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ABSTRACT:

Mobile Location Based Services (LBS) refers to the infrastructure needed to provide various services to a user based on the user
position. These applications act according to a geographic trigger, such as input of a place name, postcode, position information
from a GPS (or in future, GALILEO), location information from mobile phone network etc. A schematic map is a diagrammatic
representation based on linear abstractions of networks. Schematic maps can be used as visualization tool to help ease the
interpretation of information by the process of cartographic abstraction especially for large scale digital network datasets. This paper
presents the results of an extensive set of experiments carried out to evaluate the automated schematic map generating software
developed for mobileLBS applications. The software makes use of the simulated annealing optimization technique. The results of
extensive experimentation carried out to consider the effects of various constraints implemented, importance of setting constraint
cost weightings, issues of consistency (since there is a large random element to the algorithm) are presented.

1. INTRODUCTION

Map Generalization is the process by which small scale maps
are to be derived from large scale maps. This requires the use of
operations such as simplification, selection, displacement and
amalgamation of features that are performed subsequent to scale
reduction (Ware and Jones, 1998). Mobile LBS refers to the use
of geographic data in the field on mobile devices like networked
Personal Digital Assistant (PDA). The main components for
Mobile LBS are global positioning system (GPS), handheld
computer i.e. PDA's, and communication network with GIS
acting as the backbone. (Figure 1)
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Figure 1: The basic components essential for Mobile LBS
application. Also shows example schematic map generated from
the prototype software displayed on an iPAQ PDA using ESRI
ArcPad©

Generating schematic maps are an effective means of
generalization of large scale network datasets. The aim is to
enhance visualization at line networks and also make them user
friendly for interpretation. The basic steps for generating

schematic maps are to eliminate all features and networks (or
portions of networks) that are not functionally relevant to the
network system chosen for mapping. All geometric invariants of
the network's structure are relaxed except topological accuracy.
Routes and junctions are represented diagrammatically.

The schematization process was initially refined by Elroi (1988)
as three main graphic manipulations. First, lines are simplified
to their most elementary shapes. Next, lines are re-oriented to
conform to a regular grid, such that they all run horizontally,
vertically or at a forty-five degree diagonal. Third, congested
areas are increased in scale at the expense of scale in areas of
lesser node density.

This paper presents the summary of an extensive set of
experiments carried out to evaluate the automated schematic
map generating software developed for mobileLBS
applications. The software makes use of the simulated annealing
optimization technique. This technique has been successfully
used to control operations of displacement, deletion, reduction
and enlargement of multiple map objects to help resolve spatial
conflict arising due to scale reduction. The results of extensive
experimentation carried out to consider the importance of
constraint cost weightings are presented.

2. SIMULATED ANNEALING APPROACH

The simulated annealing (SA) based schematization algorithm
used in this work is similar to that used by Agrawala and Stolte
(2001) to render easy-to-read non-schematic route maps. At the
start of the optimization process SA is presented with an initial
approximate solution (or state). The simulated annealing based
algorithm is given below.

Algorithm SchematicMap
input: Initial, Annealing_Schedule, Stop Conditions
DCurrent(_ Dlnitial



t«—Getlnitial Temperature(Annealing_Schedule)
Costeyren=C(Current)
while NotMet(StopConditions)
New<«—RandomSuccessor(Dcyrrent)
Coste=C(New)
AE<Costyrren-COSt ey
if AE >0 then
Current<—New
COStcurrentZCOStnew

else
-AE),

p=e
r = Random(0,1)
if (r<p) then
Current<—New
COStcurrentZCOStnew
end
end
t<—UpdateTemperature(t, Annealing_Schedule)
end
Return(Dcun‘enl)

