_list)  
9. s = find(abs(dis)<= t)   
10. st = Standard_deviation (s)  
11. if (length(s) > bestSupport or (length(s) = … 
      bestSupport and st < bestStd)) then 
12. bestSupport = length (s)  
13. bestPlan = pl; bestStd = st; endif 
14. i = i+1; endwhile  
 
In this pseudocode, ε is a percentage of observations allowed to 
be erroneous; the function pts2plane calculates the plane 
parameters from three chosen points. It is advised to use the 
normal form of the plane instead of the classical form (see 
Equation 6) in order to consider the general expression of a 
plane; the function dist2plan calculates the signed distances 
between point set and given plane (the distance takes negative 
or positive value) as given in Equation 7. 
 

    ρ- Zφsin+Yφcosθsin+Xφ cos θ cos=dist2plan        (7)    
                

where X, Y and Z are the three columns of the matrix point_list; 
θ, φ and ρ are the plane parameters (see Equation 6). 

a) 

Algorithm 2: RANSAC for plane detection  

b) 
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It is important to note that the number of trials N can be 
considered directly as an input of the algorithm, instead of 
calculating it by a pure probability law. For this purpose, a table 
of different urban typologies and point densities can suggest the 
N value. Therefore, it replaces the introduction of values for 
forseeable_support andα. This operation is one of the 
modifications proposed for improving the basic RANSAC 
algorithm. 
In order to detect the whole roof planes, the algorithm is applied 
several successive times. In each iteration, the set of considered 
points is excluded from the original cloud. This operation is 
repeated until the number of non-modelled points becomes 
smaller than a given threshold.  
 
 3.3   Comparison and quantitative analysis  

In order to assess the capacities of the algorithm, two samples of 
buildings are used. They contain buildings of different forms 
and complexity levels. Only some results are illustrated in this 
paper, but they are based on characteristic samples (covering 
simple as well as complex building types) and consider low and 
high point densities. The first sample contains 12 buildings and 
its point density is equal to 7 points/m². The second sample 
contains 46 buildings, with a point density of 1.3 points/m².  
 
Fig.5 presents the results of roof planes detection using 
RANSAC algorithm. 
 

 
 
 
 
 
 
 

Figure 5. Visualisation of the 2D point clouds resulting from 
roof planes detection using RANSAC. 

a) Point density: 7 pts/m². b) Point density: 1.3 pts/m². 
The colours represent the different building roof planes.  

 
The application of classic RANSAC algorithm on these samples 
gives successful results in 70% of cases for different building 
forms and different point cloud densities. It means that it detects 
correctly the roof planes for 41 buildings. For example, Fig.-5a 
illustrates very good plane detections, whereas Fig.-5b shows 
unsatisfying results. In extreme situations, the algorithm can 
provide unacceptable errors (see Fig.-7b). That can be explained 
by the use of a pure mathematical principle, without taking into 
account the particularity of the building Lidar data. The same 
remark has already been made for the 3D Hough-transform in 
section 2.3. That is why, it may detect a set of points which 
represents several roof planes or which belongs to several 
planes. Therefore, the classic algorithm needs to be adapted in 
order to detect the best roof planes instead of the best 
mathematical planes in a 3D point cloud. 

(McGlone et al., 2004) note that the RANSAC algorithm aims 
at significantly reducing the number of necessary trials for large 
N values. However, it reduces N at the expense of having no 
guarantee for a solution free of gross errors. That means that 
there is not any guarantee for obtaining the same result after 
each iteration.  
Afterwards, several experiments have been made on the point 
cloud including the 41 buildings, i.e. the cloud for which 
RANSAC generated successful results. They demonstrate that 
the iterative application of RANSAC algorithm gives the same 

set of roof planes, but in a different order. Since the plane order 
is not important here, the RANSAC algorithm can be 
considered as an algorithm which guarantees a successful result. 
Furthermore, the processing time, even in the case of a large 
point cloud, is negligible in comparison with the processing 
time required by 3D Hough-transform.  
 
It is important to note that the segmentation quality could be 
actually evaluated only after the stage of 3D modelling. 
Moreover, the quantitative comparison between the results of 
3D Hough-transform and RANSAC algorithms will not be 
correct. Indeed, the Hough-transform results are related to three 
aspects: the segmentation quality, the processing time and the 
needed memory, while the last two aspects are negligible for 
RANSAC algorithm.  
 
 3.4  3D Hough-transform or RANSAC algorithm? 

As evoked in previous sections, RANSAC algorithm provides 
not only results in a shorter time but also results of higher 
quality with a large percentage of successful results in 
comparison with 3D Hough-transform. This assertion is made 
after several experiments carried out on the same data for both 
algorithms. For example, the result of 3D Hough-transform 
mentioned in Fig.-4b is based on the same building as those 
used with RANSAC and presented in Fig.-5a.Therefore it is 
chosen in our approach leading to detect automatically building 
roof planes using Lidar data. Therefore, in the next paragraph, 
the RANSAC algorithm is extended in order to increase the 
percentage of successful plane detection from 70% to more than 
95%.    
 

4. EXTENSION OF RANSAC ALGORITHM 

Two directions are proposed for extending the capacities of 
RANSAC algorithm to a better roof plane detection. The first 
one is the improvement of the data quality; the second one is the 
adaptation of RANSAC algorithm to roof detection. 
 
 4.1   Improvement of data quality 

It is well known that the point cloud coordinates contain errors 
related to position accuracy, artefacts, and multi ways. 
Moreover, noise and the small details composing building roofs 
are considered as obstacles. At last, variable point densities may 
occur for the same building roof. So, irregular distribution of 
points on a building roof is also a cause of errors in the 
calculated plane. All these reasons allow thinking about the 
necessity of improving the quality of the point cloud.  
 
This remark leads to generate a new point cloud. On the one 
hand, the new cloud should present a homogeneous point 
density, and on the other hand, the errors of point coordinates 
and the noise should be eliminated or decreased.  

For this purpose, a resampling of the building point cloud is 
performed firstly. The sampling value defining the generated 
DSM is deduced from the average point density (Tarsha-kurdi 
et al., 2007); and then values are assigned to the DSM cells. In 
the latter operation, the original cloud is superimposed on the 
DSM grid. Hence, some cells are empty and other cells contain 
one or more points. In the case of a non empty cell, the 
corresponding DSM pixel takes the maximum of the Z values 
occurring among the points. In the case of an empty cell in the 
building body, the corresponding DSM pixel value takes the 
mean of the non null neighbouring pixels. On the one hand, this 
operation allows eliminating a high quantity of points 
describing the facades. On the other hand, it allows filling the 

b) a) 
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empty pixels, while respecting the mathematical characteristic 
of the plane.  
Secondly, in order to decrease the errors of point coordinates 
and the noise, a simple low-pass filter is applied. The last step 
consists in converting the generated DSM into a 3D cloud. The 
analysis of the new point cloud shows that the position accuracy 
of the inner roof plane boundaries has decreased. This has to be 
related to the low-pass filtering. Hence, the new cloud is used 
exclusively for detecting the roof planes, but not for the future 
building modelling operations where the return to the original 
point cloud is inevitable. 
 
 4.2   Adaptation of RANSAC algorithm 

The second enhancement consists in adapting RANSAC 
algorithm, in order to adapt the mathematical aspect of the 
algorithm with the geometry of a roof. Indeed, RANSAC 
algorithm searches to detect the best mathematical plane in a 
building cloud, regardless if the detected plane represents a roof 
plane or another plane.  
The adaptation of RANSAC algorithm consists of improving its 
pseudocode, and of using additional procedures for improving 
the quality of the detected planes.    
 
4.2.1 Improvement of RANSAC algorithm: In section 3.2, the 
11th line is the essential line in the algorithm, because it 
represents a gate which allows to accept or to refuse the 
calculated plane. Indeed, the used condition is the number of 
points belonging to the calculated plane. Then the algorithm 
accepts the new plane if it contains more points than the last 
calculated one, else the new plane will be refused. 
After the experiments, it was found that the best condition for 
validating plane detection is to take into account not only the 
number of points, but also simultaneously the standard 
deviation. Indeed, the use of standard deviation decreases the 
negative influence of the distance tolerance threshold t. As 
already mentioned, this threshold allows accepting whole points 
having distances to the plane smaller than t.  
For example, let us take a “bad” plane which does not represent 
a roof plane, with a large standard deviation and containing a 
large number of points. In this case, in reason of the condition 
imposed by the number of points, the RANSAC algorithm will 
not accept another plane for replacing it. For solving this 
problem, a new threshold is introduced. This threshold is the 
number of points of the smallest foreseeable plane surface 
(PN_S). It is equal to the product of the smallest foreseeable 
plane surface by the point density. Then the 11th line in the 
algorithm becomes:  
 
          if  st < bestStd and  length(s) > PN_S  then                    (8) 

 
After this modification, the percentage of successful results 
reached by the application of the adapted RANSAC algorithm 
reaches 85%.  
 
4.2.2 Improvement of the detected planes quality: As already 
mentioned, the application of RANSAC algorithm allows the 
detection of planes which do not necessarily present roof planes. 
It represents perhaps one roof plane in addition to other noisy 
points which belong to other roof planes, as the points inside the 
red circles in Fig.-6a. These noisy points have to be eliminated 
from the detected plane, and have to be reassigned to the initial 
cloud.  
Furthermore, inside the detected plane, there are some lost 
points (inside the blue circle in Fig.6a). These points have to be 
added to the fitted plane and extracted from the cloud in the 
same time.  

The last two problems can be solved by applying mathematical 
morphology procedures on the binary Digital Surface Model 
(DSMb) calculated for the detected plane.  
Results obtained by processing the data of Fig.-6a are shown in 
Fig.-6b. If the detected plane represents a set of points 
belonging to different roof planes and distributed stochastically, 
then the plane is rejected. Moreover, an additional condition 
checking if the new parameters never occurred previously is 
added automatically to the 11th line of the algorithm. So this 
plane is avoided in the next trials.  
 
After detecting all planes covering perfectly the roof, the 
remaining points are normally either noisy points or small roof 
details (Fig.-6c). For classifying these points, a region growing 
algorithm is used, deciding if the set of points represents noise 
or roof details. Hence, the two criteria used are: the smallest 
foreseeable surface of a roof detail and the segment form. Thus, 
if the doubtful set of points represents noise, it is added to the 
nearest plane, else it is considered as a new plane. Fig.-6d 
presents the final result of roof planes detection obtained with 
the extended RANSAC algorithm. 
 
 4.3 Results and accuracy analysis 

The building used for testing the approach in Fig.7 has 
numerous details on its roof (chimneys, dormers, windows). 
Moreover, the majority of roof plane surfaces are small 
regarding the point density. Furthermore, its point density is 
relatively weak (1.3 points/m²).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. a) DSMb of the detected plane. It corresponds to the 
yellow plane in Fig.6d; b) DSMb of the improved detected 

plane; c) DSMb of the remaining points after detecting the roof 
planes; d) Final result of roof planes detection. 

 
 
 
 
 

 
 
 
 
 

Figure 7. Roof planes detection results. a) Aerial image. b) 
Using classic RANSAC algorithm. c) After extension of 

RANSAC algorithm. The colours in b) and c) represent the 
different building roof planes  

a) b) 

c) d) 

b) c) a) 
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All these reasons lead to plane misdetection when the original 
RANSAC algorithm is applied (see Fig.-7b). On the other hand, 
after applying the extended RANSAC algorithm, the automatic 
roof plane detection over the same building is satisfactory. Fig.-
7c illustrates clearly the improvements gained by the extension 
of RANSAC algorithm. 
 
Finally, the same test has been achieved on almost 58 buildings 
with different forms and different Lidar point densities. The 
good results confirm the potentiality of the extended RANSAC 
algorithm. Although the improvements showed promising 
results, it must be noted that the level of generalisation and 
consequently the result quality depend obviously on the point 
cloud characteristics (point density, position accuracy, noise), 
on the architectural complexity of the building roof and on the 
dimensions of the building roof planes and their details. 
 
 

5. CONCLUSION 

This paper presented and compared two methods for automatic 
roof planes detection from Lidar data. These methods are 3D 
Hough-transform and RANSAC algorithm. The principle and 
the pseudocode of each one were detailed. In order to test the 
original and the improved algorithms, two sets of point clouds 
characterized by different densities and containing different 
building forms were used.  
 
It is stated that both methods are based on pure mathematical 
principles in order to detect the best planes from 3D point 
clouds. This characteristic leads sometimes to the production of 
intolerable errors. The main advantage of RANSAC algorithm 
is its rapidity and the percentage of successful detected roof 
planes. These reasons were our main motivations. 
 
Thus, two enhancements were suggested in order to increase its 
capacities. The first one was the improvement of the original 
data by generating a new point cloud. The second improvement 
was the adaptation of the algorithm, so that the extended 
algorithm allows detecting the best roof plane instead of the best 
mathematical one. At last, the satisfying results obtained for 
different clouds even with weak point density validate the 
proposed processing chain. Once the building roof planes are 
detected automatically, it becomes easier to complete the 
processing chain and achieve the last steps leading to the 
complete 3D building model.    
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ABSTRACT: 
 
Small-footprint airborne laser scanners with waveform-digitising capabilities are becoming increasingly available. Waveform- 
digitising is particularly advantageous when the backscattered echo waveform is complex because it allows selecting processing 
algorithms adjusted to the task. In addition, waveform-digitising laser scanners depict the physical measurement process in its entire 
complexity. This opens the possibility to derive the backscatter cross section which is a measure of the electromagnetic energy 
intercepted and reradiated by objects. In this paper approaches for deriving the cross section along the laser ray path are discussed. 
For data storage and processing reasons a practical approach is to model the waveform as the sum of a number of echoes 
backscattered from individual scatterers. This approach involves estimating the number of echoes, finding a match between the 
modelled echoes and the measured waveform, and estimating the cross section using calibration targets. For estimating the number 
and position of echoes the Average Square Difference Function (ASDF) method, which is a discrete time delay estimation 
technique, is tested. The results show that ASDF is a promising approach which appears to be less affected by noise compared to 
more traditional echo detection methods. 
 
 

1. INTRODUCTION 

Airborne laser scanning (ALS) is an optical measurement 
technique for obtaining information about the Earth’s surface 
such as the topography of the land surface, the vegetation cover 
and the seafloor elevation in shallow waters. This technique is 
also often referred to as LIDAR, which stands for LIght 
Detection And Ranging. Most ALS instruments use pulse lasers, 
i.e. they send out short laser pulses in the visible and/or infrared 
part of the electromagnetic spectrum and measure some 
properties of the backscattered light to find range and/or other 
information of a distant target. While many of the first ALS 
systems provided only range information, ALS systems that 
digitise and record the complete echo waveform are becoming 
increasingly available. 
 
