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ABSTRACT: 
 
Spatial relation calculation based on Delaunay structure is dual hot problem, which gather the theories and applications of GIS. 
Firstly, it is the important supplement of the theory of spatial relation calculation. Secondly, it tones up the application popularity 
properties of Delaunay Triangulation and Voronoi diagram, which are representative of the mixed space partition data structure. In 
part of foundational theory, (i) proving that CDT is simplicial complex in 2. (ii) importing chain structure in CDT and educe 
including & approximating theorem and reduced including & approximating theorem, which are based on vector half-plane and σ’s 
edge neighbor and are used for estimating the left, middle and right side properties of σ. (iii) defining the region in CDT and 
establishing region algebra (RA), which use the set of region as computational space and use the intersection operator as binary 
operation. (iv) describing basic forms of node and chain which are contained within complex σ. In part of dynamic spatial relation 
calculation, (i) describing the spatial object’s three entries, i.e. exterior (-), boundary (∂) and interior (○), with left, middle and right 
of σ and their combination. (ii) establishing the spatial relation calculation model-region nine intersection(R9I), which is used the 
intersection operation(∩) and form operation(τ) as basic operations and is based on the generic intersection model. (iii) calculating 
thirty-two spatial relations of simple objects with R9I. 
 
 

1. INTRUDUCTION 

Data models in spatial information systems are usually based 
either on boundary representations consisting of points, line 
segments and polygons, or on regular, rectangular subdivisions 
of space in which each cell is associated with an identity or 
classification of the phenomena represented (Jones and Ware 
1998). Constrained Delaunay triangulation (CDT) which fuses 
the graph theory and geometry question solution as a body 
belongs to the type of field-based spatial data model in essence. 
It is the common observing way for the vector and raster data 
models (Wu 2000, Chen 2002). CDT is a kind of irregular 
spatial division structure and it is a variation of triangulated 
irregular network (TIN). In the 2-Dimentation Euclidean space, 
the CDT has two characteristics as its restraint condition: one is 
the discrete data has many “directional broken line”; the other is 
the discrete data has many “close polygon ring” (Wu and Shi 
2003). In CDT, the triangulations spread all over the whole 
region without superposition and slot. The spatial relations 
between entities are expressed by the connection of 
triangulations. Sibson (1978) proposed that there is only one 
triangulation division for the limited discrete point set, i.e. 
Delaunay triangulation. The Delaunay triangulation is the dual 
graph of Dirichlet, Voronoi or Thiesson spatial partition 
structure. This is an important concept in the geographical 
information science, because the Thiesson polygon can be 
defined as the influence region of arbitrary spatial entities 
(McCullagh and Ross 1980, Chen 2000). Because of its proper 
characteristics of “the empty circumcircle criterion” and “the 
local max-min angle criterion” (Preparata and Shamos 1985), 
the CDT is regarded as the powerful tool to express the 
adjacency spatial relationship which is defined by Voronoi 

diagram (Ai 2000). In the past decade, the idea of adjacency has 
been apply in many fields of GIS.  
 
In the domain of map generalization, Delaunay triangulation 
and its dual Voronoi diagram are widely used in the spatial 
conflict detection of object and calculation of adjacency 
relationships. In these researches, many data models were 
proposed. Jones and Ware (1995, 1997, 1998) established 
simplex data structure (SDS) model, which constructed the 
CDT of roads and building outlines and then used the adjacency 
information to modify and move the buildings. Peng (1995) 
proposed the EFDS model by amending the FDS model of 
Molenaar in order to extract the “safe area” and “unsafe area” 
which are used in expressing the object generating space in 
CDT.  
 
In the domain of spatial query language, Chen and Cui (1997) 
extended query abilities of adjacency and lateral adjacency 
relationships with CDT in MapInfo. Chen and Zhao (2004) 
proposed the concept of k-order adjacency according to 
Voronoi adjacency, and built contour tree with it, their method 
given an availability way for automating evaluation of contour. 
In order to append adjacency query ability in spatial database, 
Li et al. (2006) proposed the unitsDelaunay structure which 
built the bridge between adjacency objects and current spatial 
index methods. Their method for discrete areal objects is that, 
firstly, built up the CDT of objects set; secondly, classified 
triangles in three types; thirdly, aggregated triangle which 
represented same adjacency relationship as a unit; finally, 
approximated the scope of units with the minimal boundary 
rectangle (MBR) and integrated the MBR with grid file spatial 
index.  
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De Floriani (1987) stated that the topology of a triangular 
subdivision is completely and unambiguously represented by 
any suitably selected subset of nine adjacency relations (NAR) 
between entities (vertices, edges, triangles). As shown in figure 
1(a), for point’s entities, adjacency relationship definition 
which is based on the TIN is clear. However, as shown in figure 
1(b) and (c), for linear and areal entities, we can’t directly get 
the adjacency relationship by triangle which in the CDT, 
because we don’t know that every triangle describing 
topological information. Therefore, while get adjacency 
relationship with CDT, we have to do some preparing work by 
dint of some topological relations computing method. For the 
situations of figure 1(b) and (c), firstly guaranteeing the p and c 
are disjoint, and then we can get p has the adjacency 
relationship to c according to the triangle σ.  
 
 
 
 
 
 
 
 
 
Figure 1. (a) Points and adjacency relationships between them 
in a TIN. (b) One point and one polygon in a CDT, the point p 
locates in the c’s interior. (c) One point and one polygon in a 

CDT, the point p locates in the c’s exterior. 
 
In this paper we focus on the problem is that can the general 
topological relations be got from CDT. If we can do this, it 
meaning the other way for spatial relation computing and 
availability using for CDT. This problem includes below 
several contents:  
 

 What are the basic characters of CDT? And how to 
representing spatial objects with triangles in CDT? 

 What is the mathematic structure which supporting 
geometry computing on CDT? 

 How to describing the basic topological forms with 
triangle or composing of triangles? And how many 
kinds of topological relations can be got from CDT? 

 
The paper is organized as follows. In section 2, basic concepts 
about CDT and the region algebra structure are introduced. 
Section 3 presents the description, basic operators of spatial 
feature based on region algebra and a new model of spatial 
relation calculation (R9I). We also present relations calculation 
of simple features with R9I in the section. In section 4, we give 
a multi-rule topological examination for vector data with our 
method. Finally, conclusions and future works are given in the 
last section. 
 
 

2. THE REGION ALGEBRA BASED ON CDT 

2.1 Description of Triangle and Chain Based on Topology 

DEFINITION 2.1.1.(simplex)  Given v0, v1,… , vk are k +1 
substantive points in 2, Sk is the minimal convex set composed 
of these points which is called as the k-dimension simplex. The 
Sk can be expressed as linear combination Sk = {v | v = λ0v0 + 
λ1v1 + … + λkvk}, λ is a non-negative real number and satisfied to 
λ0 + λ1 + λ2 + … + λk = 1. 
 

By definition 2.1.1, a k-simplex is a convex body. Specially, if 
k = 0, 0-simplex S0 is a substantive point; if k = 1, 1-simplex S1 
is a line segment; 2-simplex is a triangle. In the domain of 
geometry, a 2-simplex S2 can be expressed as full information 
set, i.e.  
 

S2 = {v1v2v3, v1v2, v2v3, v3v1, v1, v2, v3},        (2-1-1) 
 

where v1, v2, v3 are the 0-simplex vertexes; v1v2, v2v3, v3v1 are 1-
simplex line segments; v1v2v3 is a 2-simplex triangle. The 
formula (2-1-1) is equal to be expressed as 
 

2
2 0

( )ii=
= ⋅S S∪ ,                     (2-1-2) 

 
where Si(·) is the set composed of all i-simplexes. 
 
DEFINITION 2.1.2.  There are two 2-simplexes S2 and S'2, v(x, y) 
∈ S2, v' (x', y') ∈ S'2. If x = x' and y = y', then v is equal to v', 
i.e. v = v'. 
 
DEFINITION 2.1.3.(chain)  A chain is a set, which composed of 
many elements of S1. The formula is 
 

1 1 1 1 1
1 2 1{ , , , }, | | 1, 1, , ,n i i n i n n iS S S S S Ν+= ∩ = > < ∈C , 

(2-1-3) 
 
if exists 1 1

1 nS S= , then the chain is called as the cycle chain. 
The linear features of chain are showed by the continuation and 
order of elements. So, the chain can be described as a vector,  
 

1 1 1
1 2( , , , ), 1,n n nS S S Ν= > ∈C .    (2-1-4) 

 
DEFINITION 2.1.4.(child chain)  The chain which is composed 
of n (n ≥ 1) elements of chain C and remains the continuation of 
C is called as the child chain of C, denoted as C', if n = 1, the 
chain is called as the minimal child chain of C, denoted as C''. 
 
