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ABSTRACT: 

 
This paper presents the current design and the preliminary performance analyses of the multi-sensor personal navigator prototype, 
currently under development at The Ohio State University Satellite Positioning and Inertial Navigation (SPIN) Laboratory. The main 
purpose of this research project is to develop theoretical foundations and implementation algorithms, which integrate the Global 
Positioning System (GPS), Micro-electro-mechanical inertial measurement unit (MEMS IMU), digital barometer and compass to provide 
seamless position information facilitating navigation and tracking of the military and rescue ground personnel. The system model 
represents an open-ended architecture, which will be able to incorporate additional navigation and imaging sensor data in the future, 
extending the system operations to confined and indoor environments. In addition, the current system architecture is designed to 
incorporate a simplified dynamic model of human locomotion used for navigation in dead reckoning (DR) mode. The adaptive 
knowledge system, based on the Artificial Neural Networks (ANN), is designed to support this functionality. The system is trained 
during the GPS signal reception and is subsequently used to support navigation under GPS-denied conditions. The stride parameters, step 
frequency (SF) and step length (SL) are extracted from GPS data (SF) and GPS-timed impact switches (SF) during the system calibration 
period. SF is correlated with several data types, such as acceleration, acceleration variation, SF, terrain slope, etc., which are extracted 
from other non-GPS sensors and constitute the input parameters to ANN that predicts SL during the GPS signal blockage. The predicted 
SL, together with the heading information from the compass and gyro, support the DR navigation. The current target accuracy of the 
system is 3-5 m CEP (circular error probable). This paper focuses on the design architecture of the integrated system and the preliminary 
performance analysis, with a special emphasis on DR navigation supported by the human locomotion model.  
 
 

1. INTRODUCTION 
 

The recent technological advances in positioning and tracking 
sensors, including the Global Positioning System (GPS), 
MEMS IMU (micro-electromechanical systems; inertial 
measurement unit), digital compass and digital 
barometer/altimeter offer a potential to develop small and 
portable systems for navigation and decision support for 
military and rescue ground personnel. The ongoing GPS 
modernization program, advances in the high-sensitivity 
receiver technology, capable of supporting navigation indoor 
andin confined environments (Lachapelle et al., 2006) well-
established MEMS accelerometer technology, and steadily 
improving MEMS gyro technology, with the target of 
achieving 1°/h gyro stability in the next few years, as well as 
availability of other RF signals capable of supporting 
navigation, such as, wireless local area network (WLAN) or 
Bluetooth (that can facilitate wireless connection among the 
sensors used for navigation) etc., enable efficient integration of 
these sensors as the primary technology components for 
personal navigation. It should be noted that personal navigation 
has been of research interest for a number of years years; two 
different approaches within the scope of pedestrian navigation 
can be distinguished, namely, (1) multi-sensor sensor 
integration (e.g., Anderson et al., 2001; Retscher and Thienelt, 
2004; Kourogi et al., 2006) and (2) pedometry (e.g., 
Beauregard and Haas, 2006). The next logical step is to 

integrate these two approaches to form an intelligent navigation 
system, where the term intelligent navigation represents the 
transition from the conventional GPS/IMU-based systems to 
multi-sensor systems that increasingly rely on integrating 
knowledge-based systems, including artificial neural networks 
(ANN), Fuzzy Logic, etc. to accommodate human locomotion 
modeling for pedometry. Furthermore, the application of 
navigation technologies that are driven by the availability of 
GPS is transitioning from the typical open sky environment to 
the indoor and confined environments, such as urban and 
underground settings. In this evolution, a variety of new 
sensors, such as electronic compasses, barometers, motion 
sensors, RF signals of opportunity, GIS/CAD map data, etc. are 
introduced. Consequently, with the proliferation of various 
signal processing techniques and dynamic system modeling 
that are introduced to achieve more robust navigation solutions, 
the traditional Extended Kalman Filter (EKF) approach to 
multi-sensory data integration becomes more complex in order 
to accommodate new and often non-linear data and dynamic 
models. Furthermore, knowledge-based systems are needed to 
handle the complexity of a wide range of data entities as well 
as their rapidly changing availability in varying environments. 
The knowledge-based systems can work in a variety of ways, 
such as individual agents monitoring input signals conditions 
and controlling the EKF with adaptive error models or even 
replacing the EKF with an alternative solution.  