Bathymetric lidar instruments designed for measuring depth of 
relatively shallow, coastal waters were the first full-waveform 
systems. These sensors transmit pulses at green wavelengths 
that penetrate several meters into the water depending on water 
clarity and turbidity. According to Wozencraft and Millar 
(2005) the maximum detectable depth of the seafloor is about 
60 m. Scattering and spreading of the laser pulse at the air-
water boundary, within the water column and the seafloor 
results in relatively complex echo waveforms (Tulldahl and 
Steinvall, 1999). Therefore, as Guenther et al. (2000) point out, 
it has not been possible to calculate all depths with high 
accuracy and reliability in real time during data acquisition. 
Precise depths are determined via post-flight processing of 
stored waveforms. More recently, NASA developed a small-
footprint waveform-digitising bathymetric lidar that is also 
capable of mapping topography and vegetation (Wright and 
Brock, 2002). Nayeganhdi et al. (2006) demonstrate the 
capability of this sensor for depicting the vertical structure of 
vegetation canopies. 
 

Also the echo waveform from vegetated areas is in general 
rather complex, in particular when the laser footprint is large 
(Sun and Ranson, 2000). Therefore also large-footprint airborne 
and spaceborne lidar systems designed for mapping of 
vegetation capture the complete echo waveform in order to 
allow the retrieval of geophysical parameters in post-
processing. One of the airborne systems is the Laser Vegetation 
Imaging Sensor (LVIS) that transmits 10 ns long infrared pulses 
at repetition rates up to 500 Hz (Blair et al., 1999). Depending 
on flight altitude the footprint diameter is 1-80 m. So far, no 
satellite lidar system designed for the primary purpose of global 
vegetation mapping is available. However, the Geoscience 
Laser Altimeter System (GLAS) on-board of the ICESat 
satellite has acquired waveform data not only over the ice 
sheets but also over land surfaces. This will allow testing the 
usefulness of large-footprint (66 m) satellite-based waveform 
measurements for characterising forest structure and biomass 
(Harding and Carabajal, 2005). 
 
For topographic mapping a small laser footprint and a high 
point density are required to collect a high number of 
geometrically well defined terrain echoes. Various filters that 
classify the echoes into terrain and off-terrain echoes based on 
purely geometric criteria can be used to reconstruct the terrain 
surface (Sithole and Vosselman, 2004). Given that this 
approach has worked well for lidar systems with ranging 
capabilities only, the need for waveform digitising lidar systems 
has not been evident for this application. Also, the benefit of 
waveform data for emerging ALS applications like 3D city 
modelling (Vosselman et al., 2005) and forest mapping (Hollaus 
et al., 2006) was not clear even though some early studies 
demonstrated the rich information content of small-footprint 
waveform data over land surfaces (Lin, 1997). Nevertheless, the 
first commercial waveform-digitising laser scanner system 
started appearing in the market in 2004. Even though research 
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on small-footprint waveform data can still be considered to be 
only in its beginning, a number of benefits start to emerge: 
 

 Jutzi and Stilla (2003) point out that recording the 
waveform is advantageous because algorithms can be 
adjusted to tasks, intermediate results are respected, 
and neighbourhood relations of pulses can be 
considered. For example, Wagner et al. (2004) show 
that depending on the observed target the range 
determined by different echo detection methods may 
differ by several decimetres for a laser footprint 
diameter of 1 m. Recording the waveform allows 
applying different detectors for different targets. 

 Over forested areas the number of detected echoes 
can be significantly higher for waveform-recording 
ALS systems compared to first/last pulse systems 
(Persson et al., 2005; Reitberger et al., 2006) 

 In addition to geometric information, waveform 
digitising ALS systems also provide a number of 
physical observables such as the echo width, the echo 
amplitude and the backscatter cross section (Wagner 
et al., 2006). This opens the possibility to classify the 
echo point cloud based on geometric and physical 
properties. 

 The echo from vegetation is in general broader than 
the echo from the ground surface (Persson et al., 
2005). Doneus and Briese (2006) demonstrated that it 
is possible to improve the quality of terrain models by 
removing wide echoes before the filtering process. 

 The intensity of laser echoes, respectively the 
backscatter cross section, can be calibrated using 
portable brightness targets (Kaasalainen et al., 2005). 
This is important to enable the comparison of 
measurements taken by different sensors over 
different areas. 

 In electrodynamics, scattering processes are described 
quantitatively by the cross section. The cross section 
is hence a fundamental quantity in radar and lidar 
remote sensing. Since it can be derived from 
calibrated waveform data, the gap between 
experimental results and electromagnetic theory could 
be bridged (Wagner et al., 2007). 

 
In this paper waveform analysis techniques as applied to small-
footprint ALS data acquired over land surfaces are discussed. 
An advanced method for estimating the number and position of 
echoes in small-footprint waveforms is investigated in more 
detail. 
 
 

2. THEORY 

2.1 Waveform Generation 

The shape of the waveform is determined by a number of sensor 
parameters and the backscattering properties of the targets. 
Important sensor parameters are the shape of the laser pulse, the 
receiver impulse function and parameters describing the pulse 
spreading (Jutzi and Stilla, 2006). The target is described by the 
differential backscatter cross section σ(t), whereas t represents 
the round-trip time from the sensor to the target and back. 
Essentially, the received power Pr(t), i.e. the waveform, is the 
result of a convolution of the ALS system waveform S(t) and 
the cross section σ(t) (Wagner et al., 2006): 
 

 ( ) ( ) ( )ttStPr σ∗∝  (1) 
 
where the symbol ∗ represents the convolution operator. The 
system waveform S(t) takes into account the form of the laser 
pulse and the effects of the receiver and other hardware 
components. For extended targets the convolution function 
given in Eq. (1) has to be expanded to account for beam 
spreading effects. 
 
2.2 Backscatter Cross Section 

As one is interested in measuring target characteristics, the 
principal quantity of interest in Eq. (1) is the differential 
backscatter cross section σ(t), here also referred to cross section 
profile. It can be estimated from the measured waveform using 
deconvolution or decomposition techniques, each of which rests 
on a set of different assumptions about the real form of the 
cross section σ(t). 
 
Depending on the intended purpose, the cross section is treated 
as a continuous variable or as the sum of discrete values at 
different ranges. If treated as a continuous parameter the 
differential cross section can be represented in a three-
dimension grid (voxel space). According to the orientation of 
the scanner relative to the 3D world frame, each ray (laser 
pulse) traces out a line in the world frame (Figure 1). Each 
voxel is assigned the corresponding value of the differential 
cross section. Such 3D representations could be the starting 
point for advanced modelling efforts, such as ray-tracing 
simulations within vegetation canopies (Sun and Ranson, 2000). 
A major disadvantage of such a representation is the required 
data volume. 
 

 
 

Figure 1. Voxel space representation of the cross section. The 
top half of the figure shows the emitted pulse (left) and the 
received echo (right), the lower half the embedding of the 

underlying cross section in a 3D voxel space. 
 
For data storage and processing reasons a more practical 
approach is to model the waveform as the superposition of basis 
functions corresponding to the cross section of singular 
scatterers at different ranges (Wagner et al., 2006): 
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where N = number of targets 
 Dr = receiver aperture diameter 
 Ri = range from sensor to target i 
 ηsys = system transmission factor 
 ηatm = atmospheric transmission factor 
 βt = transmitter beamwidth 
 σi = differential backscatter cross section of target i 
 
Here, the waveform respectively cross section is represented by 
intermittent points irregularly distributed in 3D space (Figure 
2). Neighbourhood relationships are not considered. An echo 
point is attributed a certain spatial dimension by adding the 
attribute “echo width”. This approach is currently the standard 
in ALS processing. 
 

 
 

Figure 2. Discretisation of the ALS waveforms to obtain an 
irregularly distributed 3D point cloud. Here, the observed 

waveform is modelled explicitly as superposition of 3 Gaussian 
basis functions (targets). 

 
2.3 Gaussian Decomposition 

The decomposition of the waveform according to Eq. (2) 
becomes particularly simple, if both the individual cross 
sections and the emitted laser pulse can be described 
sufficiently well by Gaussian functions. In this case, the cross 
section can be computed in closed form using calibration targets 
(Wagner et al., 2006): 
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where iP̂ = amplitude of echo i 
 sp,i = width of echo i 
 ti = round-trip time sensor to target i 
 CCal = calibration constant 

Gaussian decomposition works by computing a nonlinear fit of 
the model Eq. (3) to the observed waveform. From the 
computed estimate (reconstruction), various target specific 
parameters such as echo width, intensity and position can be 
obtained. However, the number of targets as well as initial 
estimates for the distance of the targets have to be determined 
prior to the fit. This task is referred to as echo (pulse) detection. 
 
Determining the number of echoes in ALS waveforms is not as 
simple as it may sound. Standard pulse detection methods such 
as threshold, centre of gravity, maximum, zero crossing of the 
second derivative, and constant fraction are discussed in 
Wagner et al. (2004). All these methods have their advantages 
and disadvantages. Problems occur when the waveforms have a 
complex shape and when the backscattered pulse is low 
compared to the noise level. In this case, advanced detection 
methods that minimise the influence of noise and account for 
non-ideal pulse forms should be sought. Thiel et al. (2005) 
tested a pulse correlation method and found almost no 
dependency on the signal to noise ratio. In our study we tested a 
time delay estimation technique as discussed in the next section. 
 
 

3. ECHO DETECTION 

For echo detection and time delay estimation, the Average 
Square Difference Function (ASDF) technique became 
relatively widespread during the last 15 years. Given two 
equidistantly sampled discrete time series, x1(t) and x2(t), the 
response value R of the ASDF is defined as (Jacovitti and 
Scarano, 1993): 
 
 ( ) ( )[ ]∑

=

+−=
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where T is the sampling interval and (n-1)T the estimation 
window length. Figure 3 (bottom) shows a typical example of 
RASDF(τ). As one can see, this function is closely related to the 
well-known direct cross-correlation function but has some 
computational advantages (Jacovitti and Scarano, 1993). In the 
case of full-waveform analysis, the reference pulse x1(t) can be 
of any shape required by the respective task, e.g. 
 

 the emitted laser pulse itself (see Figure 3, top) 
 a Gaussian Pulse (see Figure 4) or 
 a mean reference system waveform (see Figure 4) 

derived from a set of original laser pulses. 
 
The time delay estimator Δt of a tentative echo is the value of τ 
corresponding to the minimum of RASDF(τ). In full-waveform 
laser scanning, one has to expect multiple echoes of a single 
laser pulse. Therefore, not only the global minimum, but also 
the local minima have to be taken into account. Tentative 
echoes are located between local maxima (depicted with black 
circles in Figure 5). Due to the fact that only positive values of 
RASDF appear and due to zero-padding outside the time window 
of x2, the values of RASDF at the margins of its time window are 
always considered as local maxima (Figure 5). To distinguish 
real echoes from background noise, the detected minima must 
be separated from the neighbouring minima by a minimum 
distance ΔRmin. For our calculations we choose: 
 
 ( )))(min())(max(3.0min ττ ASDFASDF RRR −=Δ  (6) 
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Figure 3. Top: Two discrete time series x1(t) (blue line) and 
x2(t) (green line) representing the system waveform and the 
backscattered waveform. Bottom: ASDF of these two time 

series. 
 

 
 

Figure 4. Mean reference pulse of the Riegl LMS-Q560 (blue 
solid line) and Gaussian pulse (black dotted line). 

 

 
 

Figure 5. Principle of echo detection using ASDF. 
 

Until now, the time delay of the detected echoes is only 
coarsely determined in the dimension of the sampling interval. 
According to Jacovitti and Scarano (1993), parabola fitting can 
be used for fine delay estimation. The peak of this parabola is 
located at 
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4. EXPERIMENTS 

In this section, we present the results of two simple pulse 
detection and estimation experiments. 
 
4.1 Data Sets 

The data used in this study consist of two samples from the 
2005 flight campaign over the Schönbrunn area of Vienna using 
the Riegl LMS-Q560 full-waveform laser scanner which uses a 
digitising interval of 1 ns. This campaign consisted of 14 flight 
strips (side overlap 60%) with an altitude of 500 m above 
ground and an average point density of 4 points per square 
metre within the strip. The data were acquired on April 5th, 
2005 before the greening-up of the vegetation. Each sample 
contains the waveforms of 10,000 consecutive laser pulses and 
was taken from an area with rather dense vegetation (see Figure 
6). 
 
 
  
   
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Aerial and perspective views of the sample areas. 
Top: Sample 1 (strip 2), bottom: Sample 2 (strip 5). 

 
 
4.2 Results 

In the first experiment, the number of echoes obtained with the 
max-detection method and two ASDF-based methods were 
compared. Max-detection considers those points as maxima 
whose intensity exceeds the respective intensities of its 
immediate neighbours. It is one of our standard pulse detection 
methods used in Gaussian Decomposition. The first ASDF-
based technique uses a Gaussian Pulse with sp = 2 ns as 
reference pulse (x1 in Eq. (3)) whereas the second ASDF-based 
technique used the average of all emitted pulses of the 
respective sample as reference pulse. The results of this 
comparison are given in Table 1. 
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1 2 3 4 >= 5
Max-Detection 58,08 32,20 7,73 1,08 0,09
ASDF (Gaussian Pulse) 66,23 21,09 9,22 1,81 0,18
ASDF (Mean Reference Pulse) 65,89 20,65 9,74 2,01 0,24

Method # detected echoes (%)

 
 

1 2 3 4 >= 5
Max-Detection 51,54 35,23 10,86 1,67 0,27
ASDF (Gaussian Pulse) 60,96 24,24 11,48 2,47 0,24
ASDF (Mean Reference Pulse) 60,64 23,63 12,15 2,70 0,27

Method # detected echoes (%)

 
 

Table 1. Number of Echoes computed with Max-Detection vs. 
ASDF-based Pulse Detection. Top: Sample 1 (Strip 2), bottom: 

Sample 2 (Strip 5). 
 

From Table 1 one can learn that the used reference pulse of the 
ASDF-based techniques does not influence the results of pulse 
detection significantly. However, it is not clear if this is mainly 
a consequence of the scanner’s recording system. Comparing 
max-detection with the ASDF-based methods, one can see that 
the latter are more likely to detect single echoes than max-
detection. It appears that ASDF is less sensitive to laser ringing 
effects, which may be pronounced particularly after strong 
echoes (Nordin, 2006). On the other hand, Table 1 shows that it 
is also more likely to detect three and more echoes with an 
ASDF-based technique than with max-detection. 
 
In the second experiment, the echo estimation of the three 
different methods (Gaussian Decomposition and the two ASDF-
based approaches mentioned above) was compared. Two echoes 
computed with different estimation methods were treated as 
identical (one and the same) if their respective delays Δt did not 
differ more than the sampling interval of 1 ns (see Table 2).  
 

