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ABSTRACT: 
 
Precision farming, sometimes called site-specific agriculture, is a strategic task for agriculture: indeed it has the potential to reduce 
costs through more efficient and effective applications of crop inputs; it can also reduce environmental impacts by allowing farmers 
to apply inputs only where they are needed at the appropriate rate. Precision farming requires the use of new technologies, such as 
GPS, environmental sensors, satellites or aerial images and GIS to asses and understand variations.  
The present research deals with potentialities and limits of GPS for navigation in agricultural applications. GPS needs for farming 
applications are: 

− low cost in order to allow farmers to buy GPS technologies; 
− high precision in order to reduce the use of pesticides and fertilizers by means of an exact track. 

At first, static and kinematic tests have been performed, simulating the typical behaviour of an agricultural vehicle and using 
different kinds of GPS receivers and navigation softwares; the experimental results are presented: particularly, advantages and 
disadvantages of the popular Kalman filtering on trajectories are discussed. Starting from the analyses of the previous results, and 
taking into account the typical user requirements, a preliminary design for a new prototype has been done; particularly, both needed 
instrumentations and their costs and a proposal of a new navigation algorithm will be presented. 
 
 

1. INTRODUCTION 

Precision farming is a method of crop management by which 
areas of land within a field may be managed with different 
levels of input depending upon the yield potential of the crop in 
that particular area of land. The benefits of so doing are two 
fold: 

− the cost of producing the crop in that area can be 
reduced; 

− the risk of environmental pollution from 
agrochemicals applied at levels greater than those 
required by the crop can be reduced. 

Precision farming is an integrated agricultural management 
system incorporating several technologies. The technological 
tools often include the global positioning system GPS, 
geographical information system GIS, remote sensing, yield 
monitor and variable rate technology. 
The paper talks about the use of GPS to support agricultural 
vehicle guidance. Equipment for this purpose consists on a 
yield monitor installed: the system supports human guide by 
means of a display mapping with a GIS the exact direction 
produced by GPS receiver put on vehicle top: the  driver 
follows it to cover in an optimal path the full field. 
GPS receivers for this applications require, not only an high 
accuracy to ensure the reduction of input products, but even an 
easy and immediate way of use for farmers; without forgetting 
low costs. 
Obviously the technology to achieve high precision still exists 
but it is too expensive and difficult to use for not skilled people. 
Survey modality usually adopted in agricultural applications is 
real time kinematic positioning, DGPS RTK, which enable to 

have a good accuracy by means of corrections received. In this 
experimentation the aim is to obtain a sub-metric accuracy 
using low cost receivers, which can provide only point 
positioning. These receivers have been developed for maritime 
navigation purposes; our aim is their optimization in order to 
apply them for land navigation in particular for farming 
activities. Some tests using these receivers were carried out, but 
results were not satisfying and probably the reason has to be 
assigned to the implementation of a Kalman filtering inside the 
receiver software. This is the starting point for a new project, at 
the moment still in progress, which aim to develop a new 
algorithm based on Kalman filter. Its purpose is to improve low 
cost receiver outputs in order to optimize trajectories and to 
reach needed accuracy in vehicle positioning during agricultural 
activities. 
 

2. TRIAL AND ERROR 

2.1 Instruments and tests 

Experimentation has been carried out using Leica Geosystems 
instruments; in particular the low cost receiver discussed in the 
paper is the TruRover Leica. Its mainly features are: it is an 
antenna-receiver integrated instrument, it has a 5 Hz tracking 
time, the report is in the NMEA string format, it cannot neither 
store positions nor show them in real time, it requires a 
computer to view NMEA data stream. TruRover performances 
were compared with geodetic receiver one, which are 
considerably better, so they are the perfect comparison 
condition to estimate Trurover positioning quality. 
Geodetic receiver used is the GX1230 Leica, able to receive 
double frequency (both code and phase). 



