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ABSTRACT: 
Much of the mobile mapping activity in Australia has been applied to the mapping of railways. Over the last decade the process has 
evolved from one narrowly focused upon establishing the position of track centrelines to one which includes the position and 
geometry of the track, imagery and detailed attributes of all trackside features. This broader perspective has been required as the 
mobile mapping processes have become a core requirement for the development of railway asset management systems. Positioning 
sensors installed on the mapping platform include GPS receivers (differential pseudo-range), shaft encoders for the measurement of 
travelled distance, direction sensors and tilt meters. Measurements from these sensors are taken at regular epochs and a Kalman filter 
is employed to integrate these and compute strings of 3D coordinates to locate the track centerline. The location of trackside features 
is achieved through photogrammetry, the number and configuration of the cameras being determined by the level of detail required. 
The preferred form of representing railway track geometry is as a continuous series of straights and curves with defined tangent 
points. Whilst the need for this form of geometry arises out of a business requirement for the management of the track as an asset, 
the representation of the track in this format has additional benefits. These include improving the accuracy of the track centreline 
position and providing a simple mechanism for combining a number of sets of track centreline data into a single spatial database.    
This paper reviews the processes used to map track centrelines and discusses the algorithms employed in reducing the coordinate 
strings to the required geometric format. In the horizontal plane, the string of coordinates provided by the Kalman filter is reduced to 
a series of straights, transition curves and circular curves. The vertical profiles are reduced to a series of straights and parabolas. The 
processes are essentially those of curve fitting but with added challenges of ensuring the smooth intersection of each component 
curve into a continuous path. 
 
 

1. INTRODUCTION 

1.1 Mobile Mapping of Railways in Australia 

The term “route mapping” is now commonly applied to the 
mapping of any linear infrastructure. A decade or so ago the 
surveys were rather simple processes for the acquisition of 
strings of coordinates as a record of the centreline of a roadway 
or railway.  The techniques have now evolved to a high level of 
sophistication and are more likely to be associated with 
production of a detailed spatial data model of both the linear 
feature itself and other features of interest appearing in the 
corridor. Data required to supplement the model include: 

» high-resolution aerial photography as an additional record 
of the linear feature; and 

» refined horizontal and vertical track geometry with 
tangent points, intersection points and radii of curvature. 

 
As shown in Figure-1, the aerial photography provides a highly 
intuitive interface to the attributes of each facility and is a key 
dataset in the interface deployed with asset management 
systems. The geometric data is required to define maintenance 
and lifecycle requirements for the different sections of track. 
For example, wear of curved sections is largely dependent on 
the level of curvature. Being able to identify sections of high 
curvature greatly assists the scheduling of maintenance. 
 
The drive for these increased requirements arises from recent 
changes in the management of assets of railways. In the last 
decade, in the Australian state of Victoria at least, much of the 

operation of the state’s railways has become the responsibility 
of private corporations.  This necessarily means that the assets 
associated with such complex and extensive infrastructures as 
railways need to be recorded in detail. This is not only to allow 
a value to be placed on the facility, but also to aid in gauging 
the level of maintenance and improvement that will be required. 
As an accurate record of the state of the infrastructure is 
essential, there is a need for continuity in the route mapping.  
 

 
 
Figure 1. High resolution aerial photograph utilised as interface 

to asset attributes. 
 

1.2 Spatial Data for Asset Management Systems  

Early asset mapping projects involved working with individual 
files holding centreline data (in the form of coordinates) on the 



 

one hand and data (coordinates and attributes) associated with 
the trackside features on the other. Asset mapping projects now 
require delivery of all data in an integrated GIS data model 
including the refined track geometry and aerial imagery. This 
involves reducing the mass of coordinates acquired in the 
mapping of the track centreline to a condensed set of data 
consisting of coordinates of tangent points and parameters of 
curves. Apart from reducing the data to more manageable 
amount and presenting it in a format familiar to design 
engineers, it brings other advantages. In describing the data in 
the form of straights and curves, a most convenient mechanism 
for integrating neighbouring tracks into the spatial data model is 
provided.  Moreover, experience has shown that the precision of 
the mapping is improved. 
 
