MOBILITY MODEL BASED ON INCOMING AND OUTGOING NODES TO AN AREA
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ABSTRACT:

In this paper, we propose a mobility model which estimates a node distribution in a service area from node flows on the boundary
of the area. Our model targets new wireless communication techniques, such as Bluetooth and ZigBee, whose transmission ranges,
called cells, are relatively small. The proposed model reproduces the mobility of nodes in an area by the observation of the incoming
and outgoing nodes to the area. At first, we focus on a person as a node and observe an area where people actually pass through.
From the observation results, we show that a hode moves along with an approximately straight line with a velocity following a normal
distribution. Furthermore, we propose two methods that estimate correspondences between incoming and outgoing events to the area;
combinatorial optimization based method (COM) and Bayesian estimation based method (BEM). As a result, the reproduction ratio of
COM is 0.736, and that of BEM is 1.

1 INTRODUCTION and outgoing nodes to an area. The proposed model reproduces
the mobility of nodes in an area by monitoring the node incoming

In this paper, we propose a mobility model which estimates aand outgoing at gates located on the boundary of the area. We
node distribution in a service area from node flows on the boundfirstly focus on a person as a node and observe the mobility of
ary of the area. Our model targets new wireless communicatiopeople in a certain area in Osaka University. Then, we model
techniques, such as Bluetooth (Bray and Sturman, 2001) and Zidhe trajectory of nodes and velocity distribution in the area from
Bee (ZigBee Alliance, 2007), whose transmission ranges, calledbservation results. Furthermore, we propose two methods that
cells, are relatively small. These techniques can be available fastimate correspondences between incoming and outgoing events
everyone unlike mobile phone networks which belong to specifido the area; combinatorial optimization (Korte and Vygen, 2005)
communication carriers. Therefore, if system administrators irbased method (COM) and Bayesian estimation (Fox et al., 2003)
companies or universities use them appropriately, they can corbased method (BEM). Finally, we validate the accuracy of the
struct a new wireless infrastructure. If they arrange the deployproposed method by comparing with the observation results.
ment of access points according to the distribution of users in a
service area, communication quality for users will be improved.The rest of the paper is organized as follows. In Section 2, we
Though the distribution of users can be derived by observing th€xplain the knowledge that derived from observation and shows
movements of users, it is unwise to observe the whole area frorfalidity of some assumptions used in the proposed model. We in-
the view point of monitoring overheads and costs. If we cantroduce the proposed model in Section 3, and evaluate the model
model the mobility of users in an area, we can estimate the digh Section 4. Finally, our conclusion and future works are stated
tribution of users in the area while suppressing the observatioff Section 5.
costs.

The most popular mobility model is random waypoint model 2 OBSERVATION

(RWP) (Camp et al., 2002), which randomly determines the node

traveling direction, velocity, and residence time. Because of it2-1 Overview

simplicity, RWP is often referred to represent node mobility in

wide-range areas such as mobile phone networks. There haye took a movie of people flows in front of Cybermedia Center
been studied on other mobility models. For example, RWP ign Osaka University from 7th floor of the building. Next, we ex-
modified so that the probability of the node continuing to follow tracted static images from the movie with a sampling of interval
the same direction is higher than that of the node changing dire@00 [ms]. Then, we arranged an area eft{m’] at the center of
tions (Camp et al., 2002). Baochun Li and K.H. Wang propose #£ach image. We calculated the trajectory and incoming and out-
model which groups nodes based on their velocities or traveling©ing positions for each node by using a measurement tool devel-
directions (Li and Wang, 2003). In another study (Ashtiani et al.,0ped by Visual C++. Although the proposed model estimates the
2003), an area is divided into subregions and the node mobility imode distribution in an area from observations at the boundary of
an area is regarded as a multi class Jackson network between tHi€ area, we also observed node trajectories in the area in order to
subregions. All of them exclusively focus on node mobility in an €valuate the accuracy of the proposed model. Since we could not
area. If the size of an area becomes small, we cannot neglect ti@serve the area from the right above, the extracted images did
effect of the node flows on the boundary of the area and the ob20t correctly represent the real world. We used projective trans-
stacles which disturb the node mobility in the area. These factordormation (Ito, 2007) to transform coordinates on each extracted

however, are not considered in the traditional mobility models. image to those on a real coordinate system. Note that we assume
that there is no aberration of a lens. Table 1 shows details of the

In this paper, we propose a mobility model based on the incomingbservation environment.