 

  

Both static and kinematic tests were performed, simulating the 
typical behaviour of an agricultural vehicle (straight and 
parallel trajectories with reduced velocity, such as 20÷40 km/h) 
and using, at the same time, the two different kinds of GPS 
receivers described above. At the top of the vehicle, both 
TruRover and geodetic antenna, connected to the receiver, were 
placed at a distance of 50 cm. Three static stops with 20 
minutes time length were performed, spaced with two steps in 
motion. Geodetic receiver were set with a 1 second tracking 
time and a cut off angle of 10 degree. Tests length were about 
two hours. 
Another geodetic receiver were placed for a single point 
positioning and used as the Master station for the following data 
processing. 
 
2.2 Data processing 

Master station coordinates were determined by means of a static 
processing in relation to two different GPS permanent station in 
order to check result: one placed in Modena, where tests have 
been carried out, led by INGV and the other located near 
Bologna, led by ASI Telespazio. 
TruRover NMEA data already contain coordinates and Visual 
GPS software has been utilized to show and store them. These 
positions have been compared to data stored by double 
frequency receiver during kinematic tests. These data were 
utilized to estimate the exact trajectory, which was estimated by 
the postprocessing in kinematic differential modality. Software 
for data processing was Leica Geo Office. To be honest this 
trajectory is not exact because even kinematic postprocessing 
data have some errors; however this modality has a centimetric 
accuracy, better than the required from agricultural applications 
one so it is not a mistake to consider this track as an exact one. 
TruRover track and the exact one are not yet comparable 
because 50 cm shift still exists: a kind of overlap has been done 
by means of setting vehicle motion direction thanks to 
postprocessed trajectory. 
 
2.3 Results analysis 

The results of the comparison between TruRover track and 
double frequency receiver one are not satisfying; indeed 
receivers utilized in experiments show some problems in 
curves, where the estimated track is larger than the exact one. 
This bad performance may be due to the presence of a Kalman 
filter inside the system, that is not optimized for the specific 
application. Probably at each epoch this filter uses previous 
estimated positions in order to anticipate the  future one on a 
constant velocity, linear trajectory assumption. In that way 
when vehicle curves the filter understand it as a mistake and 
modify the position; this behaviour causes a delay in curving 
and consequently a shift in positioning. Figure 1 shows this 
orderly problem on curve. 
Higher precision for agricultural applications is not required in 
curves but in straight directions, where farmers make their main 
activities on yield. However curves have a great importance 
mainly at their end because there it is necessary for the vehicle 
trajectory to be parallel to the previous one. The main reason 
for that is to economize input products spread about field. 
Kinematic trajectory is considered the exact one, the reference 
for a comparison between pseudo-range and kinematic tracks. 
The results show distances greater than 1 meter (the target 
aimed) but always inside  the method precision (10 meters). 
Statistical parameters, as means and standard deviations, 
confirm the same things. Table 2 and 3 relate these statistical 
valuers. At the beginning the idea was that Kalman filter needs 

a period of assessment time to work better; on the contrary, 
with the elapsed time the differences increase with a worrying 
time drift. 

 
 

Figure 1. Shift between postprocessed track and TruRover 
track. 

 
Statistical 
parameters 

First 
track 

Second 
track 

 [m] [m] 
σ∆E 0.7816 0.7555 
σ∆N 1.1183 1.2799 
Mean ∆E 0.169 -0.175 
Mean ∆N 1.948 1.573 
Max distance 5.733 7.742 
Min distance 0.091 0.080 

 
Table 2. Statistical parameters, means and standard deviations, 

in kinematic paths.. 
 

Statistical 
parameters 

First 
stop 

Second 
stop 

Third 
stop 

 [m] [m] [m] 
σ∆E 0.4743 0.3018 0.3163 
σ∆N 0.7210 0.5001 0.3907 
Mean ∆E 0.221 -0.725 -0.848 
Mean ∆N 0.534 2.081 1.086 
Max distance 2.022 3.184 2.138 
Min distance 0.007 1.262 0.476 

 
Table 3. Statistical parameters, means and standard deviations, 

in static stops. 
 
