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ABSTRACT:

A robust fitting and reconstruction algorithm has to cope with two major problems. First of all it has to be able to deal with noisy input
data and outliers. Furthermore it should be capable of handling multiple dataset mixtures.
The decreasing exponential approach is robust towards outliers and multiple data set mixtures. It is able to fit a parametric model to a
given point cloud. As parametric models use a description which may notonly contain a generative shape but information about the
inner structure of an object, the presented approach can enrich measured data with an ideal description. This technique offers a wide
range of applications.

1 INTRODUCTION

Since the beginning of computer-aided design, reverse engineer-
ing has been an important field of research and it has become a
viable method to record and archive digital descriptions of arti-
facts. The acquisition of an artifact starts measuring an object us-
ing 3D scanning technologies based on laser scanners, computer
tomography, or photogrammetry. The measured data is the basis
to re-engineer a high-level geometry description suitable for var-
ious uses. This reverse engineering process comprehends fitting,
approximation and numerical optimization techniques.

Reverse engineering forms the link between recording techniques
on the one hand and modeling and visualization on the other
hand. This connection is well established for conventional mod-
eling approaches based on Bézier patches and NURBS surfaces
for example.

In contrast to conventional model descriptions, a procedural
model does not store an object’s geometry (control points, ver-
tices, faces, etc.) but a sequence of operators and parameters in
order to create a model instance.

All models with well organized structures and repetitive forms
benefit from procedural model descriptions. In these cases gen-
erative modeling is superior to conventional approaches.

Its strength lies in a compact description which does not depend
on the counter of primitives but on the model’s complexity itself.
As a result especially large scale models and scenes can be cre-
ated efficiently which has promoted generative modeling within
the last few years.

Another advantage of procedural modeling techniques is the in-
cluded expert knowledge within an object description; e.g. clas-
sification schemes used in architecture, civil engineering, etc. can
be mapped to procedures. For a specific object only its type and
its instantiation parameters have to be identified. This identifica-
tion process – needed in reverse engineering – can be done man-
ually or user-assisted by the algorithm presented in this paper.

2 RELATED WORK

The creation of an accurate high-level description for a given
model is known as reverse engineering. The tradition of reverse
engineering is quite long and even a short overview about the
main techniques would go beyond the scope of this article (Farin,
1990).

Existing fitting methods can be classified into two main groups.
Algorithms resulting in a complete model description can be
classified asComplete Fitting methods. Such algorithms result
among other things in polyhedral surfaces (Hoppe et al., 1992),
(Amenta et al., 1998), radial basis functions (Carr et al., 2001),
constructive solid geometry (Rabbani and van den Heuvel, 2004),
or subdivision surfaces (Cheng et al., 2004) – just to name a few.

The most important work related to the proposed algorithm is
“Creating Generative Models from Range Images” by R. Ra-
mamoorthi and J. Arvo (Ramamoorthi and Arvo, 1999). They
also use generative models to fit point clouds. The main differ-
ence is, that they modify the generative description during the fit-
ting process. Starting with the same generative description to fit a
spoon as well as a banana does not allow to generate or preserve
semantic data.

The second main group is herein after referred to asSubpart Fit-
ting. These algorithms analyze an object and describe a part of
the object’s geometry. Depending on the algorithm’s need to par-
tition the input data in advance, all subpart fitting algorithms can
be categorized into two subgroups.

The various random sample consensus (RANSAC)-based meth-
ods (Fischler and Bolles, 1981), (Wahl et al., 2005) are examples
for Subpart Fitting without preceding segmentation. RANSAC
algorithms compute free parameters of a subpart for a randomly
selected adequate number of samples e.g. points of a point cloud.
The samples then vote if they agree with the suggested parame-
ters. This process is repeated until a sufficiently broad consensus
is achieved. Advantages of this approach are its ability to ignore
outliers without explicit handling and the fact that it can be ex-
tended to extract multiple instances in a data set.

The majority of subpart fitting algorithms need a preceding seg-
mentation. A simple least squares fitting for example is unable
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to fit a plane to a point cloud, if the point cloud consists of point
samples from more than one plane. Filtering tests (Benko et al.,
2002), feature detection algorithm (Gumhold et al., 2001), (Pauly
et al., 2003) structure (Vosselman and Sithole, 2004), (Hofer et
al., 2005) and symmetry (Martinet et al., 2006) recognition tech-
niques solve this problem. Reconstruction algorithms based on
non-uniform rational b-splines (NURBS) (Wang et al., 2004), de-
velopable surface (Peternell, 2004) or least squares techniques
(Shakarji, 1998) and many more operate on segmented data sets.

