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ABSTRACT: 
 
The objective of this research was the design and development of a region-based multi-scale segmentation algorithm with the 
integration of complex texture features, in order to provide a low level processing tool for object-oriented image analysis. The 
implemented algorithm is called Texture-based MSEG and can be described as a region merging procedure. The algorithm is 
composed of two profiles. In the simple profile, the main part of the segmentation algorithm was included. The first object 
representation is the single pixel of the image. Through iterative pair-wise object fusions, which are made at several iterations, called 
passes, the final segmentation is achieved. The criterion for object merging is a homogeneity cost measure, defined as object 
heterogeneity, and computed based on spectral and shape features for each possible object merge. The heterogeneity is then 
compared to a user defined threshold, called scale parameter, in order for the decision of the merge to be determined. The processing 
order of the primitive objects is defined through a procedure (Starting Point Estimation), which is based on image partitioning, 
statistical indices and dithering algorithms. The advanced profile was implemented as an extension of the simple profile and was 
designed to include multi-resolution functionality and a global heterogeneity heuristic module for improving the segmentation 
capabilities. As part of the advanced profile, an integration of texture features to the region merging segmentation procedure was 
implemented through an Advanced Texture Heuristics module. Towards this texture-enhanced segmentation method, complex 
statistical measures of texture had to be computed based on objects, however, and not on orthogonal image regions. For each image 
object the grey level co-occurrence matrices and their statistical features were computed. The Advanced Texture Heuristics module, 
integrated new heuristics in the decision for object merging, involving similarity measures of adjacent image objects, based on the 
computed texture features. The algorithm was implemented in C++ and was tested on remotely sensed images of different sensors, 
resolutions and complexity levels. The results were satisfactory since the produced primitive objects, were comparable to those of 
other segmentation algorithms. A comparison between the simple profile derived primitive objects and the texture based primitive 
objects also took place showing that texture features can provide good segmentation results in addition to spectral and shape 
features.  
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1. INTRODUCTION 

1.1 Recent developments in Remote Sensing 

Remote sensing has recently achieved great progress both in 
sensors and image analysis algorithms. Due to very high 
resolution imagery, such as IKONOS and Quick Bird, 
traditional classification methods, have become less effective 
given the magnitude of heterogeneity appearing in the spectral 
feature space of such imagery. The spectral heterogeneity of 
imaging data has increased rapidly, and the traditional methods 
tend to produce classification errors such as multiple spectral 
signatures within a semantic object. Those multiple signatures, 
cannot be effectively dealt with standard methods and tend to 
produce “salt and pepper” classification results, when one 
semantic object is composed of multiple spectral signatures. 
Another disadvantage of traditional classification methods is 
that they do not use information related to shape, site and 
spatial relation (context) of the objects of the scene. Context 
information is a key element to photo-interpretation, and a key 
feature used by all photo-interpreters because it encapsulates 
expert knowledge about the image objects. Such knowledge, 
however is not explicit, and needs to be extracted, represented 

and used for image analysis purposes. In order to improve 
classification results from image analysis, it is of high 
importance to be able to use key features of photo-
interpretation, such as shape and texture.  
 
1.2 Texture Image Segmentation and Object-based Image 
Analysis 

Approaches have been developed the fields of Computer Vision 
and Remote Sensing, for texture analysis and image 
segmentation. In addition to simple texture features, such as 
standard deviation and variance, Haralick proposed more 
complex texture features computed from co-occurrence 
matrices (Haralick et al 1973, Haralick 1979). These second 
order texture features were used in image classification of 
remote sensing imagery with good results (Materka and 
Strzelecki 1998). Even more complex texture models have been 
used for texture modelling, classification and segmentation, 
such as Hidden Markov Models, Wavelets and Gabor filters 
(Materka and Strzelecki 1998) with very good results in remote 
sensing and medical applications. Several methods have been 
proposed for texture image segmentation, taking advantage of 
the latest texture modelling methods (Chen et al 2002, Fauzi 



 

and Lewis 2003, Havlicek and Tay 2001, Liapis et al 1998). At 
the same time, image classification also moved towards 
computational and artificial intelligence methods (Sukissian et 
al 1994, Benz et al 2004). 
During the last few years, a new approach, called Object-
Oriented Image Analysis, integrated low level image analysis 
methods, such as segmentation procedures and algorithms 
(Baatz & Schäpe 2000), with high level methods, such as 
Artificial Intelligence (knowledge-based expert systems and 
fuzzy systems) and Pattern Recognition methods. Within this 
approach, the low level image analysis produces primitive 
image objects, while the high level processing classifies these 
primitives into meaningful domain objects (Benz et al 2004). 
 
