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ABSTRACT: 
 
Integration of INS and GPS is necessary for continuous georeferencing in Mobile Mapping (MM); improved mathematical models, 
such as tightly coupled solutions, make very efficient use of the available information, especially with poor GPS solutions. However, 
experience shows trajectory errors still arise. If data from the two system components do not agree for whatever reason, deciding 
which data is wrong may not be easy and depends on filter implementation. The availability of data from other sensors can help to 
identify the erroneous data source. In this paper, use of photogrammetry to verify the consistency of GPS/INS data is proposed.  
First, the GPS-aided inertial navigation solution implemented is introduced, discussing its extension to photogrammetry-aided 
solution. Some reliability tests are reviewed. Finally, the concept and implementation details of an automatic procedure providing a 
photogrammetric check of the GPS/INS data is described. In short, the idea is rather simple: to compare the image locations of a set 
of object points, computed from the stereo pair at time ti, with those of the same points projected on the images at ti+1, based on the 
exterior orientation computed by the navigation solution at time ti+1. 
Although no test of the method has been made yet, experience shows that tracking points on the road surface in MM image 
sequences is feasible; implementation details take care of redundancy as well as of speed of computation: in principle the check can 
be applied to every consecutive pair of the sequence.  
 
 

1. INTRODUCTION 

1.1 Mobile Mapping Vehicles 

Mobile Mapping Vehicles (MMVs) are used to georeference 
data acquired by different sensors along roads and their 
surroundings.  
The survey missions of MMVs fall in two main areas of 
application, to a large extent overlapping. The first is data 
collection for the population or the updating of a road cadaster 
database or a urban GIS; in this case geometric and attribute 
data about the road infrastructure but also about its 
surroundings area of interest are collected. The second, 
normally of interest to road and traffic departments which are 
responsible for road maintenance and road safety, concentrates 
more on the state of the road surface (frequency and severity of 
potholes, cracks, degree of surface roughness). Other issues 
concerning safety (such as driving comfort, visibility distances), 
as well as the impact on the environment (pollution and noise 
level due to traffic on nearby buildings, etc.) can be also 
relevant to a survey mission. 
 
From a functional standpoint, a MMV hosts a Positioning and 
Orientation System (POS), which provides navigation data, and 
a Data Acquisition System, which manages the on-board 
sensors; both have their storage and power requirements and 
must be synchronized to allow for data georeferencing.  
Today’s MMVs are designed to acquire data at operating speed 
around 50–80 km/h; data georeferencing is achieved with an 
on–board POS, typically composed by an INS and one or more 
GPS receivers, providing the position of the body system with 

respect to a mapping reference system and its orientation with 
respect to a local level system at high frequency (100–200 Hz). 
Geodetic–like antennas with optical gyroscopes and vibrating 
accelerometers are actually the most used configuration. In most 
cases, a Distance Measuring Instrument (DMI) is also integrated 
in the POS, either as a support to navigation as well as to 
provide a coarse georeferencing in terms of linear distances 
along the road, useful for operational purposes. 
 
Active on–board sensors depend on the task; normally they 
include one or several digital cameras; laser scanners with 
different speed, operating range and accuracy are also 
increasingly used. Image data are mostly collected to retrieve 
geometric information by photogrammetry; careful design of 
image resolution, frame rate, focal lengths, placement and 
orientation of cameras should ensure stereo coverage of the 
corridor of interest of the survey. Besides, other cameras may be 
mounted for specific purposes, such as crack detection. Image 
processing techniques can also be used to automate, at least to 
some extent, some of the tasks (e.g. to measure the lane width, 
recognize road signs, detect cracks, etc). Laser scanners were 
installed at first mainly to measure road surface parameters (e.g. 
the International Roughness Index) by along– track profiling 
with mm level accuracy) or the extent of rutting on the lane by 
cross profiling; today they also provide other information, such 
as the clearance under bridges and overpasses; besides, the 
distance to nearby buildings or a detailed DSM of the corridor 
may be generated to study traffic noise propagation or as 
support for 3D city model generation.  
 