As showed in figure 2, chain (23 , 24) is the child chain of C; 
chain (67) is composed of one element of C, so it is one of the 
minimal child chains of C; chain (24) and chain (48) aren’t the 
minimal child chains of C, so chain (24, 48) aren’t the child 
chain of C. 
 
 
 
 
 
 
 
 
 

Figure 2. Chain, child chain and the minimal child chain 
 
DEFINITION 2.1.5.(triangle neighbor)  Given two 2-simplex S2 
and S'2, if there is 
 

| S0(·) ∩ S'0(·) | = 2,  S0(·) ⊂ S2 ∧ S'0(·) ⊂ S'2,      (2-1-5) 
 
then S2 has neighbor relationship with S'2.  
 
Definition of triangle neighbor is easy to show, in general, that 
two 2-simplexs share a common 1-simplex, which is composed 
by two 0-simplexs. 

p
p

p 
c 

pσ

C=(12, 23, 34, 45, 56, 67, 78)
C'=(23, 34) 

 ¬C'=(24, 48)

C''=(67) 
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In the vector algebra, a quantity completely specified by a 
magnitude and a direction as a vector, the 1-simplex (v1v2) is a 
simple vector. By the method of vector algebra, the (2-1-1) 
formula S2 is expressed as following form, 
 
S2 = {{(v1v2), (v2v3), (v3v1)}, {(v1v2), (v2v3), (v3v1)}, {v1, v2, v3}}. 

(2-1-6) 
 
For the direction of simplex, there are following descriptions: 
the 0-simplex has arbitrary direction; the direction of 1-simplex 
(v1v2) is from v1 to v2 or from v2 to v1, but these directions are 
not equivalent. The direction of 2-simplex is defined as 
anticlockwise or clockwise. Every simplex can be confirmed by 
its vertexes, and then a 2-simplex can be equivalently expressed 
as the following algebra form,  
 

S2 = 〈v1v2v3〉 ≡ 〈v2v3v1〉 ≡ 〈v3v1v2〉.               (2-1-7) 
 
DEFINITION 2.1.6.(vector product in triangle)  In S2, the vector 
product of vertex i (i = 1, 2, 3) is 
 

×i = (vi-1vi) × (vivi+1) = |(vi-1vi)| |(vivi+1)|sinθ,  θ ∈ (0, π) 
∪ (π, 2π),                                                                        (2-1-8) 

 
where θ is the vector included angle of (vi-1vi) and (vivi+1), ×i is a 
vector value, which is perpendicular to the plane composed of 
(vi-1vi) and (vivi+1), and (vi-1vi), (vivi+1) with ×i forms the right-
handed system. 
 
THEOREM 2.1.1.  Given S2, the order of vertexes is 
anticlockwise or clockwise, if the value of ∃×i (i = 1, 2, 3) is 
more than 0 (> 0), the order of vertexes is anticlockwise, 
denoted as S+; if the value of ∃×i (i = 1, 2, 3) is less than 0 (< 0), 
the order of vertexes is clockwise, denoted as S-. (omitted) 
 
 
 
 
 
 
 
 

(a) Positive vector product and vertices of triangulation 
anticlockwise ordering (b) Negative vector product and vertices 

of triangulation clockwise ordering 
Figure 3. Relation of triangle’s vector product and vertices 

ordering 
 
2.2 Definition of CDT and Its Basic Characteristics 

DEFINITION 2.2.1.(plane Voronoi diagram)  Given 2, point set 
P♣ = {p1, p2,…, pn}, (3 ≤ n < ∞, pi ≠ pj, i ≠ j, i, j ∈ ), 
 

V(pi) = {p | d(p, pi) ≤ d(p, pj),  i ≠ j, i, j ∈ },       (2-2-1) 
the region defined by the formula (2-2-1) is called as Voronoi 
polygon of point pi. The Voronoi polygon set of all point p1, p2, 
…, pn in point set P is  
 

V(P) = {V(p1), V(p2), …, V(pn)},                (2-2-2) 
the Voronoi polygon set make up of the plane Voronoi diagram 
of P. 
 

                                                                 
♣In this paper is an assumption that P is non-collinearity point set. 

DEFINITION 2.2.2.(DT)  Given 2, point set P and V(P), the 
neighbor grid which results from the connection of points in P 
in condition of share Voronoi boundary is called Delaunay 
Triangulation (DT) of set P, denoted as D(P). 
 
If the Delaunay triangulation is applied to the chain structure set 
(C) and the Delaunay Triangulation remains the linear features 
of C, then this kind of Delaunay Triangulation is called as 
constrained Delaunay triangulation (CDT). 
 
THEOREM 2.2.1.  D(P) is simplicial complex. 

Proof.  (1) If σn ∈ D(P), then any face of σn ∈ D(P). 
Given σn∈D(P), according to formula (2-1-2), σn = {S0(·), 

S1(·), S2(·)}. ∵σn ∈ D(P), apparently there is the following 
formula, i.e. ∀Si(·) ⊂ σn ⇒ Si(·) ∈ D(P), i = 1, 2, 3. ∴if σn ∈ 
D(P), there exist any face of σn ∈ D(P), (1) is tenable. 
 

(2) If σn, σk ∈ D(P), then σn ∩ σk is ∅ or common face. 
Exclusive method, assuming σn, σk ∈ D(P), then σn ∩ σk = ¬∅ 
(σn ≠ σk) has five cases, as showed in figure 3. 
 

① σn, σk intersects at non-common face-point, as showed 
in figure 4(c). According to the definition 2.1.8, there is  

(23) ⇒ (∃p, d(2, p) = d(p, 3)) ∧  
(p = λ02 + λ13, λ0, λ1≥0, λ0 + λ1 = 1), 

∵(243) is collinearity,∴exist d(2, p) = d(p, 3) < d(4, p) ⇔ p ⊂ 
V(2) ∧ p ⊂ V(3) ∧ p ⊂ V(4), i.e. p is the equal distance point of 
2 and 3 and p is inside (4)V , this case is incompatible with 
definition 2.2.1.∴① is not tenable. 
 

② σn, σk intersects at non-common face-line segment, as 
showed in figure 4(d). The case of ② is not tenable. The prove 
method is same to ①. 
 

③ σn, σk intersects at non-common face-face, as showed 
in figure 4(e). (23) intersects with (64) at point p. According to 
definition 2.2.2, for the (23) and (64), there are individually 

(23)⇒ (2, ) ( ,3)
(2, ) ( ,3)
(2, ) ( ,3)

p p
p p
p p

⎧ < ∨⎪⎪⎪⎪ = ∨⎨⎪⎪ >⎪⎪⎩

d d
d d
d d

           (64)⇒ (6, ) ( , 4)
(6, ) ( , 4)
(6, ) ( , 4)

p p
p p
p p

⎧ < ∨⎪⎪⎪⎪ = ∨⎨⎪⎪ >⎪⎪⎩

d d
d d
d d

, 

there are 1 1
3 3C C 9=  cases can be divided into three catalogs, i.e. 

{(<, <), (<, >), (>, <), (>, >)} ⇔ p exists inside of two different 
Voronoi polygons at the same time; 

{(<, =), (>, =), (=, <), (=, >)} ⇔ p exists inside and boundary of 
two different Voronoi polygons at the same time; 

{(=, =)} ⇔ necessarily exist (26), (24), (36) and (34). 
∵ the conclusions of  and  are incompatible with ① ②

definition 2.2.1. The conclusion of  is incompatible with③  (1), 
∴  is not tenable.③  ∵ ,  and  are all not tenable, ① ② ③ ∴(2) is 
tenable. (1) and (2) are tenable, theorem 2.2.1 is tenable.        � 
 
 
 
 

 
 
(a)               (b)                (c)                  (d)               (e) 

 
Figure 4. Regular togetherness of triangles (a), (b) and the 

irregular togetherness of triangles (c), (d), (e) 
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DEFINITION 2.2.3.(CDT)  Given point set P, Delaunay 
triangulation D(P) and chain set C, if the circumcircle of one 
random triangle in D(P) doesn’t contain the point which is all 
visibility with the three vertexes of the triangle at the same time, 
the visibility is only on the condition that the chain pipj of the 
nodes pi, pj (pi, pj∈σ) doesn’t intersect with any segments in C 
(extreme end points excluded), then the D(P) is called as the 
constrained Delaunay triangulation of C, denoted as CD(P). 
 
COROLLARY 2.2.1.  CD(P) is simplicial complex. (omitted) 

C is described as the set of many chains, i.e.  
 

