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ABSTRACT: 

 

The ever improving capabilities of the direct geo-referencing technology is having a positive impact on the widespread adoption of 

LIDAR systems for the acquisition of dense and accurate surface models over extended areas. Unlike photogrammetric techniques, 

derived footprints from a LIDAR system are not based on redundant measurements, which are manipulated in an adjustment 

procedure. The accuracy of derived LIDAR footprints depends on the quality of the bore-sighting parameters among the system 

components: namely, the laser, GPS, and INS units. Current methodologies for estimating the bore-sighting parameters of a LIDAR 

system are based on complicated and sequential calibration procedures. This paper presents a new methodology for estimating the 

LIDAR bore-sighting parameters through a tight integration procedure that involves photogrammetric data and raw measurements 

from a LIDAR system. Then, the LIDAR bore-sighting parameters are determined by minimizing the normal distances between the 

derived LIDAR footprints and the photogrammetric patches. The whole procedure is implemented in an integrated bundle 

adjustment that incorporates the photogrammetric data as well as the raw LIDAR measurements. An analysis will be conducted to 

determine the optimum configuration of the control patches as well as the flight pattern for reliable estimation of the bore-sighting 

parameters while avoiding possible correlations. Besides the estimation of the bore-sighting parameters, the proposed methodology 

will also ensure the co-registration of the photogrammetric and LIDAR data to a common reference frame, which will have a positive 

impact on further products such as orthophotos and generated photo-realistic 3D models. The findings of the conducted analysis will 

be verified through experimental results from simulated data. 
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1. INTRODUCTION 

A typical LIDAR system consists of three main components, a 

GPS system to provide position information, an INS unit for 

attitude determination, and a LASER system to provide range 

(distance) information between the LASER firing point and the 

ground point. In addition to range data, modern LIDAR systems 

can capture intensity images over the mapped area. Therefore, 

LIDAR is being more extensively used in mapping and GIS 

applications.  

 

Figure 1 shows an example of a schematic diagram of a LIDAR 

system together with the involved coordinate systems. Equation 

1 is the basic LIDAR geometric model that incorporates the 

LIDAR measurements for deriving positional information (El-

Sheimy et al., 2005). This equation relates four coordinate 

systems, which include the ground coordinate system, the 

inertial navigation system (INS) body frame coordinate system, 

the laser unit coordinate system, and the laser beam coordinate 

system. This equation is simply the result of three vectors 

summation; 0X
uuur

is the vector from the origin of the ground 

coordinate system to the GPS antenna phase center, GP
uur

is the 

offset between the laser unit and the GPS phase center with 

respect to the laser unit coordinate system, and ρ is the 

measured distance between the laser beam firing point and the 

target point. The summation of these three vectors after 

applying the appropriate rotations ( , , , , ,, ,R R Rω φ κ ω φ κ α β∆ ∆ ∆ ) 

will yield the vector GX
uuur

, which represents the ground 

coordinates of the object point under consideration. The quality 

of the derived surface depends on the accuracy of the involved 

sub-systems (i.e., laser, GPS, and INS) and the calibration 

parameters relating these components (i.e., bore-sighting 

parameters).  

 

 
Figure 1. Coordinates and parameters involved in a LIDAR 

acquisition system 
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Even though the individual measurement capabilities of the 

system components (GNSS, INS and laser scanner system) are 

quite precise, serious errors can occur from inaccurate 

combination of theses components. For this reason, bore-

sighting parameters should be well defined in the beginning of 

the work process. The calibration of a LIDAR system is a 

complex task. The ultimate goal is to determine all systematic 

errors and to correct the raw laser measurements such that only 

random errors remain. The calibration proceeds through several 

steps, beginning with calibrating individual system components 

in the laboratory, followed by a system calibration on the 

platform (mounting parameters), and in-situ calibrations before 

and after the mission (Schenk 2001). 