Sample 1 Sample 2 Sample 1Sample 2Sample 1 Sample 2
Gaussian 
Decomposition / ASDF 
(Gauss.Pulse)

86,7 86,4 -0,0004 -0,0004 0,12 0,13

Gaussian 
Decomposition / ASDF 
(Mean Ref. Pulse)

86,9 86,8 0,0002 -7E-05 0,12 0,13

ASDF (Mean Ref. 
Pulse) / ASDF 
(Gauss.Pulse)

98,7 98,7 -0,0008 -0,001 0,05 0,05

Comparison
Identical echoes 

(%)
Median of 

difference [ns]
RMS of 

difference [ns]

 
Table 2. Comparison of Echo Estimation 

 
The results of Table 2 show that in most cases (more than 85 
%), classical pulse detection methods and ASDF-based 
approaches yield identical pulses. Also here, the two ASDF-
variants show nearly identical results. Furthermore, it is given 
empirical evidence that in most cases echo estimation with 
Gaussian decomposition and with parabola fitting of the ASDF 
lead to comparable results since the medians of difference are 
very close to 0 and the standard deviations of difference are not 
greater than 0.15 ns. In metric dimensions, this would conform 
to 2.25 cm in the direction of the laser pulse which is a very low 
value in comparison to the ranges appearing in ALS. 
 
 

5. CONCLUSIONS 

The experiments presented in this paper give empirical 
evidence that both pulse detection and pulse estimation using 
the Average Square Difference Function (ASDF) method is a 

promising approach. To a high percentage, the results of ASDF-
based techniques coincide with those achieved using standard 
methods. In these cases, it would not be necessary to determine 
the exact position of the echoes with non-linear fitting methods 
but could be done prior to Gaussian decomposition using the 
ADSF technique. This could accelerate the calculations, what is 
important given the increasingly large data volumes that novel 
laser scanner systems deliver. The remaining cases, where 
classical pulse detection methods and ASDF-based techniques 
do not coincide, need to be treated in more detail and are 
subject of further research. 
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ABSTRACT: 
A procedure for both vertical canopy structure analysis and 3D single tree extraction based on Lidar raw point cloud is presented in 
this paper. The whole study area is segmented into small study cells by a raster net. For each cell, a normalized point cloud whose 
point heights represent the absolute heights of the ground objects is generated from the original Lidar raw point cloud. The main tree 
canopy layers and the height ranges of the layers are detected according to a statistical analysis of the height distribution probability 
of the normalized raw points. For the 3D extraction of individual trees, the normalized raw points are resampled into a local voxel 
space. A series of horizontal 2D projection images at different height levels are then generated respect to the voxel space. Tree 
crown regions are detected from the projection images. Individual trees are then extracted by means of a pre-order forest traversal 
process through all the tree crown regions at different height levels. Finally, 3D tree crown models of the extracted individual trees 
are reconstructed.  
 
 

1. INTRUDUCTION 

The vertical structures of stands are of high interest in forest 
management. The knowledge on the vertical structure improves 
regression models for estimation of wood volume and biomass. 
It is also of high interest for assessment of the regeneration 
success and biodiversity aspects. Lidar is especially suitable to 
reproduce the vertical structure of forest stand due to its 
capability of three-dimensional measurements with high 
accuracy. The utilization of Lidar in forest investigation can be 
generally divided into canopy height distribution based and 
single tree detection based. Several approaches for Canopy 
height distribution detection have been achieved in the past few 
years (Naesset, 2002; Lim et al, 2003; Hogmgren and Jonsson, 
2004), these researches are mostly concentrated with the forest 
characteristics of the top canopy layer. Concern the vertical 
distribution of canopy layers, researches based on large-
footprint Lidar data with continuous waveform have been 
accomplished by Lefsky et al.(1999) and Harding et al.(2001). 
Andersen et al.(2003) has presented a method for estimating 
vertical structure of forest through a group of regression 
functions based on filed investigations. As for single tree 
delineation, the majority of the existed algorithms are DSM 
(Digital Surface Model) based (Hyyppä and Inkinen 1999; 
Persson et al. 2002; Koch et al. 2006). Trees are delineated 
according to the features of crowns on the DSM, thus the 
individual trees in the lower canopy layer whose crowns are 
covered by the top canopy layer cannot be detected. Beside the 
detection of individual trees, Pyysalo and Hyyppä (2002) has 
provided a process for reconstructing tree crowns, with a pre 
knowledge of the location and the crown size of single tree, raw 
points belong to the tree are extracted, the height of the tree, the 
height of the crown and the average radius of the crown at 
different heights are derived. 
In this paper, we will present a procedure for both vertical 
structure analysis and single tree extraction within forest area 
based on Lidar raw point cloud. The major task of vertical 
structure analysis is to detect the number of main canopy layers 
and the height range of each canopy layer. A more detailed 
study of the spatial features of canopies is performed by the 
single tree extraction process. Individual trees are detected not 

only from the upper canopy layer but also from the lower 
canopy layer in between the ground and upper canopy layer. 
Shapes of individual tree crowns are then delineated and 3D 
models of tree crowns are reconstructed. 
The raw point cloud is the basis of our analysis. Due to the huge 
amount of data, it is not possible to analyse all the raw points 
within a study area in one step. Therefore the study area is 
segmented into a raster net firstly. Each grid cell is then a study 
cell, which with a size of 20m*20m = 400m2 in this case. 
Further analyses are carried out for each study cell separately. 
The results of each study cell can then be assembled for the 
whole study area at the end.  
The study area is in “Kuernacher Wald”, the size of this study 
area is 2.7km*2.8km, the dataset being used is a first-last 
returned Lidar data, the density of raw point cloud is 4~7 points 
per m2. 

 
2. VERTICAL STRUCTURE ANALYSIS 

2.1 Normalized Point cloud 

To get the absolute object height of the raw points, the 
influence of terrain must be eliminated (Figure 1. Left). A raster 
DTM (Digital Terrain Model) is used for the normalization of 
raw point heights. The DTM is generated from the raw point 
clouds by TreesVis, a software for LIDAR data processing 
developed by Department of Remote Sensing and Landscape 
Information Systems (FeLis) (Weinacker et al., 2004).  
 
 
 
 
 
 
 
 
 
Figure 1. Comparison between original Lidar raw point cloud 

and normalized point cloud; Left: original Lidar raw 
point cloud and the DTM; Right: normalized point 
cloud over a zero height level surface  
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As been showed in Figure 1.(Left), raw points are projected 
above the DTM, the height difference between a raw point and 
its correspondent terrain is marked as the normalized height of 
the point. A normalized point cloud is then generated (Figure 1. 
Right), point heights of the normalized point cloud represent the 
absolute heights of the objects. 
 
2.2 Detection of Canopy Layers 

2.2.1 Height Distribution Probability of Normalized 
Points: With a statistical process of the normalized points,a 
height distribution probability function ф(h) can be derived. 
According to the physical feature of Lidar data, most of the 
reflected points are located at canopy layers in the forest area. 
Therefore there should be an obvious increase of reflected 
points at each canopy layer. Thus, the problem of canopy layer 
detection is then transferred to a salient curve detection based 
on the height distribution probability function ф(h). 
To reduce the influence of slight amplitude movements on the 
function, ф(h) is firstly smoothed with a gaussian function, a 
smoothed function S(h) is generated, the second derivative S’’(h) 
is then calculated for the smoothed function S(h). 
As presented in figure 2., the magnitude of the second 
derivative is a useful criterion for salient curve detection. With 
each S’’(h) =0, there is an inflexion point of function S(h) at h. 
At the intervals of h where S’’(h)<0, there must be salient 
curves of function S(h), so the intervals of h are considered as 
height ranges of tree canopy layers. 
 
 
 
 
 
 
 
 
 
Figure 2. Relationship betweenф(h), S(h) and S’’(h), the ranges 

of canopy layers are extracted at the height intervals 
where S’’(h) < 0 

 
2.2.2 Attributes of Canopy Layers: The number of canopy 
layers in each study cell and the height range of each canopy 
layer are the main attributes derived from the vertical structure 
analysis. The range of a canopy layer starts from the height 
where the most rapid increase of point amounts occurred, the 
end of the range is marked at the height where the sharpest 
decrease of point amounts takes place (Figure 3.(a)).  
 
 
 
 
 
 
 
 
 
                         (a)                                          (b) 
Figure 3. (a) Points within the ranges of the detected canopies 

with comparison of original point cloud; Left, 
Normalized point cloud; Right, Points within 
detected canopy ranges; (b) Two different forest 
stands with same height distribution probability 
density function; Left: Duple layer forest stand; 
Right: Single layer forest stand with trees of mixed 
height 

As been illustrated in Figure 3 (b)., although there is no 
difference on height distribution of normalized points between 
the two cases, the spatial relationship of canopy layers is 
distinct. In the left case, the canopy layers overlap, such kind of 
situation can be considered as a real duple layer forest stand, on 
the contrary, the canopy layers in the right case are separated, 
this is actually a stand of trees with mixed heights. To detect the 
real duple layer stand, further studies on the spatial distribution 
of canopy layers are needed. This task is accomplished during 
the single tree extraction process.  
 

3. SINGLE TREE EXTRACTION 

3.1 2D Horizontal Projection Images  

As being shown in Figure 4., a local voxel space is defined for 
each study cell, all the normalized points within the study cell 
will be resampled into the local voxel space. 
 
 
 
 
 
 
 
 
                                (a)                                             (b) 
Figure 4. (a) Local voxel space with real world coordinate 

system (x,y,z) and voxel coordinate system 
(rows,columns,layers); (b) Definition of transform- 
ation matrix M  

 
For the transformation of normalized points from real world 
coordinate system (x,y,z) to the voxel coordinate system 
(rows,columns,layers). A transformation matrix M is defined as 
figure 4.(b), of which: r represents the raster resolution of the 
horizontal surface in the voxel space; t represents the thickness 
of each layer in the voxel space; xo , yo are the coordinates of the 
local origin, namely the x, y coordinate in real world coordinate 
system of the upper-left corner in the study cell; For each 
normalized point in real world P(x,y,z), there is a correspondent 
point in voxel space P’(row, column, layer), the relationship 
between P and P’ can be defined with function: 
 
[ ]layercolumnrow T = Round ( [ ]1zyxM × T) 
 
According to the density of raw point cloud and the scale of r 
and t in transformation matrix M, it is possible that several 
normalized points are located within a same voxel. Take all the 
voxels of a single layer out of the voxel space, the voxels of the 
layer can be considered as pixels of an image. The number of 
normalized points within each voxel can be marked as the gray 
value of the correspondent pixel in the image.  
 
 
 
 
 
 
 
 
 
Figure 5. Normalized points in local voxel space and two 

examples of projection images of two vertical 
neighbouring layers of the voxel space 
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A 2D horizontal projection image of the selected layer is then 
generated (Figure 5.). The raw points of each individual tree 
crown will present a cluster feature on the horizontal projection 
image and the present of the cluster features is highly related 
with the horizontal resolution r and the thickness t of the voxel 
space. The values of parameter r and t in transformation matrix 
M rely on the density of the raw point cloud. According to our 
experiments, a horizontal resolution of 0.5 meter and a 
thickness of 2 meter are the ideal values for our dataset. 
 
3.2 Extraction of Individual trees  

The clusters on the horizontal projection image at each layer 
represent the distribution of tree crowns in the correspondent 
height level. Therefore an individual tree crown should be 
visible at the same location of several vertical neighbouring 
layers. The basic concept of single tree extraction is to trace the 
cluster features on the projection images from top to bottom 
through projection images at layers of different height levels. 
 
3.2.1 Tree crown regions on 2D horizontal projection 
image:  Potential tree crown regions in each layer are extracted 
based on the cluster features on the correspondent projection 
image. A hierarchical morphological opening and closing 
process with a group of predefined structuring elements (Figure 
6.) is performed.  
 
 
 
 
Figure 6. Structuring elements used in hierarchical morphologi- 

cal process 
 
It can be presumed that the amount of raw points should be 
higher near the centre of each tree crown. Consider to the 
projection image, a higher gray value of a pixel represents a 
higher point amount in its correspondent voxel. Thus a higher 
significance should be assigned to the pixel with higher gray 
value and a larger neighbourhood of the pixel should be kept. 
The morphological process begins with the brightest pixels on 
the projection image, these pixels are taken as seeds and closed 
by the largest structuring element, then opened by the smallest 
structuring element, potential tree crown regions are then 
extracted based on the brightest pixels. Similar process is 
fulfilled with pixels of other gray value levels, the lower gray 
value the pixels have, the smaller structuring element is used for 
closing and the bigger structuring element is used for opening. 
Finally, potential regions from different gray value levels at 
same neighbourhoods are merged (Figure 7.). Levels of gray 
value are defined according to the histogram of the projection 
image at non-zero gray value area, of which highest level: 
α>=80%; middle level: 20% <α<80%; lowest level:α<= 20%. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. Hierarchical morphological process for tree crown 

region extraction from projection image; A 

projection image is used as background, seed pixels 
are marked as yellow, contours of extracted tree 
crowns are marked as red. Upper left, Upper right, 
Lower Left: morphological process based on the 
pixels with highest, middle, lowest gray value level; 
Lower right: final result of tree crown extraction 

 
3.2.2 Pre-order forest traversal: In computer science, 
forest traversal or more generally tree traversal refers to the 
process of visiting each node in a forest or tree data structure 
systematically. In our case, tree crown regions on the layers at 
different height levels can be considered as nodes at different 
levels of a forest data structure, crown regions on the top layer 
are the prime root nodes of the forest. A pre-order forest 
traversal process is fulfilled to visit all the crown regions of the 
forest.   
Individual trees are extracted during the forest traversal process 
by grouping the vertical neighbouring crown regions from 
layers at different height levels. The main procedures of single 
tree extraction is illustrated in figure 8., a real case of single 
tree extraction is demonstrated in figure 9.. For each root node, 
namely the top region of each crown, the conditions of the 
existence of a child node, namely a vertical neighbouring crown 
region in next layer, are listed as follows: 
 

Ai/Ar >Ca                                                (1) 
Ai/Ac >Ca                                                (2) 
D < Min(Rr, Rc)                                       (3) 
 

where  
Ai = intersection area of root node and child node 
Ar = area of root node; Ac is the area of child node 
Ca = constant criteria in interval [0.5, 1.0], for which 0.8 
is an ideal value in our study case 
D = distance between centre points of root node and child 
node 
Rr = average radius of root node  
Rc = the average radius of the child node 
 

All the three conditions are sufficient condition, two regions 
can be considered as neighbouring regions no matter which 
condition is fulfilled.  
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Figure 8.  Main process of single tree extraction;  
 

 
 
 
 

if(forest !empty) 

get a Root node from Top layer 

search Child node in Next layer  
respect to condition (1), (2) or (3) 

find Child? 