1.3 Research Objectives 

The main objective of this research was the integration of 
texture features into an object-oriented image segmentation 
algorithm. It was desired that the modified segmentation 
algorithm could be used as a low level processing part of an 
object-oriented image analysis system so that to be applied at 
multiple image resolutions and to produce objects of multiple 
scales (sizes), according to user-customizable parameters.  
A further objective was the ability of the produced algorithm to 
be generic and produce good and classification-ready results 
from as many remote sensing data as possible. Remote sensing 
data are, in general, difficult to process, with complex textural 
and spectral information.  Therefore, there was a need for the 
algorithm to be able to handle texture information and context 
features in order to produce better segmentation results.  
 

2. METHODOLOGY 

2.1 MSEG algorithm – Simple Profile Overview 

The MSEG algorithm (Tzotsos and Argialas 2006) was 
designed to be a region merging technique, since region 
merging techniques are fast, generic and can be fully automated 
(without the need of seed points) (Sonka et al 1998, Pal and Pal 
1993). Given that existing Object-Oriented Image Analysis 
systems (eCognition User Guide 2005) have used such methods 
was also a strong argument for the effectiveness of the region 
merging techniques. 
After the data input stage (Figure 1), an image partitioning 
procedure (Macroblock Estimation) was applied to the dataset 
resulting into rectangular regions of variable dimensions, called 
macroblocks. Image partitioning was applied for computing 
local statistics and for computation of starting points. Starting 
points were then used for initialization of the algorithm and for 
reproducibility of segmentation results. 
After the Macroblock Estimation, the SPE module (Starting 
Point Estimation) computed local statistics and provided 
starting points for initialization of the region merging process. It 
should be stretched that starting points were not used as seed 
points (as in region growing techniques) but are used to keep 
track of the order in which all pixels were initially processed 
(Tzotsos and Argialas 2006).  
MSEG is basically defined as a region merging technique. Like 
all algorithms of this kind, it was based on several local or 
global criteria and heuristics, in order to merge objects in an 
iterative procedure, until no other merges can occur (Sonka et al 
1998). In most cases, a feature of some kind (mean spectral 
values, texture, entropy, mean square errors, shape indices etc.) 
or combination of such features computes the overall “energy” 
of each object. Various definitions of homogeneity (energy 
minimization measures or measures of similarity within an 

object) have been defined (Sonka et al 1998, Pal and Pal 1993). 
Recently, a very successful segmentation algorithm, embedded 
in the Object Oriented Image Analysis Software eCognition 
(Baatz & Schäpe 2000), implemented such measures of 
homogeneity, for making the merging decision between 
neighbouring objects, with very good results. Some spectral and 
spatial heuristics were also used to further optimize the 
segmentation. In the proposed segmentation algorithm, similar 
homogeneity measures were used, and then complex texture 
features were implemented in later stages. 
 

 
 
Figure 1: Flowchart of the MSEG algorithm 
 
In order for the MSEG algorithm to provide primitive objects, 
several steps of region merging (passes) were followed. The 
purpose of the first segmentation pass (Figure 1) was to 
initialize image objects and to provide the first over-
segmentation, in order for the algorithm to be able to begin 
region merging at following stages. Initially, the objects of the 
image are the single pixels. During first pass, the algorithm is 
merging single pixels-objects pair wise, inside each 
macroblock. For the second pass of the algorithm (Figure 1), 
the objects created by the first pass were used in a new pair 
wise merging procedure. Again, the same strategy of merging 
was used, finding the best match for each object, and then 
checking if there is a mutual best match in order to merge the 
two objects (Tzotsos and Argialas 2006). The Nth pass module, 
is called iteratively until the algorithm converges. The 
algorithm is considered finished, when during the nth pass no 
more merges occur and the algorithm converges (Figure 1). 
Then, the objects are exported and marked as final primitives.  
 