C = {C1, C2, …, Cn},  n ≥ 1, n ∈ .            (2-2-3) 
 
THEOREM 2.2.2.  Given C1, C2 ⊂ C, C''i(ab) ∈ Ci, C''j(cd) ∈ 
Cj, ∃p satisfies 
 0 1 0 1 0 1

' ' ' ' ' '
0 1 0 1 0 1

, , 0, 1

, , 0, 1

p

p

a b

c d

λ λ λ λ λ λ

λ λ λ λ λ λ

⎧ = + ≥ + = ∧⎪⎪⎨⎪ = + ≥ + =⎪⎩

, p doesn’t change the 

continuation property of chain C''i, C''j. 
 

Proof.  Only prove that (ab) ⇔ (apb) and (cd) ⇔ (cpd) 
are all tenable. By the vector algebra method, ∵p satisfies the 
condition: ∴there is (ab) = (ap) + (pb) = (apb), ∴(ab) ⇔ (apb) 
is tenable. By the same way, (cd) ⇔ (cpd) is tenable. The 
theorem 2.2.2 is tenable.                                                           � 
COROLLARY 2.2.2.  C'' ∈ Ci ⊆ C, C'' 1 1 1

1 2( , , , )nS S S= , n 

∈ , n ≥ 1, there is ∀ 1
iS  ∈ CD (P). 

 
Proof.  (1) C'' doesn’t intersect self, i.e. C'' = 1

1S . ∵CD(P) 

is simplicial complex, ∴there is C'' = 1
1S  ∈ CD(P). 

(2) C'' intersects. According to theorem 2.2.2, there is C'' 
= 1 1 1

1 2( , , , )nS S S , n∈ , n≥1, and C'' remains its continuation 

property. ∵∀ 1
iS  ∈ C'' all belong to the case (1), ∴there is 

∀ 1
iS  ∈ CD (P). By summary, corollary 2.2.2 is tenable.         � 

 
The constrained chain set C and node set P is showed in figure 
5(a), D(P) and CD(P) are showed in figure 5(b), 5(c). The CD(P) 
completely remains the linear features of chain set C, but the 
D(P) partially lost the linear features of C, as showed as the 
dashed line region in figure 5(b). 
 
 
 
 
 
 
 
 
 
(a)Constrained chain set C and node set P (b) D(P) (c) CD(P)  

Figure 5. Constrained effect to the Delaunay triangulation of 
chain structures 

 
2.3 Reasoning of σ’S Classification and σ’S Lateral 
Characteristic In CDT 

DEFINITION 2.3.1.(1-simplex’s type)  The C is the set of chains, 
P is the set of boundary nodes in C. Cm, Cn is the chain (Cm, Cn 
⊆ C); pm, pn are individually the set of nodes in Cm, Cn. ∀σ ∈ 
CD(P), p1, p2, p3 are the three vertexes of σ, if pi, pj (i ≠ j, i, j = 

1, 2, 3) ∧ pi ∈ pm ∧ pj ∈ pn is tenable, then f(pi, pj) = 0; if pi, pj 

(i ≠ j, i, j = 1, 2, 3) ∧ (pi, pj ∈ pm) is tenable, then f(pi, pj) = 1; 
specially, if pi, pj (i = j, i, j = 1, 2, 3) is tenable, then f(pi, pj) = 2. 
 
If the different types of the three edges are considered, the 
triangles can be divided into three categories. ∀σ ∈ CD (P), the 
absolute value of formula (2-2-4) can be used to distinguish 
these three kinds of triangle, 
 

1 1 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 3

( , ) ( , ) ( , )
( , ) ( , ) ( , )
( , ) ( , ) ( , )

p p p p p p
p p p p p p
p p p p p p

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

f f f
T f f f

f f f

.              (2-2-4) 

 
By formula (2-2-4), can take out the following the 5 cases: 
 

1

2 1 1
1 2 1
1 1 2

T
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

  
2

2 0 0
0 2 0
0 0 2

T
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

  
3

2 1 0
1 2 0
0 0 2

T
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

     

4

2 0 1
0 2 0
1 0 2

T
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

                            
5

2 0 0
0 2 1
0 1 2

T
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
DEFINITION 2.3.2.(σ’s type)  ∀σ∈CD(P), if the value of |detT| 
is 4, the three edges of the triangle come from the same chain 
structure (type α, denoted as σα); if the value of |detT| is 6, the 
two edges of the three edges of the triangle come from the two 
different chain structure and the other edge comes from the 
same chain structure (type β, denoted as σβ); if the value of 
|detT| is 8, the three edges of the triangle come from the three 
different chain structure (type γ, denoted as σγ). 
 
In CD (P), σ is relative to C. The vertices of σ come from C, 
more particularity, the vertices come from the chain Ci ⊆ C. 
Thus, for some chain Ci ⊆ C, the type of σ is exactly described 
as the constrained type by Ci. 

 
DEFINITION 2.3.3.(decomposition of σ’s type and its algebra 
formula)  If consider the constrained type of σ based on the 0-
simplex, the σ, constrained chain Ci and constrained type of σ 
have the following relationships,  
 

σα←Ci ⇔ σγ←Ci ∧ σγ←Ci ∧ σγ←Ci ⇔ α = γ + γ + γ, (2-2-5) 
σβ←Ci ⇔ σγ←Ci ∧ σγ←Ci ∧ σγ←Cj ⇔ β = γ + γ + γ',    (2-2-6) 

σβ←Ci ⇔ σβ←Ci ∧ σγ←Cj ⇔ β = β + γ',            (2-2-7) 
 
expressly, σ didn’t make up of the chain Ci (Ci ⊆ C), denoted as 
σ↵Ci. 
 
DEFINITION 2.3.4.(σ’s direction)  ∀σα, σβ ∈ CD(P), pi, pj (i ≠ j, 
i, j = 1, 2, 3) and f(pi, pj) = 0, the arrangement direction of σ’s 
vertexes is constrained by the direction of chain (pipj), denoted 
as 

( )i jp pσ . The anticlockwise direction of σ is denoted as ⊗σ  

and the clockwise direction of σ is denoted as σ: , the formula 
is described as  
 

dir(σ) = σ∗,  ∗∈{⊗ , ⊙ }.              (2-2-8) 
 
THEOREM 2.3.1  ∀σα, σβ ∈ CD(P), its vertexes are pi, pj, pk (i ≠ 
j ≠ k, i, j, k = 1, 2, 3) and f(pi, pj) = 1, if the arrangement of 
vertexes is anticlockwise, the pk locates at the left side of chain 
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(pipj); if the arrangement of vertexes is clockwise, the pk locates 
at the right side of chain (pipj). 
 

Proof.  The anticlockwise arrangement of vertexes, 
according to theorem 2.1.1, there is ×i = (pipj) × (pipk) > 0, i.e. 
there is the included angle θ formed by vector (pipj) and vector 
(pipk), which is between 0 and π. ∵sinθ > 0 (0 < θ < π), ∴×i > 
0, so pk locates at the left side of (pipj). 
 
By the same way, while arrangement of σ’s vertexes is 
clockwise, there are π < θ < 2π and ×i < 0, pk locates at the right 
side of vector (pipj). Theorem 2.3.1 is tenable.                         � 
DEFINITION 2.3.5(f extension of σ’s adjacency)  ∃σm, σn ∈ 
CD(P) ∧ σm ∩ σn = {p, p'}. If f(p, p') = 0, there is f 0 adjacency 
relationship between σm, σn, denoted as σm f 0σn; if f(p, p') = 1, 
there is f 1 adjacency relationship between σm, σn, denoted as σm 
f 1σn. 
 
DEFINITION 2.3.6(symmetry of σ’s adjacency)  The f 0 
adjacency relationship and f 1 adjacency relationship are 
symmetrical with each other, i.e. σm f iσn ↔ σn f iσm (i = 0, 1). 
 
DEFINITION 2.3.7(degree of σ’s adjacency)  ∀σ ∈ D(P),  the 
degree of σ’s adjacency is the number of edge in σ when the 
value of f is 0 or 1, the formula is  
 

( ) , 0,1i
i iσ = σ =

f
deg .                 (2-2-9) 

 
DEFINITION 2.3.8(propagation characteristic of σ’s adjacency)  
∃σk , σm, σn∈CD(P), if there is (σk f iσm) ∧ (σm f iσn) (i = 0, 1), 
there exists propagation f i (i = 0, 1) adjacency relationship 
between σk and σn, denoted as i

k nσ σ→f . 
 