In the case of the schematic map production, the input is the
initial network: line features made up of edges, which in turn
are made up of vertices. The initial state is evaluated using a
cost function C; this function assigns to the input state a score
that reflects how well it measures up against a set of given
constraints. If the initial cost is greater than some user defined
threshold (i.e. the constraints are not met adequately) then the
algorithm steps into its optimisation phase. This part of the
process is iterative. At each iteration the current state (i.e. the
current network) is modified to make a new, alternative
approximate solution. The current and new states are said to be
neighbours. In simulated annealing algorithms the neighbours
of any given state are generated usually in an application-
specific way. In the algorithm presented here, a new state is
generated by the function RandomSuccessor, which works by
selecting a vertex at random in the current state and subjecting
it to a small random displacement, subject to some maximum
displacement distance. This compares to the random
displacement methods favoured by Agrawala and Stolte (2001)
and is in keeping with the random approach inherent to most
simulated annealing based solutions. The new state is also
evaluated using C. A decision is then taken as to whether to
switch to the new state or to stick with the current. Essentially,
an improved new state is always chosen, whereas a poorer new
state is rejected with some probability p, with p increasing over
time. The iterative process continues until stopping criteria are
met (i.e. a suitably good solution is found or a certain amount of
time has passed or a certain number of iterations have taken
place without improvement).

As with other simulated annealing solutions, at each iteration
the probability p is dependant on two variables: AE (the
difference in cost between the current and new states) and t (the
current temperature). p is defined as:

AE

p=e

The variable t is assigned a relatively high initial value; its value
is decreased in stages throughout the running of the algorithm.
At high values of t higher cost new states (large negative AE)
will have a relatively high chance of being retained, whereas at
low values of t higher cost new states will tend to be rejected.

The acceptance of some higher cost new states is permitted so
as to allow escape from locally optimal solutions. In practice,
the probability p is tested against a random number r (0 <r < 1).
If r < p then the new state is accepted. For example, if p = 1/3,
then it would be expected that, on average, every third higher
cost new state is accepted. The initial value of t and the rate by
which it decreases is governed by what is called the annealing
schedule. Generally, the higher the initial value of t and the
slower the rate of change, the better the result (in cost reduction
terms); however, the processing overheads associated with the
algorithm will increase as the rate of change in t becomes more
gradual.

The viability of any SA algorithm depends heavily on it having
an efficient cost function, the purpose of which is to determine
for any given element of the search space a value that represents
the relative quality of that element. The cost function used here,
C, is called repeatedly and works by assessing the extent to
which a given state meets the set of constraints of the map.

When invoked initially, C evaluates a cost for each vertex in the
network. This cost represents the extent to which each vertex
meets the set of constraints. The overall cost is found by
summing the individual vertex costs. A record of the individual
vertex costs is maintained for future reference, meaning that, in
any further call, C has to consider only vertices with costs
affected by the most recent vertex displacement (Ware et al,
20006).

3. CONSTRAINTS

The schematic map production presented here considers five
primary constraints (Anand 2006, Avelar 2002):

—  Topological: The original network and derived
schematic map must be topologically consistent;

—  Orientation: If possible, network edges should lie in a
horizontal, vertical or diagonal direction;

—  Length: If possible, all network edges should have
length greater than or equal to some minimum length;

—  Clearance: If possible, the distance between disjoint
features should be greater than or equal to some
minimum distance (to ensure clarity);

—  Angle: If possible, the angle between a pair of
connected edges should be greater than or equal to
some minimum angle (to ensure clarity).

Two secondary constraints i.e Rotation and Displacement are
also included. Their purpose is to minimize unnecessary
changes to the input network that are likely to occur due to the
random nature of simulated annealing.

— Rotation: An edge’s orientation should remain as
close to its starting orientation as possible;

—  Displacement: Vertices should remain as close to their
starting positions as possible.

Each of these constraints can be evaluated using straightforward
computational geometry functions, e.g. edge/edge intersection
test and vertex to edge distance calculation. In order to work
efficiently, certain of these functions require the use of a spatial
index to avoid sequential scanning of the whole workspace. A
simple regular two-dimensional indexing scheme was used in
the implementation of the simulated annealing optimization
approach.