The major discussion in this paper is focused upon the 
algorithms employed in the reduction of coordinate data to the 
required geometric format. In the horizontal plane, the string of 
coordinates provided by a Kalman filter is reduced to a series of 
straights, transition curves and circular curves. The vertical 
profiles are reduced to a series of straights and parabolas. The 
processes are essentially those of curve fitting but with the 
added challenge of ensuring the smooth intersection of each 
component curve into a continuous path. 
 
The main discussion is preceded by a summary of the data 
acquisition technology involved. The summary lists the type of 
sensors employed and the calibration processes adopted. 
 

2. THE TECHNOLOGY 

2.1 

2.2 

2.3 

2.4 

2.5 

GPS 

The precision required for asset mapping is generally to achieve 
a standard deviation of the coordinates defining the track 
centreline and the peripheral features to be better than 1.0m. 
The dominant sensor for the absolute positioning of points is 
GPS. Differential pseudo range GPS, when integrated with 
suitable “relative location sensors” (for instance, rate 
gyroscopes and running distance meters) is capable of 
achieving this level of precision. A base station to provide the 
differential corrections does not generally need to be 
established as the corrections are available from existing 
commercial services. 

 
One essential contribution of the GPS is to provide an accurate 
time base for the logging of measurements from the other 
positioning sensors – gyros for direction, tilt meter for track 
grade, and cant and wheel encoder for running distance. Thus, 
measurements from the gyroscopes, distance meter and tilt 
meter are taken at epochs with 1-second intervals as defined by 
the GPS 1 PPS (pulse per second) interface. Imagery captured 
by the cameras is linked to the wheel encoder to allow accurate 
exterior orientation of the images during post processing.  
 

Gyroscopes 

A solid-state rate gyroscope is used to measure the change in 
horizontal direction of the mapping platform as it moves along 
the track. The measurements are converted into true bearings by 
repeatedly referencing the path generated from gyroscope and 
travelled distance measurements with the path represented by 
the string of GPS coordinates. This is in effect a routine to 
continuously determine the “index error” which when applied 
to the raw measurements converts them to true bearings. The 
process is part of a calibration routine that simultaneously 

determines the index error of the gyroscope measurements and 
the scale factor to be applied to the travelled distance 
measurements.  The result of this process yields bearings with 
an accuracy of 0.1 deg (1 sigma). Details of the routine are 
given in Judd & Leahy (2005). 
 

Tilt Meters 

The tilts of the mapping platform (pitch and roll) are measured 
by way of a tilt meter. Measurements from this source contain a 
significant level of noise due to the acceleration and jerk of the 
mapping platform. However, as the tilt meter provides 
measurements at a frequency of 10 hertz, these can be summed 
over each 1 second period to produce an average tilt for that 
interval. This practice has been shown to be effective in 
reducing the noise to a workable level. Each measurement of 
pitch (tilt angle representing grade) is converted into the change 
in height of the mapping platform in moving from one epoch to 
the next. This is computed by multiplying the travelled distance 
by the sine of the pitch angle. 
 
Any acceleration of the mapping platform will cause a bias in 
the measurement of pitch. As the distance travelled over each 
1-second interval between epochs is measured, this provides a 
record of the velocity of the mapping platform. The acceleration 
computed from this record is in the direction of travel and is 
used to correct the pitch measurements. Both corrections and 
measurements contain significant noise which is effectively 
minimised through the use of a linear Kalman filter as a 
smoothing mechanism.  

 
The measurement of pitch is also likely to have an index error 
due to the impracticability of mounting the tilt meter so that its 
axis is normal to the rail track.  The index error in the pitch 
measurements is continuously determined by comparing the 
vertical profile of a track section derived from measurements of 
tilt and travelled distance with the profile derived from GPS 
measurements. A conformal transformation of the first onto the 
second determines a rotation that can be applied as the index 
error in the grade measurements. Further details can be found in 
Judd & Leahy (2005). 
 

