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ABSTRACT:

Stand delineation estimation is one of the cornerstones of forest inventory mapping and a key element to forest management decision
making. Stands are forest management units defined mainly by similar species composition, density, closure, height and age. Stand
boundaries (and also attributes) are traditionally estimated through air photo interpretation. Visual interpretation is intelligibly subjec-
tive and can be remedied by numerical interpretation through automated image processing. In this paper, a stand delineation method is
presented integrating wavelet analysis into the image segmentation process. It is novel in the sense that no direct spectral information is
included. Using both wavelet coefficients and derived statistics, like mean absolute value and standard deviation, allowed for discrimi-
nation between forest compartments that differ in the above mentioned attributes. This approach was developed using simulated forest
stands and was subsequently applied to digital aerial photographs of a forest site (representing a mixture of soft- and hardwood stands)
in Flanders, Belgium. The presented method was qualitatively evaluated against traditional image segmentation i.e. segmentation
based on the images’ spectral information. It is concluded that the proposed method outperformed traditional image segmentation. In
addition, this research was valuable to assess the added value of wavelet coefficients in object-based image segmentation.

1 INTRODUCTION

Forest stands are the basic units of management and are generally
defined as spatially continuous units of uniform species compo-
sition, stem density, crown closure, height and age (Leckie et al.,
2003). Correct tree species identification for example is essen-
tial for forest management and in applications such as species-
specific growth models. Similarly, the calculation of timber vol-
umes is usually species dependent. Traditionally stand bound-
aries have been estimated through air photo interpretation. Visual
interpretation is clearly subjective and can be remedied by numer-
ical interpretation through automated image processing (Haara
and Haarala, 2002). Improved mapping techniques are constantly
being sought for in terms of speed, consistency, accuracy, level of
detail and overall effectiveness (Leckie et al., 2003). In this con-
text, several techniques have been developed but most of them are
designed for automated tree isolation e.g. Gougeon (1995a,b),
Culvenor (2002), Larsen (1997) and Warner et al. (1998). Sub-
sequent stand delineation based on individually outlined trees is
less developed but yet fully explored by Leckie et al. (2003).
They present an end-to-end process of data acquisition, tree iso-
lation, species classification and finally stand delineation for a
site representing young, dense, uniform conifer stands. One fur-
ther possibility is the automatic delineation of stands based on
image segmentation. Hay et al. (2005) introduced MOSS (Multi-
scale Object-specific Segmentation) and showed that MOSS can
be used to automatically delineate a range of objects that corre-
spond from individual tree crowns to forest stands.

This paper presents a method aiming at forest stand delineation
by wavelet-based image segmentation. In its development stage,
the method uses artificially simulated images representing for-
est stands that differ in species composition, stem density, crown
closure, height and age class. The proposed method addresses

forest stand delineation and not the extraction of other stand at-
tributes. Next to development, the method is applied to scanned
color-infrared aerial photographs with a resolution of 20cm.

2 ARTIFICIAL IMAGERY

The use of simulated remotely sensed imagery derived from ar-
tificially generated tree stands offers several advantages. First,
artificially generated example stands can be large and homoge-
neous in terms of species composition, stem density, crown clo-
sure, height and age. Secondly, the need for validation data is
alleviated since stand attributes are known in advance. Thirdly,
there is total control over illumination conditions, viewing geom-
etry and spatial resolution. Finally, the resulting images are not
disturbed by atmospheric or sensor noise. As a consequence,
keeping spatial resolution, illumination conditions and viewing
geometry constant, errors in stand delineation are exclusively due
to algorithm performance.

The generation of artificial remote sensing data is a two step
process. First, a three dimensional artificial forest is generated.
Afterwards this 3D model is illuminated using a ray-tracing model,
and the sensor response is determined. The basic units of artificial
forests or stands are artificial trees. Trees are characterized by a
number of randomly distributed variables. Table 1 and Figure 1
give an overview of the random variables that control artificial
tree generation. Crown projections are modelled as composed
quarters of ellipses, and the crown itself is constructed by rotat-
ing an arbitrary function connecting the crown projection envelop
with the tree top around the central axis of the tree.



2.1 Generation of artificial stands

Before stand generation starts, a number of artificial species is
defined by choosing specific values for the parameters of the ran-
dom distributions and the crown shapes shown in Table 1 and
Figure 2. We used a half-ellipsoid (dilated sphere) to model a typ-
ical broadleaf species, and a semi-cone to model a typical conifer
species. Additionally, it is necessary to define the allowed overlap
or intersection between trees. In this study, the allowed overlap
is a fixed fraction of the area of intersection between two crown
projections. This parameter controls crown cover and, together
with the crown radii, stand density (number of trees/ha).