DEFINITION 2.3.9(semi-plane of chain)  The left semi-plane of 
vector (vivj) is l(vivj) = {p | (vivj) × (vip) > 0, p ∈ 2}, the right 
semi-plane of vector (vivj) is r(vivj) = {p | (vivj) × (vip) < 0, p 
∈ 2}. 
 
For σβ←Ci, σα←Ci, if its arbitrary edge vivj (vivj ∈ σ) is the 
minimal child chain Ci'' of Ci, whether the location of σ relative 
to chain Ci is left or right can be directly confirmed by dir(σ). If 
σ←Ci can’t be directly confirmed, it doesn’t contain the minimal 
child chain Ci'' of Ci. The reasoning left or right locations of 
σ←Ci according to the above two kinds of σ combining with the 
adjacency and propagation characteristic f adjacency are the 
important base for the description of spatial objects in CDT, as 
showed in figure 6, there are three kinds of σ←Ci which need 
inference of its left or right property. 
 
 
 
 
 
 

(a) σγ←Ci   (b) σβ←Ci (vivj = ¬Ci'', vivj ∈ Ci ∩ σ)  (c) σα←Ci 
(∀vivj = ¬Ci'', vivj ∈ Ci ∩ σ) 

Figure 6. Three kinds of σ←Ci whose left-right property can’t be 
directly confirmed 

 
For the σγ, because there is only one vertex coming from Ci, the 
confirmation of the left-right property of σγ is feasible on the 

condition of the confirmation of the left-right property of the 
other two vertexes on the help of two f 0 adjacencies. 
 
COROLLARY 2.3.1.(f 0 including & approximating)  For ∀σγ←Ci 
∈ CD(P), ∃σβ←Ci, σ'β←Ci ∈ CD(P), if σγ←Ci satisfies 

0 0
( , ) ( , ) ( )

i i j i i j i i ii v v i v' v' j i' v v' '⊗ ⊗
γ← β← γ← β← γ← β← β←σ σ ∧ σ σ ∧ = ∈σ ∩σ ∩σC C C C C C Cf f , 

then the σγ←Ci locates at the left side of chain Ci. 
 

Proof.  Considering there exist three states of angle θ = 
∠vivjv'j, i.e. 

(1) If 0 < θ < π, the left side of vector chain (vivj, vjv'j) is 
l(vivj) ∩ l(vjv'j). 

∵θ < π, ∴v'j ∈ l(vivj). According to definition of semi-
plane of chain, there is v'j ∈ l(viv'j), ∴v'j ∈ l(vivj) ∩ l(vjv'j). By 
the same way, there is vi ∈ r(v'jv'i), so there is vi ∈ l(v'iv'j). ∵vi 
∈ l(vivj), ∴vi ∈ l(vivj) ∩ l(vjv'j). According to theorem 2.3.1, 
there are 

( , )i ji v v
⊗
β←σ C

⇒ vk ∈ l(vivj), ( ' , ' )i ji v v' ⊗
β←σ C

⇒ v'k ∈ l(v'iv'j). 

And more according to theorem 2.2.1, σ, σ1 and σ2 regularly 
relate each other, ∴σ locates at the left side of Ci. As shown in 
figure 7(b). 

(2) If π < θ < 2π, the left side of chain (vivj, vjv'j) is l(vivj) 
∪ l(vjv'j). 

According to definition of semi-plane of chain there is vi 
∈ l(vivj) ∧ v'j ∈ l(v'iv'j). According to theorem 2.3.1, vk ∈ l(vivj) 
∧ v'k ∈ l(v'iv'j), and more according to theorem 2.2.1, σ, σ1 and 
σ2 regularly relate each other; ∴σ locates at the left side of Ci. 
As shown in figure7(c). 

(3) If θ = π, the proof same to (1). Summarily, corollary 
2.3.1 is tenable.                                                                          � 
 
 
 
 
 
 
 
 
 
(a) Left and right semi-plane of chain (b) 0<θ <π (c) π<θ <2π 
Figure 7. σγ←Ci some side including & approximating corollary 

based on f 0 adjacency 
 
COROLLARY 2.3.2.  For ∀σγ←Ci ∈ CD(P), ∃σβ←Ci, σ'β←Ci ∈ 
CD(P), if σγ←Ci satisfies 

0 0
( , ) ( , ) ( )

i i j i i j i i ii v v i v' v' j i' v v' 'γ← β← γ← β← γ← β← β←σ σ ∧ σ σ ∧ = ∈σ ∩σ ∩σ: :
C C C C C C Cf f , 

then the σγ←Ci locates at the right side of chain Ci. (omitted) 
 

COROLLARY 2.3.3.( 0
→f  including & approximating)  For 

∀σγ←Ci ∈ CD(P), ∃σβ←Ci, σ'β←Ci ∈ CD(P), if σγ←Ci satisfies 
0 0

( , ) ( , ) ( )
i i j i i j i i ii v v i v' v' j i' v v' '⊗ ⊗

γ← → β← γ← → β← γ← β← β←σ σ ∧ σ σ ∧ = ∈σ ∩σ ∩σC C C C C C Cf f , 

then the σγ←Ci locates at the left side of Ci. 
 

Proof.  The set of triangles which are propagated by the 
transfer from σγ←Ci to σβ←Ci and from σγ←Ci to σ'β←Ci is Σ. 
There exist two points λvk, λ'v'k (λ, λ' > 0) at the vector 
directions (vjvk) and (vjv'k), as shown in figure 8(b), constructing 
assistant triangle vjλ'v'kλvk, which satisfies below formula  
 

∀p ∈ Σ → p ∈ vjλ'v'kλvk,  p ∈ 2, 

β, γ β, γ α, β β, γ 

β, γ 

¬Ci'' 

α, β α, β

α, β

¬Ci''¬Ci'' 

jv
, 'j iv v  iv

kv
kv

1σ 2σ

σ  

θ

'jv, 'j iv viv  

kv kv

1σ 2σ

σ

θ

( )i jv vl

( )i jv vr
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construct assistant triangles again, as shown in figure 8(c), σ'1 = 
vivjλvk, σ'2 = v'iv'jλ'v'k, σ' = vjλ'v'kλvk, according to the corollary 
2.3.1, σ' locates at the left side of Ci. ∵σ ⊂ σ', ∴σ locates at 
the left side of Ci. Corollary 2.3.3 is tenable.                           � 
 
 
 
 
 
 
 

(a)                               (b)                                (c) 
 
Figure 8. σγ←Ci some side including & approximating corollary 

based on 0
→f  adjacency 

 
COROLLARY 2.3.4.  For ∀σγ←Ci ∈ CD(P), ∃σβ←Ci, σ'β←Ci ∈ 

CD(P), if σγ←Ci satisfies 
0 0

( , ) ( , ) ( )
i i j i i j i i ii v v i v' v' j i' v v' 'γ← → β← γ← → β← γ← β← β←σ σ ∧ σ σ ∧ = ∈σ ∩σ ∩σ: :

C C C C C C Cf f , 

then σγ←Ci locates at the right side of Ci.(omitted) 
 
COROLLARY 2.3.5.  For ∀σγ←Ci ∈ CD(P), ∃σβ←Ci, σ'β←Ci ∈ 

CD(P), if σγ←Ci satisfies  
0 0

( , ) ( , ) ( )
i i j i i j i i ii v v i v' v' j i' v v' '⊗ ⊗

γ← β← γ← → β← γ← β← β←σ σ ∧ σ σ ∧ = ∈σ ∩σ ∩σC C C C C C Cf f , 

then σγ←Ci locates at the left side of Ci. 
 

Proof.  Given σγ←Ci arrives to 
( , )i i jv' v'

⊗
β←σ C

 by n (n > 1) 

times of propagation; σγ←Ci arrives to σ by one time of 
propagation on direction of 

( , )i i jv' v'
⊗
β←σ C

. According to corollary 

2.3.3, σ arrives to 
( , )i i jv v

⊗
β←σ C

by 2 times of propagation; σ arrives 

to 
( ' , ' )i i jv v

⊗
β←σ C

by n-1 times of propagation, i.e. σ locates at the 

left side of Ci. According to corollary 2.3.1, 
( , )i i jv v

⊗
β←σ C

, σγ←Ci 

and σ satisfy the f 0 including & approximating, ∵σ locates at 
the left side of Ci. ∴σγ←Ci locates at the left side of Ci. The 
corollary 2.3.5 is tenable.                                                          � 
 
THEOREM 2.3.2.(including & approximating theorem)  For 
∀σγ←Ci ∈ CD(P), if ∃σ'←Ci, σ''←Ci ∈ CD(P), they all locate the 
left (or right) side of chain Ci at the same time, if σγ←Ci satisfies  

σγ←Ci fσ'←Ci ∧ σγ←Ci fσ''←Ci ,  f ∈ { f 0, 0
→f }, 

then the σγ←Ci locates the left (or right) side of Ci . (omitted) 
 
For σβ←Ci(vivj = ¬C''i, vi, vj ∈ Ci ∩ σβ←Ci), according to 
formula (2-2-6), it is divided as σγ←Ci and σγ'←Ci. So, its left-
right properties can be got by the same way as σγ←Ci.  
 