                      
 

 
 

Figure 1: Conceptual design of the integrated filter, Zi (i = 1, 2, 3, 4) indicate multi-senor measurements supported by multi-agent 
processes that control the respective sensors/processes in the integrated system. 

 
 
As a result, non-linear Bayesian Filters, such as Unscented 
Kalman Filter (UKF) and Particle Filter (PF) are being used 
(see, for example, Julier and Uhlmann, 1997; Wan and van der 
Merwe, 2001; Liu and Chen, 1998; Wan et al., 2000; Ristic et 
al., 2004; Yi and Grejner-Brzezinska, 2005a, 2006a-b), and 
non-traditional approaches to sensor integration and modeling, 
such as Artificial Neural Networks (Kaygisiz  et al., 2003; 
Chiang et al., 2003; Wang et al., 2006; Grejner-Brzezinska et 
al., 2006 and 2007), and Fuzzy Logic (e.g., Simon, 2003; 
Abdel-Hamid et al., 2005) are being introduced to navigation 
algorithms. 
 
This paper presents a design, prototype implementation and 
performance analysis of a personal navigator based on multi-
sensor integration, augmented by the human locomotion model 
that supports navigation during GPS gaps. The accuracy 
requirement is considered at 3-5 m CEP (circular error 
probable) level. At the current stage of the research, the 
algorithmic concept of the GPS-based, MEMS IMU-augmented 
personal navigator system with an open-ended architecture has 
been implemented. In the present system design and 
implementation, the following sensors are integrated in the 
tightly coupled EKF: GPS carrier phase and pseudorange 
measurements in the double difference (DD) mode, Honeywell 
HG1700 IMU (note that Crossbow MEMS IMU 400CC 
implemented initially does not meet the accuracy specifications 
for this project, based on the initial performance tests), 
PTB220A barometer and Azimuth 1000 digital compass; the 
most recent extension to the prototype is a 3-axis magnetometer 
that is replacing the Azimuth 1000 compass that has not met 
the performance requirements for this project. 

 
The performance analysis presented here is focused on (1) 
sensor calibration and (2) navigation during the loss of GPS 
signals. As already mentioned, the system architecture is 
designed to incorporate a dynamic model of human 
locomotion. The system is trained during the GPS signal 
acquisition using Radial Basis Function (RBF) neural network 
model with up to six input parameters that contain information 
about the step length (SL), such as, step frequency (SF), mean 
acceleration (|a|), variance of acceleration (Var|a|), terrain 
slope, barometric height variation, and operator’s height. The 
calibrated model of stride parameters (SL and SF), provided by 
the ANN-based adaptive knowledge system, and heading 
information from the compass/IMU facilitate dead reckoning 
(DR) navigation during the GPS gaps.  

2. THE CURRENT SYSTEM PROTOTYPE 
 

The conceptual design of the current system is illustrated in 
Figure 1. The primary four sensors, GPS, IMU, barometer, and 
compass are integrated in a tightly coupled EKF, where GPS 
carrier phase and/or pseudorange data are used in the double-
difference mode to obtain a full navigation solution, as well as 
the IMU and other sensor errors. This design is based on the 
GPS/IMU system, AIMS™, developed earlier at the Ohio State 
University (e.g., Grejner-Brzezinska and Wang, 1998; Grejner-
Brzezinska, 1999; Toth and Brzezinska, 1998), with the 
barometer and compass introduced to aid the height and 
heading estimation, respectively, when GPS signals are 
blocked. These sensors are continuously calibrated during the 
GPS signal availability. Naturally, if the IMU is of low quality, 
a more accurate compass (e.g., 0.5-1° heading accuracy) may 
contribute to calibrating and aiding the IMU-based heading. 