Variable Distribution Symbol in
Figure 1

stem height normal Hs
crown height normal Hc
stem diameter normal Ds
crown shape half sphere /

semi conical)
crown radii normal d1, d2, d3, d4
stem position uniform (x, y)
orientation uniform a
spectral characteristics normal

Table 1: An overview of the random variables and the associated
probability distributions that control artificial tree generation

Figure 1: The applied artificial tree model

Once the artificial species are defined, a random grid is generated.
Every cell in the grid is assigned a random value, corresponding
to one of the generated artificial species. This grid will be used
to limit the uniformly distributed positional variable of the trees.
Stand/forest generation starts by randomly selecting an artificial
species. A random candidate tree is then drawn from the proba-
bility distributions defined by the random species. If the position
of the random tree is within one of the grid cells corresponding to
the selected species, it is investigated if the candidate tree satisfies
the overlap constraint by calculating the area of crown projection

Figure 2: Crown shapes used in this work

overlap with every tree already in the forest. If no overlap con-
straints are violated, the tree is added to the artificial stand/forest.
This process continues until a fixed number of consecutive can-
didate trees fails to meet the positional or overlap constraints. In
order to produce artificial forests with a quasi full crown cover,
it is possible to add trees of an additional, smaller species, filling
up the gaps in the canopy with a kind of understorey.

2.2 Illumination of artificial stands

Once an artificial forest is generated, it needs to be converted to
a simulated remotely sensed image. To do so, we used a naive
ray-tracing method. The sun’s position was set to its position
on June 15, at 11h30 (azimuth=145◦, elevation=59◦) in Brussels,
Belgium. The sensor’s viewing angle was set to 20.5◦. The im-
age was then processed using the POV-Ray Persistence of Vision
Pty. Ltd. (2004) software. The spectral characteristics are cho-
sen in such a way that the rendered RGB images correspond to
respectively the near-infrared, red and green band of an IKONOS
image. Spectral characteristics were derived from in-situ mea-
surements of Pinus Nigra sp.. Even though the generated scenes
are assumed to contain both broadleaves and conifers, all trees
were assigned the Pinus Nigra sp. spectral profile. This way, ar-
tificial species can only be distinguished based on structural char-
acteristics.

3 WAVELETS

Wavelets are similar to Fourier transforms in the sense that they
reconstruct/decompose signals (i.e. images) by using a superpo-
sition of translated, dilated and scaled versions of certain basis
functions (Mallat, 1999). Although there exist a large number
of wavelet functions, in this study wavelets from the Daubechies
family (Daubechies, 2004) were used. The fast discrete wavelet
transform presented by Mallat (1999) was implemented. In the
algorithm, a discrete signal is decomposed in a lower scale ap-
proximation signal A and detail signal D. Extending this one-
dimensional case to two dimensions (by considering rows and
columns consecutively), four new images are obtained, a single
approximation image and a horizontal, vertical and diagonal de-
tail image, all at coarser scales. They applied wavelet analysis is
described in more detail in Verbeke et al. (2006). For a compre-
hensive discourse on wavelet analysis, we advert the key publica-
tions of Daubechies (2004) and Mallat (1999).

Wavelets have been used in a variety of remote sensing appli-
cations ranging from image fusion (e.g. Park and Kang (2004);



Gonzalez-Audicana et al. (2006)), over noise and speckle reduc-
tion (e.g. Sgrenzaroli et al. (2004); Chen et al. (2006)), data
compression (e.g. Zeng and Cumming (2001)), sub-pixel map-
ping/sharpening (e.g. Mertens et al. (2004)) to the analysis of im-
age texture (e.g. Simard et al. (2000); Dekker (2003); Li (2004);
Kandaswamy et al. (2005)). As multi-resolution wavelet analy-
sis decomposes an image into a set of approximation and de-
tail images at coarser scales, they are able to characterize local
variability within an image at different spatial resolutions. Intu-
itively, stand boundaries are expected to be “highlighted” in sev-
eral coarser detail images as they represent high local variability.
Using this local variability, and thus statistics of wavelet coeffi-
cients such as mean absolute values and standard deviations as
a basis for image segmentation, wavelet analysis is expected to
allow for discrimination between forest compartments.

