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ABSTRACT: 
 
This work presents a new approach towards the construction and manipulation of 3D cells complexes, stored in the Augmented 
Quad-Edge (AQE) data structure. Each cell of a complex is constructed using the usual Quad-Edge structure, and the cells are then 
linked together by the dual edge that penetrates the face shared by two cells.  
We developed a new set of atomic operators that allow for a significant improvement of the related construction and navigation 
algorithms in terms of computational complexity. The idea is based on simultaneous construction of both the 3D Voronoi Diagram 
and its dual the Delaunay Triangulation.  
We expect that the increase of the efficiency related to the simultaneous manipulation of the both duals will allow for many new 
applications, like real-time analysis and simulation of modelled structures. 
 
 

1. INTRODUCTION 

The Voronoi diagram (VD) and the Delaunay 
triangulation/tetrahedralization (DT) can be used for modelling 
different kinds of data for different purposes. They can be used 
to represent the boundaries of real-world features, for example 
geological modelling of strata or models of apartment buildings. 
The VD and the DT are dual – they represent the same thing 
from a different point of view – and both structures have 
interesting properties (Aurenhammer, 1991). 
 
The Delaunay triangulation of the set of points in two-
dimensional Euclidean space is the triangulation of the point set 
with the property that no point falls in the interior of the 
circumcircle of any triangle in the triangulation. If we connect 
the centres of these circles between pairs of adjacent triangles 
we get the Voronoi diagram, the dual of the Delaunay 
triangulation, with one Voronoi edge associated with each 
Delaunay edge. The Voronoi diagram consists of cells around 
the data points such that any location in a particular cell is 
closer to its cell generating point than to any other (Mostafavi, 
et al., 2003). 
 
Most of the algorithms and implementations available to 
construct the 3D VD/DT store only the DT, and if needed the 
VD is extracted afterwards. This has major drawbacks if one 
wants to work with the VD. It is for example impossible to 
assign attributes to Voronoi vertices or faces. In many 
applications, the major constraint is not the speed of 
construction of the topological models of large number of 
number of points, but rather the ability to interactively construct, 
edit (by deleting or moving certain points) and query 
(interpolation, extraction of implicit surfaces, etc.) the desired 
model. 
 
The 2D case has already been solved with the Quad-Edge data 
structures of Guibas and Stolfi (1985). The structure permits the 
storage of any primal and dual subdivisions of a two-
dimensional manifold. Dobkin and Laszlo (1989) have 
generalized the ideas behind the Quad-Edge structure to 

preserve the primal and dual subdivisions of a three-
dimensional manifold. Their structure, the Facet-Edge, comes 
with an algebra to navigate through a subdivision and with 
primitives construction operators. Unlike the Quad-Edge that is 
being used in many implementations of the 2D VD/DT, the 
Facet-Edge has been found difficult to implement in practice. 
Other data structures (see (Lienhardt, 1994), (Lopes and 
Tavares, 1997)) can usually store only one subdivision. 
 
 

2. THE QUAD-EDGE DATA STRUCTURE 

The Quad-Edge as a representation of one geometrical edge 
consists of four quads which point to two vertices of an edge 
and two neighbouring faces. It allows navigation from edge to 
edge of a connected graph embedded in a 2-manifold. Its 
advantages are firstly that there is no distinction between the 
primal and the dual representations, and secondly that all 
operations are performed as pointer operations only, thus giving 
an algebraic representation to its operations. Figure 1 shows the 
basic structure and navigation operators (next, rot and sym). 
 

 
Figure 1. The Quad-Edge structure and basic operators: rot, sym, 

next (Ledoux, 2006) 
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3. AUGMENTED QUAD-EDGE (AQE) 

The AQE (Ledoux and Gold, in press), (Gold, et al., 2005) uses 
the Quad-Edge to represent each cell of a 3D complex, in either 
space. For instance, each tetrahedron and each Voronoi cell are 
independently represented with the Quad-Edge, which is a 
boundary representation. With this simple structure, it is 
possible to navigate within a single cell with the Quad-Edge 
operators, but in order to do the same for a 3D complex two 
things are missing: a ways to link adjacent cells in a given space, 
and also a mechanism to navigate to the dual space. In this case 
two of the four org pointers are not used in 3D. The idea is to 
use the free face pointers in the Quad-Edge to link two cells 
sharing a face. This permits us to link cells together in either 
space, and also to navigate from a space to its dual. Indeed, we 
may move from any Quad-Edge to a Quad-Edge in the dual cell 
complex, and from there we may return to a different cell in the 
original cell complex. 
 
The AQE is high in storage but it is computationally efficient 
(Ledoux, 2006). Each tetrahedron contains 6 edges – each one 
is represented by four quads containing 3 pointers. This makes a 
total of 72 pointers. The total number of pointers for the dual is 
also 72. It makes a total of 144 pointers for each tetrahedron. 
However we preserve valuable properties which are crucial in 
real-time computations. 
 