Table 1: Observation environment

Date 2006/11/22 800
Time 14:30-14:40 500 - 1
Weather Fine
Sampling Interval 500 [ms] 5 40071 1
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Figure 2: Histogram of distance errors caused by approximation
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To evaluate the monitoring overheads quantitatively, we assume velocity [cm/s]

that the area is divided inta x n grids. Accordingly, node in-
coming and outgoing to the area occursnak 4 gates on the
boundary. Note that node incoming and outgoing positions are
compensated to the center of the corresponding gate. We can dew  MoOBILITY MODEL BASED ON INCOMING AND
rive a distribution of node residence time by calculating sum of OUTGOING NODES TO AN AREA

node passing time for each grid. Then, we obtain the normalized

distribution of node residence time. Finally, we get a probability3 1 Overview

density distribution of nodes by dividing each grid value by its ™
area.

Figure 3: Distribution of node velocities (mean: 133 [cm/s])

The proposed model reproduces the mobility of nodes in the area
by observing the incoming and outgoing events to the area.
Firstly, from the knowledge obtained in section 2, we suppose
Figure 1(a) shows the actual node trajectories, and Fig. 1( node moves along V\{iFh a straight line atac.ongtan.t speed. Fur-
shows straightly approximated lines each of which is drawn fro hermc_)re, node velocities follow a normal_dlstrlt_)utlon. Then,_
the incoming position to the outgoing position of a node. Figure 2V€ €stimate the correspondences between incoming and outgoing
illustrates a histogram of the destance errors obtained by compa?yef‘ts to the area. Ideally, the estimation can yield the trajectories
ing the approximation with the observation result. 90 % of the!" Fig. 1(b).

distance errors is not over 30 [cm]. Since this value seems to be ) )
smaller than the width a person occupies, the straight approximaz2  Correspondences between Incoming and Outgoing
tion is valid. Events

2.2 Node Trajectories

Whenever a node enters (leaves) the area, we obtain the time and
position of the corresponding incoming (outgoing) event from
Figure 3 depicts a histogram of the node velocities. We also showates located on the boundary of the area. Because the pro-
a normal distributionV (1.31 x 102, 7.38 x 102) multipliedbya  posed model does not monitor the inner area, it cannot know the
correction factoC' = (the number of samples of the histogram ~ gate out of which an incoming node gets. To derive an accu-
data interval). Since they present a similar tendency, we assunféte distribution of nodes, estimation accuracy of the correspon-
that node velocities can be approximated by a normal distributiondences between incoming and outgoing events is an important
factor. In this paper, we propose combinatorial optimization (Ko-
rte and Vygen, 2005) based method (COM) and Bayesian esti-
mation (Fox et al., 2003) based method (BEM).

Table 2 shows the frequency ratio of the number of nodes that

concurrently exist in the area. The observation environment ha8.2.1 Combinatorial Optimization Based Method (COM)
relatively a sparse density of people since there are not simultaA/henever the detected number of outgoing events redéhes
neously over two people in the area at about 80 % of the observahoose an incoming event for each outgoing event. In what fol-
tion. As future work, we plan to evaluate our proposed model inlows, we give the details of scheme to determine the correspon-
people-denser environments. dences between incoming and outgoing events. Examples in the

2.3 Distribution of Node Velocities

2.4 Number of Nodes



Table 2: Frequeny ratio of the number of nodes that simultaneously exist
Number of Nodes 0 1 2 3 4 5 6 7 8
Frequency Ratio 0.6583 0.1817 0.0958 0.0300 0.0100 0.0133 0.0058 0.0033 0.0017

N=1 ing incoming event probabilistically. In this section, we describe
, how to derive the probability thatut(tout, aou:) COrresponds to
= /’I ] I AN ]/ I ] ; in(tin, ain) based on Bayesian estimation.
lt l l I l l I l ] I According to Bayes’ theorem, we first obtain the relationship
"""""""""""" between the conditional and marginal probabilities of stochas-
N=2 tic eventsin(a;n) andout(aout). Here,in(a;,) is an incoming
AR g event occurred at gai@;,, andout(a.w:) iS @an outgoing event
P /I ] I by —e E/./Z///A'///?I , occurred at gat@ou:.
nl _____ l I I I l ] I P(in(am)|out(aoe))