 

Depending on the mission purpose, on the georeferencing  
accuracy required and on the sensor characteristics, time 
synchronization and offsets as well as misalignments between 
the body system and the sensor systems must be taken into 
account with an accurate calibration and monitored for stability 
over time. For instance, image georeferencing is obtained by 
interpolation of the navigation data at the exposure time, 
accounting for the offset and misalignment of the camera 
reference frames with respect to the body frame. 
 
1.2 Aided inertial navigation 

The integration of GPS and INS data benefits many aspects of 
the navigation solution and the overall survey quality, because 
of the improved accuracy and reliability of an integrated system 
respect to the separate ones. Improvements in the mathematical 
modelling and software implementation such as tightly coupled 
solutions make very efficient use of the available information, 
especially with poor GPS solutions. However, experience shows 
that use of these sensors and algorithms is not always sufficient 
to guarantee a fault tolerant system. Sometimes, error caused by 
outliers or residual model errors even in only one of these 
sensors can lead to incorrect estimates of position or attitude. 
This is particularly true in case of GPS outages or changes in 
GPS constellation which often result in sudden shifts in the 
trajectories. If the two system components (GPS and INS) do 
not agree, at least weights should be adjusted in the filter to 
minimize the contribution of erroneous data. With only two data 
sources available, deciding which data are wrong may not be 
feasible. Due to the error characteristics of the IMU, however, 
the system often relies primarily on GPS data; the relative 
weighting of IMU and GPS data therefore favour the latter as 
long as their quality is believed to be accurate.  
 
If GPS outages are long and severe, drift errors of the IMU 
become too large and the accuracy of the POS data decreases. 
This may happen for instance in city centres, where operating 
speed is sometimes slow because of traffic (so outages last 
longer), along narrow streets where buildings are very close to 
the road, along boulevards or countryside roads bordered by 
dense tree rows, in road sections through forests, tunnels, etc. In 
such cases, we may turn to a purely photogrammetric approach 
to recover the image orientation parameters and proceed with 
restitution, possibly keeping human interaction to a minimum. 
Automatic image sequence orientation to support an IMU/GPS 
system to overcome GPS outages was proposed in (Chaplin and 
Chapman, 1998 and 2001; Tao et al, 1999; Roncella and 
Forlani, 2005). 
 
There are however cases where the GPS solution can lead to 
errors, if unchecked. It is not uncommon indeed to have 
trajectory jumps (up to tens of cm and more) even with more 
than 5-6 satellites continuously available: this can be the case 
for instance when a new satellite rise or one being tracked is 
masked if this causes a significant change in the geometry of the 
solution, that might be reflected in a PDOP change. The 
trajectory shift may last for some time and finally vanish with a 
new jump, back on the correct position. In our experience as 
GPS users, these sudden shifts in the OTF solution are often 
very hard to correlate to any degradation of the user-available 
quality parameter of the GPS kinematic solution (RMS of 
trajectory coordinates, number of satellites tracked and PDOP). 
In other words, it’s difficult to find out if and what went wrong, 
unless you have an independent check (the projection of the 
trajectory on the map being a poorly accurate but at least an 
always available one). With GPS and IMU integration, we did 

not expect these problem to arise; but in a series of runs over 
the same road section with a MMV equipped with a commercial 
GPS/INS system, we found that problems with the GPS solution 
resulted, rather than in a sudden shift, in a slow drift to a 
wrongly shifted trajectory (about 40 cm in height). This 
example highlights the need for greater reliability in the 
navigation solution, especially from a user standpoint. As for 
GPS outages, we believe that photogrammetry may provide an 
aid in the identification of problems in the navigation solution.  
In the past years we have been working to the development of 
an aided inertial navigation algorithm, where photogrammetry 
may also be used as aid to the IMU, should the GPS outage last 
too long.  Although work is still in progress, we believe that 
photogrammetry can be successfully applied to check 
extensively (i.e., all along the trajectory) the navigation 
solution, providing much needed reliability.  
In the following, the navigation solution is first addressed, 
briefly describing the characteristics of our implementation, 
including photogrammetrically aided inertial navigation; some 
proposals for a reliability theory are then reviewed. Finally, we 
present how the cross-check of the IMU and GPS solution by 
photogrammetry can be implemented efficiently so that it can be 
performed all over the image sequence.  
 