Pulse Counter  

The travelled distance is measured by way of a pulse counter 
mounted on an axle of the mapping platform. The pulses are 
scaled so their count provides distance travelled in metres. In 
typical operations, the scale will vary with the condition of the 
track and the diameter of the wheels changing due to wear. As 
mentioned in section 2.2, a continuous calibration procedure 
has been integrated into the system. In this, the horizontal 
profile generated from the gyroscope and travelled distance 
measurements is compared to that mapped by GPS. Again, a 
conformal transformation of the first onto the second is used to 
determine the index error of both the gyroscope and the scale of 
the travelled distance measurements. The pulse counter is 
recorded at each 1-second epoch triggered by the GPS receiver. 
The measurement included in the Kalman filter is the distance 
travelled between epochs. 
 

Cameras 

In many projects, a single camera mounted with its axis in the 
direction of travel and angled down to the track will provide the 
precision required for the positioning of trackside features.  



 

 

 
 

 (a) Photogrammetric mapping screen. 
 

 
 

(b) Single camera images utilised to locate trackside features. 
Figure 2 

 
Stereo photogrammetry is possible by using successive 
photographs as the platform moves down the track. The 
computer screen images shown in Figure-2b show two of a 
series of taken as the platform approaches the sign on the left . 
The principles of photogrammetric triangulation are employed 
in a post processing routine to compute the coordinates of this 
feature after moving a cursor to record the image coordinates of 
the base of the sign in each of the images in Figure 2b. 
 
In other route mapping operations, the precision required for the 
3D positioning of the trackside features is more demanding. A 
configuration frequently used has two cameras firmly mounted 
with the axes aligned to the direction of travel. The interior and 
exterior orientation of the cameras, with respect to the mapping 
platform, is determined beforehand, as described in Fraser & 
Judd (1999) and Fraser (1997). 
 
2.6 

3.1 

Results 

A Kalman filter is employed to integrate the data from all 
sensors to produce a string of coordinates that represent the 
mapping of the track centre line, as detailed in Leahy & Judd 
(1996; 1998). The state vector is computed at each 1-second 
epoch as triggered by the GPS receiver. Thus, for the measuring 
platform moving at 50kph, centre line coordinates are computed 
at intervals of approximately 14m along the track. The strings 
of coordinates acquired are reduced to the format used in the 
design of railway tracks, that is, a series of straights and 
transition and circular curves. 

 
3. FITTING VERTICAL CURVES 

Curve fitting producing discontinuities 

When constructing railways, the vertical profile of the track 
passing over a rise is designed as a parabola fitted between a 
rising and falling straight. As vertical grades of railways are 
small, the curvature of a vertical profile is significantly less 
than that of the horizontal case. Thus, in the design of vertical 
curves, parabolas tangential to the straights can be used because 

the curvature is small and they automatically provide a 
transition between straight and curved sections. 
The mapping of existing railways could be seen as the reverse 
of the process of design. That is, the fitting of straights and 
curves to the coordinates acquired in the mapping of the 
existing track. The initial problem is to locate the tangent points 
- that is, those points where the track moves from a straight into 
a vertical curved section. Initially, this can be achieved by 
examining a plot of the vertical profile. It is noteworthy that the 
location of tangent points is refined at a later stage. On 
completion of the curve fitting routine described in the next 
section, other points are tested by moving backwards and 
forwards along the track until an optimum is reached; the 
optimum being indicated by the size of the residuals resulting 
from the curve fitting. 
 
Curve fitting can now be employed to fit straight lines to the 
“entering” and “exiting” straights and a parabola to the curve 
between. Unfortunately due to both the actual track having been 
deformed from the original design and noise in the mapping of 
the coordinates of the track centreline, curves fitted in isolation 
will invariably be non-continuous. A typical result of this 
approach to fitting is illustrated in Figure-3. 
  