4 MATERIALS

The wavelet-based segmentation method was developed using ar-
tificial forest stands generated as described in Section 2. Sev-
eral artificial forests were rendered with a spatial resolution of
20 cm. Both grid sizes and artificial tree species varied. Small
3x1 grids were examined, as well as large 10x10 grids. The num-
ber of artificial tree species varied, according to the grid size,
from 3 to 10. Next the method was applied to color-infrared aer-
ial photographs (scale 1:5000). Seven photographs (acquisition
date: October 1987) were scanned, ortho-rectified and mosaiced
yielding an image dataset with a very high spatial resolution of
20 cm. Verbeke et al. (2006) describe this process in more de-
tail. To place the designed method into perspective, the presented
method was evaluated against traditional image segmentation i.e.
segmentation based on the images’ spectral information.

5 WAVELET-BASED IMAGE SEGMENTATION

Figure 3 presents a schematic overview of the applied method.
The method is a segmentation procedure consisting of a segmen-
tation and merging step.

The method starts with three-level wavelet decomposition (using
the Daubechies 4 wavelet) of the three-band input image, result-
ing for each spectral band in four new images (a single approxi-
mation and three detail images) at three different spatial resolu-
tion scale levels (2, 4 and 8, resp. 40, 80 and 120cm).

Based on the 27 (3 bands x 3 details x 3 scale levels) detail co-
efficients an image segmentation is performed. The applied seg-
mentation algorithm is the one introduced by Baatz and Schäpe
(2000), which is implemented in the eCognition software tool
(eCognition, 2000). It is a bottom-up region merging technique
and is therefore regarded as a region-based algorithm. The algo-
rithm starts by considering each pixel as a separate object. Sub-
sequently, pairs of objects are merged to form larger segments.
Throughout this pairwise clustering process, the underlying opti-
mization procedure minimizes the weighted heterogeneity nh of
resulting image objects, where n is the size of a segment and h
an arbitrary definition of heterogeneity. In each step, the pair of
adjacent image objects which stands for the smallest growth of
the defined heterogeneity is merged. If the smallest growth ex-
ceeds a user-defined threshold (the so-called scale parameter S),
the process stops. The procedure simulates an even and simulta-
neous growth of the segments over a scene in each step and the
algorithm guarantees a regular spatial distribution of the treated

Figure 3: Schematic overview of the applied method

image objects. In this segmentation step, the algorithm utilizes
spectral and shape information to extract spatially continuous,
independent and homogeneous regions or image objects. The
overall heterogeneity h is computed based on the spectral het-
erogeneity hcolor and the shape heterogeneity hshape as follows

f = w · hcolor + (1− w) · hshape (1)

where w is the user defined weight for color (against shape) with
0 ≥ w ≥ 1.

Spectral heterogeneity is defined as

hcolor =
∑

c

wc

(
nm · σm

c − (nobj1 · σ
obj1
c + nobj2 · σ

obj2
c )

)
(2)

where wc are the weights attributed to each channel and σc are
the standard deviations of the spectral values in each channel. The
standard deviations themselves are weighted by the object sizes
n.

Shape heterogeneity consists of two subcriteria for smoothness
and compactness

hshape = wcmpct · hcmpct + (1− wcmpct) · hsmooth (3)

Change in shape heterogeneity caused by a merge m is evalu-
ated by calculating the difference between the situation after and
before the merge, with

hcmpct = nm · lm√
nm

−
(

nobj1 ·
lobj1√
nobj1

+ nobj2 ·
lobj2√
nobj2

)
(4)



and

hsmooth = nm · lm
bm

−
(

nobj1 ·
lobj1

bobj1

+ nobj2 ·
lobj2

bobj2

)
(5)

For segmentation, w is set to 0.8, wcmpct receives a value of 0.1.
The scale parameter S is chosen to be rather small resulting in an
over-segmentation (the ensuant segments are referred to as sub-
objects). The idea is to create homogeneous objects in terms of
color and shape (the latter by reduction of the deviation from a
compact or smooth shape).

Next, wavelet statistics are calculated for each image sub-object:
mean absolute values and standard deviations of the 27 detail co-
efficients are computed. This results in 54 statistics (i.e. images
with statistical wavelet sub-object information).

Consecutively, on the basis of those statistics a merging opera-
tion is performed. In this step, sub-objects are merged into larger
image objects based on the defined heterogeneity criterion. This
time only color information is included by setting w to a value of
1. Based on the statistics derived from the wavelet detail images
at three scale levels (2, 4 and 8), sub-objects are merged result-
ing in image segments corresponding to different forest compart-
ments.

6 RESULTS AND DISCUSSION

Figures 4 to 8 present some details of the method results.