COROLLARY 2.3.6.  For ∀σβ←Ci ∈ CD(P) ∧ (vivj = ¬C''i, vi, vj 
∈ Ci ∩ σβ←Ci), if σγ←Ci or σγ'←Ci locates at the left (or right) 
side of chain Ci and σγ←Ci ∧ σγ'←Ci → σβ←Ci is tenable, then the 
σβ←Ci locates at the left (or right) side of Ci. (omitted) 
 
For the σα←Ci (∀vivj = ¬C''i, vi, vj ∈ Ci ∩ σα←Ci), it can be 
transformed as judge the left-right properties of σγ←Ci by the 
type decomposition method.  
 
COROLLARY 2.3.7.  For ∀σα←Ci ∈ CD(P) ∧ (∀vivj = ¬C''i, vi, vj 
∈ Ci ∩ σα←Ci), if ∀σγ ∈ σ ( | |

1i i i= α←∧ σ → σ C
σ , σi ∈ σ) 

locates at the left (or right) side of chain Ci, then the σα←Ci 
locates at the left (or right) side of chain Ci. (omitted) 
 
COROLLARY 2.3.8.  ∀σ←Ci ∈ CD(P) ∧ ∀ C''i ∉ σ←Ci , there is a 
set σ = {σ | σγ←Ci} after type decomposition of σ←Ci, if satisfies 

(∀σγ←Ci ∈ σ) (σγ←Ci f σβ←Ci ∧ σγ←Ci f σ'β←Ci ∧ σβ←Ci , σ'β←Ci 
locate different side of chain Ci ∧σβ←Ci f 1 σ'β←Ci),  

f ∈ { f 0, 0
→f }, 

then the result of σγ←Ci ∩ Ci is the start node or end node of 
chain Ci.  
 

Proof.  (proof by contradiction) As shown in figure 9. 
Given σγ←Ci arrives to σβ←Ci by m (m > 0, m ∈ ) times of f 
adjacency propagation and arrives to σ'β←Ci by n (n > 0, n ∈ ) 
times of f adjacency propagation, then the set of triangles 
affected by the propagation constructs a region g, every triangle 
in the set has node v and region g contains node i.e. v ∈ σγ←Ci 
∩Ci. According to the known conditions, there is σβ←Ci f 1 
σ'β←Ci, i.e. v ∈ σβ←Ci ∩ σ'β←Ci. Assuming that v is not the start 
node or end node of Ci, there is a minimal child chain (v is a 
node of minimal child chain) of Ci certain cross region g. This 
conclusion is incompatible with the theorem 2.2.1 that triangles 
are regular togetherness in CDT, so the assumption is not 
tenable. Corollary 2.3.8 is tenable.                                            � 
 
If the start node and the end node of the chain is the same node, 
the chain is a cycle. Cycle is the special state of chain structure. 
The following sections prove the left-right relationship between 
σ and Ci on the case that Ci ⊆ C is directed cycle, given the 
ordering of cycle vertices is anticlockwise. Explicitly, the above 
definitions, theorems and corollaries are tenable on the case that 
Ci is directed cycle. 
 
As a special structure, the directed cycle partitions the 2-
dimension space into two clear regions, i.e. the left side region 
of cycle and the right side region of cycle, and the left side 
region is a closure region. So, the including & approximating 
theorem for chain structure is reduced on the known conditions.  
 
 
 
 
 
 
 
 
 

 
(a) The σγ←Ci arrives to σβ←Ci and σ'β←Ci. (b) The condition of 

assumption 
Figure 9. 

 
THEOREM 2.3.3.(reduced including & approximating theorem)  
Given cycle Ci ⊆ C, ∃σ←Ci locates at the left (right) side of Ci. 
For ∀σ'←Ci ∈ CD(P), if it satisfies  

σ'←Ci f 0σ←Ci, 
then σ'←Ci and σ←Ci locate at the same side of cycle Ci. (omitted) 
 
COROLLARY 2.3.9.  Given cycle Ci ⊆ C, ∃σγ←Ci, ∃σ'γ←Ci all 
locate at the left side of cycle Ci, for ∀σ↵Ci ∈ CD(P), if it 
satisfies  

σ↵Ci f 0σγ←Ci ∧σ↵Ci f 0σ'γ←Ci, 
then σ↵Ci locates at the left side of cycle Ci. 

v'i
'

vj, v'iv

v v'k 

σ1 σ2 
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v'i vj, v'i v

v v'k 

σ1 σ2 
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Proof.  Given σγ←Ci = {v1, v2, v3}, σ'γ←Ci = { v'1, v'2, v'3}, 
v1, v'1 ∈ Ci, ∵σ↵Ci f 0σγ←Ci ∧ σ↵Ci f 0σ'γ←Ci, ∴σ↵Ci = { v2, v3, 
v'3} ∨ σ↵Ci = {v2, v3, v'2}. According to including & 
approximating theorem, for ∀v ∈ {v2, v3, v'2, v'3}, it locates at 
the left side of cycle Ci, ∴σ↵Ci locates at the left side of closure 
cycle Ci. Corollary 2.3.9 is tenable.                                          � 
 
COROLLARY 2.3.10.  Given cycle Ci ⊆ C, ∃σ↵Ci ∈ CD(P), it 
locates at the left side of cycle Ci. For ∀σ'↵Ci ∈ CD(P), if it 
satisfies  

σ'↵Ci f iσ↵Ci,  i = 0, 1, 
then σ'↵Ci locates at the left side of cycle Ci. 
 

Proof.  (proof by contradiction) According to known 
condition σ'↵Ci f iσ↵Ci, there is that two vertexes of σ'↵Ci locate 
at the left side of Ci. Assuming that the third vertex of σ'↵Ci 
locates at the right side of cycle Ci, and then σ'↵Ci intersects 
with Ci certain. This conclusion is incompatible with that the 
CD(P) is simplicial complex, so the assumption is not tenable.
∴ the third vertex of σ'↵Ci locates at the left side of Ci, i.e. σ'↵Ci 
locates at the left side of cycle Ci. The corollary 2.3.10 is 
tenable.                                                                                     � 
 
The reasoning results of node structure, vector chain structure 
and directed cycle structure in CDT are showed in figure 10. 
 
 
 
 
 
 
 
 
 

(a) CDT building on node structure, vector chain structure and 
directed cycle structure (b) Direct taking out the left and right 
side of vector chain structure (c) Taken left and right side of 

chain by the including & approximating theorem (d) Triangles 
associating with start and end node of chain 

 
 
 
 
 
 
 

(e) Direct taking out the left and right side of directed cycle 
structure (f) Taken left and right side of directed cycle by the 
reduced including & approximating theorem (g) Ensuring left 

side of cycle ¬σ←Ci (h) Node and it associating with triangle set 
Figure 10. Reasoning and propagation of σ←Ci by triangle 

neighbour 
 

2.4 0-Simplex, 1-Simplex in CDT and the Basic Morphology 
of Σ 

CDT is simplicial complex, in which can get structure relations 
base form from σ’s properties. Following we give three type of 
compositive relationships, i.e. node-node, node-chain and 
chain-chain. 
 

2.5 Structure Description and Region Algebra Structure in 
CDT  

In CDT, the triangle is the least unit for describing the chain 
structure, cycle structure and node structure. Every arbitrary 
chain, ring and node structure can be denoted as a set of triangle. 
According to the definition 2.3.4, structure can be described 
with the following formula,  
 

σstr = {σα←str ∪ σβ←str ∪ σγ←str }.           (2-5-1) 
 
However, formula (2-5-1) can’t exact describe the position and 
shape of str. Considering the own direction of str (0 dimension-
arbitrary direction, 1 dimension-direction from start node to end 
node, 2 dimension-clockwise or anticlockwise direction), the 
direction of ∀σ∈σstr are affected by its own direction, i.e. the 
result of dir(σ) is clockwise or anticlockwise direction. 
According to the above definitions, theorems and corollaries, 
the chain structure σchain can be divided into three parts, i.e. the 
left side of chain, the right side of chain and the middle side of 
chain satisfied to corollary 2.3.8,  
 

σchain = {σl(chain) ∪ σ r(chain) ∪ σ m(chain)}.       (2-5-2) 
 
Because the ring structure can’t construct the middle triangle, 
formula (2-5-2) is reduced as the following formula,  
 

σcycle = {σl(cycle) ∪ σ r(cycle)}.                (2-5-3) 
 
For the independence vertex constructing the chain and cycle, 
formula (2-5-3) is transformed as formula (2-5-4),  
 

σvertex = {σl(vertex)} ∨ {σr(vertex)} ∨ {σm(vertex)}.  (2-5-4) 
 
THEOREM 2.5.1.  σstr set associating with finite vertex structure 
in CDT consequentially is a closure region in 2. 
 