 

2. NAVIGATION SOLUTION  

Integration of INS and GPS is usually accomplished using a 
Kalman filter for recursive estimation, although this is not the 
only feasible way. The advantage of this method is the supply of 
a real time result which allows the user to get a first idea about 
the quality of the solution during the survey; moreover, it 
carries out a recursive estimation of the parameters of interest 
with a modest numerical effort.  
 
2.1 Kalman filter  

Let xk be the m–dimensional system state at time k. This is a 
vector of parameters which are supposed to describe completely 
the system. Suppose that this system is a time–varying discrete 
dynamic system, evolving in time with a linear model of the 
type: 

kkkkk εxFx += −− 11,   (1) 

Fk,k–1 is the state transition matrix from time k–1 to k and εεεεk is a 
noise which takes into account model errors and non–
deterministic components which affect the system evolution. 
Such an error is hypothesized with zero mean, normally 
distributed, time independent and with known covariance 
matrix  Cεεεεεεεε , so  
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Equation (1) is the steady–state equation and represents the 
mathematical model.  
It is necessary to initialise the system state, defining 

0xx == otk  

under the hypotheses that x0 is normally distributed and 
uncorrelated with εεεε  
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Let 
knyyy K21, be nk measurements, related by a linear 

relation with some of the parameters which characterise our 
dynamic system: 

kkkkk exAy += −1,   (2) 

Ak,k–1 is the design matrix; ek is the measurement error, which is 
hypothesized with zero mean, Gaussian distributed and with 
known covariance matrix Cee. This is the measurement 
equation. Also in this case we suppose that the errors e are 
independent from εεεε:  
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The Kalman filter allows to determine the optimal linear 
estimate of the system state xk k∀ , in a Wiener – Kolmogorov 
sense, by means of a two step procedure: the Kalman filtering, 
typically used for real time purpose, and the Kalman smoothing, 
which follows it and is employed usually in post–processed 
applications like mobile mapping surveying. The first step is 
also composed by two stages: the prediction and the update.  
The prediction supplie the estimated value of parameters at time 
k , given their values estimated at time k–1 and their precision: 

1|11,1| ˆˆ −−−− = kkkkkk xFx  

k
T

kkkkkkkk ,1,1|11,1| εCFCFC += −−−−−  

While the update equations give the estimated value of the state 
at time k given the measurements at the same time: 

)xAyKxx 1|1,1|| ˆ(ˆˆ −−− −+= kkkkkkkkkk  

( ) 1|| −−= kkkkkk CAKIC  

where K k is the Kalman gain matrix,  
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The smoothing stage allows to determine the optimal linear 
estimation of the system state at time k, taking into account not 
only the measurements obtained up to this epoch, but also of all 
the measures collected during the successive instants k+1, 
k+2,… T, where T is the last epoch of the survey. That 
procedure is performed with reverse time scale: one start from 
the last epoch of measurement and updates sequentially all the 
estimates of the states, from the T–1 epoch to the initial instant.  
The relations involved are the following: 

1
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In this way one obtains  T|kx̂ and its covariance Ck|T k∀ . 

 
These Kalman filter estimators are optimal in the Wiener – 
Kolmogorov sense, have minimum variance and are normally 
distributed. Optimality, however, is assured only as long as the 
assumptions of mathematical and statistical models of the filter 
are correct. This is not always the case, for instance when 
reduced order model of the real navigation system is employed. 
To guarantee Kalman filter stability it is requested merely that 
observability and controllability conditions are suited. 
 

2.2 The implemented navigation solution  

We developed an integrated solution which uses GPS positions 
of three antennas and IMU data. Usually, classical equations of 
the INS errors are used as a system model, while differences 
between the INS and GPS positions and velocities are used as 
measurements. This kind of integration scheme is referred to as 
cascaded approach. In our case, instead, we use a unique filter 
for GPS positions and IMU corrected data, in a loosely coupled 
fashion. The system model has been developed in an earth-fixed 
frame, with cartesian coordinates, and the navigation equations 
have been solved analytically. The analytic approach allows to 
eliminate some approximations made in many numerical 
solutions. This method of integration is simple and universal for 
different kind of inertial systems and GPS receivers. On the 
other hands, it suffers from two limitations in its current 
implementation: at least four satellites are needed to provide a 
GPS solution, which is fed to the integrated filter; for the time 
being, it needs three antennas on the vehicle. Besides the 
presence of both the GPS–only solution and the integrated 
solution simplifies fault detection if a failure occurs in either 
systems.  
 