Construction and navigation In previous work the theoretical 
basis of the storage and manipulation of 3D subdivisions with 
use of the AQE were described (Ledoux and Gold, in press) and 
it was shown that this model worked. 
 
The main construction operator is MakeEdge. It creates a single 
edge, that at the moment of creation it is not linked to any other 
edge. The Splice operator is used to link edges in the same 
subdivision. Edges in the dual subdivisions are linked one-by-
one later using the through pointer.  
 
 
a) 

 
 
b) 

 
 
Figure 2. Flip operators (Ledoux, 2006): a) flip14 is used when 

a new point is inserted. Its reverse is flip41; b) flip23 is used 
when the structure has to be modified in order to preserve the 

correct DT. Its reverse is flip32. 
 

When a new point is inserted in the structure of the DT, four 
new tetrahedra are created inside the already existing one that 
contains the newly inserted point. Then the enclosing 
tetrahedron is removed. The new corresponding Voronoi points 
are calculated and another tetrahedron is created separately in 
the dual subdivision. Then all edges are linked together and, to 
maintain a properly built DT structure, subdivisions are 
modified by flip operators. Two basic flip operators are shown 
in Figure 2. 
 
Another requirement for the navigation is the through pointer 
that links together both dual subdivisions (Ledoux and Gold, in 
press), (Ledoux, 2006). The org pointers that are not used in 3D 
allow for making a connection to the dual edge. With this 
operator it is possible to go to the dual subdivision and back to 
the origin. It is the only way to connect two different cells in 
the same subdivision.  
 

 

 
 

Figure 3. The through pointer is used to connect both dual 
subdivisions (Ledoux, 2006) 

 
To get the shared face of two cells, the adjacent operator is used. 
It is a complex operator that consists of a sequence of through 
and other basic operators. (Ledoux, 2006) 
 
 

4. ATOMIC OPERATORS 

The general algorithm of the point insertion to the DT/VD 
structure was described by Ledoux (2006). In our current work 
we have implemented and improved the way of building the 
whole structure. 
 
Algorithm 1: ComplexMakeEdge(DOrg, DDest, VOrg, 
VDest) 
// DOrg, DDest – points defined edge in DT 
// VOrg, VDest – points defined edge in VD 
 
e1:=MakeEdge(DOrg, DDest); 
e2:=MakeEdge(VOrg, VDest); 
e1.Rot.V:=e2; 
e2.InvRot.V:=e1.Sym; 
 
The most fundamental operator is ComplexMakeEdge which 
creates two edges using MakeEdge (Ledoux, 2006). They are 
dual and the one belongs to the DT and the second to the VD. 
The V pointer from the Quad-Edge structure is used to link 
them as shown in Algorithm 1. We claim that the connection 
between the newly created edges in both dual subdivisions has a 
very important property – it is permanent and not changed by 
any other operator.  
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Algorithm 2: InsertNewPoint(N) – ComplexFflip14 
// N – new point inserted to the DT 
 

1. Find tetrahedron which contain point N 
2. Calculate 4 new Voronoi points 
3. Create new edges with using ComplexMakeEdge with 

point N and new Voronoi points  
4. Assign through pointers 
5. Disconnect origin edges of tetrahedron using Splice 
6. Connect edges of 4 new tetrahedra using Splice 
7. Add 4 new tetrahedra to a stack 
8. while necessary do flip23 or flip32 for tetrahedra from 

the stack 
 
 

 
 

Figure 4. flip14 divides origin tetrahedron ABCD into 4 new 
 
The first operation in the point insertion to the structure is 
flip14 (Fig. 2a). It divides space occupied by tetrahedron ABCD 
into four smaller ones (Fig. 4). The inserted point N is a vertex 
shared by new tetrahedra. As mentioned above, this version of 
the algorithm is an improvement over Ledoux (2006). The 
significant aspect is that we don’t remove the origin tetrahedra 
and create 4 new. Edges from the origin tetrahedron are 
disconnected and used to create 4 new. Thus no edges are 
deleted from the DT structure. What is more, the same applies 
to the VD because dual edges are linked together permanently. 
Only new edges are added to the structure.  
 
 

Tetra- 
hedron 

Edges from origin 
ABCD tetrahedron 

used to create 4 new
Newly created edges 

T I CA, AD DC, CN, AN, DN 
T II AB, BD DA, AN, BN, DN 
T III BC, CD DB, BN, CN, DN 
T IV - BA, AC, CB, BN, AN, CN

 
Table 5. Edges used in flip14 

 
Table 5 in conjunction with Fig. 2a) shows which edges are 
created and which ones are taken from the origin tetrahedron. 
 

The operation of point insertion does not demand any 
modification to the whole structure except for local changes of 
a single cell. This case is implemented in the ComplexFlip14 
operator (Algorithm 2). The structure created this way keeps all 
new cells connected, and navigation between them, and within 
the whole structure, remains possible. The new complex 
operator is more efficient because it requires fewer operations 
to insert a point and modify the structure. 
 