Top layer = Next layer; 
Root = Child; 

save a single tree; 
delete all tree nodes from forest; 

yes 

no
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Figure 9. Demonstration of single tree extraction during a pre-

order forest traversal process; Left: tree crown 
regions in different layers; Right: Result of single 
tree extraction, each tree is marked with a different 
colour, the root note of each tree is filled up with the 
same colour as the corresponding tree. 

 
3.2.3 3D models of tree crowns: Each detected tree crown 
is described by an array of 2D tree crown regions in different 
layers at different height level. Since the layers in voxel space 
have certain thickness, 3D prisms can be constructed for the 2D 
crown regions in different layers with the thickness of layers as 
the height of the prisms. A group of 3D prisms at different 
height levels are then derived for each individual crown, and a 
prismatic 3D tree crown model can be reconstructed by a 
combination of all the tree crown prisms (Figure 10.).  
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10. VRML(Virtual Reality Modeling Language) 

prismatic model of individual tree crowns within a 
single study cell with comparison of normalized 
point cloud; Left: Normalized raw points in a single 
study cell; Middle & Right: VRML models of 
individual tree crowns in the study cell visualized 
from different view directions, individual tree 
crowns are marked with different colours. The 3D 
models have the same vertical resolution with the 
local voxel space.  

 
3.2.4 Features of study cell and individual trees:  
1. For an individual tree the following parameters are available:  

 Height of the tree;  
 Height range of the crown;  
 Diameters of the crown at different height levels;  
 The largest diameter of the tree crown and its 

correspondent height; 
 Volume of the crown.  

 
2. For a study cell, beside the number of individual trees, the 
number of crown layers is examined according to the spatial 
distribution of the extracted crowns. If there is an overlapping 
between individual crowns at different height levels, the study 
cell is considered as duple layered. This is a supplemental 
process for the study cells in which more than one canopy 
layers have been detected according to the vertical structure 

analysis. After the analysis for all the study cells, the 
distribution of duple canopy layers in the whole study area can 
be mapped (Figure 11.) 
 
 
 

 

 

 

 

 

 
Figure 11. Map of duple canopy layer stands in one of the study 

area (Kuernacher Wald); Study cells with two 
canopy layers are marked as red; Study cells with 
single canopy layer are marked as yellow; 

 
For 3D single tree extraction, a comprehensive reference data 
set based on field measurements is still missing. Coarse 
evaluations are based on ocular inspections of the raw data 
cloud points, aerial photographs and field information. 
 

4. CONCLUSION 

The statistical method seems to be efficient and reliable in 
detecting the existence and height range of canopy layers due to 
the first visual checks. The drawback is that it is incapable in 
distinguishing a real duple canopy layer structure and a single 
layer structure with trees of mixed heights. The existence of 
duple canopy layer structure is examined during the single tree 
extraction process according to the spatial distribution of 
canopy layers.  
For the single tree extraction, the advantage of our algorithm is 
that not only the individual trees whose crowns are at the top 
canopy layer, but also the lower trees whose crowns are 
covered by the top canopy layer are extracted. The crown 
contours extracted from different height level of an individual 
tree crown will provide a higher approximation between the 3D 
crown model and the reality. The main problems still faced are 
due to the trees with big crowns and the conjunct neighbouring 
trees. For big tree crown with more than one crown peak, the 
crown might be split into more than one individual crowns. 
Trees whose crowns are tightly conjunct might be considered as 
a single tree. Another disadvantage of current algorithm is that 
the segmentation of study cells might split the trees along the 
border of the cells.  
The main influence factors on the quality of the 3D single tree 
extraction algorithm are the density of the raw point cloud and 
the stand situation of the forest. Higher point density will 
improve the accuracy of tree extraction. Better result can be 
expected for a lower canopy closure forest stand. 
Despite the mentioned challenges, the outcomes of recent single 
tree extraction algorithm are encouraging. Further studies will 
concentrate on the improvement of the single tree detection and 
modelling process, utilization of full waveform data could be 
helpful for the achievement of better tree crown models, and an 
enlargement of study cell size or a substitution of the raster gird 
by a moving window for study cell segmentation would reduce 
the over split of the trees along the border of each cell. 
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ABSTRACT:  
 
The goal of this paper was to present the pilot study ongoing in the Polish State Forests on the application of gathering basic forest 
parameters using the terrestrial laser scanner (TLS) technology. The 3D point cloud was created using scanner based on the “phase-
shift” technology. The first part of the paper shows the comparison of two manual methods of TLS data processing, i.e. the directly 
measurement on the planar image so called - „pixel method” and semi-automatic „pipe method”, in the context of the results obtained 
with traditional forest inventory. The second part of the article refers to author’s algorithms, the purpose of which was to make the 
process of obtained the stand basal area (G) from a scanned tree trunks (also partially scanned) automatic. The first stage of work 
over algorithms resulted in precise definition of the: location of tree trunks on the inventory plot and such elements: tree basal area 
(g), stand basal area (G) and BHD. 
 
 

1. INTRODUCTION 

The inventory of forest resources in Europe is based on well-
elaborated standards and usually carried out in a very traditional 
way. To put it in a simple way - the measurement involves 
getting information on the diameters at breast height (DBH) of 
the trees, their mean height (H) and density (the number of 
trees) on circular plots, making statistical sample of respective 
stratification groups of tree stands. The works on forest 
inventory are very time-consuming and costly, thus methods 
and technologies accelerating the work and reducing costs have 
been looked for. The application of airborne and terrestrial 
photogrammetry in the forest inventory have been known for 
decades and the application of VHRS offering a pixel size 
below 1.0 metre becomes more and more common (de Kok, et 
al., 2005; de Kok and Wezyk, 2006; Weinacker, et al., 2004). 
One of dynamically developing technologies in the area of 
active remote sensing systems is LiDAR, both in the form of 
airborne laser scanning (ALS) and terrestrial laser scanning 
(TLS). This technology allows very quick information on the 
structure of forest in the form of the 3D point cloud, which is 
processed to gain such taxation features as: the number of trees 
in the stand, geoposition of individual trunks, diameter at breast 
height (DBH), crown base height and the height of trees 
(Aschoff and Spiecker, 2004; Bienert, et al., 2006; Næsset, et 
al., 2004; Simonse, et al., 2003; Hopkinson, et al., 2004). The 
purpose of presented paper was the comparison of the TLS 
technology to traditional forest inventory applied in Poland in 
the aspect of supporting these methods with modern 
technologies correcting the quality of elaborations. The paper 
presents subsequent stages of work over obtaining such 
parameters as: position of the tree in the 3D space, DBH, tree 
height and tree/stand basal area (g/G). 
 
 

2. RESEARCH AREA 

The tree stands located in the Forest District of Milicz, central-
west Poland (51°27' N; 17°12' N) were selected for the study. In 

these stands in November 2006, TLS was carried out on 30 
circular plots (6 plots located in deciduous forest stands: beech, 
oak; 24 plots in coniferous stands: Scots pine). In the paper the 
results from 4 inventory plots are presented (Table 1). 
 

Forest type Deciduous Coniferous 
Plot number 3 5 15 19 
Forest sub-
compartment 

140b 140g 232b 220d 

Radius [m] / 
Area [m2] 

12.62 / 500 

Tree species 
(number) 

Quercus sp. 
(12); Fagus 
silvatica (1), 

Pinus 
silvestris (1) 

Fagus 
silvatica 

(6) 

Pinus 
silvestris 

(21) 

Pinus 
silvestris  

(30) 

Mean DBH 
[cm] 

42.7 56.7 22.0 28.5 

Mean height [m] 31.2 33.7 20.4 22.5 
Age [years] 142 152 107 67 

 
Table 1. Characteristic of selected forest inventory plots 

(Milicz Forest District PG LP) 
 

 
 

Figure 1. Scanner FARO and the 5 spheres on the inventory plot  
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3. MATERIAL AND METHODS 

3.1 Type of scanning 

In the paper the method of TLS from 4 scanner locations is 
presented i.e., first position (S_1) was in the centre of the plot 
and the following three (S_2, S_3 and S_4) were distributed 
regularly along the plot. In practice the position of the scanner 
(so that they could be visible from each other) and reference 
spheres (k1÷k5), was often problematic, because of the tree 
trunks and undergrowth. The condition of fitting 4 scans into 
one point cloud together is clear identification (max. in the 
distance of 15÷17 m) of at least 3 reference spheres from each 
scanner position. Scanning of one forest inventory plot from 4 
stations, together with preparation work, took about 1 hour and 
20 minutes. 
  
3.2 Reference data 

The forest inventory campaign was carried out in August 2006 
by the company Taxus SI Ltd., based on the methods accepted 
in the Polish State Forests inventory guidelines (PGLP, 2003). 
The DBH measurement was carried out in a standard way with 
the calliper (accuracy 0.001 m) aiming its long arm towards the 
centre of the plot (this measurement further called reference 
inventory = Ref. Inv.), i.e., unfortunately exactly the opposite 
(90°) to the one imaging by scanner. Distances (L) in the polar 
measurement towards the tree were measured with an 
ultrasound range finder. The azimuth (Az) was read towards the 
centres of trunks with a compass (accuracy up to 1°). Due to the 
irregularity of trunks of the analysed trees, in April 2007 
additional reference measurements were carried out by the 
authors (further called = Ref. 1_AUC), defining for each tree 
the DBH upright towards each of 4 scanner positions using 
calliper. At the same time the perimeter of the tree trunk on the 
height of 1.3 metre from the ground (further 
called = Ref. 2_AUC) was collected using measuring tape 
(accuracy 0.001 m). These works, although time-consuming, 
were necessary to test the usefulness of the FARO scanner fully 
objectively.  

 
3.3 Hardware and software 

In the forest the model LS 880 HE80 of a laser scanner of 
FARO company was used. It is based of the phase shift 
technology. Due to this technology up to 250 000 pps can be 
registered. The beams, in case of full resolution and distance 
10.0 m from the scanner are located every 1.5 mm. The time of 
the scanner’s full rotation is about 7 minutes for the resolution 
of about 1/4. The HE80 model, due to its modular structure, i.e. 
4 components installed on a rotating base is very practical. The 
PC computer and HDD are integrated in the base module and 
they allow the set-up of the equipment in the office, without the 
need for a notebook in difficult field conditions. To manage the 
scans and combine them based on reference spheres, the Faro 
Scene ver. 4.0 software was applied. This also enables to apply 
proper filters and make measurements as well as give the 
geoposition to the point clouds. To achieve this, a static dGPS 
measurement (300 epoch; reference station: ASG-PL Wroclaw; 
distance ~50km; Polish Coordinate System PUWG 1992) was 
carried out for the position of the scanner (Wezyk, 2005). The 
mean fit scan error of joining 4 point clouds from respective 
positions of scanners, oscillated for the analysed inventory plots 
within the range: 2.8÷4.9 mm - long. mismatch and 2.1÷6.3 mm 
- orthogonal mismatch. 
Manual measurements of DBH in FARO Scene, made by the 
operator between the pixels making the tree trunk in a planar 

view, were (in a simplified way) called pixel method (Figure 2). 
The other alternative method (further called „pipe method”  - 
Figure 3) involved semi-automatic fitting a cylinder into the tree 
trunk (on breast height). The distance and angle to tree trunks 
represented by the clouds of points were defined due to the 
author’s algorithm operating in ArcView (ESRI) environment. 

Figure 2. Manual „pixel method” (plot no. 19) 

Figure 3. Semi-automatic „pipe method” (plot no. 19) 
 

3.4 Data pre-processing 

Advanced data processing (filtration, classification) was carried 
out by TerraScan and TerraModeler (Terrasolid Ltd.) software 
importing the cloud of points with added georeference in FARO 
Scene as XYZ (ASCII) sets. The classification of the point 
clouds involved generating a correct DTM in the first step, 
based on so-called low points routine. Not always was it a 
simple task due to so-called ghost points occurring below the 
ground, which should be reclassified. In the next step, points 
above DTM were put into a High Vegetation class (Figure 4). 
From this class slices were obtained and their thickness was 
0.04 m (3D belt 1.28÷1.32 m from the DTM). If this place was 
covered with another object (e.g. undergrowth) the closest slice 
above was taken. In the subsequent step the slice was exported 
as XYZ set to ArcView 3.2 (ESRI) software. 

Figure 4. The point cloud after classification (plot no. 5) 
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3.5 Algorithms 

The process of manual fitting ellipses into slices of trunks 
obtained from the point clouds on BHD height is very time-
consuming and it is hard to imagine obtaining this parameter for 
hundreds or even thousands of inventory plots.  
Automatic methods allowing the detection of tree trunks are 
usually based on the application of Hough transformation 
(Aschoff and Spiecker, 2004). Fitting geometric figures (ellipse, 
circle) into trunk slices is also described in detail by Aschoff et 
al., (2004). The cluster analysis is often used in automatic 
recognition of tree trunks and extraction of parameters both in 
case of single scans (covering not more than 180°) of the tree 
trunk cylinder form, as well as images originating from the 
integration of several scans on one area (Bienert, et al., 2006). 
The main purpose of making the algorithm in the discussed 
project was the need for automatic detection of tree trunks and 
obtaining the tree/stand basal area (g/G).  
The tasks for the algorithm focussed on: 

• the definition of the neighbourhood in the point cloud, 
in the surrounding of 2D or 3D space (filtering, 
significance definition); 

• assignment of points to a concrete tree trunk, 
• definition of the angle range for the trunks visible 

from subsequent scanner positions, 
• recognition of tree trunks and definition of their sizes; 
• definition of the visibility of trunks (overshadowing 

by other trees), and 
• drawing a probable outline of the trunk in the places 

without measurement points. 
 

The first step for the algorithm (Algorithm 1) was to define the 
number of points in the surroundings of the point for plane XY 
and XYZ. Points with only three neighbours were treated as 
auxiliary points. The algorithm of automatic definition of the 
assignment of points (XYZ) to a given trunk is realized by 
triangulation (TIN) between points and then by the elimination 
of triangles not fulfilling the initial prerequisites.  
As testing parameters the values of triangle’s angles and lengths 
of its sides were accepted. The border value for angles was 
defined on the level of 10°, while the border value for the length 
ranged from 0.04 m to 0.08 m. The threshold value for the 
distance depends on the size of the inventory plot (maximal 
distance from the scanner), scanning resolution, the number of 
trees on the plot and their thickness (the influence of the 
overshadowing).  
After classifying the points belonging to one tree trunk, the 
convex hulls were generated through the points regarded as 
trunks, then their area, perimeter and the number of internal and 
border points (making convex hulls) were calculated 
(Figure 5a).  
Respective objects of convex hulls were eliminated based on the 
attributes according to the following criteria: 

• the number of internal points > 3, 
• the number of border points > 3, 
• polygon perimeter > 0.21991 m (DBH > 7cm),  
• area > 0.00385 m2 (DBH > 7cm). 