Except for a few algorithms such as RANSAC, which use statisti-
cal computations, many reverse engineering algorithms base on a
numerical, global optimization. The objective of global optimiza-
tion is to find the globally best solution of (possibly nonlinear)
models, in the presence of multiple local optima. An overview
on global optimization techniques can be found in (Pinter, 2004).

The fitting algorithm in this paper uses a numerical routine to
minimize an error function. The minimization itself is performed
by a modified differential evolution method (Storn and Price,
1997) combined with conjugate gradients techniques (Fletcher
and Reeves, 1964).

3 GENERATIVE RECONSTRUCTION

The presented algorithm belongs to the category of subpart fitting
algorithms without preceding segmentation. Algorithm which
do need a preceding segmentation have the chicken and egg
dilemma: without segmentation the fitting is complicated and
vice versa.

Our method as well as RANSAC-based methods accept unpro-
cessed point cloud data. RANSAC algorithms have to compute
free parameters of a subpart for randomly selected samples. This
inverse problem is hard to solve – even for simple geometric ob-
jects (cylinders (Beder and Förstner, 2006), cones, . . . ).

Regarding the used error functions and metrics involved de-
creasing exponential fitting is similar to least squares techniques
(LSQ), which minimizes the error function

fLSQ(~x) =

n
∑

i=1

d2 (M(~x), pi)
!
= min

~x
, (1)

whereas

• P = {p1, . . . ,pn} denotes the given point cloud,

• M represents a generative model, and

• M(~x) is a model instance using the parameters~x.

• The functiond measures the Euclidean distance between
two objects.

As the squares of the distances are used, outlying points have a
disproportionate effect on the fit. Even worse, if a model shall
be fitted to a data set, least squares methods implicitly assume
that the entire set of data can be interpreted by one parameter
vector. Therefore the fitting result of a plane fitted to a sampled
cube is not one of the six cube sides, but one plane containing the
cube’s diagonal. In the context of statistics and computer vision
generalized maximum likelihood estimators (Zhang, 1997) are
of big importance in order to overcome the sensitivity of least
squares estimates to outliers. The main idea is to introduce a
weighting functionψ on top of the distance.

The Gaussian weighting function

ψEXP (x) = 1 − e−x2/σ2

(2)

is illustrated in Figure 1. The result is calleddecreasing exponen-
tial and its objective function to minimize is

fEXP (~x) =

n
∑

i=1

ψEXP (d(M(~x),pi)) (3)

=

n
∑

i=1

1 − e
−1

σ2
·d2(M(~x),pi) !

= min
~x
. (4)

This minimization process can be interpreted geometrically. Ifσ
tends to zero, the limit function is

ψ(x) =

{

0, x = 0
1, otherwise.

(5)

The globally best solution resp. the global minimum of this limit
function is reached, if and only if the maximum number of points
have distance zero to the model to fit; e.g. the model parame-
ters will be determined so that most of the input data points be-
long to the model’s surface. Therefore, the returned error value
of limσ→0 fEXP (~x) equals the number of points, which do not
belong to the model’s surface.

In practiceσ should have a positive value. It should correspond
to the noise level of the input data set. An adequateσ ensures
that points whose distance to a model is±ε have only a small
contribution to the error function. The heuristic to selectσ such
that a point with distanced and noiseε will be weighted

ψ(d+ ε) = 1/2,

yields good results.
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Figure 1: The least squares approach minimizes the sum of
squared distances,ψLSQ(x) = x2, which weights outlying

points (blue). The functionψEXP (x) = 1 − e−x2/σ2

used
by the decreasing exponential approach (red) reduces this effect
significantly. The choice ofσ depends on the noise level of the
input data.
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The big advantage of decreasing exponential fitting is the fact that
it only needs very few information about a model. It only needs
a distance function measuring the Euclidean distance between an
arbitrary point in 3D and the surface of a model. The usage of
such a limited interface allows to combine this approximation
technique with explicit as well as generative shape descriptions.

An explicit shape description follows the composition of prim-
itives approach. It describes 3D objects and whole scenes as
an agglomeration of elementary geometric objects: Points, trian-
gles, NURBS-Patches, and many others. In the composition-of-
primitives approach all elements are specified and listed individ-
ually. Without further information there is not much difference
between a Greek temple and a statue. As James Kajiya points
out, it’s all a “matter of positioning the control points in the right
places” (Snyder, 1992). But the inner logic of an object should
be reflected in its construction, and its description of the result
should reflect this process.