 
 

Figure 3. Discontinuities resulting from separate fitting of 
straights and parabola. 

 
3.2 Constraining measurements to remove discontinuities 

To obtain a smooth and continuous fitting of the straights and 
curves a least squares approach is adopted as follows: 
 
» As straights are invariably longer than the vertical curves 

and therefore based on more coordinate data, these are 
fitted first and thereafter regarded as “fixed”. Thus, in 
Figure-4 the two straights are represented by the lines y = 
a1x + b1 and y = a2x + b2. Hereafter, the coefficients 
a1, b1, a2 and b2 determined in the fitting of these straight 
lines are regarded as constants. 

 
» The parabola is constrained to be tangential to the curve 

at the points A and B. The four coordinates of the tangent 
points, (xa, ya) and (xb, yb), become extra unknown 
parameters for the fitting of the parabola. Four 
constraining measurements are added to achieve the 
continuity of curves shown in Figure-4. The constraints 
are to achieve the following: 

 
o the point A must be on both the straight and the 

curve, 
o the gradient of the curve at A must be equal to the 

gradient of the straight through A, 
o the point B must be on both the straight and the 

curve, and 



 

o the gradient of the curve at  B  must be equal to the 
gradient of the straight through  B. 

 
» The four constraints are applied by measurements which 

will be added to the standard least squares method of 
fitting a parabola to the mapped coordinates.  

 

 
Figure 4. Constrained fitting of parabola to achieve continuity. 

 
The observation equations for the curve fitting to the mapped 
data will be (for the point I) 

     (1) 2y a x b x ci p i p i= + + p

1

2

p

p

1

2

The unknown parameters are the coefficients ap, bp and cp . 
 
The constraints for the straights to meet the parabola at point A 
and B are 

    (2) 2a x b a x b x c1 a 1 p a p a p+ = + +

  2a x b a x b x c2 b 2 p b p b p+ = + +

 
These two “measurement” equations can be recast as follows: 

   (3) 2f 0 a x b x c a x b1 p a p a p 1 a= = + + − −

  2f 0 a x b x c a x b2 p b p b p 2 b= = + + − −

 
The constraints for the curve to have the same gradient as the 
straights at points A and B are 
     (4) a 2a x b1 p a= +

  a 2a x b2 p b= +

 
A recasting of these two equations produces the form: 
    (5) f 0 2a x b a3 p a p= = + −

  f 0 2a x b a4 p b p= = + −

 
As the observation equations imposing the conditions are non-
linear, all observations equations need to be linearised.  
 
If a , b , c , x and xp p p a b′ ′ ′ ′ ′ are approximate values for the 

unknown parameters, the observation equation for the mapped 
position I  can be written as 

y y y2 i i iy (a x b x c ) a b ci p i p i p p p
a b cp p p

∂ ∂ ∂
′ ′ ′− + + = Δ + Δ + Δ

∂ ∂ ∂

       
y 2i xi
a p

∂
=

∂
      

yi xi
b p

∂
=

∂
       

yi 1
c p

∂
=

∂
  (6) 

 
The observation equations for the constraints can be written as: 

20 (a x b x c a x b )p a p a p 1 a 1

f f f f1 1 1 1a b c xp p p
a b c xp p p a

′ ′ ′ ′ ′ ′− + + − −

∂ ∂ ∂ ∂
a= Δ + Δ + Δ + Δ

∂ ∂ ∂ ∂

 

 
20 (a x b x c a x b )p b p b p 1 b 2

f f f f2 2 2 2a b c xp p p
a b c xp p p b

′ ′ ′ ′ ′ ′− + + − −

∂ ∂ ∂ ∂
b= Δ + Δ + Δ + Δ
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f f f3 3 30 (2a x b a ) a b xp a p 1 p p
a b xp p a