Proof.  σstr of independence vertex is composed of f 0 
adjacency. The structure of chain and cycle takes out its left and 
right side based on σβ which contains minimal child chain and 
the including & approximating theorem to stipulate 1 dimension 
segment as an adjacency condition, which is progress of σβ 
extension with segment sharing. ∵ σ is the simplex in 2 
dimension space and ∵ node is limited and ordered, ∴σstr set 
is a closure region in 2.                                                           � 
 
DEFINITION 2.5.1.  σstr set associating with a structure and 
representing closure region in 2 is named structure region. 
 
Structure set (SS) is transformed as structure region set (SRS) 
in CDT and there is the following relationship between SRS and 
CDT,  

1 , card( ),n
i i in== = ∈SRS SRS∪ σ σCDT ,(2-5-4) 

considering family of sets Ξ = 2CDT, ∀ξ ∈ Ξ ∧ ξ ≠ {∅}, if ξ 
satisfied for the following condition,  
 

card( ) 1 ( ( )

! , 0,1)

i

i

' ' is not tenable

at least ' ' is tenable i

ξ ξ ξ ξ

ξ ξ ξ
→= ∨ ∀ ∈ ∀ ∈ ∨

∃ ∈ , =

ξ ξ ξ

ξ

f

f
, 

 
then the ξ is called the subject region of CDT, denoted as sξCDT , 

the set of all subject region of CDT is denoted as sΞCDT . If ξ 
satisfied into the following condition,  
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card( ) 1 ( ! , 0,1)iat least ' ' is tenable iξ ξ ξ ξ= ∨∀ ∈ ∃ ∈ , =ξ ξ ξ f , 
 
then the ξ is called as the closure subject region of CDT (closure 
subject region). Clearly, every structure in CDT is a closure 
subject region. Thus, for the object structure, the entireness and 
part of object structure can be CDT described by use of 

str

sΞσ
.Constructing the following set,  

 
F s= ΞCDT .                            (2-5-5) 

 
Additionally, the F is the whole computing space. Thus the 
intersection operator (∩) can be used as the binary operator of 
F. Constructing the following mathematic structure,  
 

RA = 〈F, ∩, CDT, {∅}〉.              (2-5-6) 
 
THEOREM 2.5.2.  RA is algebra structure. 

 
Proof.  (1) ∀ω, ω' ∈ F, ω ∩ ω' is significative. ω and ω' 

express the whole or partial structure in CDT, the intersection 
operator (∩) for ω, ω' is valid.  

 
(2) ∀ω, ω' ∈ F, ω ∩ ω' ∈ F. If ω ∩ ω' = ∅, ∵∅ ∈ F, ∴ω 

∩ ω' ∈ F. If ω ∩ ω' = ¬∅, the result of intersection operator 
sure of the common subject region of ω and ω', given the result 
is ω*, there is ω*∈ Ξs

ω ∧ ω*∈ 'Ξs
ω , ∵ ',Ξ Ξs s

ω ω ∈ F, ∴there is 

surly ω*∈ F. 
∵∀ω ∈ F, there is CDT ∩ ω = ω ∧ ω ∩ CDT = ω, ∴CDT  

is the unit element, and more ∵∅ ∩ ω = ∅ ∧ ω ∩ ∅ = ∅, ∴∅ 
is the zero element. So, RA is algebra structure.                       � 
 
F denotes the region set of structure in CDT. So the above 
algebra is called as region algebra (RA). The forms of Region 
(subject region) are various and are equal with topology and 
algebra. The region is correlation. The region is not only the 
combination of topology unit and modal unit but also has 
spatial and algebraic characteristics. 
 
 
3. SPATIAL RELATIONS CALCULATING BASED ON 

RA 

The spatial description method of geographic objects and the 
spatial relationship calculation method of spatial features are 
the spirit of GIS. The former is the base of the later that behaves 
as the computation processes in different mathematics space. 
 
The spatial relationship calculation can be analyzed based on 
the spatial description method of geographic features. The most 
popularity used model is the 9I model in the domain of spatial 
relationship calculation (Egenhofer and Herring 1991). 
According to the theory of unit structure (Corbett 1985), the 2-
dimension feature is boundary by the 1-dimension and the 1-
dimension feature is boundary by the 0-dimension in the 2-
dimension Euclidean space 2. So, the boundary of spatial 
object is composed of 0-dimension points and 1-dimension 
segments. The boundary describes the position and shape of 
spatial object. In the 9I model, every entity is defined as three 
entities, an interior (○), a boundary (∂) and an exterior (-). 
Except the region held by the entity self and its boundary, the 
exterior of entity is filling all universe. When the universe is n 

(n ≥ 2), the description of entity has continuous restriction, 

which behaves that the description of single entity (i.e. interior, 
boundary or exterior) must depend on the other two entities. 
Zhilin Li (2000) has found that these three entities have linear 
relative relationship. In order to eliminate the continuous 
bondage in entity description, many researchers work hard in 
this domain. Chen Jun (2000) deflated the exterior as a limited 
area relative and defined the area as dependent entity by 
replacing the exterior with the Voronoi region of feature, but 
the interior and boundary still depend on each other; Zhilin Li 
(2000) described the entity in grid space 2 not in the Euclidean 
space 2, thus the three entities can be individually described as 
the set of grid unit. But from the math base for entity 
description, 2 can’t be replaced by 2 after all. 
 
The spatial relationship calculation can be analyzed from the 
geometric operation. The most important operation is 
intersection in order to distinguish the feature relationships, that 
is build up line intersection-based. Line intersection is a kind of 
graphics quantitative operation which needs complex 
computation and needs complex structure as the support. 
Therefore, researchers (Gold 1992, Chen 1998) proposed two 
problems: Whether the complex graphics operation (such as 
line intersection) can be replaced by comparison of simple 
characteristics in computing graphics relationship or not? 
Whether other spatial relationship can be got by using the 
support structure required by graphics operation or not? The 
two problems can be summarized as the qualitative and 
reasoning computation. They are the core ideas of the dynamic 
spatial relationship calculation. In the qualitative computation 
domain, many researches have been undertaken in order to 
resolve the adjacency spatial relationship computation by use of 
Voronoi diagram (Gold 1992, Okabe, Boots and Sugihara 1992, 
1994 Chen 1998, Gahegan 2000). The adjacency spatial 
relationship computation is realized by judging whether the 
Voronoi feature’s regions exist the common boundaries or not. 
Because the Voronoi diagram is complete division structure to 
space, the share operation of Voronoi boundary is a typical 
geometry qualitative operation; in the domain of reasoning 
computation, Li and Chen (1998) proposed a 4 adjacency 
reasoning model based on Voronoi region which is an effective 
extend to resolve the question of adjacency spatial relationship 
computation by Voronoi diagram. The method used in the 
model is that the spatial relationship among objects is got by 
judging the relationship among Voronoi regions of object on the 
precondition of Voronoi region of object existence. 
 
3.1 Description of Integrating Discrete and Continuous 
Spatial Object 

The point, line and polygon features in 2 can be described by 
use of independent node, chain and ring structure in CDT with 
RA. Thus, the feature can be described as three independent 
entities, i.e. left (ωl), middle (ωm) and right (ωr).  

 
THEOREM 3.1.1.  The left set (ωl), middle set (ωm) and 

right set (ωr) of spatial objects (pointR, lineR and polygonR) are 
all countable sets. 
 

Proof.  If the n(n is countable, n∈ ) nodes are considered 
as the generators, the Voronoi diagram of this generators is a set 
of n Voronoi regions. The set is a countable set and is a kind of 
division of space. ∵Voronoi diagram is dual with Delaunay 
triangulation each other, ∴Delaunay triangulation is sure of a 
countable set composed of many triangles, i.e. CDT. And more 
∵∀σ ∈ ωl ⇒ σ ∈ CDT , ∴ωl ⊂ CDT . By the same way there is 
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ωm ⊂ CDT and ωr ⊂ CDT . ∵CDT is a countable set, ∴ωl, ωm 

and ωr are all countable sets. Theorem 3.1.1 is tenable.            � 
 

COROLLARY 3.1.1.  The left (ωl), middle (ωm) and right (ωr) 
of spatial objects (pointR, lineR and polygonR) are all partial 
relative regions. 
 