2.3 Photogrammetry–aided inertial navigation 

As already pointed out, during long GPS outages the IMU 
solution must be strengthened by other means.  Photogrammetry 
may be up to the job. It has been shown in previous papers 
(Roncella and Forlani, 2005) that tie points can be 
automatically extracted along a small sequence (e.g. 200-300 
m), to provide a consistency of the EO parameters irrespective 
of the IMU and GPS solution.  
To this aim, a stereo sequence is processed, consisting of two 
overlapping strips, with known orientation parameters at both 
ends, i.e. at the last image pair where the POS solution is still 
reliable (the beginning of the sequence) and at the first image 
pair (the end of the sequence) where the POS solution is again 
reliable. Tie points may be tracked with Structure and Motion 
techniques (Fitzgibbon and Zissermann, 1998; Pollefeys et al, 
1998) on a large number of images. Because of the very small 
base compared to scene depth, the inner stability of the block is 
very low. Constraints such as epipolar geometry through the 
fundamental matrix (Longuet–Higgins, 1981) and the geometry 
of three cameras through the trifocal tensor (Shashua,1994) can 
be added to reject outliers. The solution will soon or later drift, 
due to the poor control applied; since the relative orientation of 
the on–board cameras is known by calibration, this can be 
enforced in the strip adjustment, effectively improving the 
stability over time of the solution.  
During GPS outages, a cooperation of the position and 
orientation data of a low–grade IMU with the Structure and 
motion (S&M) reconstruction is possible and has been 
proposed in (Horemuz and Gajdamowicz, 2005). Because of the 
characteristics of our Kalman filter implementation, orientation 
data from photogrammetry can be straighforwardly 
incorporated. In fact, the measurement equations can be easily 
reconfigured to accept attitude parameters from 
photogrammetry, only changing the covariance matrix respect 
to that of GPS attitude information. At the moment, though, the 
system has not yet been tested, so we have no experimental 
evidence of the benefits of combining both techniques, each 
with its drift behaviour. 
 
 



 

3. RELIABILITY OF THE SOLUTION 

In a mobile mapping survey, identification of outliers, failures 
or variation in the mathematical model, in real time or in post–
processing, is of extreme importance. These situations can be 
generated by a wide variety of problems like, for instance, 
sensor bias shifts in INS or variation of the noise level, but also 
in jump or drift in the GPS solution which can affect the results. 
Redundancy is often used as a means of providing a check 
against failures. However a single redundant instrument may be 
used to detect a failure, but not isolate to a particular system and 
this redundancy methods are costly due to power weight and 
value of redundant systems. An alternative methodology is the 
use of dissimilar instrumentation to provide integrity of 
operation, decreasing the overall cost of the instrumentation 
system. Usually are installed DMIs, but also compasses, 
magnetometers and other instruments can be used. But there are 
other sensors which are yet present onboard and can possibly 
used to aid navigation solution and reliability: the cameras. A 
test has been performed by (Horemuz and Gajdamowicz, 2005), 
obtaining interesting results. 
In the case of recursive algorithms, it is possible to use 
statistical tests test which can identify the failure in real time, or 
in near real time.  
 
3.1 Reliability theory 

Let us define innovation, or predicted residual, the difference 
between the actual real measurements and the measures 
predicted on the basis of the predicted state: 

1|1, ˆ −−−= kkkkkk xAyv  

Innovation represents the new information introduced by the 
last observation. In fact, the filtered state is a linear combination 
of the predicted state and the innovation. 
If the mathematical or statistical model has been defined 
correctly, the innovations are independent and Gaussian 
distributed  
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with known covariance matrix: 
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Knowledge of the distribution of the innovation can be used for 
integrity monitoring. In fact the parameters forming the 
innovations are based on all past and present measurements 
with a model of the system. Hence this parameter contains all 
the information needed to detect changes in the mean of the 
Gaussian sequence.  
 