∂ ∂ ∂
′ ′ ′ a− + − = Δ + Δ + Δ
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f f f4 4 40 (2a x b a ) a b xp b p 2 p p
a b xp p b

∂ ∂ ∂
′ ′ ′ b− + − = Δ + Δ + Δ
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where,      (7) 
f 21 xa
ap

∂
′=

∂
 

f1 xa
bp

∂
′=

∂
 

f1 1
cp

∂
=

∂
    

f1 (b a )p 1
xa

∂
′= −

∂
 

f 22 xb
ap

∂
′=

∂
 

f2 xb
bp

∂
′=

∂
 

f2 1
cp

∂
=

∂
    

f2 (b a )p 2
xb

∂
′= −

∂
 

f3 2xa
ap

∂
′=

∂
 

f3 1
bp

∂
=

∂
 

f3 2ap
xa

∂
′=

∂
  

f4 2xb
ap

∂
′=

∂
 

f4 1
bp

∂
=

∂
 

f4 2ap
xb

∂
′=

∂
 

 
3.3 Example of vertical curve fitting  

A set of data to illustrate this aspect is shown in Table-1. The 
constants a1, b1, a2 and b2 have been selected to represent the 
coefficients of lines that have been fitted to the coordinates 
acquired in the mapping of the entering and exiting straights. 
The “curve data” has been generated with all coordinates 
having a standard deviation of 0.3m. 
 

Straights Data Curve Data 
constants  X Y 

a1 4.00 4.00 68.01 
b1 56.00 5.00 75.81 
a2 -4.00 6.00 80.35 
b2 120.00 7.00 83.57 

  8.00 84.02 
  9.00 83.17 
  10.00 80.46 
  11.00 75.60 
  12.00 68.31 

p

where  
Table 1. Data for vertical curve fitting. 

 



 

The force with which the constraint measurements are applied 
is controlled by the assigned weights of these measurements. 
Table-2 shows the effect of varying the standard deviation of 
the constraint measurements from 1.0m to 0.001m. It illustrates 
that applying a standard deviation of 0.001m to the constraint 
measurements effectively enforces the required condition of 
continuity of the curves. This is evident as the residuals for the 
constraint measurement approach zero for all practical 
purposes. 
 

standard 
deviations 
(metres) 

 
1.000 

 
0.100 

 
.010 

 
.001 

Constraints residuals 
f1 -0.348 -0.103 -0.001 0.000 
f2 0.000 0.000 0.000 0.000 
f3 -0.371 -0.114 -0.002 0.000 
f4 0.000 0.000 0.000 0.000 

 

Table 2. Effect of varying standard deviations of constraint 
measurements. 

 
4. FITTING OF HORIZONTAL CURVES 

4.1 An algorithm for fitting transition curves 

The fitting of horizontal curves is, on the surface at least, a 
more complex matter due to the need to fit three curves. That is, 
when moving from a straight into a circular curve a transition 
curve is required to smoothly effect the change in curvature. 
The transition curve selected is one that has a constant “rate of 
change of curvature with length” as it moves from the straight 
(zero curvature) to a circular curve of radius R (curvature of 
1/R). The curve with this property is the Euler spiral. In earlier 
times, the cubic parabola, a close approximation, was used to 
avoid difficulties in computing and setting out. 
 
For a transition curve that moves to the left from a straight 
running due east, its coordinates are given by Clark (1968) as 

5l
e l 240(RL)

= − +  
3 7l l

n 36RL 336(RL)
+= −  (8) 

 

Here, e and n are the east and north coordinates, l the length 
from the tangent point, L the total length of the transition curve 
and R the final radius of the transition curve. For transition 
curves on railways, the second terms in these series are very 
small and the others negligible. 
 
The fact that a transition curve is needed provides an 
opportunity for an elegant solution to the problem. In brief, the 
process is as follows: 
 

1. The locations of the tangent points, the points which mark 
the start and end of the transition and circular curves, are 
determined from a plot of the running curvature of the 
track (the methodology is discussed in Section 4.2). 