 

Prior research has addressed the analysis and calibration of the 

LIDAR system errors. The sources of the systematic errors, 

which can occur in a LIDAR system, have been previously 

analyzed together with their impact on the derived surface 

(Schenk, 2001; Habib et al., 2006). In addition, an attempt for 

system parameter estimation has been carried out by Schenk 

(2001), where some of the system parameters are individually 

estimated, while others, due correlation, are determined as a 

group. Morin (2002) introduced a calibration methodology 

using overlapping strips, where the bore-sight misalignment and 

scanner torsion are estimated via least squares adjustment 

involving the LIDAR measurements. Filin (2003) tried to 

correct the system parameters using natural surfaces to 

determine the mounting and the range biases. In industry, the 

approach taken by Hanjin (2006) is more closely applicable in 

practice. To calibrate the LIDAR system, a calibration field, 

which is composed of well-known surfaces, is devised. Using 

the calibration site, discrepancies between the LIDAR point 

cloud and the reference surface are observed and used to 

determine the system parameters such as the bore-sighting roll 

and pitch angles and scale parameters (Hanjin 2006).  

 

Some of the existing calibration methods involve manual and 

empirical procedures, and some have limitations in terms of 

which parameters can be determined through the calibration 

process. In this paper, the error sources are analyzed and an 

alternative method is proposed for the system calibration. More 

specifically, a method using the LIDAR raw measurements is 

introduced, and a multi-sensor triangulation, which is 

developed for the integration of LIDAR and photogrammetric 

data, is proposed. Planar patches are used as the control data. 

Using control planar patches is advantageous for several 

reasons. For instance, planar patches are easy to collect from the 

photogrammetric data and LIDAR point cloud. Moreover, man-

made environments are rich with such primitives.  

 

The following section gives an analysis of the LIDAR error 

budget, and Section 3 presents the proposed methodology for 

system calibration as well as the optimal configuration of the 

control patches and flight pattern. Experimental results from a 

simulated data will be introduced in the same section. Finally, 

conclusions and recommendation for future research will be 

summarized. 

 

2. ERROR BUDGET OF A LIDAR SYSTEM 

As mentioned before, the error in the LIDAR-derived 

coordinates is affected by errors in the components of the 

LIDAR system. These components, or input parameters, can 

either be estimated or measured from a system calibration 

procedure. In this section, we are interested in analyzing the 

effect of random noise and systematic biases in the 

measurements from the various LIDAR components on the final 

product. The purpose of such analysis is to allow for the 

estimation of the quality of the final product in terms of the 

quality of the system’s measurement. Moreover, knowing the 

expected accuracy of the final product, one might be able to 

interpret the outcome of the quality control procedure as being 

acceptable or as an indication of the presence of systematic 

biases in the data acquisition system. Finally, by analyzing the 

effect of systematic biases, one might be able to offer some 

diagnostic tips about the origin of identified discrepancies from 

the proposed quality control procedures. 

 

For any point measured by the LIDAR system, error 

propagation can be used to determine the error in the LIDAR-

derived coordinates given the errors in the LIDAR input 

parameters. It should be noted that the error budget does not 

consider the effect of LIDAR interaction with different terrain 

and ground cover types. In other words, the error budget 

assumes a relatively flat solid surface. To facilitate the 

estimation of the contribution of error sources in various 

LIDAR components to the final accuracy of the derived point 

cloud, an error propagation calculator has been devised. The 

calculator allows the user to specify values for each of the 

system input parameters for a certain LIDAR footprint, and to 

enter the noise level for each of the parameters. The calculator 

then determines the accuracy of the ground coordinates of the 

point. Conversely, if the user requires specific accuracy for the 

final ground coordinates, the calculator can be used to 

determine the accuracies that would be required for the input 

components through a trial and error process.  

 

Figure 2 shows the calculator’s user interface. In this figure, 

sample typical values for the LIDAR input parameters have 

been entered along with the sigma values. The output box gives 

the variance-covariance matrix of the final ground coordinates 

of the point in question, followed by the respective standard 

deviations. Using such a calculator, one can answer the 

following questions:  

• What is the error budget for each source component in 

the LIDAR equation? 

• What is the best possible achievable accuracy for a 

given LIDAR component configuration based on the 

manufacturer’s standard deviations? 