3.1.1 Output separability :  It is possible during design to 
know if the system is able, and the critical situations in which it 
is not, to detect and isolate the faults. One can have two 
possible failures: a failure in the system model and a failure in 
the measurements.  
In case of a system failure, equation (1) can be rewritten as 

kkkkkkkk εµBxFx ++= −−−− 11,11,   (3) 

where 1, −kkB  is the direction matrix and 1−kµ is the unknown 

fault to be detected. In this case no hypothesis has been 
introduced about the particular kind of failure. 
In case of a failures in measurements, in a similar manner, 
equation (2) can be rewritten as 

kkkkkkkk emDxAy ++= −− 1,1,   (4) 

where km  is a fault whit a known direction 1, −kkD . 

It can demonstrated (Williamson et al., 2005) that a fault in the 
measurement model can be rewritten like a system fault, and 

therefore the equation (4) can be rewritten in an equivalent form 
of (3). So the problem of a measurement fault identification is 
equivalent to a system fault identification. 

For a given fault direction 1, −kkB , if ( )1,1,1, −−− kkkkkk BFA δ  is full 

rank for any choice of δ, then the fault direction is identifiable. 
If we have more than one possible failure, it is sufficient to 
perform this test for any hypothesised failure. 
This simple test can be performed before the system 
implementation, so one can carefully design mobile mapping 
system. 
 
3.1.2 Chi–square test:  It is possible to identify the presence 
of a blunder in the observations by means of a local test 
(Teunissen and Saltzmann, 1989) which analyze all the 
observations at each epoch. If we want to verify the following 
alternative hypotheses: 
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The appropriate statistics is  
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where λ is the non–centrality parameter of a non–central chi–
squared distribution and n the degrees of freedom. 
The null hypothesis is rejected at a significance level α, if 

2
αχ ,nk k

T ≥
. 

This test, named local overall test, has the great advantage that 
it is particularly simple to be implemented, does not imply an 
increment of computational load during the filtering stage, 
because innovations and their covariance are still present at 
each step of update, and allows fault detection in real time.  
 
If, between the observations, we want to identify the erroneous 
measure, it is possible to use the local slippage test  
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The null hypothesis is rejected for  
2
,1, αχ≥ikt .  

This test presents the same advantages of the previous one and, 
if we have the necessary observability and separability, allows 
the identification of the failing sensor. 
 
 
Local tests sometimes are not able to identify non modelled 
trends and little jumps in bias. So it is useful to implement a 
global test on the innovations estimated from time l to instant k. 
This can be done simply extending the previous tests in the 
following mean, for the overall test: 
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This test is named global overall test. 
 
 
For the slippage test 
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In this case the H0 hypothesis is rejected if 

2
,1,, αχ≥iklt . 

The global tests need a greater complexity of implementation 
than the local ones, as the need of a moving window, and 
because the identification of the failure instant requires to come 
back to this time and start a new solution strategy. Obtaining 
this can be tricky for an automatic algorithm. 
 
3.2 Isolation of navigation data anomalies 

Modelling of a fault, increasing the number of states in steady 
state equations or augmenting the terms in the measurements 
equations with error models, can results in an accurate error 
estimates which are used for error compensation through the 
proper use of the available process and measurement 
information. However, excessive complication of a system 
model degrades the estimation accuracy of the state vector 
components. For many purposes, it can be sufficient to use a not 
augmented filter which supposes a no–fail condition, then to 
estimate the innovations and successively to test them with a 
global or slippage test, and finally to remove or correct, only if 
necessary, with appropriate modelling of the errors. Thus, the 
filter size is kept to a minimum without a loss of generality. On 
the other hand, problems arise from the use of these tests when 
we have a not completely correct mathematical or statistical 
model, for instance when we have a non–white noise of 
measure or an approximation of steady–state equations, like due 
to linearization. In such cases we can get many false alarms, 
which may increase the elaboration time. It can be useful to 
model at least the noises, for instance as simple first-order 
Markov processes. 
In such a scheme, the inertial sensor outputs and GPS estimates 
are integrated in the Kalman filter. The inertial data are 
compensated before by the bias estimates. Innovations for each 
sensor are then evaluated by using the filter’s estimate for the 
output of the sensors. As previously stated, if the measurement 
noises are zero mean, white and Gaussian, the innovation 
sequence, in absence of sensor failures, is approximately 
(exactly in the linear case) a zero mean, white, Gaussian 
sequence of random vectors. Detectors, which implement the 
statistic tests, operate over a window of the predicted residuals. 
The start of the window is the hypothesized time of failure, and 
the length of the window is based on the sensor type, the 
expected failure level, the probability of false alarms and the 
desired detection speed. In the case of single sensor failures, the 
total number of detectors is equal to the number of 
measurements. 
If a failure is declared, with only GPS and an IMU, we are 
generally unable to identify the failed sensor. In this case, 