2.2 MSEG algorithm – Advanced Profile Overview 

The simple profile of the MSEG algorithm included the pass 
modules, as basic elements of a region merging segmentation 
procedure. The extension of the Simple Profile was used to 



 

include extra functionality algorithms and innovative 
techniques for improving the results. The Advanced Profile, as 
implemented at present, included the following modules: 

• the Multi-scale Algorithm (MA), and 
• the Global Heterogeneity Heuristics (GHH) 
• the Advanced Texture Heuristics 

 
The Multi-scale Algorithm module was designed to give to the 
MSEG algorithm the ability to create multiple instances of 
segmentations for an image, with different scale parameters. 
Thus, the produced primitive objects could vary in size and 
therefore, the multi-scale representation could model large 
image entities, as well as small ones. In order to include 
multiple instances of segmentation, inside an object-oriented 
image analysis system, those instances must be properly 
constrained to be integrated and used together (Tzotsos and 
Argialas 2006). 
The problem when dealing with multiple segmentations, is the 
compatibility between scales, in order to combine information 
and objects. One simple way to deal with this problem is to 
create a multi-level representation, and incorporate the multiple 
segmentations within this representation, hierarchically. 
But a single-level hierarchy is sometimes not flexible, when 
dealing with remote sensing classification problems (Argialas 
and Tzotsos 2004). A multi-level-hierarchy approach or a 
branch-based hierarchy model can represent more complex 
spatial relations. Thus, in the present Multi-scale segmentation 
Algorithm, every new level depends only from the nearest 
(scale-wise) super-level or the nearest sub-level, or both 
(Tzotsos and Argialas 2006).  
The Simple Profile passes were based on the merging criterion 
of the mutual best match between neighboring objects. This 
criterion, sometimes is sub-optimal, due to computation cost 
(many virtual merges occur and few of them are producing real 
merges). This heterogeneity heuristic was found optimal at 
minimizing the scene heterogeneity after region merging 
procedures (Baatz and Schäpe 2000). An accuracy-to-speed 
ratio module has been implemented, including the global 
heterogeneity heuristics. The accuracy refers to the global 
heterogeneity cost that is added to the image with each merge 
that occurs during segmentation (Tzotsos and Argialas 2006).  
 
2.3 Advanced Texture Heuristics 

The basic objective of the Advanced Texture Heuristic module 
was to build upon MSEG’s simple profile modules, in order to 
improve segmentation results. Since texture is a key photo-
interpretation element, it was decided to use rather more 
complex texture features, than first order texture features (e.g. 
standard deviation, variance). 
Since second order texture features are widely used in pixel 
classification (Haralick et al 1973, Materka and Strzelecki 
1998), there was a need to test them for segmentation purposes 
and specifically as an add-on to the MSEG algorithm (Tzotsos 
and Argialas 2006). 
Given that MSEG is a region merging algorithm, it should be 
taken under consideration that not all state of the art methods 
for modeling texture are compatible with a hybrid segmentation 
algorithm. The recent literature has shown that Markov Random 
Fields, Wavelets and Gabor filters, have great potential for 
texture analysis (Materka and Strzelecki 1998). Their 
disadvantage is that they are very complex and time consuming 
to be used with a procedure, involving thousands of virtual 
merges. At the same time, wavelets and Gabor filters are 
incapable to be used locally, within the boundaries of a single – 

and sometimes very small - primitive object. Markov Random 
Fields are easier to adopt for region-based texture segmentation, 
but they were found incompatible with the current merging 
search method, since they are based on Bayesian reasoning. 
A traditional method for modeling texture, which has been 
proved very good for practical purposes in supervised 
classification (Haralick et al 1973, Schroder and Dimai 1998), 
is based on the Grey Level Co-occurrence Matrix (GLCM). 
GLCM is a two dimensional histogram of grey levels for a pair 
of pixels separated by a fixed spatial distance. The Grey Level 
Co-occurrence Matrix approximates the joint probability 
distribution of this pair of pixels. This is an insufficient 
approximation for small windows and a large number of grey 
levels. Therefore the image data have to be pre-scaled to reduce 
the number of grey levels in the image. Directional invariance 
can be obtained by summing over pairs of pixels with different 
orientations (Schroder and Dimai 1998). 
From the GLCM several texture measures can be obtained, such 
as homogeneity, entropy, angular second moment, variance, 
contrast etc (Haralick et al 1973). To compute the GLCM, 
several optimization methods have been introduced (Argenti et 
al 1990, Miyamoto and Merryman 2006). Most applications of 
GLCM for remote sensing images, at pixel-level, included 
computation of the co-occurrence matrix less often for the 
whole image, and more often for a predefined image sliding 
window of fixed size.  
In order to employ the second order texture features into 
MSEG, it was obvious that a GLCM should be computed for 
each primitive image object, during the merging procedure 
(Figure 2). 
 