4. SUMMARY OF EXPERIMENTS

This section provides summary on a series of experiments
carried out to evaluate the schematic map software (and its
underlying simulated annealing algorithm). First, the influence
of the Douglas-Peucker algorithm used in pre-processing, and
in particular the choice of weed tolerance value, is examined.
Next, a series of experiments that consider the importance of
using suitable annealing schedule parameters are presented.
This is followed by a number of examples that demonstrate the
usefulness of the various constraints, and the significance of
setting constraint cost weighting appropriately. Also the issue of
consistency of results is discussed.

4.1 Results with varying Douglas-Peucker weed tolerance
values

In this work the network data presented as input to the
simulated annealing schematic map software is pre-generalized
using the ArcGIS Arclnfo Workstation Generalize tool. This
makes use of an enhanced version of the Douglas-Peucker
algorithm (1973). The enhancement ensures that, provided the
point remove and topological error check options are selected, a
topologically consistent simplification of the network. It
achieves this by reintroducing into the generalized line vertices
that would otherwise have been discarded.

Application of the Douglas-Peucker line simplification to a set
of line features results in a new set of line features in which
each feature is represented by a subset of its original vertices.
The number of vertices removed during the process (i.e. the
level of simplification) depends both on the complexity of the
input data, the scale of the data and a user-defined parameter
referred to as the weed tolerance. In general, the higher the
value of this tolerance, the greater the number of vertices
removed. It therefore follows that the choice of weed tolerance
value used at the pre-generalization stage will ultimately affect
the look and quality of the schematic map produced. As such,
an experiment was carried out to assess the influence of the
weed tolerance value.

The experiment simply involves pre-generalizing the datasets
using a range of weed tolerance values, generating a schematic
map for each of the pre-generalized datasets, and visually
inspecting and assessing the resulting schematic maps. A
sample of the outputs is shown in Figure 2. For this sample
dataset it was found that tolerance values above 2m produce
good results (though it is noted that this observation is quite
subjective). Values of about 2m or less give schematics in
which there is too much detail. Finding a method for
automatically setting the tolerance value for any given data set
would be useful, and this will form part of future work.
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Figure 2: Schematic maps produced from the example dataset
pre-generalized using a range of Douglas-Peucker tolerance
values. (a) Original data (b) Om schematic (371 vertices); (c) 1m
(254 vertices) ; (d) 2m (205 vertices); (e) 10m (150 vertices); (f)
30m (142 vertices).

4.2 Constraint cost weightings

The relative importance of each of the constraints (i.e.
Orientation, Length, Clearance, Angle, Rotation and
Displacement) is controlled by an associated constraint cost
weighting. Note that the Topological constraint is dealt with
separately (i.e. any displacement that gives a topological error is
rejected automatically). Varying the relative value of constraint
weightings will produce schematic maps with varying
characteristics. This is demonstrated by a series of examples,
each generated from the sample dataset given below. (Figure 3)
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Figure 3: Sample dataset used for the experiments

4.2.1 Orientation

Figure 4. shows a simple schematic generated with Orientation
cost weighting = 50. All other weightings were set to 0. At first
glance it might appear to be a good schematic. Indeed, the edges
all appear to have been re-oriented correctly. However, in at
least one situation, in an effort to become correctly aligned,
edges appear to have become coalesced (note that the middle
“triangle” appears to have disappeared — compare with Figure
3). In fact, the edges are close to, but not quite coalesced
(coalesced edges would have triggered a topological error).
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Figure 4: Schematic generated with Orientation weighting = 50.

4.2.2 Orientation and Angle

In order to address this problem, the schematic algorithm is
again applied to example dataset. This time the Angle constraint
weighting is set to 5 (Orientation weighting = 50). This has the
desired effect of reducing the likelihood of edges becoming
coalesced (Figure 5). However, in this particular example two
edges now appear to join (in fact they do not, otherwise a
topological error would be identified) whereas in the original
data they were disjoint (the two top most edges in Figure 3).
This has happened by chance. Connectivity is an important
consideration for end user and hence likelihood of edges
appearing to join should be avoided.
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Figure 5: Schematic generated with Orientation weighting = 50
and Angle weighting = 5.