photogrammetric information becomes useful. With this 
information it is possible to identify the problematic sensor. 
Two possibilities now face the designer. First, if possible, one 
can model the failures, for instance as bias jumps in the 
measurements equations. In the linear case this type of sensor 
failures manifest themselves in an additive fashion with respect 
to the residuals. In this way we need to estimate the intensity of 
the failure in the associated sensor output (which is 
hypothesized to occur at the beginning of the corresponding 
window) and the effects of the hypothesized sensor failure are 
removed from the filter innovation by processing the estimated 
sensor failure level. Distinguishing between normal operating 
sensor errors and sensor failures, in particular with biases, can 
be difficult, because most analytic fault tolerant system 
techniques model failures as bias jumps in sensor outputs. If 
modelling is not feasible, or the sensor measurements are 
completely absent, like in case of GPS outages, the sensor must 
be removed from the analysis and the Kalman filter must be 
reconfigured to take into account its absence. 
 
 

4. THE IMPLEMENTATION CONCEPT 

As already underlined in the introduction, for the time being we 
have just defined the flow chart combining the different sensors 
data to check the reliability of the navigation solution. Since the 
photogrammetric check is the novel contribution to the 
problem, in the following we will concentrate on the 
implementation details of the procedure.  
 
4.1 Overview of the photogrammetric check 

To be valuable and feasible, the contribution of 
photogrammetric observations to the reliability check must be 
sufficiently accurate and computationally affordable.  
We have therefore devised a simple procedure satisfying both 
requirements. In a nutshell, the idea is just to compare the 
image locations (pixel positions) of a set of object points, 
computed from the stereo pair at time ti, with those of the same 
points projected on the images at ti+1, based on the exterior 
orientation (EO) computed by the navigation solution at time 
ti+1.  
If the computed and predicted image locations are within the 
accuracy of the forward-backward projection, then we expect 
the chi-square test to be satisfied; otherwise a fault will be 
highlighted in the data at time ti+1. Calculating the difference 
between computed and predicted image information allows to 
increase innovation dimensions (adding them to those obtained 
from GPS and IMU observations) and to identify the failed 
sensor. As far as IMU and GPS data are concerned, the 
underlying assumption is that orientation data at time ti are 
correct. Therefore the check can be either performed at every 
shooting time or just if the test between IMU and GPS fails. In 
the former case, navigation data must be routinely interpolated 
to the shooting time to provide the orientation data of the stereo 
sequence. In the latter, the comparison may be performed at a 
different rate (e.g. at the data rate of the GPS observations) to 
spot inconsistencies: if any is found, then interpolation at 
nearby exposure times is performed. Since the method relies on 
the correctness of data at time ti, when a system failure is 
declared, it is safer to start the photogrammetric check some 
frames before the time of GPS and IMU data disagree. 
 



 

4.2 Selection of a region of interest in object space  

To address the accuracy and computational requirements, the 
number, distribution and location of the object points should be 
considered. Since the aim of the procedure is not the orientation 
of the stereo pair at time ti+1, but just to assess if measured and 
predicted EO agree, the object points to be used in the check 
need not to be well distributed over the whole stereoscopic area, 
to ensure good accuracy for the EO elements: a smaller one 
should be enough, provided it is visible in both images and it 
ensures good conditions for the identification of homologous 
points. To this aim, the nearest strip of the road surface, say 3-4 
m deep and 6 m wide, visible in both image pairs can be used. 
This ensures that the image resolution is the best in both images 
and that every consecutive stereo pair can be checked. 
Moreover, using the areas nearest to the vehicle, should grant 
that even small discrepancies between estimated and real OE 
paramaters can be detected. Adding a larger area might bring in 
some cases well defined points, but also possibility of 
occlusions. In order for the method to be feasible, the distance 
between consecutive image pairs should not be too long (3-5 m) 
to avoid the perspective to reduce too much the resolution in the 
image pair farthest from the strip. 
To select the same strip in object space in consecutive stereo 
pairs we take advantage from the fact that the vehicle runs on a 
smooth surface. For our purpose the road surface can be well 
approximated by a plane, therefore the relationship 
(homography) between the image plane of each camera and the 
road surface plane is constant (or anyway stable enough for the 
task) and can be computed just once. Besides, in most cases is 
the DMI that commands the exposure, so the distance between 
image pairs is constant, irrespective of speed changes (should 
the image acquisition run on a fixed time rate instead, again the 
limits can be easily computed, because both OE elements at 
time ti, and ti+1, are known). To avoid an extensive search over 
the whole strip, a set of locations can be arranged in object 
space within the strip (e.g. in a grid-like fashion) and projected 
(only once) in image space. 
 