 

 
Figure 2. Error propagation calculator 



 

 

Another related issue to the LIDAR error analysis is the nature 

of resulting errors from random errors in the input system 

measurements. Usually, it is expected that random noise will 

lead to random errors in the derived point cloud. Moreover, it is 

commonly believed that random noise will not affect the 

relative accuracy. However, this is not the case for LIDAR 

systems. In other words, some of the random errors might affect 

the relative accuracy of the derived point cloud. Depending on 

the considered parameter, the relative effect of the 

corresponding noise level might not be the same. As an 

illustration, Figure 3 shows that a given attitude noise in the 

INS derived orientation will affect the nadir region of the flight 

trajectory less significantly than off nadir regions. Thus, the INS 

error will affect the relative accuracy of LIDAR derived point 

cloud. The following list gives some diagnostic hints about the 

impact of noise in the system measurements on the derived 

point cloud. 

• GPS noise: It will lead to similar noise level in the 

derived point cloud. Moreover, the effect is 

independent of the system parameters (flying height 

and look angle). 

• Angular noise (INS or mirror angles): For this type of 

noise, the horizontal coordinates are affected more 

than the vertical coordinates. In addition, the effect is 

dependent on the system parameters (flying height 

and look angle). 

• Range noise: It mainly affects the vertical component. 

The effect is independent of the system flying height. 

However, the impact is dependent on the system look 

angle. 

 
Figure 3. The effect of attitude error on a simulated horizon 

surface 

 

 Flying Height Flying Direction Look Angle 

Bore-

sighting 

Offset 

Bias 

Effect is  

independent of the 

Flying Height 

Effect is dependent 

on the Flying 

Direction (Except 

∆Z) 

Effect is 

independent of the 

Look Angle 

Bore-

sighting 

Angular 

Bias 

Effect Increases 

with the Flying 

Height 

Effect Changes with  

the Flying Direction 

Effect Changes 

with the Look 

Angle (Except ∆X) 

Ranging 

Bias 

Effect is  

independent of the 

Flying Height 

Effect is 

independent of the 

Flying Direction 

Effect Depends on 

the Look Angle 

(Except ∆Y) 

Scan 

angle Bias 

Effect Increases 

with the Flying 

Height 

Effect Changes with 

the Flying Direction 

(Except ∆Y) 

Effect Changes 

with the Look 

Angle (Except ∆X) 

Table 1. Systematic biases and their impact on the derived 

surface with linear scanner system, flat horizontal 

terrain, and straight trajectory along the Y-direction 

and constant attitude 

 

Systematic biases in the system measurements (e.g. GPS/INS 

measurements, mirror angle measurements, measured ranges) 

and calibration parameters (e.g. bore-sighting parameters 

relating the system components) will lead to systematic errors in 

the derived point cloud. Table 1 provides a summary of the 

various systematic biases and their impact on the derived LIDR 

coordinates. 

 

3. LIDAR SYSTEM CALIBARTION 

For a system calibration, control information is essential. 

Traditionally, distinct control points have been used for the 

calibration of photogrammetric systems. One of the key 

characteristics of LIDAR data is the irregularity of the derived 

point cloud. While LIDAR data provides very accurate three-

dimensional positional information, its visual information is not 

enough to extract distinct points (Figure 4). For example, it is 

nearly impossible to identify the laser footprint in the 

corresponding images (Ghanma 2006). For this reason, using 

control planar patches is easier and more effective for the 

LIDAR system calibration. In this research, we propose the 

integration of photogrammetric and LIDAR data for LIDAR 

system calibration. The photogrammetric data will be used to 

provide the necessary control planar patches for LIDAR 

calibration.  

 

 
Figure 4. Planar patches in photogrammetric and LIDAR data 

 

Using control patches, we can determine the LIDAR parameters 

that minimize the normal distance between the laser footprints 

and the corresponding control patches. Control planar patches 

can be derived from photogrammetric data such as aerial photos 

and satellite images. For example, we can observe three corner 

points on the plane from overlapping images and the 

corresponding object coordinates of these points are calculated 

through a bundle adjustment procedure. As previously 

mentioned, a LIDAR system generally has four kinds of 

observations. These include GNSS observations for the 

positional information, INS observations for the platform 

attitude determination, scan angles of the laser beam, and 

distances between the laser firing point and the object surface. 