Proof.  According to theorem 3.1.1, the left, middle and 
right set are all countable sets and there is ωl ∪ ωm ∪ ωr ⊆ CDT, 
i.e. ωl ∪ ωm ∪ ωr is the subset of CDT. And more ∀σ∈ωl ∪ ωm 
∪ ωr, σ is all relative to the spatial objects in 2, i.e. the nodes 
of σ result from the spatial object. In summary, the left (ωl), 
middle (ωm) and right (ωr) of spatial objects are all partial 
relative regions.                                                                         � 

 
THEOREM 3.3.2.  The left set (ωl), middle set (ωm) and 

right set (ωr) of spatial objects (pointR, lineR and polygonR) are 
reverted as the corresponding structures (point, line and 
polygon) in 2. 

 
Proof.  Polygon object is ωl ∪ ωr, given operation seg(σl, 

σr)(σl ∈ ωl, σr ∈ ωr) is the segment used for seeking the f 1 
adjacency between σl and σr, thus the segment is sure of the 
part of boundary of polygon object and its two extreme points 
are sure of the boundary node of the polygon object. Given the 
segment set sought by seg operation is S, then S can be sought 
by the following formula,  
 

| | | |
1 1 ( , ), ,
l r l r l l r r

i j σ σ σ σ= == ∈ ∈S ∪ ∪ segω ω ω ω ,   (3-1-1) 

 
∵CDT is a kind of spatial division, ∴the boundary of the area 
object can be got by linking the segments in S on the condition 
of the same node order, and i.e. this is the cycle structure in 2. 
By the same way, the case of line object and point object can be 
proved. Theorem 3.3.2 is tenable.                                             � 
 
According to the theorem 3.3.2, the discrete definition of spatial 
object completely remains its continuation property in 2, that 
is to say, it remains its basic position and shape of in 2. CDT is 
the common way to observe the raster and vector characteristics 
of spatial objects. 
 
DEFINITION 3.1.1.(basic definition of spatial object in CDT)  the 
spatial objects (point, line and polygon) in 2 can be denoted as 
the pointR, lineR and polygonR in CDT and there is the following 
corresponding relationship,  
 

R - -
( ) ( ) ( ) ( )( ) ( ) ( )

def

C C C Cpolygon poly poly poly∂ ∂⇔ + + ⇔ + ∪ +D Dω σ ω σ σ ω σr l r l
,(3-1-2) 

R - -
( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )

def

C C C C C Cline line line line∂ ∂⇔ + + ⇔ ∪ ∪ + + ∪D Dω σ σ σ ω σ ω σ σl r m m l r
,(3-1-3) 

R - -( ) ( ) ( )
def

C C Cpoint point point point∂ ∂
← ← ←⇔ + + ⇔ + +D Dω σ ω σ ω σ .    (3-1-4) 

 
3.2 Basic Operators and the Computation Model of Spatial 
Relationship 

Intersection operation “∩” is the exclusive 2-tuple operator in 
the region algebra structure. Based on the intersection operator, 
the region modality operator (τ) applied to the spatial object can 
be got. The “∩” and “τ” are the basic operators for relationship 
calculation. 

 
 

Symbol Definition Computation result 
( , )A B∩ ω ω

 
Given ,A Bω ω  are 

two subject 
regions, then there 
is the following 
formula,  
( , )

{ | }

A B

A Bσ σ σ

∩ =

∈ ∧ ∈

ω ω

ω ω
. 

{ ,{ }}
A B

s s∅ ∈Ξ ∧ ∈Ξω ωξ | ξ ξ

 

( )τ ω  Compute the basic 
modality of subject 
region ω. 

{ , nen,nan,ndn,
nicl,nicr,nic,noc,nacl,
nacr,ndc,chec,cec,cnc,
cicl,cicr,cic,ctc,cac,cdc}

= ∅re

( ) 2τ ⊂ reω  

 
Table 3.2.  Symbols, definitions and computing results of the 

basic operators 
 

DEFINITION 3.2.1.  The modality operation of subject region 
(∩τ) is the composite operation of “∩” and “τ”, its formula is, 
 

∩τ(ωA, ωB) = τ(∩(ωA, ωB)) = τ(ωA ∩ ωB).        (3-2-1) 
 
Adbelmoty (1995) proposed a generalized intersection model 
applied to describe the spatial relationship. Firstly, it 
decomposes the spatial object and region space as typical 
subsets. Secondly, describes the spatial relationships based on 
the intersection of these subsets. Given σ is a spatial object and 
{σ1, σ2,…, σn} is its subsets, then there is 1

m
i i=∪σ = σ , the 

complement set of σ is σ-
1

n
j m j= += ∪ σ , the spatial reverse 

located by spatial object is Σ, then there is Σ = σ ∪ σ-. By 
decomposing the spatial object based on union, the relationship 
between two spatial objects can be defined as the following 
formula, 
 

=1 =1

1 1 1 2 1 2 1

( ) = ( ) ( ) =

( , , , , , , )

m n
i i j j

n m n

R ' ' '

' ' ' ' '

, = ∩ ∩

∩ ∩ ∩ ∩ ∩

∪ ∪
" "

σ σ σ σ σ σ

σ σ σ σ σ σ σ σ σ σ
, 

 
where σi ∩ σ'j may fetch ∅ or ¬∅, the intersection may be 
expressed with a m× n matrix. By different division strategy of 
spatial object, generalized intersection model can describe the 
spatial relationship among complex spatial objects.  
 
According to the generalized intersection model and the basic 
definition of spatial object (definition 3.1.1), a spatial 
relationship calculation model is established on the following 
conditions: the modality operation of subject region is regarded 
as the basic operation and the result resulted from the 
intersection each other of the three entities (exterior, boundary 
and interior) of the two spatial objects. The formula of this 
model is denoted as a 3× 3 matrix, as showed in formula 3-2-2, 
which named as region nine intersection model (R9I). 
 

R9I( , )
A B A B A B

A B A B A B

A B A B A B

τ τ τ

τ τ τ

τ τ τ

Α Β

− − − ∂ −

∂ − ∂ ∂ ∂

− ∂

⎡ ⎤∩ ∩ ∩
⎢ ⎥= ∩ ∩ ∩⎢ ⎥
⎢ ⎥∩ ∩ ∩⎣ ⎦

D

D

D D D D

ω ω ω ω ω ω
ω ω ω ω ω ω
ω ω ω ω ω ω

. (3-2-2) 

 
According to the result of subject region modality computation, 
the computation results of R9I model can be classified as follow: 
if every unit value of R9I is single type, i.e. re = {∅} ∨ |re| = 2, 
the type is single modality type; if |re| > 2, the type is duplicate 
modality type. 
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3.3 Computing Spatial Relations among Simple Objects by 
R9I 

 
No Legend Value of R9I Semantics 
1 

 

∅ ∅ ∅⎡ ⎤
⎢ ⎥∅ ∅ ∅⎢ ⎥
⎢ ⎥∅ ∅ ∅⎣ ⎦

 disjoint 

2 

 

nan nan nan
nan nan nan
nan nan nan

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 
adjacency 

3 

 

nen nen nen
nen nen nen
nen nen nen

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 
equal 

 
Table 3.3.1.  Relationships of pointR&pointR 

 
 

No Legend Value of R9I Semantics 
1 

 

∅ ∅ ∅⎡ ⎤
⎢ ⎥∅ ∅ ∅⎢ ⎥
⎢ ⎥∅ ∅ ∅⎣ ⎦

 disjoint 

2 

 

nic nic
nic nic
nic nic

∅⎡ ⎤
⎢ ⎥∅⎢ ⎥
⎢ ⎥∅⎣ ⎦

 contain 

3 

 

noc nen noc
noc nen noc
noc nen noc

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 boundary 

 
Table 3.3.2.  Relationships of pointR&lineR 

 
 
No Legend Value of R9I Semantics 
1 

 

∅ ∅ ∅⎡ ⎤
⎢ ⎥∅ ∅ ∅⎢ ⎥
⎢ ⎥∅ ∅ ∅⎣ ⎦

 disjoint 

2 

 

nacr nacr
nacr nacr
nacr nacr

∅⎡ ⎤
⎢ ⎥∅⎢ ⎥
⎢ ⎥∅⎣ ⎦

 adjacency 

3 

 

nicr nic nicl
nicr nic nicl
nicr nic nicl

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 boundary 

4 

 

nacl nacl
nacl nacl
nacl nacl

∅⎡ ⎤
⎢ ⎥∅⎢ ⎥
⎢ ⎥∅⎣ ⎦

 contain 

 
Table 3.3.3.  Relationships pointR&polygonR 

 
 

