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ABSTRACT:

In this paper, we propose a mobility model which estimates a node distribution in a service area from node flows on the boundary
of the area. Our model targets new wireless communication techniques, such as Bluetooth and ZigBee, whose transmission ranges,
called cells, are relatively small. The proposed model reproduces the mobility of nodes in an area by the observation of the incoming
and outgoing nodes to the area. At first, we focus on a person as a node and observe an area where people actually pass through.
From the observation results, we show that a node moves along with an approximately straight line with a velocity following a normal
distribution. Furthermore, we propose two methods that estimate correspondences between incoming and outgoing events to the area;
combinatorial optimization based method (COM) and Bayesian estimation based method (BEM). As a result, the reproduction ratio of
COM is 0.736, and that of BEM is 1.

1 INTRODUCTION

In this paper, we propose a mobility model which estimates a
node distribution in a service area from node flows on the bound-
ary of the area. Our model targets new wireless communication
techniques, such as Bluetooth (Bray and Sturman, 2001) and Zig-
Bee (ZigBee Alliance, 2007), whose transmission ranges, called
cells, are relatively small. These techniques can be available for
everyone unlike mobile phone networks which belong to specific
communication carriers. Therefore, if system administrators in
companies or universities use them appropriately, they can con-
struct a new wireless infrastructure. If they arrange the deploy-
ment of access points according to the distribution of users in a
service area, communication quality for users will be improved.
Though the distribution of users can be derived by observing the
movements of users, it is unwise to observe the whole area from
the view point of monitoring overheads and costs. If we can
model the mobility of users in an area, we can estimate the dis-
tribution of users in the area while suppressing the observation
costs.

The most popular mobility model is random waypoint model
(RWP) (Camp et al., 2002), which randomly determines the node
traveling direction, velocity, and residence time. Because of its
simplicity, RWP is often referred to represent node mobility in
wide-range areas such as mobile phone networks. There have
been studied on other mobility models. For example, RWP is
modified so that the probability of the node continuing to follow
the same direction is higher than that of the node changing direc-
tions (Camp et al., 2002). Baochun Li and K.H. Wang propose a
model which groups nodes based on their velocities or traveling
directions (Li and Wang, 2003). In another study (Ashtiani et al.,
2003), an area is divided into subregions and the node mobility in
an area is regarded as a multi class Jackson network between the
subregions. All of them exclusively focus on node mobility in an
area. If the size of an area becomes small, we cannot neglect the
effect of the node flows on the boundary of the area and the ob-
stacles which disturb the node mobility in the area. These factors,
however, are not considered in the traditional mobility models.

In this paper, we propose a mobility model based on the incoming

and outgoing nodes to an area. The proposed model reproduces
the mobility of nodes in an area by monitoring the node incoming
and outgoing at gates located on the boundary of the area. We
firstly focus on a person as a node and observe the mobility of
people in a certain area in Osaka University. Then, we model
the trajectory of nodes and velocity distribution in the area from
observation results. Furthermore, we propose two methods that
estimate correspondences between incoming and outgoing events
to the area; combinatorial optimization (Korte and Vygen, 2005)
based method (COM) and Bayesian estimation (Fox et al., 2003)
based method (BEM). Finally, we validate the accuracy of the
proposed method by comparing with the observation results.

The rest of the paper is organized as follows. In Section 2, we
explain the knowledge that derived from observation and shows
validity of some assumptions used in the proposed model. We in-
troduce the proposed model in Section 3, and evaluate the model
in Section 4. Finally, our conclusion and future works are stated
in Section 5.

2 OBSERVATION

2.1 Overview

We took a movie of people flows in front of Cybermedia Center
in Osaka University from 7th floor of the building. Next, we ex-
tracted static images from the movie with a sampling of interval
500 [ms]. Then, we arranged an area of 6×6 [m2] at the center of
each image. We calculated the trajectory and incoming and out-
going positions for each node by using a measurement tool devel-
oped by Visual C++. Although the proposed model estimates the
node distribution in an area from observations at the boundary of
the area, we also observed node trajectories in the area in order to
evaluate the accuracy of the proposed model. Since we could not
observe the area from the right above, the extracted images did
not correctly represent the real world. We used projective trans-
formation (Ito, 2007) to transform coordinates on each extracted
image to those on a real coordinate system. Note that we assume
that there is no aberration of a lens. Table 1 shows details of the
observation environment.