Figure 4 shows part of the desired result for a 10x10 grid filled up
with 6 artificial tree species. In Figure 5 the result of the devel-
oped method is depicted. Wavelet-based segmentation first pro-
duces a huge amount of sub-objects that are subsequently merged,
forming homogeneous objects corresponding to the desired for-
est compartments, as outlined by the predefined grid.

Figure 4: Part of an artificially generated forest comprising 66
stands (10x10 grid) of 6 different artificial tree species. The blue
grid represents the desired stand delineation

Figure 6 shows in detail the discrimination between 4 artificial
forest stands.

Figure 5: Wavelet-based image segmentation resulting in 64 arti-
ficial forest compartments

Figure 6: Detail of stand delineation. Above: expected result,
below: received result

Running the segmentation process based on spectral information
instead of wavelet texture, leads to poor delineation results. (Fig-
ure 7). As all artificial trees were assigned the spectral profile
of Pinus Nigra sp., all artificial forest stands had similar spectral
characteristics and could therefore only be distinguished based
on structural features. By incorporating wavelet analysis into the
segmentation method, the high local variability represented by



stand boundaries is fully exploited at different spatial resolutions
(wavelet scale levels). This method shows that wavelet analysis is
a powerful tool to characterize local variability, which in its turn
is a valuable cornerstone for image segmentation. Even when
the artificial forest stands are not spectrally discernable, wavelet-
based image segmentation leads to satisfactory (at least visually)
stand delineation.

Figure 7: Segmentation based on spectral information

Next to artificial imagery, real imagery was processed. Therefore,
the 20 cm color-infrared mosaic was used. No real stand bound-
aries were available so results could only be interpreted visually.
Figures 8 to 10 provide some details. Although trees in this im-
agery are spectrally different, the very high spatial resolution of
20 cm induces forest stands with high (and sometimes similar)
spectral heterogeneity. Spectral-based segmentation of such im-
agery threatens to fail and to lead to branched segments with a
irregularly-shaped borderline traversing several forest compart-
ments (Figure 10). In such cases multi-level wavelet decomposi-
tion is advantageous (Figure 9) since variability is characterized
locally (as opposed to globally with Fourier transforms). Exploit-
ing this local variability at different spatial resolutions (here at
scales 2, 4, and 8, resp. 40, 80 and 160 cm) enables to distin-
guish between forest compartments with similar spectral char-
acteristics but dissimilar textural properties, caused by different
species composition, density, crown shape, crown closure, height
and age.

7 CONCLUSIONS AND FUTURE WORK

This paper presents a new segmentation method to delineate for-
est compartments from very high resolution optical imagery. The
method was developed using artificially generated forest stands
and was applied in a later stadium to scanned color-infrared aer-
ial photographs. The proposed methods starts with multi-level
wavelet decomposition. Based on the wavelet detail images (leav-
ing out the approximation images) a segmentation is performed.
For all resulting segments, wavelet derived statistics are com-
puted. Consecutively, segments are merged on the basis of the
calculated statistics. The results showed that wavelet-based im-
age segmentation is highly advisable when forest stands are sim-
ilar in terms of spectral characteristics, but different in terms of
textural properties. Multi-level wavelet analysis proved to be a
valuable tool the characterize local variability in image texture.

Figure 8: Detail of color-infrared mosaic, false color composite

Figure 9: Wavelet-based stand delineation

Figure 10: Segmentation based on spectral image information

The proposed method was qualitatively evaluated against spectral
image segmentation. No quantitative comparison was performed.
Future work will concentrate on the development of appropriate
segmentation evaluation measures. Additional research will fo-
cus on the use of alternative wavelet statistics and the assessment
of the most appropriate ones by applying feature selection tech-
niques like genetic algorithms.
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Baatz, M. and Schäpe, A., 2000. Multiresolution segmentation -
an optimization approach for high quality multi-scale image
segmentation. In: J. Strobl, T. Baschke and G. Griesebner
(eds), Angewandte Geographische Informationsverarbeitung,
Wichmann-Verlag, Heidelberg, pp. 12–23.

Chen, J. S., Lin, H., Shao, Y. and Yang, L. M., 2006. Oblique
striping removal in remote sensing imagery based on wavelet
transform. INTERNATIONAL JOURNAL OF REMOTE
SENSING 27(8), pp. 1717–1723.

Culvenor, D., 2002. Tida: an algorithm for the delignation of
tree crowns in high spatial resolution remotely sensed imagery.
Computers and Geosciences 28, pp. 33–44.

Daubechies, I., 2004. Ten lectures on wavelets. CBMS-NSF Re-
gional Conference Series in Applied Mathematics. Vol. 61,
Society for Industrial and Applied Mathematics, Philadelphia.