 
As a result of the carried out elimination, we obtained the 
polygons representing tree trunks (Figure 5a, 5b) and objects of 
a great density of points such as: bushes, branches or 
undergrowth (Figure 5d). Through the analysis of azimuth and 
length (Figure 5c, 5e) between the centroid of the object and the 
point belonging to it - objects other than trees were eliminated. 
In the case of trees covered by the undergrowth - the closest 
possible slice of the trunk was taken. 
 

 

 
  Figure 5. Points belonging to the tree trunk (a), partly to the 

trunk (b) and regression plots between radius and 
azimuth (c); not a tree objects (d) and their 
regression plot between radius and azimuth (e) 

 
 
 

 
 

  Figure 6. The cross section of tree trunk without a full point 
cover of TLS: a, b – lines between positions 2 and 4 
of the scanner and centroid of the object, Ao; α - 
central angle describing the missing part of the slice 

 
For trees not having points on fragment of the trunk (Figure 5b)  
– the correcting algorithm (Algorithm 2) was applied, based on 
the sector relayed on to central angle α. This algorithm acts in 
two ways based on the analysis of the interface based on the 
analysis of the length and the number of points on the perimeter 
of the convex hulls and the analysis of mutual situation of the 
objects and the positions of the scanner (Figure 6).  
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The area of the detected tree trunk by Algorithm 1 can be 
defined as: 

 

ceo A  A  A +=         (1) 

 
where: Ae – part of trunk cross section with correct area, 

Ac – part of trunk cross section of an underestimated 
  area. 
 

The algorithm removed the determined part Ac to replace it by 
the corrected area (Acor), calculated from the ratio between a full 
angle (360°) and angle α as well as the respective areas 
(Figure 6).  

 
The correction values (Acor) are expressed by the formula: 

 

α
Π= 2

 * A  A ecor         (2) 

 
The total tree basal area (gt) is defined as: 
 

coret A  A  g +=         (3) 

 
The majority of functioning algorithms for automatic 
calculation of the basal area of the trunk propose fitting of a 
circle (Aschoff, et al., 2004, ), cylinder (Bienert, et al., 2006, 
Hopkinson, et al., 2004) or Hough’s transformation (Aschoff 
and Spiecker, 2004) assuming that a circle can approximately 
represent a trunk. In case of the listed algorithms the mean 
difference in the relation to the reference measurement DBH 
ranges from 1÷2 cm. Additionally the algorithm based on 
Hough transformation requires the conversion of vector data 
TLS (points XY) into raster. In algorithms based on the fitting 
of a cylinder, its height is connected with the size of the trees 
DBH. The larger DBH – the bigger height of the cylinder, thus 
it is necessary to make the mean base of cylinder. The proposed 
in this article algorithm is first of all based on a correct 
definition of the basal area of individual trees (g), from which 
DBH value could be calculated back as one of basic tree and 
stand parameters. The studies over the algorithm (Algorithm 1 
and Algorithm 2) have been continued and the algorithm is 
gradually being improved.  
 
 

4. RESULTS 

4.1 The number of trees 

Depending on the scanner position (S_1÷S_4), the number of 
tree trunks on the reference plot, possible to be interpreted as 
full slices or their fragments, can be different. In case of plot 19 
from the central position (S_1) one tree trunk could not be seen 
and two other were partially covered, which was stated only on 
the stage of detail work on the comparison with Ref. Inv. 
Making manual measurements with the pixel and pipe method 
is strictly dependent on full identification of tree trunk. The 
percentage of trees visible for manual measurement in plot 
number 19, ranges from 63.3% to maximal 90.0% from 
individual scanner positions. This has its consequences in 
calculating the stand basal area (Table 2). 
 
4.2 Polar measurement 

The process of getting slices of tree trunks leads to automatic 
gaining information on the centroid of the trunk and, this way, 

making a precise map of trees on the forest inventory plot 
(Figure 7). 

 
Figure 7. Map of tree trunks on the plot no. 19 

 
Compared to traditional forest inventory, a constant angular 
shifting was observed (about 4°) resulting from the application 
of different instruments to measure azimuth from the centre of 
the plot to the tree trunk, as well as the situation of a survey 
pole northwards at the moment of scanning. So-called „gross 
errors” were relatively rare. They occurred e.g. during 
completing the paper forms in the “distance to the trunk” field 
(e.g. in case of plot 19, tree no. 21; the error was ca. 3.5m). The 
error in marking the north and inaccurate reading can cause the 
change of the position of the tree trunk to about 0.80÷1.0 m, on 
the border of the reference plot (radius = 12.62 m). Taking that 
the errors in the localization of respective laser points on the 
tree trunks can reach 1÷2 cm – this is still 50 to 100 times less 
than the accuracy of dGPS measurement (RMS 1.0÷1.5 m) 
under the forest canopy (Wezyk, 2005). 
 
4.3 Tree DBH 

The carried out statistic analysis of the measurements for all the 
scanner positions - i.e. for 141 visible pines, 36 oaks and 22 
beech trees – showed that manual “pixel” and “pipe methods” 
provide precise results. A very clear relationship (R2 > 0.946) 
between DBH defined with the “pixel method” and Ref. AUC is 
presented below (Figure 8). 
 

 
   Figure 8. Regression plot of manual (Ref. 1_AUC) versus 

TLS DBH [cm] estimates (all trees from inventory 
plots)  
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Figure 9. Residual plot for DBH from TLS of all the analysed 
trees 

 
4.4 Tree height 

After the application of several levels of data filtering to get rid 
of so-called air points and ghost points, the classification of 
point clouds was made. The height of tree was defined in a High 
Vegetation class in the TerraScan (Terrasolid) software. 
Compared to Ref. Inv., the TLS measurement of deciduous tree 
stands and the interpretation of point clouds turned out to be 
slightly underestimated. The arithmetic error if the reading of 
the highest points belonging to the canopy of deciduous trees 
was +0.44 m (beach -0.01 m; oak +0.61 m), an absolute mean 
error was about 1.10 m (beach 0.59 m; oak 1.30 m). Due to the 
late season in the tree crown remained about 15÷20% leaves, 
which on one hand enabled deep penetration with a laser beam, 
on the other hand the lack of leaves above 30 meters made small 
twigs not clearly seen target by the scanner. The beech stand, 
because of small density could be better measured by both 
methods, probably because of this the results were better. In 
case of coniferous tree stands the arithmetic mean of the height 
measurement was +0.35 m, which indicated a slight 
overestimation of the reading of the obtained points compared 
to Ref. Inv. The absolute mean value for these pine stands 
was 0.79 m. 
 
4.5 Methods of the automatic definition of the tree (g) and 
stand basal area (G) 

As a result of the application of two algorithms (Algorithm 1 
and Algorithm 2; Table 2) in a fully automatic way, the 
information on stand basal area (G m2 ha-1) was obtained and 
compared to the results got from forest inventory (Ref. Inv.) and 
manual measurement in planar view of point cloud as well 
(methods: pixel and pipe).  
The results clearly indicate that the accuracy of the automatic 
measurement with the application of Algorithm 2, in the 
coniferous stands (plots no. 15 and 19) gives mean error on the 
level of 0.26% (Table 2) in the situation when a traditional 
inventory measurement differs by about 2.88%. For the 
deciduous stands the mean values of the error in defining stand 
basal area (G) with Algorithm 2 are respectively 1.63% and, 
compared to Ref. Inv. (5.19%), are also several times smaller. 
Both manual measurements methods: pixel and pipe give much 
worse results, because every time they only refer to one 
direction of calliper.  
The application of the Algorithm 2 correcting the area of the 
slice with incomplete cover of TLS points, very significantly 
reduced the error of the tree basal area (g) in deciduous tree 

stands, from about 3.5 times to several dozens of times in the 
case of Scots pine stands (Table 3).  
 

Plot 
no. 

Method G [m2 ha-1] 
Percentage of 
difference to 
Ref. 2_AUC 

Ref. 2_AUC 42.1638  
Ref. Inv. 42.0877 0.18% 
Pixel  40.5036 3.94% 
Pipe  40.9054 2.98% 
Algorithm 1 39.3390 6.70% 

3 

Algorithm 2 41.3680 1.89% 
Ref. 2_AUC 26.2230  
Ref. Inv. 24.5319 6.45% 
Pixel  18.8020 28.30% 
Pipe  15.8495 39.56% 
Algorithm 1 25.4210 3.06% 

5 

Algorithm 2 25.8640 1.37% 
Ref. 2_AUC 17.1722  
Ref. Inv. 16.6284 3.17% 
Pixel  15.6010 9.15% 
Pipe  15.5777 9.29% 
Algorithm 1 16.7250 2.60% 

15 

Algorithm 2 17.1780 -0.03% 
Ref. 2_AUC 40.8747  
Ref. Inv. 39.8160 2.59% 
Pixel  34.8210 14.81% 
Pipe  35.0043 14.36% 
Algorithm 1 39.6220 3.06% 

19 

Algorithm 2 41.0760 -0.49% 
 

Table 2. The accuracy of the determination of stand basal area 
(G) of the forest inventory plots using different 

methods (Milicz Forest District). 
 
 

Tree 
species 

Method 
Sum of tree 

basal area (g) 

Percentage of 
difference to 
Ref. 2_AUC 

Ref. 2_AUC 1.4647  
Ref. Inv. 1.3885 5.20% 
Pixel  1.0928 25.39% 
Pipe  0.9383 35.94% 
Algorithm 1 1.4006 4.38% 

European 
Beach 

Algorithm 2 1.4463 1.26% 
Ref. 2_AUC 1.7649  
Ref. Inv. 1.7398 1.42% 
Pixel  1.6858 4.49% 
Pipe  1.7235 2.35% 
Algorithm 1 1.6492 6.56% 

Oak 

Algorithm 2 1.7270 2.15% 
Ref. 2_AUC 3.0920  
Ref. Inv. 3.0249 2.17% 
Pixel  2.7078 12.43% 
Pipe  2.7050 12.52% 
Algorithm 1 3.0056 2.79% 

Scots 
pine 

Algorithm 2 3.1009 -0.29% 
 

   Table 3. The accuracy of the tree basal area (g) determination 
with different methods for respective tree species 
(Milicz Forest District) 
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5. CONCLUSIONS 

The obtained results allow the statement that the application of 
TLS technology in the forest inventory work is already 
possible. Manual measurements of the point clouds using 
dedicated software give very good results, however only when 
the tree trunk is fully visible for the scanner.  
Comparison or benchmarks of the TLS with the traditional 
forest inventory methods make sense only when the same 
parameter is gathered in right way. The perimeter of the 
irregular tree trunk on the DBH height is the best reference in 
case of using TLS. 
The fact that such work is time-consuming made these 
methods applicable in e.g. observation of areas or monitoring 
and modelling the growth of trees and tree stands, but not very 
successful when it is necessary to make automatic data-gaining 
in the area of hundreds or thousands of hectares.  
Further planned work of the research team is aimed at defining 
the possibilities of limiting the number of scanner positions 
and (at the same time) the improvement of the algorithm 
reconstructing missing fragments of tree trunk slices. However, 
the improvements require the following stages: data pre-
processing (filtering) and their classification. The errors of the 
automatic determination of stand basal area (G) reach level of 
only a few percent. The application of algorithms in the 
automatic calculation of tree basal area (g) and stand basal area 
(G) significantly shortens the time of full data processing and 
provides high correctness of the results. This can contribute to 
the verification of present legal regulations and guidelines 
describing the standards of calculation the wood biomass of the 
stands.  
At present high accuracy TLS data are hardly used in standard 
forest inventory. As long as the concept of „precise forestry” is 
not applied in practice, scanners will be regarded too expensive 
and unnecessary tools.  
Finally, TLS seems to be a tool for objective obtaining of 
information on the forest structure, although fully automatic 
use of data will only be possible in the near future. 
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ABSTRACT: 
 
We present in this paper an algorithm for the detection of changes based on terrestrial laser scanning data. Detection of changes has 
been a subject for research for many years, seeing applications such as motion tracking, inventory-like comparison and deformation 
analysis as only a few examples. One of the more difficult tasks in the detection of changes is performing informed comparison when 
the datasets feature cluttered scenes and are acquired from different locations, where problems as occlusion and spatial sampling 
resolution become a major concern to overcome. While repeating the same pose parameters is an advisable strategy, such demand 
cannot always be met, thus calling for a more general solution that can be efficient and perform without imposing any additional 
constraints. In this paper, we propose a general detection strategy based on terrestrial laser scanning data. We analyze the different 
sources of complexity involved in the detection of changes and study their implication for terrestrial laser scans. Based on this 
analysis we propose a detection model, which is both aware of these hurdles and is efficient. We show that by finding an adequate 
representation of the data, efficient solutions can be derived. We then demonstrate the application of the model on several natural 
scenes and analyze the results.   
 

1. INTRODUCTION 

Differing from conventional mapping techniques like 
photogrammetry, laser scanners provide rapid and direct 
description of 3D geometry independent of lighting conditions, 
and without the need for a manual collection of the data. 
Furthermore, the point-cloud provided by high-resolution laser 
scanners is both dense and accurate, thereby allowing a detailed 
description of objects irrespective of their shape complexity. It 
is therefore, not surprising that laser-scanning technology is 
rapidly becoming the popular alternative for modeling 3D 
scenes, for site characterization, cultural heritage documentation 
and reverse engineering, as only a few examples. 

A key application where terrestrial laser scanning technology 
offers great use is monitoring of changes that occur over time. 
One example is the need to update geographic information by 
comparing the existing information with current state; another, 
which is more extreme, follows disastrous events where 
comparison of pre- and post- events is required, preferably in an 
efficient manner. Change detection should not necessarily be 
related to large-scale events. Behavior of small size natural 
phenomena or changes of specific objects are of great 
importance for analyzing deformations or objects evolution, and 
require a more subtle analysis of the measured scene. We point 
that the detection of changes can find its use in the elimination 
of moving objects within a static scene; such application can 
find use when reconstructing static landmarks, while avoiding 
irrelevant objects in the scene. 

To date, detecting changes is mainly performed via images, 
usually by using object to background separation or a simple 
subtraction between images. Such models are limited and 
usually impose rigid constraints like static mounting of the 
camera, recognizable (usually artificial) landmarks, and are 
sensitive to shadows and local illumination problems. With 3D 
data arriving from airborne laser platforms, change detection is 
mainly applied in the form of a Digital Surface Models (DSMs) 
subtraction, where the DSMs are created from the raw laser 
point cloud (e.g., Vu et al., 2004). Murakami et al. (1999) also 
add to this intensity images as an additional information layer to 
help revising GIS databases. Vogtle and Steinle (2004) propose 

a methodology for detecting changes in urban areas following 
disastrous events. Instead of solely computing the difference 
between the laser-based DSMs, a region growing segmentation 
procedure is used to separate the objects and detect the 
buildings; only then, an object-based comparison is applied. 
Hofton and Blair (2001) propose waveforms correlation of 
coincident footprints between different epochs to study vertical 
or elevation changes in LIDAR data. 