Table 1: Observation environment
Date 2006/11/22
Time 14:30-14:40
Weather Fine
Sampling Interval 500 [ms]
Area Size 600×600 [cm]
Number of Passing Nodes 125

(a) Observation result (b) Straightly approximated
lines each of which is drawn
from the incoming position
to the outgoing position of a
node

Figure 1: Node trajectories

To evaluate the monitoring overheads quantitatively, we assume
that the area is divided inton × n grids. Accordingly, node in-
coming and outgoing to the area occurs atn × 4 gates on the
boundary. Note that node incoming and outgoing positions are
compensated to the center of the corresponding gate. We can de-
rive a distribution of node residence time by calculating sum of
node passing time for each grid. Then, we obtain the normalized
distribution of node residence time. Finally, we get a probability
density distribution of nodes by dividing each grid value by its
area.

2.2 Node Trajectories

Figure 1(a) shows the actual node trajectories, and Fig. 1(b)
shows straightly approximated lines each of which is drawn from
the incoming position to the outgoing position of a node. Figure 2
illustrates a histogram of the destance errors obtained by compar-
ing the approximation with the observation result. 90 % of the
distance errors is not over 30 [cm]. Since this value seems to be
smaller than the width a person occupies, the straight approxima-
tion is valid.

2.3 Distribution of Node Velocities

Figure 3 depicts a histogram of the node velocities. We also show
a normal distributionN(1.31× 102, 7.38× 102) multiplied by a
correction factorC = (the number of samples of the histogram×
data interval). Since they present a similar tendency, we assume
that node velocities can be approximated by a normal distribution.

2.4 Number of Nodes

Table 2 shows the frequency ratio of the number of nodes that
concurrently exist in the area. The observation environment has
relatively a sparse density of people since there are not simulta-
neously over two people in the area at about 80 % of the observa-
tion. As future work, we plan to evaluate our proposed model in
people-denser environments.
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Figure 2: Histogram of distance errors caused by approximation
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Figure 3: Distribution of node velocities (mean: 133 [cm/s])

3 MOBILITY MODEL BASED ON INCOMING AND
OUTGOING NODES TO AN AREA

3.1 Overview

The proposed model reproduces the mobility of nodes in the area
by observing the incoming and outgoing events to the area.
Firstly, from the knowledge obtained in section 2, we suppose
a node moves along with a straight line at a constant speed. Fur-
thermore, node velocities follow a normal distribution. Then,
we estimate the correspondences between incoming and outgoing
events to the area. Ideally, the estimation can yield the trajectories
in Fig. 1(b).

3.2 Correspondences between Incoming and Outgoing
Events

Whenever a node enters (leaves) the area, we obtain the time and
position of the corresponding incoming (outgoing) event from
gates located on the boundary of the area. Because the pro-
posed model does not monitor the inner area, it cannot know the
gate out of which an incoming node gets. To derive an accu-
rate distribution of nodes, estimation accuracy of the correspon-
dences between incoming and outgoing events is an important
factor. In this paper, we propose combinatorial optimization (Ko-
rte and Vygen, 2005) based method (COM) and Bayesian esti-
mation (Fox et al., 2003) based method (BEM).

3.2.1 Combinatorial Optimization Based Method (COM)
Whenever the detected number of outgoing events reachesN , we
choose an incoming event for each outgoing event. In what fol-
lows, we give the details of scheme to determine the correspon-
dences between incoming and outgoing events. Examples in the



Table 2: Frequeny ratio of the number of nodes that simultaneously exist
Number of Nodes 0 1 2 3 4 5 6 7 8
Frequency Ratio 0.6583 0.1817 0.0958 0.0300 0.0100 0.0133 0.0058 0.0033 0.0017
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2=N

t

t

t

Figure 4: Overview of COM (N = 1, 2)

case ofN = 1, 2 are shown in Fig. 4. Horizontal arrows denote
the time axis, vertical arrows under the time axis denote incom-
ing events, and opposite ones denote outgoing events. In the left
side of the figure, we chooseN incoming events which will cor-
respond toN outgoing events in a dashed square. As the result,
if the outgoing events are corresponded to the incoming events
(bold arrows), then the next correspondences are chosen as in the
right of the figure. We should note here that an incoming event
that has already matched an outgoing event, that is the dashed
arrow, is excluded in the following estimation.