 

Tetra- 
hedron

Edges from origin 
tetrahedra used to 
create new ones 

Newly 
created 
edges 

Deleted 
edges 

T’ I from TI: BE 
from TII: BD, AB 

AE, AD, 
DE AB (from TI)

T’ II from TI: AE 
from TII: AD, CA 

CE, CD, 
DE CA (from TI)

T’ III from TI: CE 
from TII: CD, BC 

BE, BD, 
DE BC (from TI)

 
Table 6. Edges used in flip23 

 
Algorithm 3: flip23(TI, TII):  
// TI, TII – two adjacent tetrahedra 
 

1. Calculate 3 new Voronoi points 
2. Copy edges and create new ones as shown in Table 6 
3. Assign through pointers 
4. Disconnect edges of 2 original tetrahedra using Splice 
5. Connect edges of 3 new tetrahedra using Splice 
6. Remove spare edges (see Table 6) 
7. Remove 2 old Voronoi points 
8. Add 6 new tetrahedra to the stack 

 
 

Tetra-
hedron

Edges from origin 
tetrahedra used to 
create new ones 

Newly 
created 
edges 

Deleted edges 

T I 
from T’I: BE 
from T’II: CE 
from T’III:AE 

AB, BC, 
CA 

T II 
from T’I: AB, BD
from T’II: BC, CD
from T’III: CA, AD 

- 

from T’I: AE, 
AD, DE 

from T’II: BE, 
BD, DE 

from T’III: CE, 
CD, DE 

 
Table 7. Edges used in flip32 

 
Algorithm 4: flip32(TI, TII, TIII):  
// TI, TII, TIII – three tetrahedra adjacent in pairs 
 

1. Calculate 2 new Voronoi points 
2. Copy some edges and create new ones as shown in 

Table 7 
3. Assign through pointers 
4. Disconnect edges of 3 origin tetrahedra using Splice 
5. Connect edges of 2 new tetrahedra using Splice 
6. Remove spare edges (see Table 7) 
7. Remove 3 old Voronoi points 
8. Add 6 new tetrahedra to the stack 

 
Finally all edges are linked together to give a correctly built 
structure. Then correctness tests are performed. They check if 
the new tetrahedra have built the correct DT structure. If not, 
flip23 (Algorithm 3) or flip32 (Algorithm 4) are executed 
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(Ledoux, 2006). Edges taking part in these operators are listed 
in Tables 6 and 7 and showed in Fig. 2b). 
To check the validity of our assumptions a special computer 
application was created. The implementation showed that our 
new complex operators work. The number of required 
operations for creation and deletion of edges and assignment of 
pointers has significantly decreased from the previous work of 
(Gold, et al., 2005). 
 
 

5. COMPUTER AIDED MODELLING 

Emergency planning and design of buildings are major issues 
for many people especially after 11th September 2001. To 
manage disasters effectively they need tools for rapid building 
plan compilation, editing and analysis.  
 
In many cases 2D analysis is inadequate for modelling building 
interiors and escape routes. 3D methods are needed. This is 
more obvious in disciplines such as geology (with complex 
adjacencies between rock types) and building construction 
(with security aspects). There is no appropriate data structure to 
describe those issues in a “3D GIS” context.  
 

 

 
 
Figure 8. The AQE is an appropriate structure for the modelling 

of building interiors. (Ledoux, 2006) 
 
The new operators can be used for advanced 3D modelling. In 
our opinion the AQE is a good structure for the modelling of 
building interiors (Fig. 8). Faces in the structure are stored 
twice, so every wall separating two rooms can have different 
properties on each side. It can help to make models not only of 
simple buildings but also of overpasses, tunnels and other 
awkward objects. It will be possible to create systems for 
disaster management, for example to simulate such phenomena 
as spreading fire inside buildings, flooding, falling walls, 
terrorist activity, etc.  
 
Another example is navigation in buildings, which requires the 
primal graph for forming rooms and the dual graph for making 

connections between rooms. Even though one can be 
reconstructed from the other, they both are needed for full real-
time query and editing. These graphs need to be modifiable in 
real-time to take account of changing scenarios. This 3D Data 
Structure will assist applications in looking for escape routes 
from buildings. 
 
 

6. CONCLUSIONS 

Our current work involved the development and improvement 
of the atomic construction operations similar to the Quad-Edge. 
When we complete all atomic operators and prove their 
correctness, we will be able to use binary operations for 
location of quads in the stored structures. That will improve the 
efficiency of algorithms and allow for their use in real-time 
applications. 
 
In future work we will try to create a basic program for the 
modelling of building interiors and implement new functions 
such as the evaluation of optimal escape routes. We believe that 
such basis “edge algebra” has many practical advantages, and 
that it will be a base for many future applications. 
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