The importance of further information and semantic meta data
becomes obvious in the context of mandatory services required
by a digital library: markup, indexing, and retrieval. The promis-
ing approach of procedural and generative modeling is a key to
solve this problem. Due to the naming of functions and algo-
rithms as well as possible markup techniques, procedural model
libraries are the perfect basis for digital library tasks. The advan-
tages of procedural modeling arise from the generative approach.
Expert knowledge about the inner structure of an object and about
its composition can be formulated in a generative description.
The enrichment of measured data with an ideal description en-
hances the range of potential applications – not only in the field
of cultural heritage. A nominal/actual value comparison may in-
dicate wear and tear effects as well as changes in style.

4 OPTIMIZATION

The vector~x of free parameters of a ModelM may have various
geometric interpretations:

• A fixed sized, static object may vary its position and orienta-
tion. These six degrees of freedom can be combined to one
vector. The result of this isometric optimization process is
the best fit position and orientation of the static object ac-
cording to a given point cloud.

• A parametric model may be described by a set of parame-
ters; e.g. a sphere can be described by a center point and
its radius. The result of this optimization process – called
model optimization – is the sphere description that fits best
to a given point cloud.

The fitting of a static 3D model to an acquired point cloud is
an isometric optimization. The free parameters, which have to
be optimized, form a bijective map that preserves distances – an
isometry. The parameters of the map form a six-dimensional vec-
tor and may be interpreted among other things as three Euler an-
gles and a three-dimensional translation.

Due to the fact that the weighting functionψ used by the decreas-
ing exponential approach has an upper limit

∀x ∈
�

: ψ(x) < 1

and converges relatively fast to one, the objective function (4)
does not have to be evaluated completely during the optimization.
Holding the point cloud in a regular grid structure of equally sized

Figure 2: The storage of a point cloud in a regular grid structure
of equally sized cubes allows a fast evaluation of a sum ofψEXP -
weighted distances. For a given model only those cubes whose
distance to the model is within a threshold may contain points
with a weighted distance significantly smaller than one. These
points have to be evaluated separately, the weighted distance of
all other points can be approximated.

cubes (illustrated in Figure 2) allows to estimateψ for all points
in a cube by the number of points, if the cube is beyond a distance
threshold. Thus the evaluation of the objective functionf(~x) can
be made efficiently; especially if the points are distributed uni-
formly all over the cubes, the evaluation off(~x) only depends on
the size of the model to fit – respectively on the number of cubes
that have to be processed – and not on the number of all points.

Beside static model fitting, decreasing exponential approaches
can be used in the field of model optimization. In such a process
not the position of a static model but its dynamic form defined by
free parameters is of interest.

Especially so-called parametric objects can be identified easily.
Only an Euclidean distance functiond is needed. If the over-
all fitting process uses a derivation free minimization algorithm,
no derivation of the distance function is needed. Therefore,d
does not have to be in closed form. Due to the possibility to
evaluate the distance between a point and a specific instance of
a parametric object algorithmically, arbitrary parametric object
descriptions are feasible.

As a matter of course this optimization task also profits from a
cube grid-structured point cloud and the bounded weighting func-
tion ψ as mentioned above. For a given model only those cubes
whose distance to the model is within a threshold may contain
points with a weighted distance significantly smaller than one.
While these point distances have to be calculated exactly, the sum
of weighted distances of all other points can be approximated by
the number of all other points. The complexity of evaluatingf(~x)
is therefore in most cases sub-linear in the number of points.

5 IMPLEMENTATION

As the optimization task using the decreasing exponential ap-
proach can be formulated as the most common form of global op-
timization: e.g. as a typical minimization problem, a wide range
of optimization strategies solving this problem exists.

To use state-of-the-art optimization algorithms in a flexible
environment the first implementation has been realized using
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MapleTM (Version 10). The implementation can be scaled down
to the definition of the weighting functionψ and some calls of
Maple’sminimize function.

In addition to estimated problems of a slow execution due to
script interpretation without run-time optimization, it reveals
some numerical problems:

1. As the weighting function is almost constant beyond the ori-
gin, the gradients are extremely small in most cases. Many
newton-like optimization routines have problems in han-
dling such situations.

2. The convergence is even worse, if the initial values are not
set adequately.

These problems have been addressed in an optimized, native im-
plementation. To speed up the native implementation the point
cloud is stored in a hash-mapped regular grid structure which al-
lows a fast evaluation of the objective function using distance ap-
proximations based on clustering.

The minimization itself is performed by Differential Evolution
(Storn and Price, 1997). Differential Evolution is a heuristic ap-
proach for minimizing nonlinear, non differentiable, continuous
space functions. Based on evolutionary computing the algorithm
does not use a single iteration vector but a population of vectors
spread all over the domain. It does not need adequately chosen
initial values.