 
In sensor fusion, it is of special importance to assess the proper 
stochastic error models for each sensor.  Table 1 shows the 
stochastic error models used in the current system 
implementation. The error models may be updated in the 
future, based on the additional performance tests and the actual 
characteristics of each sensor. Currently, the sensors used in the 
prototype are: dual frequency GPS receiver (Novatel OEM-4), 
tactical grade IMU HG1700 (optionally, MEMS IMU400C, see 
the earlier note on that subject), PTB220A barometer, and 
KVH Azimuth 1000 digital compass.  
 

Sensor Error 
sources 

Stochastic error 
model 

Bias Random walk Accelerometer Scale factor Random constant 
Bias Random walk Gyroscope Scale factor Random constant 
Bias Random constant Barometer Scale factor Random walk 
Bias Random constant Digital Compass Scale factor Random walk 

 
Table 1: Stochastic error models for the multi-sensor personal 

navigation system. 
 

Figure 2 illustrates the current design of the integrated filter 
and the corresponding ANN-based adaptive knowledge system 



                      
 

that models the human dynamics. The dashed line between the 
“adaptive knowledge base” and the “position estimate” 
windows in the figure indicates that during the GPS signal 
presence, the human dynamics (i.e., SL and SF) are modeled, 

while during the signal blockage this line becomes solid, 
meaning that the adaptive knowledge system contributes to 
position estimation in that scenario.  
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Figure 2: Conceptual design of the integrated filter and the adaptive knowledge system (shown in the calibration mode). 

 
 

3. PRELIMINARY PERFORMANCE ANALYSIS 
 

The preliminary performance analyses were carried out using 
the simulated data. Subsequently, several kinematic tests, in the 
controlled environment, were performed at The Ohio State 
University campus in July and November 2005 and June 2006, 
where GPS, IMU, compass and barometer data were collected.  
Some of these data sets, as well as the simulated data are used 
in the performance analyses presented in this paper. Namely, 
the first part of the analysis discussed here is based on 
simulations, where the synthetic data were created to determine 
if the specs for the preliminary hardware selection would 
indeed meet the project accuracy requirements. The actual data 
collected for this test were: dual frequency GPS and LN100 
(navigation grade IMU; 0.8 nmi/h CEP, gyro bias – 0.003°/h, 
accelerometer bias – 25µg), while all the other sensor data (i.e., 
barometer, compass, consumer-grade MEMS, and tactical 
grade IMU) were simulated using the manufacturer 
specifications of their (average) error characteristics.  
 
3.1 Positioning accuracy of the integrated sensor suite: 
GPS/IMU/compass/ barometer simulations 
 
One of the research questions that is addressed here is: can the 
pseudorange measurements be used instead of the carrier phase 
measurements to assure the target positional accuracy? To 
assess the accuracy achievable with pseudorange data, the 
pseudorange/MEMS IMU (simulated) positioning results were 
compared with the reference solution, i.e., the carrier 

phase/LN100 (actual data) and subsequently, simulated 
compass and barometer data were added to the 
pseudorange/MEMS IMU to test their impact on the navigation 
solutions. Table 2 shows the summary statistics of these tests in 
terms of the mean and the standard deviation of the differences 
between the two simulations and the reference solution; the 
solution based on pseudorange/MEMS IMU is denoted as 
solution 1, and the pseudorange/MEMS 
IMU/compass/barometer model represent solution 2. The 
duration of the test was about 800 seconds.  The LN100/carrier 
phase reference solution was obtained with the AIMS™ system 
(see, for example, Toth and Grejner-Brzezinska, 1998; Grejner 
Brzezinska, 1999); its positional accuracy was at the level of a 
few centimeters per coordinate.  
 