4.3 Selection and computation of reference object points 

To select image points, interest operators or other feature 
extraction techniques should be applied to the template image 
(say, the left image at time ti) in a window around each location 
of the set; the Harris operator (Harris and Stephens, 1987) has 
been used successfully. Being the epipolar geometry of the 
stereo pair known from calibration and given the fairly constant 
relationship between cameras and road surface plane, the search 
for the homologous points in the slave image is bounded along 
the epipolar line. 
In a previous paper (Forlani et al, 2005) the Harris operator 
proved successful in selecting and finding homologous points 
as far as rotations and perspective differences were not too big. 
In such cases, the Lowe operator (Lowe, 1999) and the Lowe 
descriptor (Lowe, 2004) may be more robust in finding and 
matching features. Using feature matching in our case, 
nevertheless, may not be the best option. Based on previous 
work on road marking extraction and following (Roncella and 
Forlani, 2006), a different technique is used.  
To reduce the effect of perspective differences in image space, 
both images are rectified to the road surface plane, based on the 
already computed homography: using look-up tables, this does 
not affect computing time.  
The templates are selected using the Harris operator on the 
rectified template image. To find the homologous in the slave 
image, since both images after being rectified doesn’t show 

critic perspective changes, simple normalized cross-correlation 
is used (rather than least squares matching), being faster and 
still up to the task. Once the set of homologous points for the 
image pair at time ti has been found, their object coordinates are 
computed by forward intersection. 
 
4.4 Compatibility check between consecutive image pairs 

To check the compatibility of GPS and IMU data with 
photogrammetry, the object points computed from the ti stereo 
pair are projected on the stereo pair ti+1. Since the projection on 
the left and on the right should give the same information 
(occlusions should not be expected and the relative geometry 
camera-point is the same for the two images), it is unnecessary 
to reproject on both. The rectified image for the (say) left image 
at time ti+1 is generated. Once the ideal position (i.e. the position 
without  errors in EO) is available, the limits of the search area 
for the homologous point are computed by error propagation of 
the intersection-resection and of the EO covariance matrix from 
the Kalman filter. Afterwards, exhaustive simple correlation 
search is carried out on the rectified image picking as template 
the image around the point location selected at time ti. If there is 
at least a match with correlation coefficient larger than a 
threshold (say, 70%) the point is accepted as homologous. 
Ideally, it should be a yes-no test: if one match is passed, all 
should be; in practice, even if some do, others will not due to 
several reasons (noise, sensor response, illumination changes, 
gray values changes due to change in the angle sensor-object-
sun, occlusions, etc.). From a probabilistic standpoint, there is 
no need to verify all points: as soon as a clear majority emerges 
in probabilistic terms, the chi-square procedure may stop. 
 
 

5. CONCLUSIONS 

The reliability issue on navigation data from MMV has been 
discussed and a procedure has been devised to extensively add 
to the navigation solution from GPS/INS an automatic  
photogrammetric check. Although no testing has yet been 
performed, the implementation details based on previous 
experiences with MM data ensures that it is computationally 
feasible. The question of how sensitive it is to errors in the 
GPS/IMU data could not be addressed yet, however, and will be 
the primary goal of ongoing work. 
Other issues of practical relevance, such as what to do once an 
inconsistency has been highlighted, has not yet been addressed 
either, but will involve switching to photogrammetrically-aided 
inertial navigation, at least during GPS outages. Input data from 
INS will also be used to support search for correspondences 
along the sequence.  
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