 
3. DEVELOPMENT OF A NEW ALGORITHM BASED 

ON KALMAN FILTERING 

The reason for problems in curve is probably the presence of a 
Kalman filtering inside TruRover, not especially studied for 
farming applications. Thereof  the need of trying a kind of 



 

  

TruRover performances improvement pursued by means of the 
development and the implementation of a new algorithm based 
on Kalman filtering and, at the same time, optimized for 
agricultural requirements. 
The first problem was the choice of the process modelling to 
put in Kalman equations. In particular two trials have been done 
and described in the following: the constant velocity model and 
the constant acceleration model. Before the models description, 
it will be shortly illustrated Kalman filter principles.  
 
3.1 Kalman filter algorithm 

The Kalman prediction, provided by the following algebraic 
computations, is a statistically optimal predictor of the process 
ξ. This specific filter consists of two sets of equations: 

− the prediction, sometimes called equations of time 
update 
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− the filtering, sometimes called equations of 
measurement update 
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Each set of equations is defined in terms of the state vector x, its 
covariance matrix Cxx, transition matrix Φ, covariance matrix of 
the system noise Cww, covariance matrix of the observations 
noise Cnn and G represents the Kalman gain. 
 
3.2 The constant velocity model 

Let φ(t), λ(t), h(t) be the vehicle position vector and vφ(t), vλ(t), 
vh(t) its velocity vector at the same epoch in the north, east and 
up direction. Data are provided from GPS receiver so we 
consider a constant tracking ∆t, but what we will describe can 
be generalized using variable time lengths. 
The following time propagation law (constant velocity model) 
is assumed: 
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With a compact notation the time propagation law can be 
written as: 
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Single epoch observation equation: 
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In a compact notation: 
 
 

       [ ] 11
1

1
1, 0 ++

+

+
+ +=⎥

⎦

⎤
⎢
⎣

⎡
= kk

k

k
kO nA

v
x

Ix ξ                (6) 

 
 
Where nk+1 is the observation error, for which the classical zero 
mean and normal distribution hypotheses (

1 , 1[0, ]k k+ +≈ nnn CN ) 

hold. As described before, observation vectors are only defined 
by the three position coordinates, no velocity measurements are 
provided. 
The starting epoch (t=0) is considered the last one before 
vehicle moving. Initialization at that time is provided as 
follows: 
 
 

                     ∑
−−=

=⎥
⎦

⎤
⎢
⎣

⎡
=

1,
,0

0
0

1,
0 Ni

iOx
N

x
x

ξ                      (7) 

 
 
To be more precise, the position at the beginning of the 
movement is calculated as a  mean of coordinates tracked 
during the single point positioning, supposed previous to 
motion. Starting epoch covariance matrix is: 
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where measurement noise at a single tracking epoch is so 
adopted: 
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Cnn is the measurement covariance matrix and it is related to 
satellite constellation, for this reason main diagonal is defined 
using DOPs parameters. They are variable in each epochs, 
despite that first algorithm tests have been made using constant 
values for HDOP and VDOP. VDOP is amplified with a 
constant c taking into account that vertical measurements are 
worse than planimetric one. The assumption on constant 
parameters are: c=2 and σ0=1m2. 
Covariance matrix of the system noise Cww represents the error 
we commit considering a particular model rather than another 
one. In this case, the error considering the constant velocity 
model results from the propagation of the state vector 
covariance using transformation matrix. The final Cww form is: 
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where σv
2= 0.5 m/s. 