As for change detection via terrestrial laser scans, most works 
focus on deformation analysis for designated objects. 
Comparison can be performed by the subtraction of a resampled 
set of the data (Schäfer et al. 2004), or adjustment to surface 
models like cylinders (Gosliga et al., 2006) or planes 
(Lindenbergh and Pfeifer, 2005). For the comparison of a 
complete scene, Hsiao et al. (2004), propose an approach that 
combines terrestrial laser scanning and conventional surveying 
devices such as total station and GPS, in order to acquire and 
register topographic data. The dataset is then transformed into a 
2D grid and is compared with information obtained by 
digitization of existing topographic maps. Such approach has 
very appealing use in practical applications, but is very limited 
in scope and cannot be generalized into a change detection 
scheme for 3D data. Girardeau-Montaut et al. (2005) discuss the 
detection of changes in 3D Cartesian world, and point to the 
possibility of scans comparison in point-to-point, point-to-
model, or model-to-model manners. The authors then use point-
to-point comparison with some adaptations and make use of an 
octree as a data structure for accessing the 3D point cloud. 
Comparison is carried out by using the Hausdorff distance as a 
measure for changes.  

The review demonstrates the great potential of change detection 
via laser scanning data that allow assessing variations within the 
physical scene without resorting to interpretation of radiometric 
content, as is the case with images. It also shows that in most 
cases where terrestrial laser scanning is being applied, some 
constraints on the studied objects or on the scanner pose are 
being imposed. Since, the assessment of the actual change, and 
the ability to quantify and measure it (e.g., size, volume), offer 
great assets, we study in this paper the detection of changes 
without the imposition of external constraints (other than having 
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some overlap) and propose a model for the assessment of 
changes. Our goal is not only to develop a methodology for the 
detection of changes, but also to propose an efficient solution, 
aware of the unique characteristics of terrestrial laser data.  

Before turning to the analysis and methodology presentation, 
we note that the detection of changes between scans from 
different location requires the establishment of registration 
between the point-clouds. Since scans are acquired in local 
reference frames whose origin is at the scanner position, the 
relative transformation parameters between the datasets should 
be known a priori (in practice, estimated). Our work considers 
the transformation parameters as known. This assumption is 
based on the fact that the registration between the scans is a 
common practice that can be treated either by using artificial 
targets within the scene (spheres, or corner reflectors) or in an 
autonomous manner. 

The change detection model is presented as follows, in Section 
2, we discuss various geometric and scanner related features 
that influence the detection of changes in laser scanning data. 
Section 3 presents the proposed change detection model; we 
outline first the proposed model, analyze it, and then present a 
processing sequence that addresses scanning related problems. 
Section 4 presents results of the application and the model, and 
Section 5 offers concluding remarks and outlook. 

2. CHANGES BETWEEN LASER SCANS 

When studying the detection of changes between terrestrial laser 
scans, concerns like data characteristics, level of comparison, 
and scene complexity, are key factors that affect the detection 
methodology. Data characteristics relate here to the three-
dimensionality, the irregular point distribution, the varying scale 
and resolution within the scene (depending on depth), and the 
huge data volume in each scan. Regarding the level of 
comparison, it may be applied at the point level by comparing a 
point to its surrounding, at the feature level via primitive based 
comparison (e.g., planes or conics), and the object level by 
comparing objects and their shape variation between epochs.  

Since laser scans provide point-clouds embedded within 3D 
space, we study the realization of changes in that space. For an 
efficient model, we focus on the prospects of point-level based 
change detection. We opt towards efficient models that do not 
impose elaborated processes with added computational 
overhead. Since changes in the point level are based on a 
comparison of points to their surroundings, we analyze first the 
potential artifacts that may affect the detection, particularly with 
reference to cases that raise the level of false alarms. Because of 
the unorganized nature of the 3D data, it is clear that some form 
of data arrangement (or structure) must be used for efficient 
access and association between the sets of points. Gorte and 
Pfeifer, (2004) use a voxel based organization as a means to 
impose regularity in the data (though not for change detection), 
and Girardeau-Montaut et al. (2005) use octree representation, 
which is more efficient and more aware of the fact that most of 
3D space has no information. In the analysis, we study their 
applicability to point based comparison.  

2.1 Resolution and object pose 

We begin our analysis with assessment of the varying resolution 
both within and between scans. As angular spacing dictates the 
resolution of the acquired data, distant objects will have a lower 
resolution than those closer to the scanner. The most direct 
effect of the varying resolution is the level of detail by which 
objects are described. However, the fixed angular spacing also 
means that distances between consecutive ranges will keep 

increasing the further the ranges from the scanner become. 
Figure 1 illustrates this effect, it also shows that the increasing 
point spacing is object-dependent – while the spacing of the 
ground points in the 'green' scan keeps growing, those related to 
vertical objects (poles, trunks, or standing people) are more or 
less fixed. Finding a point-to-surrounding comparison scheme 
that suits close and distant points is, therefore, hard. The use of 
volumetric arrangement models (that define surrounding by 
their nature) will fail covering both ends. Small size 
surroundings will lead to cells with no points from one scan but 
some from the other, and will therefore raise a "change" flag. 
Bigger size surroundings will lead to missed changes (e.g., 
accommodating for the decreasing ground resolution may cover 
complete vertical objects). Such effects will occur with both the 
voxel scheme and the adaptive, octrees based, partitioning.  

 
Figure 1. Overlaid scans from different positions, and the effect 
of the varying resolution.  

 

ScanPos 1 

Occlusions 

ScanPos 2 

Figure 2. Occluded areas in one scan that are 'seen' from the 
other scan. Such regions will wear the form of a change by a 
plain point based comparison.  

2.2 

2.3 

Occlusion  

Occlusion of objects, or object parts, offers another type of 
"interference," with a likely consequence of false detection. 
Figure 2 shows a scene part in 3D space, which is seen in the 
'green' scan but is occluded in the 'red' one due to the supporting 
pillar. Those points appearing in one scan but not in the other 
are natural change candidates. An additional related effect arises 
when the same object is partially visible in both scans, either 
with a region mutually seen by both scans, or when the visible 
parts are exclusive one to the other. To handle occlusion effects, 
the application of z-buffering must be applied. However, z-
buffering considers by its nature a sense of surfaces, and 
therefore requires a level of interpretation that either involves 
data segmentation or the definition of connectivity among the 
points. With the varying resolution, such definition becomes 
hard, and in order to be applied properly, a sense of objects 
must be inserted. 

Scanner related artifacts   

The scanning system itself offers several features to consider 
when dealing with the detection of changes. Among them are 
the "no-reflectance" regions, range limits, and noisy ranges.  
Artifacts related to regions of no-reflectance refer to areas 
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towards which pulses have been transmitted, but due to 
absorption or specularity, not enough energy (if any) is returned 
to trigger a range measurement (objects like, windows, and low 
reflectance surfaces are some example to that). When data from 
the other scan exists in those “hole” regions they will be 
considered a change while not being so. 

3.1 

 
Figure 3. Regions covered by only one scan. By the simple 
comparison, it is impossible to distinguish between a "no data" 
area and an actual change. 

 

Figure 4. Noisy laser returns around object borders that can be 
interpreted as changes. 

With ranging limits, the different scanning positions will leave 
areas seen in one scan uncovered by the other (see Figure 3). 
This relatively trivial fact suggest that the lack of information 
cannot be attributed only to actual changes (or geometric 
constraints that the scene imposes) but also to the lack of range 
measurements in a region. Therefore, the consideration of the 
range limits should be handled appropriately. Finally, we point 
to noise in the data (see Figure 4) which usually accompanies 
laser data, especially around object edges and corners. Unless 
treated properly, noise will be interpreted as changes in the 
scene.  

All those features suggest that detection of changes between 
laser scans cannot be decimated into a mere point-to-
surrounding comparison problem if such artifacts are to be 
resolved. In the following Section, we present a model for 
change detection that accommodates those features of the scan. 

3. CHANGE DETECTION MODEL 

The essence of point-level change detection in 3D space is 
comparing a point from one scan to its surrounding in the other. 
Change detection between scans can be approached however, 
from a different direction by asking whether a point that was 
measured in one scan can be seen in the other. For this question, 
three answers can be given, i) yes, but there is no object in the 
reference scan, namely a change, ii) yes, and it is lying on an 
object, namely no change, and iii) no, as there is an item hiding 
it, and due to lack of any other information we mark it as no 
change. In the rest of this Section we show that under an 
adequate data representation a decision among the three 
alternatives can be easily and efficiently made.  

Data representation 

3D laser scans can be seen as range panoramas whose axes are 
the latitudinal and longitudinal scanning angles, and the ranges 
are the intensity values. As the angular spacing is fixed (defined 
by system specifications), regularity becomes an established 
property of this representation. Relation between the Cartesian 
and the polar data representation is given in Eq. (1).  

( ) ( )TTzyx ϕρθϕρθϕρ sin,sincos,coscos,, =       (1) 

with x, y and z the Euclidian coordinates of a point, φ and θ are 
the latitudinal and longitudinal coordinates of the firing 
direction respectively, and ρ is the measured range. Δθ, and Δφ, 
the angular spacing, define the pixel size. Figure 5.a shows 
range data in this representation where the x axis represents the 
θ value, θ ∈(0,2π], and, the y axis represents the φ value, with φ 
∈(-π/4,π/4] for this scan. 

Out of range 

The arrangement of the irregular 3D point cloud into a 
panoramic form offers not only a compact representation (which 
is less of a concern here) but more importantly an organization 
of the ranges according to their viewing direction. To some 
degree, this representation can be viewed as tiling of the data, 
where the pixel size in angular terms defines a region where the 
measured range is the best information source. This contributes 
to the connectivity notion as featured in Figure 5.a. Since size is 
defined here in angular terms, the varying distance between 
consecutive points and scan-lines cease being a factor. 

Noise 

To assess if a point that was measured from the other scan can 
be seen by the reference one, the evaluated scan should be 
transformed into the same frame as the reference scan. Even 
though the range dataset are assumed registered, each range 
panorama is given in a local scanner frame. This transformation 
has the notion of asking how the scan will look from the 
reference scanner position. This transformation involves 
rotation and translation, according to the pose parameters of the 
scanners, and is given by Eq. (2).  
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t1, R1, t2, R2 are the position and orientation matrices of the two 
scanners, respectively, and [x1, y1, z1]T, [x2, y2, z2]T are the 3D 
coordinates in the individual scanners reference frames. Figure 
5.c shows the analyzed scan, while Figure 5.b shows the same 
scan as transformed into the viewing point of the reference scan 
in Figure 5.a.  

Detection of changes 

When transformed, comparison between the scans can be 
reduced, with some adaptations, into a mere image subtraction. 
This image subtraction in the range panorama representation has 
some appealing properties: i) when a scan is transformed into 
the view point of the reference scan, occluded areas of the 
analyzed scan become "no-information" (or void) regions, as 
Figure 5.b shows, and therefore, have no "change-like" effect, 
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 a. 

b. 

c. 

 
Figure 5.  a. Reference scan. b. Analyzed scan transformed into the reference frame. c. Analyzed scan in its original local frame (not 
transformed).  

ii) regions seen from the analyzed scan but not from the 
reference scan (occluded by the reference) will fall behind the 
occluding objects. As such, they will have bigger range values 
than those of the occluding objects and, therefore, a "no change" 
status, and iii) scale – since objects close to the scanner position 
occupy more pixels and far objects occupy less, the need to 
characterize multi-scale comparison arises. However, as objects 
from the analyzed scan are transformed into the reference scan 
frame, object scale differences will be resolved in large. 

For the detection of changes, we apply the following rule: 
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with dij pixel in the difference image, Rij pixel in the reference 
image, Aij pixel in the analyzed one, and ε an accuracy 
threshold. As can be noticed, the change detection is directional, 
namely negative differences, which are due to occlusion, cannot 
be described as changes. Additionally, "no-data" (no-
information) regions in the transformed scan cannot be 
interpreted as a change (for consistency with the above 
definition and for implementation purposes, we assign "max-
range" values there). So, in order to assess the overall difference 
between two epochs, changes should be mutually detected 
between the different scans, with the comparison between the 

reference scan and the analyzed scan telling what appears in the 
analyzed but not in the reference, and the reverse comparison 
telling what appears in the analyzed scan but not in the 
reference. Their union comprises the overall change; their 
exclusion reveals the static objects in the scene. 

3.3 Pre and post processing 

With the outline of the proposed differencing approach, we turn 
to discuss the pre- and post- processing phases that handle the 
additional scan characteristics that were pointed out, particularly 
no-return regions and ranging errors around corners and edges. 

Correction for no-data regions – As Figures 5.a, c show, the 
range panorama has no-return regions due to reflecting surfaces 
or in open areas such as the skies. No-information regions have 
zero ranges there, and therefore will not be able to show 
changes (having negative distance and therefore considered 
occluded). To avoid this effect, no-reflectance regions in the 
reference scan are being filled by their neighboring values. 
These regions are detected by their "hole" appearance in the 
data (hole size is defined by a preset value). Figure 6 shows the 
filling effect, with Figure 6.a showing the raw laser data and 
highlighting two no-reflectance regions among many others that 
are seen around windows and car shields, and Figure 6.b 
showing the filling effect. For the background (skies etc.) 
regions, a "max-range" value is assigned. This way, not only 
no-reflectance regions are filled but also the different extent of 
both scans is handled. 
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Figure 6. Filling no reflectance regions 

Reduction of noise and edge effect – to eliminate the effect of 
edges and corners in the image that oftentimes result in noisy 
ranges, dilation-like operation is performed. The idea is to use a 
filter to locally dilate close object and erode its background. 
This way, we emphasize close objects and make the comparison 
between corresponding pixels more secure. Figure 7 shows the 
effect of the order filter operator.  

 
Figure 7. Results of applying the order filter.  

 

      
Figure 8. Occluded points and the effect of object co-aligned 
with the scanner 

Multiple objects per viewing direction – one feature of the 
transformation into the reference scan coordinate system is that 
ranges in the analyzed frame that are co-aligned with the 
reference scanner viewing direction will all fall on the same 
image pixel. If those ranges are occluded this effect will go 
unnoticed (see Figure 8.a), however when they fall on a new 

object in the scene, only a single point (the closest) that depict 
the object will be considered a change while the rest will be 
ignored (Figures 8.b, c illustrate this effect). Therefore, instead 
of assessing a single laser point, the complete sequence should 
be evaluated.  

Post processing - Following the detection of changes, which 
we perform pixel/range-wise, regions are formed. Further than 
the elimination of small regions, the grouping, which is 
performed in image space, is indifferent to the depth variation 
of the points. Therefore, spurious changes that are not 
connected in 3D space should be detected and eliminated. For 
such elimination, we study the neighbors of each detected point 
in 3D space. Such evaluation is relatively simple to perform as 
it involves defining a window around the point in image space 
and then truncating ranges that are further to the point than a 
given distance. If within this box, the number of points with 
change status is smaller than a given value, the point is not 
considered a change. This way, spurious changes are 
eliminated. We point that a window around the point, which is a 
simple definition, offers in fact a scale aware definition of the 
surrounding.   