 
Figure 2: A 3-dimensional representation of the Co-occurrence 
matrices that have to be computed for a given orientation. Ng 
are the possible grey levels and N is the total number of 
primitive image objects (source: Miyamoto and Merryman 
2006). 
 
The Advanced Texture Heuristic module, performed the GLCM 
computation for each initial image object before any merge 
could occur at any given segmentation pass. Then, for each 
primitive object texture features were computed. The basic idea 
of this module was the implementation of a similarity measure, 
in order to decide whether two image objects are compatible in 
texture to be merged. A good similarity measure would be a 
homogeneity criterion based on the second order texture 
features. Haralick has indicated as good texture similarity 
measures, the Homogeneity (Equation 1) and the Angular 



 

Second Moment (ASM) (Equation 2) (Haralick 1979). These 
were implemented into the Advanced Texture Heuristic 
module. 
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where Pij is the GLMC value. 
  
When an object was retrieved from the MSEG priority list 
(Tzotsos and Argialas 2006), the texture homogeneity features 
were computed from the GLCM. The mutual best match search 
procedure compared neighbour objects to the selected one, and 
computed the homogeneity texture features for those as well. 
Before, the color and shape heterogeneity criteria were 
computed and involved to the scale parameter comparison, 
texture heterogeneity was computed, as the difference of the 
values of the homogeneity texture features. These values, one 
for each direction and GLCM, were then compared with a 
threshold called texture parameter which can be defined by the 
user. If the two objects are found to be compatible by the 
texture parameter, then the computation of the spectral and 
shape heterogeneity takes place, in order to fulfil the mutual 
best match criterion, and the merge to occur. 
The described heuristic, takes advantage of the texture 
parameter, to reduce the heterogeneity computations. This 
means that, when activated, the Advanced Texture Heuristic 
module, has greater priority than the scale parameter, but 
cannot perform any merging, without color and shape 
compatibility of image objects. If one wishes to perform 
segmentation using only texture features, the scale parameter 
can be set to a very large value, so that not to constrain the 
merging by the color and shape criteria. 
In the following section, the optimization procedure for the 
GLCM computation is described.  
 
2.4 Implementation 

Having to compute thousands of co-occurrence matrices, during 
a region merging segmentation procedure can be 
computationally painful. If for each primitive object, a grey 
level reduction and a co-occurrence computation are performed, 
then the segmentation algorithm would slow down. 
In order to tackle this problem, for the object-oriented 
algorithm, the GLCM computation should be optimized to be 
used with objects, rather than pixels. A modification to the 
traditional methods was performed, so that to make the 
procedure faster but not less accurate. 
At first, there was the problem of image band selection. If the 
computation of the GLCM was to be performed for each band 
separately, the whole segmentation process would not be 
performed optimally. Given that the Starting Point Estimation, 
worked very well with one selected band, the idea to use the 
same selection was tested. So, instead of using all bands, the 
Advanced Texture Heuristic module can use the intensity band 
of the HSI colorspace, or the Y band of the YCbCr colorspace 
(used as default), or a principal component band of the image, 
or finally a single image band. 
After the band selection, a grey level reduction was performed 
at the selected band. The final number of grey levels can be 
selected by the user, with a quantization parameter. The default 
value, as used by many other GLCM implementations was set 

to 32 grey levels (Miyamoto and Merryman 2006). The grey 
level reduction took place using histogram equalization 
technique and then a look-up table was computed to hold the 
new grey level information. 
The optimal way to compute the GLCMs was designed to 
perform some kind of global pre-computation, so that to speed 
up the inter-object GLCM creation function. For each of the 
image pixel, a direction search was performed, to evaluate the 
grey level pair co-occurrences. For the 4 different directions, a 
vector was designed to hold the overall co-occurrence 
information. This way, no direction search was to be performed 
twice during the pass stages. After the completion of these 
vectors for all pixels, the segmentation procedure was initiated. 
Each time an object co-occurrence matrix was to be used, the 
object triggered a pointer structure to call all pixel co-
occurrence vectors and performed very quick texture feature 
computation within the object boundaries.  
This procedure was not tested for algorithmic complexity, but 
was compared to a simple GLCM implementation and was 
found more stable and faster. 
The implementation of the Advanced Texture Heuristic module 
was performed in C++, as the MSEG algorithm. The modified 
version of the algorithm was called Texture-based MSEG. 
 