2. Lines are fit by least squares to the set of coordinates 
acquired in the mapping between the tangent points that 
define the straights. 

 
3. Circles are fit to the set of coordinates between the 

tangent points that define the circular curves. 

4. The two parameters that define a transition curve are its 
length and final radius. As the latter is known (the radius 
of the circular curve), it remains only to determine the 
length of the transition curve that runs, for example, from 
the tangent point on a straight to meet another on the 
circular curve. 

 
It is noteworthy that in this process the location of the straight 
and the location and radius of the circle, determined in steps (2) 
and (3), are not varied. Neither is the transition curve fitted to 
the coordinates mapped along its length. Rather, the length of 
transition is chosen so that it will leave the tangent point on the 
straight and meet the circular curve tangentially. 
 
4.2 Determining tangent points and rate of change of 
curvature of transition curve 

There is a difficulty in estimating the location of tangent points 
from a plot of the raw coordinates acquired in the mapping of 
the track. This can be seen in Figure-5, which has been 
generated from typical data. The panel on the right shows the 
plot of the track coordinates. As can be seen, the locations of 
the tangent points of a straight to transition curve, and a 
transition curve to a circular curve, cannot be discerned with 
any confidence.  
 
The panel on the left of Figure-5, in which the locations of the 
tangent points are more clear, shows the plot of the running 
curvature. The running value of the curvature is computed by 
continually fitting a circle to the last point mapped and the two 
preceding points. The raw values of curvature display 
significant noise and they are smoothed before plotting, as 
illustrated in Figure-5. In the initial section the curvature is zero 
and is associated with a straight. The second section shows a 
constant increase in curvature along a transition. The third 
section shows positive constant curvature as the mapping 
platform moves through a circular curve. 
 

 
 

Figure 5. Plot of curvature and track centreline 
  
Figure-6 shows in more detail an idealised plot of curvature 
over a 3km section. The track enters a curve on the right at 
400m and the curvature varies until entering, at 700m, a circular 
curve of 1000m radius. The curvature remains at 1/1000 until 
1100m when it returns to a straight at 1400m. Later the track 
enters a curve on the left at 1700m and a similar pattern of 
curvature variation follows. 
 
In practice, determination of the locations of the tangent points 
is aided by least squares fitting of straight lines to the various 



 

sections of the plot of curvature. In determining the tangent 
point that marks the end of a transition curve, for example, an 
initial estimate of the location is taken manually from the plot. 
The tangent point at the start of the transition curve will have 
been previously computed in a similar manner while fitting the 
line to the curvature of the straight. This determines which of 
the mapped points are to be used in fitting the line that 
represents the constant rate of change of curvature. The process 
is iterated by moving the selection of the tangent point back and 
forwards until an optimum is reached as indicated by the sum of 
squares of the residuals. 
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Figure 6. Idealised plot of track curvature. 
 

 At the conclusion of this process the mass of mapped 
coordinates is reduced to a set of data where: 
» the location of the tangent points which encompass the 

straights have been determined, 
» the locations of the centres and the radii of the circular 

curves have been determined, and  
» estimates of the lengths of the transitions have been made. 

 
4.3 Refining the length of the transition 

Due to noise in the mapped coordinates, the set of reduced data 
is unlikely to be coherent. That is, if a straight, transition curve 
and section of circular arc are plotted there is likely to be a 
discontinuity where the transition curve should meet the 
circular curve. This is illustrated in Figure-7 where, ideally, the 
transition curve leaving the straight at tangent point T1 would 
terminate with the point P being coincident with the tangent 
point T2 on the circular curve. 
 

 
 

Figure 7.  Plot of transition curve with inaccurate, estimated 
length. 