Dekker, R. J., 2003. Texture analysis and classification of ers
sar images for map updating of urban areas in the netherlands.
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE
SENSING 41(9), pp. 1950–1958.

eCognition, 2000. Definiens imaging GmbH, Munchen, Ger-
many.

Gonzalez-Audicana, M., Otazu, X., Fors, O. and Alvarez-Mozos,
J., 2006. A low computational-cost method to fuse ikonos
images using the spectral response function of its sensors.
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE
SENSING 44(6), pp. 1683–1691.

Gougeon, F., 1995a. Comparison of possible multispectral clas-
sification schemes for tree crowns individually delineated on
high spatial resolution MEIS images. Canadian Journal of Re-
mote Sensing 21, pp. 1–9.

Gougeon, F., 1995b. A crown-following approach to the auto-
matic delineation of individual tree crowns in high spatial res-
olution aerial images. Canadian Journal of Remote Sensing
21, pp. 274–284.

Haara, A. and Haarala, M., 2002. Tree species classification using
semi-automatic delineation of trees on aerial images. Scandi-
navian Journal of Forest Resources 17, pp. 556–565.

Hay, G. J., Castilla, G., Wulder, M. A. and Ruiz, J. R., 2005.
An automated object-based approach for the multiscale image
segmentation of forest scenes. International Journal of Applied
Earth Observation and Geoinformation 7(4), pp. 339–359.

Kandaswamy, U., Adjeroh, D. A. and Lee, A. C., 2005. Efficient
texture analysis of sar imagery. IEEE TRANSACTIONS ON
GEOSCIENCE AND REMOTE SENSING 43(9), pp. 2075–
2083.

Larsen, M., 1997. Crown modeling to find tree top positions in
aerial photographs. In: Proc. Third International Airborne Re-
mote Sensing Conference and Exhibition, Copenhagen, Den-
mark, Vol. II, pp. 428–435.

Leckie, D., Gougeon, F., Walsworth, N. and Paradine, D., 2003.
Stand delineation and composition estimation using semi-
automated indiviual tree crown analysis. Remote Sensing of
Environment 85, pp. 355–369.

Li, J., 2004. Wavelet-based feature extraction for improved end-
member abundance estimation in linear unmixing of hyper-
spectral signals. IEEE TRANSACTIONS ON GEOSCIENCE
AND REMOTE SENSING 42(3), pp. 644–649.

Mallat, S., 1999. A wavelet tour of signal processing. Academic
Press, London.

Mertens, K., Verbeke, L., Westra, T. and De Wulf, R., 2004. Sub-
pixel mapping and sub-pixel sharpening using neural network
predicted wavelet coefficients. Remote Sensing of Environ-
ment 91, pp. 225–236.

Park, J. H. and Kang, M. G., 2004. Spatially adaptive multi-
resolution multispectral image fusion. INTERNATIONAL
JOURNAL OF REMOTE SENSING 25(23), pp. 5491–5508.

Persistence of Vision Pty. Ltd., 2004. Persistence of vision (tm)
raytracer. Technical report, Persistence of Vision Pty. Ltd.,
Williamstown, Victoria, Australia. http://www.povray.org.

Sgrenzaroli, M., Baraldi, A., De Grandi, G. D., Eva, H. and
Achard, F., 2004. A novel approach to the classification of
regional-scale radar mosaics for tropical vegetation mapping.
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE
SENSING 42(11), pp. 2654–2669.

Simard, M., Saatchi, S. S. and De Grandi, G., 2000. The use of
decision tree and multiscale texture for classification of jers-
1 sar data over tropical forest. IEEE TRANSACTIONS ON
GEOSCIENCE AND REMOTE SENSING 38(5), pp. 2310–
2321.

Verbeke, L. P. C., Van Coillie, F. M. B. and De Wulf, R. R., 2006.
Object-based forest stand density estimation from very high
resolution optical imagery using wavelet-based texture mea-
sures. In: 1st International Conference on Object-based Image
Analysis (OBIA 2006).

Warner, T. A., Lee, J. Y. and McGraw, J. B., 1998. Delin-
eation and identification of individual trees in the eastern de-
ciduous forest. In: Proc. International Forum: Automated
Interpretation of High Spatial Resolution Digital Imagery for
Forestry, Canadian Forest Service, Pacific Forestry Centre Vic-
toria, British Columbia, p. 8191.

Zeng, Z. H. and Cumming, I. G., 2001. Sar image data compres-
sion using a tree-structured wavelet transform. IEEE TRANS-
ACTIONS ON GEOSCIENCE AND REMOTE SENSING
39(3), pp. 546–552.