Reference 
solution 1 

Reference 
solution 2 

 

Mean STD Mean STD 
N [m] 0.66 0.54 0.58 0. 50 
E [m] 0.80 0.69 0.72 0.58 
U [m] 0.93 0.71 0.80 0.53 

Roll [°] 1.38 0.95 1.36 1.00 
Pitch [°] 1.47 0.96 1.00 0.78 

Heading [°] 10.68 8.46 1.05 0.78 
 

Table 2: Navigation accuracy of the pseudorange/MEMS IMU 
(solution 1) and the pseudorange/MEMS 

IMU/compass/barometer model (solution 2) with respect to the 
reference solution (DD carrier phase/LN100). 



                      
 

As can be observed, the barometer has some impact on the 
height accuracy, but the most pronounced improvement is 
evident in heading, as a result of including the compass 

measurements, since MEMS IMU simulated here was of very 
low quality (1°/s gyro drift). 
 

 
No GPS gap GPS gap of 550 s 

HG1700/CP HG1700/PR HG1700/CP HG1700/PR Solution type 
Mean, std Diff. Mean, std Diff. Mean, std Diff. Mean, std Diff. 

GPS/INS 0.45±1.01 0.6 0.48±1.08 0.6 -1.02±3.64 3.3 1.85±3.49 3.8 
Heading [º] 

GPS/INS/B/C 0.45±1.01 0.6 0.42±1.06 0.7 1.03±3.63 3.3 1.79±3.50 3.7 
GPS/INS -0.05±0.35 0.1 -0.52±0.88 0.4 -46.5±63.0 210 -134±179 620 

Height [m] 
GPS/INS/B/C -0.02±0.35 0.1 -0.27±0.77 0.2 -1.13±2.16 0.8 -1.85±2.25 0.3 

 
Table 3: The impact of barometer (B) and compass (C) on the navigation solution accuracy; CP denotes double differenced carrier 

phase data; PR denotes pseudorange data; Diff denotes the difference between the reference solution and the tested solution. 
 
3.2 Positioning accuracy of the integrated sensor suite: 
GPS/IMU/compass/ barometer kinematic data 
 
Table 3 illustrates an example of the navigation performance 
improvement when a tactical-grade HG1700 sensor 
(performance equivalent to the assumed future MEMS IMU) is 
used instead of the MEMS IMU tested in Section 3.1; the 
kinematic data were collected on June 29, 2006. Clearly, 
HG1700 supported by pseudorange data and 
compass/barometer information provides the navigation 
performance well within the required accuracy specifications, 
when GPS data are available. It should be noted that the 
compass and the barometer do not have, as expected, any 
significant impact on the navigation solution when GPS signals 
are available. The ultimate test, however, is the system’s 
performance during GPS gaps. To address that, Table 3 also 
provides the accuracy statistics of an example free-inertial 
navigation where (1) only HG1700 was used and (2) barometer 
and compass were added. The system was calibrated for ~350 s 
before the GPS gap was introduced. The reference solution was 
based on LN100 data combined with double differenced carrier 
phase data. It should be noted that the trajectory of this test was 
subject to mild dynamics; therefore the compass provided good 
quality heading (within the compass performance specs) during 
the GPS drop-outs. The KVH Azimuth 1000 digital compass 
does not perform well under higher dynamics, most probably 
due to internal signal smoothing (the heading change does not 
reflect the actual dynamics of the trajectory, and a several-
second delay in showing the actual heading has been observed).  
 
 

4.    NAVIGATION SUPPORTED BY HUMAN 
DYNAMICS MODEL 

 
In a number of previously published research results, GPS was 
used to determine the stride frequency and interval by 
analyzing the spectrum of the acceleration provided by an IMU 
(e.g., Hausdorff et al., 2001; Brand and Phillips, 2003; Cho et 
al., 2003). This can, however, be a tedious process, requiring 
extensive testing for the threshold selection on a case-by-case 
basis. Therefore, in this research, an additional sensor, an 
impact (contact) switch, is added to directly measure the events 
of foot-to-ground impact, synchronized to the GPS time. The 
impact switches are placed in the heels and toes of the 
operator’s shoes, and provide a timed impulse during the 

impact with the ground, allowing for instantaneous estimation 
of the gait cycle.   