 
The cause of this discontinuity could be errors in all or any of 
the components of data: the position of the straight, the position 

and radius of the circular curve or the estimated length of the 
transition. As mentioned earlier, the logic followed here is to 
hold both the location of the straight and the centre, along with 
the radius of the circular curve, and vary the length of the 
transition curve so that it will meet the circular curve 
tangentially. Under this logic, the cause of the discontinuity 
shown in Figure-7 is that the length of the transition is too large 
causing the transition to pass below the tangent point T2. This 
can be deduced by considering the first term of the formulae for 
the north coordinate: 

  
3l

n
6RL

≈                                                      (9) 

 
Figure-8 shows that the error in the transition length causes an 
error of n r cos(180 )∂ = ∂ − θ in the northing of point P where 

r∂ is the radial error in the position of P.  
 
 

 
 

Figure 8. Radial error in the terminal of transition curve due to 
error in length. 

 
The following differential correction for the length L applies at 
the terminal of the transition curve: 

 L n
L 6R

n L
nδ ≈ δ δ

∂ −
≈

∂
                  (10) 

 
An improved estimate of the transition length  L’ follows as 

 L L n
6R

L
′ = δ−                    (11) 

Upon iteration of Eqn.11, the point P moves to the tangent point 
T2 as shown in Figure-9. 
 

 
Figure 9. Length of transition selected so as to meet the circular 

curve tangentially. 



 

 
4.4 Example of fitting transition curve 

Figure-9, although not at all to scale, can also be taken to 
represent the design of a transition curve that moves from a 
straight running due east to a circular curve on the left.  

The transition curve has been designed with the following 
parameters: 

» the tangent point on the straight (T1) is at the origin of an 
east/north axes system, 

» the circular curve has a radius of 1000m, 
» the tangent point on the circular curve (T2) is at 

coordinates 99.975 east and 1.666 north, and 
» the length of transition curve is 100m. 

 
As a test of the algorithm represented by Eqn. 11, the length of 
the transition was assumed to be 110m. Table-3 shows the 
variation of the length of the transition L and the radial error δr 
in the position of its terminal as the algorithm is iterated. 
 

 Coordinates of 
terminal point P 

  

Iteration east north δr L 
1 109.967 2.016 0.199 110.000 
2 99.114 1.638 -0.014 99.138 
3 99.964 1.666 0.000 99.989 
4 99.975 1.666 0.000 100.000 

 

Table 3. Variation in length of transition L and radial error δr  
with iteration of Eqn. 11. 

 
Upon completion of the computation: 

» the terminal of the transition curve has moved onto the 
circular curve at the designed tangent point, 

 
» the length of the transition has converged to the design 

length of 100m, and 
 
» the radius of curvature of the transition at the tangent 

point is 1000m, as expected since this is a fundamental 
property of the Euler spiral. 

 
The curvature of the Euler spiral is obtained as (Clarke, 1964):  

     l
K

RL
=                    (12) 

where l is the length from the tangent point, L the total length of 
the transition curve and R the final radius of the transition 
curve. 

 
Thus, at the terminal of the transition curve, where l = L, the 
curvature is 

                     1
K

R
=                    (13) 

 

 
5. CONCLUDING REMARKS 

The need to reduce the strings of coordinates acquired in the 
mobile mapping of railways to a continuous series of straights 
and curves arises from advantages this format has in its 
integration into a spatial data model which underpins asset 
management systems. The challenge to the mapping process is 
to include algorithms that reduce the mass of coordinates to this 
format with particular emphasis on the need for continuity. 
 
For the vertical profiles, the continuity is achieved by adding 
constraint measurements when applying the least squares 
technique of fitting the parabolas to the previously determined 
straights. For the horizontal curves, initially, the least squares 
technique is used to fit straights and circular curves to the 
associated coordinates. Continuity is then achieved by 
manipulating the length of the transition curve. 
 
The examples discussed refer to the simple case of moving from 
a straight to a circular curve. However, the principles can be 
applied to compound curves where the transition joins a circular 
curves of differing radii. 
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