4.2.3 Orientation, Angle and Clearance

In order to resolve this problem the Clearance constraint is
activated. This is achieved by setting a minimum clearance
value and Clearance weighting > 0. The map shown in Figure 6
is generated using a minimum clearance value of 20m and a
Clearance weighting of 1.

SN
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Figure 6: Schematic generated with Orientation weighting = 50,
Angle weighting = 5 and Clearance weighting = 1. Minimum
clearance distance = 20.

4.2.4 Orientation, Angle, Clearance and Length

It could be for certain display scales, or because of line and
node symbolisation, a minimum edge length is required for
reasons of legibility. This is achieved by adding in the Length
constraint. In Figure 7 this has been achieved by setting the
Length constrain weighting to 0.5 and the minimum edge length
value = 50
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Figure 7: Schematic generated with Orientation weighting = 50,
Angle weighting = 5, Clearance weighting = 1 and Length
weighting = 0.5. Minimum clearance distance = 20 and
minimum edge length = 50.

4.2.5 Orientation, Angle, Clearance, Length and Rotation

It will almost always be desirable to minimise any unnecessary
change that takes place during the simulated annealing process.
Here (Figure 8) the difference between original edge orientation
and final edge orientation is minimised by introduction of the
Rotation constraint (achieved by setting its weighting > 0). Care
must be taken in setting the weighting — if it is too high then it
will prevent other, possibly more important, constraints from
being met.
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Figure 8: Schematic generated with Orientation weighting = 50,
Angle weighting = 5, Clearance weighting = 1, Length
weighting = 0.5 and Rotation weighting = 5. Minimum

clearance distance = 10 and minimum edge length = 20.

4.2.6  Orientation,
Displacement

Angle, Clearance, Length and

In Figure 9 the difference between original vertex position and
final vertex position is minimised by introduction of the
Displacement constraint. As is the case with the Rotation
constraint, the weighting value most be set carefully — if it is too
high then it will prevent other, possibly more important,
constraints from being met.
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Figure 9: Schematic generated with Orientation weighting
= 50, Angle weighting = 5, Clearance weighting = 1,
Length weighting = 0.5 and Distance weighting = 1.
Minimum clearance distance = 10 and minimum edge
length = 20.

4.3 Consistency of result

The simulated annealing algorithm described involves the
random displacement of randomly chosen vertices. Running the
algorithm repeatedly on the same dataset and with the same
algorithm parameters will produce different results each time. In
order to assess how consistent these results are, 100 schematics
were generated from the example dataset (in each case the same
parameters were used and the algorithm was allowed to run for
20 seconds). The average final cost over the 100 executions was
236, with a standard deviation of 18.5 (minimum cost = 200
and maximum cost = 260). This suggests that there is a
reasonable amount of consistency in result.

Furthermore, it is pointed out that the simulated annealing
implementation makes use of the VBA Rnd function to generate
random numbers. The function is initialised with some arbitrary
seed value. Each initialising value will typically produce a
different random sequence, and solutions will vary. However,
the same initialising value will always produce the same random
sequence. This property provides a mechanism for reproducing
previous solutions (which is achieved by simply keeping a
record of seed values used).

5. CONCLUSIONS

This paper has presented an experimental evaluation of the
simulated annealing schematic map algorithm. These maps are
especially of great usability in mobileLBS applications. It has
been shown that while the use of the Douglas-Peucker
algorithm as a pre-process leads to good schematics, the choice
of weed tolerance value is important. The usefulness of the
various constraints has been verified, as well as the significance
of setting constraint cost weighting appropriately. Consistency
of results (which may have been in doubt due the random nature
of the algorithm) has been confirmed.

Further work is still necessary to find dataset characteristics and
costs to decide for the optimal schematization strategy to be
applied. We expect to repeat the experiment for various datasets
and observe outputs for datasets of varied nature. Also finding a
method for automatically setting the tolerance value for the pre-
generalization on any given data set would be useful, and this
will form part of future work.
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