Furthermore, by running several vectors simultaneously, superior
parameter configurations can help other vectors escape local min-
ima. Having found several solution candidates, a postprocess-
ing for local corrections using conjugate gradients according to
Fletcher/Reeves (Fletcher and Reeves, 1964) is done.

6 RESULTS & CONCLUSION

The proposed method of decreasing exponentials allows a gen-
eralized object fitting, which can easily applied to various model
descriptions – only a point-to-object distance function is needed.

Figure 3: The CAD data set which has been used to generate a
disturbed, uniformly sampled point cloud.

Beside the tests on fitting geometric primitives to point clouds the
presented approach has also been tested on a CAD data set: The

model of a Greek temple (28m length,18m width, 11m height)
has been sampled uniformly. The resulting point cloud describes
the object’s surface and has been disturbed by a5cm offset in
normal direction (normally distributed with std-derivation of1.0
and zero mean value).

The temple (see Figure 3) consists of 28 columns. Using a para-
metric, cylindrical column description with three free parameters
(column position in 2D and its radius)1 the decreasing exponen-
tial fitting is able to determine all columns with an accuracy at an
average of1cm (= 0.03% of the largest bounding box edge).

The second example object is the Theseus Temple in Vienna,
Austria (see Figure 4). Is was build between 1820 and 1823 by
Peter Nobile as a smaller imitation of the Theseion Temple in
Athens.

Figure 4: Approximately one hundred photos of the Theseus
Temple have been taken in order to generate a point cloud – the
input data set of the first fitting process.

The network of Excellence in Processing Open Cultural Her-
itage (EPOCH) (http://www.epoch.eu) offers its partners the
EPOCH 3D web service. The web service provides a pho-
togrammetrical reconstruction and returns point clouds or tex-
tured meshes. In combination with the open source tool Mesh-
Lab (http://meshlab.sourceforge.net) 3D models have been gen-
erated from approximately one hundred photos taken with a con-
sumer camera. The sequence includes only photos taken in an arc
around the temple. Parts not visible in the photos (Figure 4) are
not present in the point cloud. The resulting model consists of 2
million points. Due to the low quality of the photos the data set
contains a lot of noise.

To detect the temple columns a row of cylinders has been used as
generative model. The model parameters were

• the number of columns,

• the center point on the xy-plane of the first column,

• the center point on the xy-plane of the last column, and

• the cylinder radius.

1Fitting the column’s height is non-applicable as a bigger height value
always leads to columns with more points on it.
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The parameter domain has been split. In this way it has been pos-
sible to find all of the column rows in parallel threads. A second
generative model has been a stairway. The free parameters were

• starting point,

• direction of the stairway,

• riser height and tread length.

The number of steps and the width of the treads are considered
to be infinite. These infinite structures have been cut along the
bounding box of the relevant points near their surface.

Figure 5: The presented algorithm is able to fit generative de-
scriptions such as columns and stairways to the Theseus Temple
point cloud. Even structures, which are not present in the input
data set (e.g. the treads), are realized as they are part of the gener-
ative description. The visualization has been blended with a low
resolution set of the input model.

The most important feature demonstrated in this example is the
ability to recognize structures which are only partly present in
the input data set (see Figure 5). The point cloud does neither
contain the columns’ surfaces turned away from the camera nor
the stairways’ treads.

In combination with optimization strategies to avoid being
trapped in local minima the decreasing exponential fitting ap-
proach produces reasonable results:

• In contrast to least squares approaches it is able to manage
outliers and compositions of multiple data sets.

• Compared to RANSAC algorithms, it can easily be general-
ized to fit all kinds of objects without having to interpret a
set of points and without having to know how many points
are needed to define a certain object.

• Furthermore, the decreasing exponential approach is a min-
imization process based on a error function whose differ-
entiability does only depend on a distance function, which
allows to benefit from a wide variety of well-studied, nu-
merical methods.

Further studies will therefore investigate the best combination of
numerical methods to solve the decreasing exponential minimiza-
tion.

ACKNOWLEDGMENTS

The authors would like to thank Volker Settgast for valuable as-
sistance and support – especially for the visualizations.

REFERENCES

Amenta, N., Bern, M. and Kamvysselis, M., 1998. A New
Voronoi-Based Surface Reconstruction Algorithm. Computer
Graphics 32, pp. 415–421.

Beder, C. and F̈orstner, W., 2006. Direct Solutions for Computing
Cylinders from Minimal Sets of 3D Points. Proceedings of the
European Conference on Computer Vision 2006 3951, pp. 135–
146.
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