3. RESULTS AND DISCUSSION 

The implemented version of the MSEG algorithm was tested on 
a variety of image data, in order to assess the quality of the 
results, its ability to be generic and its speed. Evaluating the 
results of a segmentation algorithm does not depend on the 
delivery of semantic objects, but rather on the generation of 
good object primitives useful to further classification steps.  
The algorithm was designed to provide over-segmentation so 
that merging of segments, towards the final image semantics, to 
be achieved by a follow up classification procedure. Boundary 
distinction and full-scene segmentation were of great 
significance. Since the eCognition software (eCognition User 
Guide 2005) is greatly used for object oriented image analysis 
purposes the evaluation of results was mainly based on 
comparison with outputs from eCognition. Also, a comparison 
was made to the Simple Profile results of MSEG, to show how 
the texture features performed along with region merging 
segmentation. 
For the evaluation of the algorithms a Landsat TM image was 
used. The eCognition software was used to provide 
segmentations with scale parameters 10 and 20. The color 
criterion was used with a weight of 0.7 and the shape criterion 
with weight 0.3. The results are shown in Figures 3 and 4. 
Then, the simple profile of MSEG was used to provide 
segmentations with scale parameters of 400 and 700 
respectively, to simulate the mean object size of eCognition’s 
results. It should be noted that scale parameters are not 
compatible between the two algorithms, but are implementation 
dependent. MSEG results are shown in Figures 5 and 6. 
In Figures 7, 8 and 9, the results from the texture-based MSEG 
are shown. Similar scale parameters with MSEG’s simple 
profile results have been used, and also the same weights for 
color and shape criteria. In Figure 7, a scale parameter 400 and 
the texture parameter of 2.0 were used. In Figure 8, scale 
parameter was the same, but texture parameter was 1.0. Finally 
in Figure 9, scale parameter was set to 2500 and texture 
parameter was set to 3.0. 
 



 

 
 
Figure 3: Segmentation result as provided by eCognition for 
scale parameter 10. 
 

 
 
Figure 4: Segmentation result as provided by eCognition for 
scale parameter 20. 
 

 
 

Figure 5: Segmentation result as provided by MSEG for scale 
parameter 400. 
 
Comparing results between Figures 3, 5 and 7, shows that 
similar sized objects can be obtained by all 3 segmentation 
algorithms. For the scale parameter of 400, the MSEG seems to 
be less sensitive to spectral heterogeneity, but still more 
sensitive than eCognition’s result with scale parameter 10. Both 
algorithms keep good alignment of object boundaries with the 
image edges and both provide usable over-segmentations of the 

initial image. The texture-based MSEG also provided good 
segmentation of the image, improving the simple profile result, 
but at the same time, working against the shape criterion for 
objects, providing less compact or smooth boundaries.   
In both systems, MSEG (with or without texture) and 
eCognition, the thematic category boundaries are well respected 
by the segmentations. 
 

 
 
Figure 6: Segmentation result as provided by MSEG for scale 
parameter 700. 
 

 
 
Figure 7: Segmentation result as provided by the texture-based 
MSEG for scale parameter 400 and texture parameter 2.0 
 

 
 
Figure 8: Segmentation result as provided by the texture-based 
MSEG for scale parameter 400 and texture parameter 1.0 



 

 

 
 
Figure 9: Segmentation result as provided by texture-based 
MSEG for scale parameter 2500 and texture parameter 3.0 
 
In the last step of evaluation, segmentations were produced 
from the algorithms using larger scale parameters: eCognition’s 
result for the scale value of 20 is presented in Figure 4 while 
MSEG’s result for scale parameter of 700 is presented in Figure 
6. A comparable result was produced by the texture-based 
MSEG when a very large (2500) scale parameter was used (so 
that the scale parameter would not significantly interfere with 
the final mean object size) and the texture parameter was set to 
3.0 (Figure 9). The texture-based MSEG result was very good 
especially inside the urban areas, with complex texture patterns, 
where the object primitives were merged in such a way, so to 
provide larger homogenous objects than eCognition or the 
simple profile MSEG. 
Finally in Figures 7 and 8, it can be observed that the 
segmentation result can be different when the texture parameter 
is changed. Smaller texture parameter provides smaller 
primitive objects. It should be noticed that texture free objects, 
like the very bright white areas in the image, don’t get affected 
by the texture parameter change, as expected. 
 