No Legend Value of R9I Semantics 
1 

 

∅ ∅ ∅⎡ ⎤
⎢ ⎥∅ ∅ ∅⎢ ⎥
⎢ ⎥∅ ∅ ∅⎣ ⎦

 disjoint 

2 

 

cac nac cac
nac nan
cac cac

⎡ ⎤
⎢ ⎥∅⎢ ⎥
⎢ ⎥∅⎣ ⎦

 adjacency 

3 

 

cic cic

cic cic

∅⎡ ⎤
⎢ ⎥∅ ∅ ∅⎢ ⎥
⎢ ⎥∅⎣ ⎦

 intersection 

4 

 

cnc noc cnc
noc nen
cnc ccn

⎡ ⎤
⎢ ⎥∅⎢ ⎥
⎢ ⎥∅⎣ ⎦

 meet at ends 

5 cicl(r) nicl(r) cicl(r)
nac nan nac

cicl(r) nicr(l) cicl(r)

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 meet at one 
end and other 

middle 
5 cec nic cec

nic nic
cec nic cec

⎡ ⎤
⎢ ⎥∅⎢ ⎥
⎢ ⎥⎣ ⎦

 overlap 

6 cec cec

cec cec

∅⎡ ⎤
⎢ ⎥∅ ∅ ∅⎢ ⎥
⎢ ⎥∅⎣ ⎦

 1D meet 

7 cec cec
noc noc
cec cec

∅⎡ ⎤
⎢ ⎥∅⎢ ⎥
⎢ ⎥∅⎣ ⎦

 contain 

8 cec noc cec
noc nen noc
cec noc cec

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 equal 

 
Table 3.3.4.  Relationships of lineR&lineR 

 
 

No Legend Value of R9I Semantics 
1 ∅ ∅ ∅⎡ ⎤

⎢ ⎥∅ ∅ ∅⎢ ⎥
⎢ ⎥∅ ∅ ∅⎣ ⎦

 disjoint 

2 cac nac cac
cac nac cac

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥∅ ∅ ∅⎣ ⎦

 adjacency 

3 cac cac
nacl nacl
cac cac

∅⎡ ⎤
⎢ ⎥∅⎢ ⎥
⎢ ⎥∅⎣ ⎦

 contain 

4 cicr cic cicl
nacl nacl

cicr cic cicl

⎡ ⎤
⎢ ⎥∅⎢ ⎥
⎢ ⎥⎣ ⎦

 entry/go out 

5 cicr cic cicl
nicr nicr
cicr cic cicl

⎡ ⎤
⎢ ⎥∅⎢ ⎥
⎢ ⎥⎣ ⎦

 half-cross 

6 cicr cic cicl
nacr

cicr cic cicl

⎡ ⎤
⎢ ⎥∅ ∅⎢ ⎥
⎢ ⎥⎣ ⎦

 cross 

7 ctc ctc nicl

ctc ctc nicl

⎡ ⎤
⎢ ⎥∅ ∅ ∅⎢ ⎥
⎢ ⎥⎣ ⎦

 0-D meet 

8 cec cec cec

cec cec cec

⎡ ⎤
⎢ ⎥∅ ∅ ∅⎢ ⎥
⎢ ⎥⎣ ⎦

 1-D meet 

 
Table3.3.5.  Relationships of lineR&polygonR 

 
 

No Legend Value of R9I Semantics 
1 

 

∅ ∅ ∅⎡ ⎤
⎢ ⎥∅ ∅ ∅⎢ ⎥
⎢ ⎥∅ ∅ ∅⎣ ⎦

 disjoint 

2 

 

cac cac
cac cac

∅⎡ ⎤
⎢ ⎥∅⎢ ⎥
⎢ ⎥∅ ∅ ∅⎣ ⎦

 adjacency 

3 

 

ctc ctc nicl
ctc ctc nicl
nicl nicl

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥∅⎣ ⎦

 0-D meet 

4 

 

cnc cecr cecr
cnc cec cecr
cecl cecl

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥∅⎣ ⎦

 1-D meet 
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5 

 

cnc cicr cnc
cicr cic cicl
cnc cicl cnc

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 intersect 

6 

 
cac cac
cac cac cac

∅ ∅ ∅⎡ ⎤
⎢ ⎥∅⎢ ⎥
⎢ ⎥⎣ ⎦

 contain 

 
Table 3.3.6.  Relationships of polygonR&polygonR 

 
 

4. EXAMPLE 

Multi-topological rules examination for vector data is a new 
requirement for GIS data product. In general, for different type 
of vector data which is independently organized and stored as a 
layer form, current GIS software provides the topological rules 
for checking errors included in one layer or between two layers. 
For example in Arc/Info, the “Must No Overlap” rule is used 
for checking a polygon feature must not overlap another 
polygon feature from the same layer, the “Boundary Must Be 
Covered By” rule is used for checking the boundaries of 
polygon feature from one layer must be covered by line features 
of another layer. However, every time only use one rule to the 
examination work.  

 
With the method proposed in this paper, we can use multi-

rule. As shown in figure 11(a), (b), there are parts of block map 
and street map of Beijing and its CDT. The multi-rule includes 
three rules: 

 The “Must No Overlap” rule for block map not self-
intersecting. 

 The “Must No Intersect” rule for the block map not 
intersects with the street map. 

 The “Adjacency” rule for every street must 
adjacency at least one block. 

The topological errors by above multi-rule are shown in 
figure 11(c) and (d). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(a) Parts of block map and street map in Beijing 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

(b) The CDT of (a) 
 
 
 
 
 
 
 
 
 

(c) Two blocks intersect (d) One street intersects with a block 
Figure 11. Example data and it CDT 

 
 

5. CONCLUSION AND FUTURE WORKS 

This work proposes a description method of 2D spatial object 
based on CDT which integrates continuous method and discrete 
method together. Based on the set theory, the subject region and 
computation space in CDT is defined. Additionally, the region 
algebra structure applied to compute spatial relationship is 
established on the base of intersection operation. By judging the 
modality of result set (subject region) of intersection among the 
three hefts of spatial object, the spatial relationship computation 
model-R9I is established. By R9I, the 32 kinds of spatial 
relationship among simple objects is distinguished each other. 
 
The future works can be summarized as following aspects: 
 

(1) The modality of surface features (spatial graphics) is 
one of important research subjects in the spatial relationship 
domain. The understanding to real world always starts from the 
individuals. However, the research on spatial relationship 
directly focuses on the relationship among individuals not the 
individual. For instance, “query which circular buildings are 
adjacent with a road” can’t get the correct results by current 
spatial relationship theory. The constrained Delaunay 
triangulation division of spatial graphics is another important 
way to observe and analyze its modality. The figure 11 shows 
the knaggy characteristics of graphics, the exterior of convex 
polygon only contains β-triangle and γ-triangle. But the exterior 
of concave polygon also contains α-triangle. 
 

(2) The computing of adjacency spatial relationship. The 
nature adjacency spatial relationship defined by Voronoi 
diagram of spatial objects is a special spatial relationship. It 
exits among the discrete spatial objects. However, the object 
exploration based on the spatial relationship always uses the 
intersection as the basic way. So, the expression method and 
index structure of adjacency region among spatial objects on 
the base that the Dalaunay triangulation is the base structure 
should be focused on. Then the adjacency spatial relationship 
can be detected by combining the line intersection operation in 
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the practical GIS application environment with the Dalaunay 
triangulation. 
 
 
 
 
 
 

 
(a) Convex polygon and its σβ, γ at right side   (b) Concave 

polygon and its σα at right side 
Figure 11. Observing the knaggy characteristics of polygon by 

its σ 
 

(3) The computing of spatial relationship among complex 
objects. The spatial object has the continuous (vector) and 
discrete (grid) characteristics at the same time in case that the 
spatial objects are described by the method based on CDT. The 
vector-grid characteristic of Delaunay triangulation should be 
further rooted in order to describe the complex spatial objects 
and compute the relationship among the complex objects by 
Delaunay triangulation. 
 

(4) The thinking in λ. Whether 
3 3

0 0
{ | 0, 1}i

n i i ii i
aσ λ λ λ

= =
= ≥ =∑ ∑  can be used to express the 

complex-tetrahedroid in 3 or not; whether the method in 2 
can be generalized to 3 or not in order to solve the description 
of 3D spatial objects and compute their spatial relationship? 
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