 
 

Figure 3: Test sensor configuration. 
 
In general, a known (pre-calibrated) human locomotion model 
can be used to support navigation during GPS gap. This means 
that the step frequency (provided by the impact switches) and 
the step length provided by the calibrated knowledge-based 
system, and the heading information from the compass/IMU 
should be available. The knowledge-based system must be 
trained during the presence of GPS signal, as already explained, 
and the training must be customized for a particular 
user/operator; in addition, different motion patterns and 
different environmental impacts must also be considered during 
the training process. Therefore, a learning mechanism, 
generally outside the positioning filter, must be designed and 
implemented to assure a proper calibration/training procedure 
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that would support reliable navigation without GPS, as shown 
in Figure 2. 
 
It should be mentioned that sensor configuration and location 
on the user’s body are also important factors, and cannot be 
overlooked in the calibration/performance assessment 
procedure. In the results presented here, based on the dataset 
collected in September 2005, a backpack configuration was 
used, as shown in Figure 3. 
 

 
 

Figure 4: Reference and predicted trajectories; prediction is 
based on calibrated compass and SL/SF data. 

 
The step length, defined here as the distance between the left 
and right heel impact sensors was extracted for a specific user 
moving on a flat circular path, as shown in Figure 4 (three 
repetitions of the same circular motion pattern were used here). 
The double difference carrier phase data were used to calibrate 
the step length based on the events measured by the impact 
switches. In order to test the step calibration results, GPS signal 
was turned off for one loop, and the navigation was performed 
using the compass heading (calibrated during the previous 
loop), the step size presented in Table 4 (loop 2), rescaled to 
1/second sampling, and the SF sensed by the impact switches. 
 

Operator A Step 
Length Mean [m] Std [m] 
Loop 1 0.61 0.05 
Loop 2 0.63 0.04 
Loop 3 0.72 0.10 

 
Table 4: Mean and STD of the step length determined from 

three trials for the same operator; operator moved faster with 
higher SF in loop 3. 

 
The navigation results compared to the correct (GPS) trajectory 
are presented in Figure 4. The final closure in the end of the 
loop is 3.22 m, which is well within the required accuracy 
specifications. Note that in this case, scale and bias, instead of a 
single bias only, were estimated for the compass calibration, to 
improve the calibration performance, as compared to the 
simulated case presented in section 3. More tests and analyses 
are currently being performed. The next step in this 

investigation is to test the calibration procedure along the 
trajectory with a varying terrain slope. Note that this test did 
not use the ANN-based adaptive knowledge system, but an 
average SL estimated from two previous well-defined 
trajectories completed by the same operator. 
 
4.1 SL prediction using ANN 
 
The implementation of the ANN-based knowledge system 
allows for more automated SL modeling, as compared to the 
simple training/testing scheme presented in the example above. 
A training/testing example is presented next. Also, to 
demonstrate the positive impact of the ANN input parameter 
preprocessing using the Principal Component Analysis (PCA) 
transform, Table 5 shows the results of the SL modeling 
without PCA transformation, and Table 6 shows a comparison 
of the 4-parameter case from Table 5 (last row) where PCA 
was applied. Notice a significant bias in the predicted SL 
during the performance testing for the case of no PCA, and a 
considerable improvement in training and performance 
checking for the case where the input parameters were PCA-
transformed. Note that two loops of the circular path repeated 
by the operator were used for training and one loop was used 
for testing the knowledge-based system performance (the 
operator and trajectories were the same as used in the earlier 
example, as shown in Figure 4 and Table 4). 
 