4. CONCLUSIONS AND FUTURE WORK 

Overall, the proposed image segmentation algorithm, gave very 
promising segmentation results for remote sensing imagery. 
With the addition of the Advanced Texture Heuristic module, it 
was shown to be a good and generic segmentation solution for 
remote sensing imagery. The extracted boundaries of the 
primitive objects in each case were compatible with the 
semantic object edges. Thus, for object oriented image analysis, 
the texture-based MSEG is qualified as a successful low level 
processing algorithm. 
MSEG has however some disadvantages that have to be further 
investigated. Its shape heterogeneity criteria are not quite 
effective and must be further tested and optimized to provide 
better results.  
An integration of the MSEG algorithm with higher level 
artificial intelligence and pattern recognition methods, will be 
developed for full-scale object oriented image analysis. 
 

5. ACKNOWLEDGEMENTS 

The project is co-funded by the European Social Fund (75%) 
and Greek National Resources (25%) - Operational Program for 
Educational and Vocational Training II (EPEAEK II) and 
particularly the Program PYTHAGORAS II. 

 
6. REFERENCES 

Argenti F., L. Alparone and G. Benelli, 1990. Fast Algorithms 
for Texture Analysis Using Co-Occurrence Matrices. IEEE 
Proceedings, 137, F, 6, 1990, 443-448. 
Baatz, M. & Schäpe, A. 2000. Multiresolution Segmentation – 
an optimization approach for high quality multi-scale image 
segmentation. In: Strobl, J. et al. (eds.): Angewandte 
Geographische Infor-mationsverarbeitung XII. Wichmann, 
Heidelberg, pp. 12-23. 
Benz U., Hoffman P., Willhauck G., Lingenfelder I. and M. 
Heynen, 2004. Multi-resolution, object-oriented fuzzy analysis 
of remote sensing data for GIS-ready information. ISPRS 
Journal of Photogrammetry and Remote Sensing 58 pp. 239-
258. 
Chen, J., Pappas, T.N., Mojsilovic, A., Rogowitz, B. 2002. 
Adaptive image segmentation based on color and texture. 
Proceedings International Conference on Image Processing. 
Evanston, IL, USA, 777- 780 vol.3 
eCognition User Guide, 2005, Definiens, Munchen. 
http://www.definiens.com (accessed 15/06/2006) 
Miyamoto E., T. Merryman. Fast Calculation of Haralick 
Texture Features. www.ece.cmu.edu/~pueschel/teaching/18-
799B-CMU-spring05/material/eizan-tad.pdf (accessed 
15/06/2006) 
Fauzi, M. FA., Lewis, P. H. 2003. A Fully Unsupervised 
Texture Segmentation Algorithm. Harvey, R. and Bangham, J. 
A., Eds. Proceedings British Machine Vision Conference 2003, 
pages 519-528. 
Haralick R.M., Shanmugan K. and I. Dinstein 1973. Textural 
features for image classification. IEEE Trans. On Systems, Man 
and Cybernetics, 3(6):610-621, Nov. 1973. 
Haralick R.M.1979. Statistical and Structural Approaches to 
Texture. Proceedings of the IEEE, Vol. 67, No. 5, May 1979, 
pp. 786-804. 
Havlicek, J. P., Tay, P.C. 2001. Determination of the number of 
texture segments using wavelets. Electronic Journal of 
Differential Equations, Conf. pp 61–70. 
Liapis, S., Alvertos, N., Tziritas, G. 1998. Unsupervised 
Texture Segmentation using Discrete Wavelet Frames. IX 
European Signal Processing Conference, Sept. 1998, pp. 2529-
2532  
Materka A., M. Strzelecki 1998. Texture Analysis Methods – A 
Review, Technical University of Lodz, Institute of Electronics, 
COST B11 report, Brussels 1998 
Pal, N. R.,  Pal, S. K. 1993. A review on image segmentation 
techniques. Pattern Recognition, vol. 26, pp. 1277-1294. 
Sonka, M., Hlavac, V. Boyle, R., 1998. Image Processing, 
Analysis, and Machine Vision - 2nd Edition, PWS, Pacific 
Grove, CA, 800 p., ISBN 0-534-95393-X. 
Schroder M., A. Dimai 1998. Texture Information in Remote 
Sensing Images: A Case Study. Workshop on Texture Analysis, 
WTA 1998, Freiburg, Germany. 
Sukissian L., S. Kollias and Y. Boutalis 1994. Adaptive 
Classification of Textured Images Using Linear Prediction and 
Neural Networks. Signal Processing, 36, 1994, 209-232. 
Tzotsos A. and D. Argialas, 2006. MSEG: A generic region-
based multi-scale image segmentation algorithm for remote 
sensing imagery. Proceedings of ASPRS 2006 Annual 
Conference, Reno, Nevada; May 1-5, 2006. 
 