4. RESULTS AND DISSCUSION 

The application of the change detection model is demonstrated 
in Figure 9 on a complete scene (the analyzed scan is compared 
here with the reference). The detection threshold, ε, was set to 
5cm. Due to space limitation, we do not extend this comparison 
into multiple scans, and point that the extension of this approach 
is fairly straightforward. Changes in this scene between the two 
epochs are mainly passerbys and parking vehicles. They 
indicate the level of detail that can be noticed at various ranges 
(consider again Figure 5). As an example, we point to the two 
sitting persons on the distant building with the neo-classical 
front. On a larger scale, in Figure 10.a a bus that crosses the 
scene can be noticed. Manual inspection of the scene in 
reference to the detected changes shows that all the actual 
changes between the two scenes were indeed detected. 
Considering the very different views from which the two scenes 
were acquired, the ability to detect walking persons shows the 
great potential of the proposed approach to detect changes of 
various size and within a cluttered natural environment. Since 
comparison is performed by image subtraction, the detection of 
difference is almost immediate, requiring mostly the 
transformation of the analyzed scan into the reference scene, 
and if the total change is sought, applying the same 
transformation in the reverse order. 

The Figures show that a clutter of spurious changes has fallen 
on trees. The lack of structure in trees and the vegetation 
penetration property are some reasons for such changes to 
appear. Additionally, the ranging mode (first return or last 
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Figure 9. changes detected in the analyzed scan when compared to the reference one. 
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return) has an impact on non-solid objects and therefore affects 
the detection. The results indicate that for change detection 
applications, preferences for a first-return mode (namely, the 
closest object) are of reason and need. In terms of false alarms, 
chains between poles have also been detected as changes due to 
lack of information on them in the other scan, most likely for 
similar reason or due to noisy ranges that measurement of such 

cene, only as a means to identify which of them 

objects is prone to. 

While the differentiation between occluded areas and actual 
changes is a natural feature of the proposed model, it has 
interesting consequences regarding partially occluded objects. 
Being point-based, the comparison methodology holds no 
objects notion in it. Therefore, partially occluded objects will be 
partially marked as a change (see Figure 10.b and the bicycles 
highlighted in Figure 9). Linking (or reintegrating) such object 
parts can be performed via graph methods. We point out that 
adding object notion to the detection at the current stage when 
changes have been identified already is a more efficient (and to 
some degree natural) way than a comprehensive study of all 
objects in the s
were changed. 

 

 

Figure 10. Detection of changes, a. large and small moving 
objects in the scene with false detection around trees. b. under 
occlusions (described in 3D); blue and cyan: two registered 
scans; yellow and red: changes detected in the two scans 
respectively. 

5. CONCLUSIONS 

tected, but also minor ones like passerbys in 

focused compared to a complete analysis of the 
whole scene. 

6. ACKNWOLEDGEMENT 

laus Brenner for making 
the data used for our t

7. REFERENCES 

ional 

hives of Photogrammetry, 

ves of 

eering and Vision Metrology, 

hotogrammetry and 

ta. Int. 

h 

nal of Photogrammetry & 

ean 

nal Archives of Photogrammetry 

m, 2004. IGARSS '04. Proceedings 
2004 IEEE International. 

a. 

b. 

 

This work has demonstrated the feasibility of change detection 
with no imposition of external constraints. It has shown that 
efficient solution to such complex features as varying scale 
across the scene, occlusion, and laser scanning artifacts exist. 
As was shown, the transformation of the data to the viewing 
setup of the reference scan, and the polar representation that 
was used, solve scale and occlusion problems in a natural way. 

Additionally, morphologic operators that were applied on the 
range data managed solving such problems as ranging limits, 
noise and no reflectance regions. The range subtraction of the 
points in the organized angular space provided a multi-scale 
analysis, not affected by the scanner position and the varying 
scanning resolution. The results show that not only major 
changes are de
different size. 

Future work on this proposed methodology will focus on 
methods for the elimination of false detection, particularly 
around vegetated objects and on adding object notion into the 
detection process (so that no two parts of the same object will be 
defined as change while the rest of it not). However, the current 
state of the results makes such analyzes and extensions much 
narrowed and 
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ABSTRACT: 
 
Canopy Height Model (CHM) is a standard LiDAR-derived product for deriving relevant forest inventory information, among which 
individual tree identification is a crucial task. The watershed algorithm from markers is the typical procedure applied to CHMs for 
delineation of crowns. However, for low-quality CHMs or under certain canopy conditions, segmentation at individual tree level is 
not practical, e.g., due to grouped trees in dense forests. In this study, we investigated the feasibility of a hierarchical watershed 
transform (HWT) algorithm to segment CHMs at both individual tree levels and scales above that. As compared to the results by the 
variable-window filtering for individual trees, HWT allows more flexibilities in removing nontreetop maxima by referring to the 
“dynamic” attributes of the potential treetops (i.e., local maxima). It is also found that the choice of filters for smoothing CHM has 
significant influences on the detection of treetops. Beyond individual tree level, the segmentation by HWT was compared with a 
commercial package eCognition, and both give similar segmentation results, though with minor differences. Due to the lack of field-
measured trees matched with LiDAR-detected ones, no quantitative evaluation of accuracy is provided in this study. Nevertheless, 
the results of this study reveal that HWT is a viable procedure that could be applied for multilevel segmentation of CHM. 
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1. INTRODUCTION 

Reliable mapping of forest resources is a crucial task in many 
scientific and practical settings, e.g., regional estimate of 
biomass or fuel models as the input of fire behaviour modelling. 
For spatially-explicit forest inventory, LiDAR (Light Detection 
And Ranging) has become a well-established technique in terms 
of its capability of direct measurements on canopy structures 
(Hyyppä, Inkinen, 1999; Næsset, 2002; Maltamo et al., 2004).  
Extensive research efforts have been focused on the use of 
airborne laser scanners for deriving forest information by 
employing various approaches at relevant analysis unit, i.e., 
grid, stand or individual tree level. A canopy height model 
(CHM), which represents the difference between the top canopy 
surface and the underlying ground topography, becomes a 
standard LiDAR product that can be effectively derived from 
LiDAR raw data through appropriate filtering of LiDAR point 
clouds for the separation of ground hits and canopy hits.  
 
In practice, CHMs are available in raster formats and can be 
considered as 2D images where individual tree crowns are often 
visually noticeable. To automatically delineate tree crowns or 
detect individual trees from the CHM, a variety of algorithms or 
procedures have been devised or explored across various forest 
conditions, which include but are not limited to image 
segmentation, local maxima filtering, and template matching 
(Persson et al., 2002; Popescu et al., 2002; Koch et al, 2006; 
Chen et al., 2006; Falkowski et al., 2006). Furthermore, with 
individual trees identified, tree height and crown width also can 
be measured directly from CHM,  and other tree dimension 
parameters such as stem diameters can be predicted from 
LiDAR-derived metrics by regression models (Pyysalo and 
Hyyppä, 2002; Popescu et al. 2003). These algorithms for tree 
identification often make the assumptions that treetops 
correspond to local maxima present in the CHM, or that tree 

crown assumes certain types of geometry that could be 
evaluated against the templates used. Among the segmentation 
approaches, watershed transform is the most popular technique 
in segmenting a CHM because it is intuitively straightforward 
to treat each concave tree crown in the inverted CHM as a 
catchment basin. However, cautions should be exercised as to 
how to appropriately select local maxima as candidates of 
treetops. For example, within a single crown, there may be 
multiple local maxima that result primarily from the real 
irregularity of crowns or partly from random errors in the 
procedures of creating the CHM; therefore over-segmentation is 
usually observed in such situations. As remedies, common 
strategies are to pre-process the CHM using a smoothing filter, 
or to merge over-segmented regions ad hoc; but too strong a 
filter could possibly smear out small trees; as a result, 
smoothing filters with adaptive parameters are often desired to 
alleviate such situations. Koch et al. (2006) used a pouring-
algorithm, which is similar in spirit to watershed segmentation, 
to delineate tree crowns over a temperate deciduous and mixed 
forest, where the authors applied a Gaussian filtering with a 
varying parameter adaptive to height classes, devised several 
schemes to deal with spurious regions, and also employed a 
Ray algorithm to trace the actual crown edge within each 
segment. On the other hand, in the local filtering for treetops, a 
smaller window tends to have larger commission errors while a 
larger window often leads to more omission errors. An 
improved version of local maxima filtering is demonstrated in 
Popescu et al. (2003) by using a circular window and adapting 
its size locally relative to height by referring to a pre-defined 
height-crown equation; this variable window filtering proves 
successful considering the fact that higher trees generally have 
larger crowns. In Chen et al. (2006), a further refinement of 
variable window size filtering is realized by taking into account 
the variability in the prediction of crown width from tree height. 
Falkowski et al. (2006) performed wavelet-transform on CHM 
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image using 2D Mexican Hat wavelet and identified local 
maxima in the resulting convolved image as potential treetops; 
their method is in essence a template-matching procedure. 
 
Despite all these successes, difficulties or problems are often 
reported in previous studies on tree-level crown segmentation. 
These are often witnessed as the relative large error of missing 
or misidentifying trees, particularly over forests with high 
canopy closure and density. Ideally, in open forests where no 
overlapping or suppressed trees exist, all the aforementioned 
algorithms supposedly are able to find all trees if the shape of 
tree crowns is also well-defined. Generally, the difficulties in 
correct delineation may be attributed to the incapability of 
CHM to capture real canopy surfaces that may be caused by 
low quality of LiDAR data, improper resolution for 
rasterization of CHM, or ineffectiveness of procedures for 
generating CHM (e.g., methods of classifying raw returns, or 
interpolation algorithms); in most cases, the complexity of 
canopy surface itself prevents high accuracy in identifying trees. 
Although sophisticated algorithms tend to consider more 
aspects either in the phase of pre-processing or post-processing 
in attempt to reduce commission and omission errors, 
experiential evidences suggest that in some cases it is extremely 
difficult or even impossible to delineate individual tree crowns 
in CHMs even with one of the most sophisticated image 
processing tools such as the human vision system (Bortolot, 
2005). To this end, some researchers, alternatively, went 
beyond individual tree levels to examine the usefulness of CHM. 
For example, Bortolot (2006) investigated the use of CHM for 
tree clusters that correspond to a group of tree crowns. van 
Aardt et al. (2006) used the eCognition package (Definiens 
Imaging GmbH, Munich, Germany) to segment CHM at stand 
levels and then assessed forest volume and biomass on a per-
segment basis. In certain senses, the use of CHM at scales 
greater than individual tree levels circumvents the difficulties in 
crown segmentation and can accommodate the purposes of 
operational inventory at scales appropriate for forest 
management. 
 
The objective of this study is to investigate segmentation of 
CHM for forest inventory at multiple scales by using a 
hierarchical watershed transform algorithm. The watershed 
algorithm used in this work is a marker-controlled 
morphological algorithm that has also been utilized for isolating 
individual trees in previous researches, e.g., Chen et al. (2006), 
among others. Its hierarchy characteristics result from the use of 
“dynamics” as criteria to select markers that are then used for 
growing basins at the corresponding scale. Specifically, first we 
rely on the “dynamics” attributes of local maxima for the 
selection of potential treetops in the delineation of tree crowns, 
and next we apply the hierarchical watershed transform (HWT) 
for CHM segmentation at both tree levels and scales greater 
than individual trees. The results were compared to those by the 
established variable window filtering at individual tree levels 
and those by eCognition at levels above individual trees, 
respectively. 
 
 

2. MATERIALS 

2.1 Study Area  

A forested area of approximately 47 sq km, located in eastern 
Texas, USA, is chosen for this study. The airborne laser 
coverage consists of pine plantations in various developmental 
stages, old growth pine stands in the Sam Houston National 

Forest, many of which with a natural pine stand structure, and 
upland and bottomland hardwoods. Much of the southern U.S. 
is covered by forest types similar to the ones included in our 
study area.  
 
2.2 Airborne Laser Data and Canopy Height Model 

Laser scanner data were acquired with a Leica-Geosystems 
ALS40 during the leaf-off season in March 2004 by M7 Visual 
Intelligence Inc. of Houston, Texas. The LiDAR system was 
operated to record two returns per pulse, i.e., the first and the 
last, with a reported accuracy of 20-30 cm and 15 cm for 
horizontal and vertical positioning, respectively, and was 
configured to scan +/-10 degrees from nadir. On average, the 
dataset has a point density of 2.6 hits per mP

2
P.  

 
A Digital Surface Model (DSM) was created by first selecting 
the LiDAR point of maximum height within each 0.5m x 0.5m 
cell that contains at least one laser hits, and next interpolating 
the selected laser points into a regular grid with a spatial 
resolution of 0.5m by triangulation. A Digital Elevation Model 
(DEM) was derived using a proprietary package and was made 
available by the data vendor. Consequently, the CHM was 
generated through the pixelwise subtraction of DEM from DSM. 
 

3. METHODS 

3.1 Hierarchical Watershed Transform (HWT) 

The idea of watershed transform (WS) is typically illustrated 
with respect to immersion simulation. In classical WS, holes are 
punched at local minima (to be more precise, regional minima) 
while a improved algorithm known as  watershed from markers 
(WSM) punches the holes at the prescribed markers (Soille, 
2003). Denote the WSM as follows, 
 

( , )R WSM I M=  
 
where I is the input image, i.e., the inverted CHM, M is the set 
of markers, and R is the set of segmented regions. Notice that 
the cardinalities of R and M (the number of elements in each 
set) are the same and there exists a one-to-one mapping 
between the two sets. Apparently, if all local minima are 
considered as makers, the WS and the WSM produce the same 
results. On the other hand, another algorithm, the Hierarchical 
watershed transform (HWT), is a multi-scale watershed 
approach that depends on the “dynamic” of local minima to 
create a set of nested partitions (Dougherty and Lotufo, 2003). 
The “dynamic” dH of a minimum is defined as the height one 
has to climb up from the minimum in order to reach another 
minimum of lower value, as illustrated in Figure 1 (left) for the 
minimum point m which has a neighbouring minimum m’ of 
lower height.. In fact, dH is the height extinction value of the 
corresponding valley in the h-minima operator; and it has two 
counterparts, i.e., “area-dynamic” dA and “volume-dynamic” 

dV , which can be defined similarly. For example, the “volume-
dynamic” dV  of a minimum is the volume of water that has to 
be filled to reach another minimum of lower height (Figure 1c). 
An HWT at a given scale s is the WSM using only local minima 
with dynamics greater than or equal to s as markers. This can be 
expressed as, 
 

( , ) ( , )sR WSM I M HWT I s= =  
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 with  { ( ); ( ) }sM m RMIN I DYN m s= ∈ ≥  
 

where ( )RMIN ⋅  is the operator to obtain local minima from the 
input image I (e.g., the inverted CHM) and ( )DYN ⋅  is the 
operator to calculate the dynamic (or area- and volume- 
dynamics) of a local minimum. When s increases, fewer 
minima are selected as markers, and hence a coarser 
segmentation is obtained. Of particular note is that s has no 
direct correspondence to the scale commonly used for the 
spatial extents. The implementation of HWT used in this study 
is based on minimum-cost path algorithm as described in 
Lotufo and Falcao (2000), and it requires the discrete value of 
CHM. Thus, we digitized the float height values into integers 
using a 0.01m quantification interval. If s = 1, i.e., the finest 
scale, the HWT will produce the same segmentation as classical 
watershed transform (WS) because all the minima are selected. 
 