 
3.3 The constant acceleration model 

The constant acceleration case can be modelled by including 
accelerations in north, east and up direction in the state vector, 
aφ(t), aλ(t), ah(t). The other components are the same:  φ(t), λ(t), 
h(t) represents the vehicle position vector and vφ(t), vλ(t), vh(t) 
its velocity vector at the same epoch. The following time 
propagation law (constant acceleration model) is assumed: 
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With a compact notation the time propagation law can be 
written as: 
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Single epoch observation equation is the same showed for 
constant velocity model with the acceleration terms in addition 
to the state vector; the compact notation is the following: 
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What have been said about measurement noise and initialization 
at the previous section (3.2) is still right. 
Covariance matrix related to the process Cww is a little bit 
different but it is always obtained thanks to the state 
propagation. The results is as follows: 
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where σa

2= 0.5 m/s. 
 

4. CONCLUSIONS 

The above described problems are a great problem for precision 
farming because bad tracks in the field cause wastes of material, 
without considering economical and environmental impacts. So 
that, starting from the analyses of the previous results and 
taking into account the typical user requirements, a preliminary 
design for the new algorithm based on Kalman filtering has 
been done. The idea underlying the new navigation system is to 
implement a simplified version of the so called adaptive 
Kalman filtering; the filter takes into account both the typical 
behaviour of an agricultural vehicle and the a priori knowledge 
of the planned track and works continuously testing alternate 
hypotheses in predicting the track. The new Kalman algorithm 
should both eliminate drifts in curves and occasional spikes in 
satellite configuration changes. This research project is still in 
progress; at the moment we have implemented the new 
algorithm which consists on a double filtering using the 
constant velocity model in straight trajectories and the constant 
acceleration model for curve tracks. First results are presented 
in appendix. Problems during algorithm testing were mainly the 
lack of raw data, in fact TruRover NMEA reports are still 
filtered and there is not the possibility to remove the previous 
filter implemented inside the receiver and it is not 
mathematically correct utilizing them for another filtering. For 
this reason data inputs for new algorithm have been provided 
from double frequency receiver without post-processing (raw 
data really as they have been stored). Results confirm the 



 

  

importance to adopt a model based on acceleration in curve, but 
at the same time it is necessary looking at these results in a 
critical way because they are outputs originated from inputs 
better than Trurover data. In the tests the attention will be 
mainly focused on variables which have a great importance in 
the model and parameters choice, such as process covariance 
and measurement noise. Next steps will be two-fold: 

− trying to vary covariance weighs both in system noise 
matrix and in measurement noise matrix; 

− test double filtering with raw data not yet filtered and 
tracked by a low cost and single frequency receiver, 
showing located spikes. 

The purpose to improve TruRover performances and to 
optimize them for precision farming is challenging, especially 
having at our disposal only raw data. Other possible solutions 
are: 

− connecting an odometer and a steering wheel to the 
system, integrated with the GPS receiver, which 
supports human vehicle guide. It could be the input to 
choose, at the right time, the best process model to 
adopt inside Kalman filter (constant velocity or 
constant acceleration model). 

− utilizing differential positioning, DGPS, improving 
coordinates thanks to corrections received from a 
Master station close to the field. 
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7. APPENDIX 

In this section first results of the new algorithm implementation 
are presented. As explained before, it is a double filtering, 
based on Kalman prediction, which utilizes both constant 
velocity model and constant acceleration model. The 
acceleration addition term is very important in curves (just the 
most problematic areas); to confirm that, we show the different 
comparison between input data and outputs obtained with 
constant velocity model in one case and constant acceleration 
model in the other. 
 

 
 

Figure 4. New algorithm implemented: input data compared 
with constant acceleration model output. 

 
It is clear how the two trajectories, input and output, are quite 
overlapped adopting a constant acceleration model in curves. 
Figure 5 shows how a certain shift persists adopting a constant 
velocity model even in curves where there are the great 
problems of distance between tracks. So the choice to 
implement a differentiate filtering seems to provide good 
results. 
 



 

  

 
 

Figure 5. New algorithm implemented: input data compared 
with constant velocity model output. 

 
 
 
 