P(out(aout)|in(ain))P(in(ain))
Figure 4: Overview of COMY = 1,2) P(out(aout))

1)

case ofN = 1,2 are shown in Fig. 4. Horizontal arrows denote BY &xtending Eg. (1) that take into account time relationship, we
the time axis, vertical arrows under the time axis denote incomderive & probability thatut (tout, aout ) cOrresponds ton(tin, ain)
ing events, and opposite ones denote outgoing events. In the 1636 follows.

side of the figure, we chood€ incoming events which will cor-

respond taV outgoing events in a dashed square. As the result, P(in(tin, ain)lout(tout, dout))

if the outgoing events are corresponded to the incoming events = P(out(tout, Gout)|in(tin, ain))

(bold arrows), then the next correspondences are chosen as in the P(in(tin, ain)) 5

right of the figure. We should note here that an incoming event 'P(out(tout, Qout)) )

that has already matched an outgoing event, that is the dashed

arrow, is excluded in the following estimation. In a stationary state of the system, we assume that the rate that

incoming and outgoing events happen does not depend on time.
Here, we explain how to choose an appropriate pair of incomingAs a result, the right side of Eq. (2) is equal to
and outgoing events. Lef be a set of gates on the boundary of
the area.in(t,a) andout(t, a) denote incoming and outgoing P(out(tout, @out)|in(ain)) - P(in(ain)) 3)
events on a gate € A at timet, respectively. Additionally, let P(out(aout))
D(a,a’) be the distance betweenanda’, andw be the average
velocity of nodes. Now, ifn(t, a) corresponds tout (¢, a’), the ~ P(out(tout, aout)|in(ain)) can be denoted by the products of
time that the node passed through the area can be estimated Ri§bability distribution of the passing time between andaou:,

follows. P(D(ain, aout)/v), and a maximum probability of node travel-
¢t~ D(a,a’) ing from a;, t0 a.w:. Consequently, Eq. (3) can be transformed
T o to

The left side of the equation is obtained from the observation, and ‘ ) .
the right side of that is derived from the estimation. Singcaay P(D(@in; aout) /) Pm”(om(?o“t”m(am))

be different from the actual velocity in practical situations, both Plinfaim)) (4)
sides of the equation may not be equal. Absolute differences of P(out(aout))

them becomes as follows. wherev denotes the node velocity. From section 2.3, node veloc-

) . , D(a,a’) ity v follows a normal distribution with meam and variancer>.
Er(in(t, a), out(t’,a')) = (' =) = ——— With this distribution, we derive a probability distribution of the
passing time that a node requires to travel on distanees
This equation is expected to be minimized whert, a) corre- PR
sponds toout(t',a’). In caseN > 2, we calculate sum oEr g(t) = 41 exp ( (-9 ) 5)
which is derived from eachV pair as follows. 12 210 20
N From Egs. (4) and (5), we derive the probability that;,, ar.)
Ser(N) = ZEr(m(ti,ai), out(t;, ay)) corresponds tout(tout, Gout) S

i=1
. . . . o P(in(tin, ain))|out(tout, Gout))
We conduct paring of incoming and outgoing events by minimiz- = g(tout—tin) Pmas (0ut(tout, aout)|in(ain))

ing Sg-(N) for N > 1. Pin(asm))

This combinatorial optimization problem can be calculated within P(out(aout))
a practical time by reducing the combination patterns under the

following considerations: an outgoing event must occur after thavhere Zmez(0utliout gout)linlai,)) Pin(ain)) means the proba-
corresponding incoming event, and does not need to exceed bility that a node moves from;,, t0 a,.:. We define this prob-

the maximum number of nodes exist in an area at the same timeability as w(ain, aout). w(@in, aowt) is updated based on the

observation result appropriately.