Here, we explain how to choose an appropriate pair of incoming
and outgoing events. LetA be a set of gates on the boundary of
the area.in(t, a) andout(t, a) denote incoming and outgoing
events on a gatea ∈ A at timet, respectively. Additionally, let
D(a, a′) be the distance betweena anda′, andv̄ be the average
velocity of nodes. Now, ifin(t, a) corresponds toout(t′, a′), the
time that the node passed through the area can be estimated as
follows.

t′ − t ' D(a, a′)
v̄

The left side of the equation is obtained from the observation, and
the right side of that is derived from the estimation. Sincev̄ may
be different from the actual velocity in practical situations, both
sides of the equation may not be equal. Absolute differences of
them becomes as follows.

Er(in(t, a), out(t′, a′)) =

∣∣∣∣(t′ − t)− D(a, a′)
v̄

∣∣∣∣

This equation is expected to be minimized whenin(t, a) corre-
sponds toout(t′, a′). In caseN ≥ 2, we calculate sum ofEr
which is derived from eachN pair as follows.

SEr(N) =

N∑
i=1

Er(in(ti, ai), out(t′i, a
′
i))

We conduct paring of incoming and outgoing events by minimiz-
ing SEr(N) for N ≥ 1.

This combinatorial optimization problem can be calculated within
a practical time by reducing the combination patterns under the
following considerations: an outgoing event must occur after the
corresponding incoming event, andN does not need to exceed
the maximum number of nodes exist in an area at the same time.

3.2.2 Bayesian Estimation Based Method (BEM) When-
ever an outgoing event is detected, we estimate the correspond-

ing incoming event probabilistically. In this section, we describe
how to derive the probability thatout(tout, aout) corresponds to
in(tin, ain) based on Bayesian estimation.

According to Bayes’ theorem, we first obtain the relationship
between the conditional and marginal probabilities of stochas-
tic eventsin(ain) andout(aout). Here,in(ain) is an incoming
event occurred at gateain andout(aout) is an outgoing event
occurred at gateaout.

P (in(ain)|out(aout))

=
P (out(aout)|in(ain))P (in(ain))

P (out(aout))
(1)

By extending Eq. (1) that take into account time relationship, we
derive a probability thatout(tout, aout) corresponds toin(tin, ain)
as follows.

P (in(tin, ain)|out(tout, aout))

= P (out(tout, aout)|in(tin, ain))

· P (in(tin, ain))

P (out(tout, aout))
(2)

In a stationary state of the system, we assume that the rate that
incoming and outgoing events happen does not depend on time.
As a result, the right side of Eq. (2) is equal to

P (out(tout, aout)|in(ain)) · P (in(ain))

P (out(aout))
(3)

P (out(tout, aout)|in(ain)) can be denoted by the products of
probability distribution of the passing time betweenain andaout,
P (D(ain, aout)/v), and a maximum probability of node travel-
ing from ain to aout. Consequently, Eq. (3) can be transformed
to

P (D(ain, aout)/v) · Pmax(out(aout)|in(ain))

· P (in(ain))

P (out(aout))
(4)

wherev denotes the node velocity. From section 2.3, node veloc-
ity v follows a normal distribution with mean̄v and varianceσ2.
With this distribution, we derive a probability distribution of the
passing timet that a node requires to travel on distancel as

g(t) =
l

t2
1√
2πσ

exp

(
− ( l

t
− v̄)2

2σ2

)
(5)

From Eqs. (4) and (5), we derive the probability thatin(tin, ain)
corresponds toout(tout, aout) as

P (in(tin, ain))|out(tout, aout))

= g(tout−tin)Pmax(out(tout, aout)|in(ain))

· P (in(ain))

P (out(aout))
(6)

where Pmax(out(tout,aout)|in(ain))·P (in(ain))
P (out(aout))

means the proba-
bility that a node moves fromain to aout. We define this prob-
ability as w(ain, aout). w(ain, aout) is updated based on the
observation result appropriately.

Figure 5 shows an example of correspondence between incoming
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Figure 5: Overview of BEM

and outgoing events based on Eq. (6). Assume that when out-
going eventout(tout, aout) is detected, there arein(t1, a1) and
in(t2, a2) as candidates for incoming events. By using the dis-
tance from the incoming position to the outgoing position and the
velocity following a normal distribution,
P (in(t1, a1)|out(tout, aout)) becomes as follows.

P (in(t1, a1)|out(tout, aout)) = w(a1, aout)g(tout − t1)

Similarly, the probability that in(t2, a2) corresponds to
out(tout, aout) is derived by

P (in(t2, a2)|out(tout, aout)) = w(a2, aout)g(tout − t2)

From Fig. 5, we can seeP (in(t2, a2)|out(tout, aout))
< P (in(t1, a1)|out(tout, aout)). Therefore, we choose
in(t1, a1) as a correspondence ofout(tout, aout).