 

 
 
 
Figure 1. Illustration of the concept of “dynamic” for a local 
minimum m whose neighbouring minimum of lower height is 
m’ 
; for simplicity, a 1-D signal is used instead of 2D CHM surface. 
(a) the dynamic of m as indicated by the  arrow, (b) the area-
dynamic of m as indicated by the dashed line, (c) and the 
volume-dynamic of m as indicated by the hatched area. 
 
3.2 Segmentation of CHM at Individual Tree Level 

In the segmentation of CHM by watershed from markers, the 
number of delineated crowns is equal to the number of markers 
used. Therefore, careful selection of markers as treetops must 
be performed. It is also impractical to select all the local 
maxima as treetops due to over-segmentation. Previous 
researches employed different strategies to perform the subset 
selection of local maxima (Popescu et al., 2002, Popescu and 
Wynne, 2004; Chen et al., 2006; Koch et al., 2006). In this 
work, at least four attributes, i.e., the CHM height and three 
dynamic values, are tagged to each local minimum. Based on 
these four attributes directly or other indicators derived from 
them, a series of decision rules could be devised to help guide 
the selection of treetop minima in the inverted CHM as 
demonstrated by a few examples in the following: 
 
(1) If the height of a minimum is lower than a threshold, i.e., 
2.5 m for this study, it is labelled as nontreetop; however, more 
complicated schemes could adapt the height threshold locally. 
The intuition of this rule is that when a minimum’s height is too 
low, it is less likely to be a treetop. 
 
(2) Given a local minimum with a height larger than a threshold, 
i.e., 15 m in this work, if the ratio of its dynamic to height is 
greater than a prescribed value (0.5), it will be identified as 
treetop; and if its area dynamic or volume-dynamic is below a 
threshold, it is deemed as a nontreetop. Otherwise, the status of 
the minimum remains undetermined. In case that the ratio and 

area (volume)-dynamic criteria conflict, the latter takes priority 
as a conservative strategy to reduce over-segmentation. As with 
(1), the thresholds can also vary adaptively; for example, the 
threshold for area-dynamic can be the lower limit of predication 
interval based on a height vs. crown-area equation. The 
justification for the ratio criterion lies in that the dynamic 
indicates the depth of crown “valley”, thus, the deeper the 
valley is relative to the height of its minimum, the more likely it 
is to be a crown. However, if the “valley” is too narrow as 
indicated by a small value of area-dynamic, it is less possible to 
be a crown; this argument justifies the area-dynamic criteria. 
 
(3) Besides within-crown spurious local minima, there may be 
nontreetop minima dangling along crown-ground borders that 
are caused by protruding branches, or in some cases, there 
exists non-tree features that produce isolated minima. It could 
be helpful to use /d d dH A V⋅  (the ratio of dynamic times area-
dynamic to volume dynamic) as a initial criterion to identify 
these local minima; for example, if the ratio is near 1, the 
minimum more likely belongs to this category of nontreetop 
minima. In this study, the ratio threshold is set to be 0.95. 
 
Other more detailed rules could be devised to remove spurious 
minima or keep treetops. In these rules, adaptive schemes 
should be preferred if prior knowledge is available, and it also 
will be advantageous to take into account all the four attributes 
attached to each minimum. For instance, when using variable-
window filtering, in order not to miss too many treetops, it’s 
preferable to have a window size that is a little smaller (i.e., the 
lower limit of prediction interval of crown width) so as to 
incorporate the variability of crown width given a tree height; 
but this leads to a high risk of commission errors. A remedy to 
alleviate this situation is to refer to dA or dV as further guidance. 
As to the aforementioned rules, of particular note is that for 
certain local minima, two or more criteria may lead to 
conflicting judgments; whichever should take precedence is 
dependent on the degree of belief as to how the assumptions of 
each criterion approximate the real situations. 
 
On the other hand, as another common strategy to reduce local 
height variations, we pre-processed the CHM by smoothing 
procedures before applying watershed segmentation. In addition 
to Gaussian filtering, we also used the wavelet-based filter to 
“de-noise” CHM. The use of wavelet for image analysis 
characterizes the adaptive basis functions for capturing local 
signal features as well as a multi-scale representation of the 
image (Matlab Online Help, Mathworks Inc. USA). Despite the 
availability of automatic “de-noising” wavelet algorithms with 
minimal prior input, in this study we adjusted the threshold 
parameters in wavelet filtering through a trial-and-error 
approach, as described later in this section. 
 
3.3 Segmentation of CHM beyond individual tree levels   

Segmentation beyond tree levels is an alternative to analyze 
CHM when the algorithms of individual tree crown cannot be 
appropriately applied. As in our case, trees in the CHM over 
certain forested areas are barely identifiable. To extend the 
HWT to deal with such cases, there are multiple options for 
procedures of selecting markers. Each of three types of 
dynamics, or their combinations could be used as criteria to 
choose markers from the minima for multi-scale segmentation. 
For example, in this study, we attempted to choose as markers 
those minima whose values of d dH A⋅  are larger than a 
specified threshold; and the threshold plays a role like a scale 

   m m m 
m’ m’ 

(a) 
m’ 

(b) (c)
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parameter. Alternatively, volume-dynamic could be directly 
used as criteria to select markers.  
 
As with segmentation of individual trees, smoothing filters can 
be first applied to CHM for coarser segmentation. Furthermore, 
with multi-resolution decomposition of CHM by wavelet, we 
were able to perform segmentation on the wavelet-filtered 
coarse-level image.  
 
In this study, we randomly selected 5 sample subsets of CHM 
over our study area, each with a size of 256m x 256 m, and 
applied segmentation to each subset at individual tree levels and 
above with the aforementioned procedures where we used 
symlet basis in the wavelet smoothing and decomposition, due 
to its near symmetry property and its resemblance to crown 
shape. The 5 selected subsets of CHM represent various growth 
stages, and all have relatively high canopy closures (e.g., 
unthinned pine plantations). For the Gaussian filtering, we set 

2σ = as argued in Chen et al. (2006), and used a window size 
of 1.5m.  In the wavelet-based filtering, we first performed a 2-
level decomposition of the CHM and then chose level-
dependent thresholds for smoothing: at the first level, the 
threshold was selected as the 90% percentile of magnitudes of 
detailed coefficients, and at the second level the 70% percentile 
was used; the thresholds were determined empirically. 
 
 

4. RESULTS AND DISCUSSION  

A typical scenario of forested area of the study site was shown 
in Figure 2 where a portion of the smoothed CHMs respectively 
by Gaussian and wavelet filters is also displayed, as compared 
to the original CHM. When evaluated visually it became clear 
that in our case the Gaussian filtering has stronger smoothing 
effects than wavelet filter. For example, Gaussian filter can 
effectively fill the “holes” within crowns while a certain 
number of relatively large holes, though reduced, are still 
preserved in the wavelet-filtered CHM.  

 

         
Figure 2. One selected subset of CHM for this study (above) 
together with a close-up of the area indicated by the red 
rectangles (below) where the left is the original CHM, the 
middle for the smoothed CHM by Gaussian filtering, and the 

left for the smoothed CHM by wavelet filtering. It seems very 
difficult to recognize individual trees over parts of the CHM. 
 
 
For the CHM in Figure 2, there are totally 14081 local maxima 
in the original CHM while the Gaussian filtered CHM only has 
3230 maxima as compared to 5305 in the wavelet-filtered CHM. 
Out of these 14801 local maxima, the variable window filtering 
(VWF) as proposed in Popescu et al. (2002) identified 2660 of 
them as treetops. With the criteria using the dynamics 
properties, 2867 were selected as treetops from the original 
CHM; with the same dynamic criteria, 1325 local maxima were 
identified as treetops from the Gaussian filtered CHM, and 
2263 from wavelet-filtered CHM. This suggested that the 
wavelet filter used in this study tends to preserve local features, 
thus resulting in more local maxima in comparison to Gaussian 
filtering, as also shown in Figure 2. 
 
In all the five selected subsets of CHM, we have a limited 
number of field-sampled trees. But, unfortunately, for most of 
these trees, we failed to match them with LiDAR trees detected 
with the above algorithms. Also, we found it is not an easy 
endeavour to manually delineate trees out of CHM based on 
visual interpretation as shown in the close-up view of Figure 2. 
Therefore, no attempt is made in this study to report 
quantitatively the accuracy of tree identification due to the 
unavailability of reference data; and only comparisons between 
the methods were reported in terms of numbers of detected trees 
and mean tree height for all the 5 subsets as listed in Table 1. 
The numbers of detected trees are significantly different among 
methods (p < 0.005, ANOVA), but the differences in mean tree 
height are not statistically significant (p= 0.76, ANOVA). Both 
the two smoothing procedures significantly reduce the tree 
numbers (p < 0.001, paired-t tests) and the Gaussian filtering 
produces the least number of trees in all cases. 
 

 
Table 1. Comparison of tree number and mean tree height 
between different methods where VWF stands for variable-
window filtering in Popescu et al. (2002); and WS-org, WS-gau 
and WS-wav for watershed segmentation using the dynamic-
based criteria applied respectively on original CHM, Gaussian-
filtered CHM and Wavelet-filtered CHM. 
 
 
In addition, qualitative evaluation is given over part of the 
CHM in Figure 2.  It can be seen that no one method is superior 
to others according to visual examination as demonstrated in 
Figure 3. However, the smoothing, especially the Gaussian 
filtering, does help remove some, though not all, spurious local 
maxima. Also, the smoothing may produce inconsistent results 
over different parts of the CHM; for example, in Figure 3d there 
are more trees identified around the centre and fewer trees 
around the left corner as compared to Figure 3b.  Overall, the 
result for the Gaussian-filtered CHM seems to offer a more 
satisfactory segmentation on this particular area than other 

 Tree Number Mean Tree height(m) 
 VWF WS-

Org 
WS-
Gau 

WS-
Wav VWF WS-

Org 
WS-
Gau 

WS-
Wav 

1 2660 2867 1325 2263 15.5 16.0 15.9 16.9 
2 4468 3910 1587 2702 12.9 13.1 12.2 13.4 
3 3583 3419 1504 2597 15.2 15.3 14.6 15.5 
4 1416 2355 1302 2221 20.6 21.8 22.1 24.0 
5 2572 2720 1229 2017 14.7 17.2 18.8 20.9 
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methods, although no optimal selection of filtering parameters 
σ  and window size was performed.  
 

  
 

(a)    (b) 
 

  
 

(c)    (d) 
 
Figure 3. A visual comparison between different methods for 
tree identification: (a) Variable-window filtering, (b) WST on 
original CHM, (c) WST on Gaussian-filtered CHM, and (d) 
WST on the wavelet-filtered CHM. The dot points represent the 
treetops, and the polygons in (a)-(d) represent the segmented 
basins. 
 
Above individual tree level, we thresholded the product of 
dynamics and area-dynamic ( d dH A⋅ ) to choose markers for 
the HWT. The segmentation is greatly influenced by the choice 
of indicators or the threshold value for the chosen indictor 
(scale parameter), and the scale parameters for different 
indicators have different interpretation; therefore, we only 
presented the results of different methods for the purpose of 
visual examination. Figure 4 depicts the segmentation results in 
four cases that include the eCognition and the HWT 
respectively applied on the original, the Gaussian-filtered, and 
the wavelet-filtered CHM. The eCognition segmentation used a 
scale parameter of 100 with a balance of 0.5 vs 0.5 between 
colour and shape, and 0.5 vs. 05 between compactness and 
smoothness; and for all the other three with HWT, the threshold 
for d dH A⋅  is set to 15000 mP

2
P. All the four cases tend to 

delineate the relatively homogeneous areas; however, no pair 
among the four is identical although they look similar. It also 
becomes clear that the smoothing, either Gaussian or wavelet 
filters, will also have minor effects on segmentation. A major 
difference between eCognition and the HWT is that the former 
delineated the road as a single object while the HWT divided 
forested areas along the “dam” built in the middle of the road, 
and this is obviously caused by the nature of algorithms. To be 
precise, the eCognition tends to aggregate the connected pixels 
that have similar values; on the other hand, the HWT builds the 
segment boundaries according to water flooding. 
 

 
  (a)  (b) 

 
 (c)           (d) 
Figure 4: Comparison of segmentation results at stand levels: (a) 
eCognition, (b) HWT on original CHM, (c) HWT on Gaussian-
filtered CHM  and  (d) HWT on the wavelet-filtered CHM 
 

5. CONCLUSION  

Hierarchical watershed segmentation of CHM is obtained by 
examining the “dynamics” properties of local maxima. The use 
of these dynamic attributes provides extra information as well 
as more flexibilities in devising rules to determine if a local 
maximum is treetop or not for individual tree detection. In this 
study, no sophisticated rules were explored; instead we simply 
used thresholds for the removal of nontreetop maxima. Further 
studies could investigate other possible criteria in determination 
of treetop maxima. Our results also suggested that smoothing 
plays an important role in suppressing spurious local maxima in 
CHM, and the Gaussian filter tends to produce stronger 
smoothing effects than wavelet-based procedures for dense 
forests of our study area; but neither of the two filters is 
consistently superior to the other. When it is difficult or 
infeasible to detect individual from a CHM, HWT is a practical 
choice to segment CHM at stand level or above. The 
segmentation of CHM by HWT beyond individual tree levels 
produces regions that are relatively homogeneous, although it 
does not generate exactly the same segments as the hierarchical 
segmentation approach of eCognition due to the disparity of 
algorithms themselves as well as the difference in parameters 
controlling scales. At such scales as those above individual-tree 
levels, one challenging issue remains as to how to develop 
methods for  estimation of forest parameters since the analysis 
unit, not equal in area, prevent the direct use of a prediction 
model that are established assuming the uniform size of analysis 
unit (i.e., grid). Nevertheless, the results of this study show that 
HWT is a viable procedure in multi-level segmentation of 
LiDAR-derived CHM at scales appropriate for planned forestry 
management. 
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