(6)

3.2.2 Bayesian Estimation Based Method (BEM) When-
ever an outgoing event is detected, we estimate the corresponBigure 5 shows an example of correspondence between incoming
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and outgoing events based on Eg. (6). Assume that when out-
going evenbut(tout, aout) is detected, there ate(¢1,a1) and 2
in(t2, a2) as candidates for incoming events. By using the dis- <
tance from the incoming position to the outgoing position and the
velocity following a normal distribution, ‘g
P(in(t1, a1)|out(tout, aout)) becomes as follows. e o
P(Z"I’L(tl, a1)|OUt(tout7 a/out)) = ’U}(ah aout)g(tout - tl) 051 ]
Similarly, the probability thatin(t2,a2) corresponds to 04 ‘ ‘ ‘ ‘ ‘ ‘
out(tout, aout) is derived by 1 2 3 4 5 6 7 8

P(in(tQ, a2)|OUt(touiy aoui)) - U}(CLQ, aout)g(tnut - t2)

From Fig. 5, we can seeP(in(tz, as)|out(tout; dout)) Figure 7: Reproduction ratio of COM with velocity modification

<  P(in(t1,a1)|out(tout, aout)).  Therefore, we choose

the observation result. Figure 7 shows the result of the reproduc-
in(t1,a1) as a correspondence @it (tout, Gout)- 9 P

tion ratio with this modification.;,;: denotes the initial value
of v. As we expected, the reproduction ratio is improved with
4 EVALUATION the modification wherv;,;;:=266. However, this improvement
does not appear in the casewof =65, 133. This means that the
. . - velocity approximation with only the average is not sufficient to
Lna;glj cs)re]cct:'g?\}l \;Vr? deggllt’ﬂaée Lfgemvilrciirl]ty V(\),{ﬂt]htiggobizsrsgti?:?:_lreproduce the node behavior. We tackle this problem in BEM by
. - y paring witt . using the velocity following a normal distribution.
sults in section 2. As an evaluation criterion, we define a re-
production ratio as the ratio of the number of pairs successfully, » Reproduction ratio of BEM

estimated to the whole number of pairs. Werséd 128.

By obtaining the average velocity the variances?, andw(-, -)
4.1 Reproduction ratio of COM from the observation results, we could accomplish the reproduc-
tion ratio of 1, which means BEM can estimate the correspon-
Reproduction ratio of COM is shown in Fig. 6. We chanije  dences perfectly. To compare BEM with COM fairly in terms of
from 1 to 8 according to the knowledge in section Zids setto  the initially available information, we also evaluated BEM with
133 [cm/s], which is the average velocity derived from observauniformw(.7 -). Inthis case, the reproduction ratio was 0.664 that
tion. We also use half and double of the average velocity, that isvas close to the result of COM. Moreover, we can improve the
65 [cm/s] and 130 [cm/s], as reproduction ratio 0.336 by appropriately estimating, -) from
the observation. We expect that it is relatively easier to calculate
We expected the reproduction ratio was improved with increasg, 42, anduw(-, -) with a constant interval than to measure the ve-
of N. As shown in Fig. 6, however, the ratio oscillates rather|ocity of each node. In summary, BEM is also favorable from the
than monotonically increases. We further find that the reproducyjew point of observation overheads.
tion ratio of ¥=266 is lower than others. This is caused by the
estimation error of the average velocity. However, there are al4.3 Node distribution
most no differences between the resultssefi33 and those of
U=65. In this paper, we assume that the area is divided mta n
grids. Since we can't reproduce the node trajectories precisely
In actual situations, it may be difficult for a system administratorwith smalln, we setn to a large number of 128. On the other
to know v at the start of monitoring. To reduce the initial es- hand, a resolutiom: x m (m < n) that is actually required de-
timation error ofu, we introduce a mechanism to adapwith pends on applications. In this paper, weseto 16 and the grid
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Figure 8: Node distribution based on observation
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Figure 10: Node distribution based on BEM

the relationship between the reproduction ratio and the update
interval. Furthermore, we have to evaluate the models at other
locations and explore the feasible area of the proposed models
from the view point of the number of nodes that simultaneously
exist in the area.
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5 CONCLUSIONS

In this paper, we proposed the mobility model based on the node
incoming and outgoing to an area. Firstly, we showed a node
moved approximately along with a straight line and the node ve-
locities followed a normal distribution. Moreover, we proposed
the COM and BEM which estimated the correspondences be-
tween incoming and outgoing node events. As a result, the re-
production ratio of COM was 0.736 while that of BEM was 1.

As future work, we plan to add a mechanism to chaage -) in
BEM dynamically based on the observation result and evaluate