4 EVALUATION

In this section, we evaluate the validity of the proposed model
based on COM and BEM by comparing with the observation re-
sults in section 2. As an evaluation criterion, we define a re-
production ratio as the ratio of the number of pairs successfully
estimated to the whole number of pairs. We setn to 128.

4.1 Reproduction ratio of COM

Reproduction ratio of COM is shown in Fig. 6. We changeN
from 1 to 8 according to the knowledge in section 2.4.v̄ is set to
133 [cm/s], which is the average velocity derived from observa-
tion. We also use half and double of the average velocity, that is
65 [cm/s] and 130 [cm/s], as̄v.

We expected the reproduction ratio was improved with increase
of N . As shown in Fig. 6, however, the ratio oscillates rather
than monotonically increases. We further find that the reproduc-
tion ratio of v̄=266 is lower than others. This is caused by the
estimation error of the average velocity. However, there are al-
most no differences between the results ofv̄=133 and those of
v̄=65.

In actual situations, it may be difficult for a system administrator
to know v̄ at the start of monitoring. To reduce the initial es-
timation error ofv̄, we introduce a mechanism to adaptv̄ with
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Figure 6: Reproduction ratio of COM without velocity modifica-
tion
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Figure 7: Reproduction ratio of COM with velocity modification

the observation result. Figure 7 shows the result of the reproduc-
tion ratio with this modification.v̄init denotes the initial value
of v̄. As we expected, the reproduction ratio is improved with
the modification when̄vinit=266. However, this improvement
does not appear in the case ofv̄init=65, 133. This means that the
velocity approximation with only the average is not sufficient to
reproduce the node behavior. We tackle this problem in BEM by
using the velocity following a normal distribution.

4.2 Reproduction ratio of BEM

By obtaining the average velocitȳv, the varianceσ2, andw(·, ·)
from the observation results, we could accomplish the reproduc-
tion ratio of 1, which means BEM can estimate the correspon-
dences perfectly. To compare BEM with COM fairly in terms of
the initially available information, we also evaluated BEM with
uniformw(·, ·). In this case, the reproduction ratio was 0.664 that
was close to the result of COM. Moreover, we can improve the
reproduction ratio 0.336 by appropriately estimatingw(·, ·) from
the observation. We expect that it is relatively easier to calculate
v̄, σ2, andw(·, ·) with a constant interval than to measure the ve-
locity of each node. In summary, BEM is also favorable from the
view point of observation overheads.

4.3 Node distribution

In this paper, we assume that the area is divided inton × n
grids. Since we can’t reproduce the node trajectories precisely
with small n, we setn to a large number of 128. On the other
hand, a resolutionm ×m (m ≤ n) that is actually required de-
pends on applications. In this paper, we setm to 16 and the grid



Figure 8: Node distribution based on observation

Figure 9: Node distribution based on COM

size to 37.5×37.5 [cm2] which corresponds to a minimum area
that a person occupies. We first divide the aream × m grids
and then smooth each grid. For the smoothing, firstly we perform
Fourier transformation to the original node distribution. Then,
we make a filtering operation ofsin(x)

x
to the transformed distri-

bution. Finally, we derive a smoothed distribution by performing
inverse Fourier transformation to the distribution. These opera-
tions are equal to tolerating the trajectory errors by expanding the
width of the node trajectories to some extent. By lowering the
resolution of the area with adjustment ofm, we can alleviate the
distance errors in section 2.2.

Figure 8 shows a smoothed distribution obtained by the observa-
tion. Figure 9 and Fig. 10 show those based on COM and BEM,
respectively. We setN=3, v̄=66.5, and no velocity modification
in COM. Although the distributions based on COM and BEM are
relatively similar to that obtained by the observation, BEM seems
to be a little closer to the observation result.

5 CONCLUSIONS

In this paper, we proposed the mobility model based on the node
incoming and outgoing to an area. Firstly, we showed a node
moved approximately along with a straight line and the node ve-
locities followed a normal distribution. Moreover, we proposed
the COM and BEM which estimated the correspondences be-
tween incoming and outgoing node events. As a result, the re-
production ratio of COM was 0.736 while that of BEM was 1.

As future work, we plan to add a mechanism to changew(·, ·) in
BEM dynamically based on the observation result and evaluate

Figure 10: Node distribution based on BEM

the relationship between the reproduction ratio and the update
interval. Furthermore, we have to evaluate the models at other
locations and explore the feasible area of the proposed models
from the view point of the number of nodes that simultaneously
exist in the area.
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