SL Modeling 
(No PCA) 

Training [cm] 
mean  ± std 

Testing [cm] 
mean  ± std 

SF, |a| 3.6 ± 6.4 7.4 ± 8.4 

SF,  Var(|a|) 3.2 ± 5.7 6.8 ± 7.1 

SF, |a|, 
Var(|a|), Slope 2.3 ± 4.9 7.1 ± 5 

 
Table 5: ANN training and testing results, no PCA 

transformation applied to input parameters. 
 

SL Modeling 
(With PCA) 

Training [cm] 
mean  ± std 

Testing [cm] 
mean  ± std 

SF, |a|, 
Var(|a|), Slope 0 ± 0.3 1.5 ± 1.7 

 
Table 6: Effect of PCA transformation on ANN training and 

testing; no reduction of the parameter space applied. 
 

To further test the performance of the knowledge-based system 
in DR navigation mode, the results listed in Table 6 were used 
to predict the operator’s trajectory. The reference trajectory, 
with the total distance of about 355m, was generated using 
GPS/IMU data. Figure 5 illustrates the comparison of the 
reference trajectory (blue), the trajectory generated using the 
ANN SL prediction, where the input parameters were not PCA-
transformed (green), and where the input parameters were 
PCA-transformed (red). The mean and the standard deviation 
for the green trajectory with respect to the reference blue 
trajectory was 1.63 m ± 0.76 m; for the red trajectory the 
numbers were 0.89 m ± 0.28 m; the total end misclosure for the 
green and red trajectories were 1.6 m and 1.1 m, respectively, 



                      
 

and the maximum departure from the reference of 3.08 m and 
1.68 m, were observed for the green and red trajectories, 
respectively. The positive impact of decorrelating input 
parameters with the PCA transformation before passing them to 
ANN is clearly visible. Also, the method of SL calibration 
using the adaptive knowledge system described here shows a 
performance superior to the SL modeling based on the average 
SL observed for the training period, presented first.  
 

 
 
Figure 5: Comparison of the reference trajectory (blue), 

trajectory generated using the ANN where the input parameters 
were not PCA-transformed (green), and where the input 
parameters were PCA-transformed (red). 

 
 
5.     SUMMARY AND CONCLUSIONS 

The design and the prototype implementation of a multi-sensor 
personal navigator were presented. The simulation-based 
performance analysis for the IMU, digital compass and 
barometer was discussed first, and the performance of multi-
sensor navigation was tested in an actual kinematic scenario, 
with a special emphasis on the impact of the barometer and 
compass data during GPS signal outages. The accuracy of the 
navigation supported by the pre-calibrated human dynamics 
model was also discussed.  

The preliminary results are encouraging; however, the MEMS 
IMU 400CC may not be a desirable sensor, as its gyro drifts 
very fast, and may not be able to provide the required accuracy 
and stability to the orientation solution. More detailed study of 
this sensor is presented in Grejner-Brzezinska et al. (2005) and 
Yi et al., (2005b). A tactical-grade HG1700 recently replaced 
the MEMS IMU in the current system prototype. Also, the 
digital compass used here may not be an optimal solution due 
to its significant internal smoothing and low gimbal range; this 
sensor has been recently replaced by a 3-axis magnetometer 
(Honeywell HR3000), and the system performance testing 
continues.   

The human dynamics-supported navigation, tested with real 
kinematic data, especially with the impact switches that we 
introduced to detect the step events, is very promising. With 
this solution, no spectral analysis of the acceleration is needed 
to detect the step frequency. The PCA transformation 
introduced to decorrelate the ANN input parameters 
substantially improved the SL calibration; consequently, the 

navigation results obtained using the SL modeled with the 
PCA-transformed input parameters provides a superior 
performance to the case where no PCA transform is used. More 
tests are currently carried out to test the accuracy of DR 
navigation for varying step length along the trajectory and for 
more complicated trajectories with varying slope.  

A full integration of human dynamics into the multi-sensor and 
multi-agent system is the next big challenge in this research 
effort. ANN and Fuzzy Logic are being currently considered to 
form the Fuzzy EKF architecture.  
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