We must also consider the bore-sighting parameters: spatial and 

rotational offset values between the origins of GNSS/INS and 

the laser unit coordinate system. In this research, LIDAR system 

calibration mainly focuses on these bore-sighting parameters. In 

the remainder of this paper, the feasibility of using planar 

patches derived from photogrammetric data for the LIDAR 

calibration is discussed. 



 

 

In this research, the photogrammetric bundle adjustment is 

augmented by adding the LIDAR geometric model to the 

collinearity equation for the LIDAR system calibration. The 

collinearity equations are introduced in Equation 2, where the 

image and object coordinates of the planar patches are related to 

the interior and exterior orientation parameters of the imaging 

system. In this equation, the object coordinates of the vertex 

points, which are identified in overlapping images, are 

unknowns. 
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where ,,, κφω XO,YO, and ZO are the exterior orientation 

parameters of the imaging sensor, 

 pp yxf ,, are the interior orientation parameters of 

the imaging sensor, 

 ),,( vvvvertex ZYXP = are the coordinates of a vertex 

point, and 

 ),( yxp = are the coordinates of the corresponding 

image point. 

 ijm are the elements of the rotation matrix(M) 

In Figure 5, A, B, and C denote vertex points of a planar patch, 

which is defined by the photogrammetric data. A LIDAR point 

that belongs to this planar patch is denoted by Gi. A well 

calibrated LIDAR system should produce a point that has a 

normal distance to the plane that is close to zero. In other words, 

the volume of the triangular pyramid which consists of the four 

points A, B, C, and Gi should be zero. 

),,( BBB ZYX

),,( CCC ZYX

),,( AAA ZYX
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Figure 5. Triangular constraint between a LIDAR point Gi and a 

planar patch represented by A, B, and C 

 

The volume of the triangular pyramid can be calculated by 

Equation 3, and the LIDAR point, Gi, can be obtained by 

LIDAR geometric model (Equation 1) using LIDAR raw 

measurements. The unknowns in Equation 3 include the ground 

coordinates of the photogrammetric patch together with the 

LIDAR bore-sighting parameters.  
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where  ( , , )
i i iG G GX Y Z = LIDAR point LIDAR point 

 {( , , ),( , , ),( , , )}A A A B B B B B BX Y Z X X X X X X = vertex 

points 

 

Using distinct control points, the geo-referencing parameters of 

the involved imagery can be indirectly estimated, which can be 

simultaneously used to derive the ground coordinates of the 

control patch. Alternatively, an integrated GPS/INS unit can be 

used to directly geo-reference the involved imagery. The 

comparative analysis between the performance of direct and 

indirect geo-referencing procedures will be evaluated in the 

experimental results section. On the other hand, the next section 

deals with the optimum configuration for reliable estimate of 

the bore-sighting parameters.  

 

3.1 Optimal Configuration of the Control Patches & Flight 

Plan 

To ensure reliable estimation of the bore-sighting parameters, 

one must investigate the optimum configuration of the control 

patches together with flight pattern. An optimum configuration 

is the one that yields an accurate estimate of the parameters 

while avoiding any possible correlations. For the control 

patches, the ideal configuration is shown in Figure 6.a. In other 

words, orthogonal patches in the XY, XZ, and YZ-planes are 

desired. However, this situation is not realistic (i.e., it is not 

always guaranteed that such a configuration can be available).  

 

A more realistic planar patch configuration is shown in Figure 

6.b. For this configuration, horizontal and sloping planar 

patches are used for the calibration process. It is important to 

have sloping planar patches with different aspects (e.g., some of 

the patches can be parallel to the X-axis while others are 

parallel to the Y-axis).  

 

 
Figure 6. Optimal (a) and realistic (b) planar patches for the 

LIDAR system calibration 

 

To test the performance of this configuration together with the 

impact of the slope of such patches, we simulated a LIDAR 

strip using a linear scanner system at 1500 m flying height with 

25 deg scan angle. The simulation process starts with a surface 

model and system trajectory. Using such information, we 

derived the LIDAR measurements, which are then used to 

estimate the bore-sighting parameters through the proposed 

methodology in the previous section. The estimated bore-

sighting parameters are then used to reconstruct the surface. 

Finally, root mean square error analysis (RMSE) is used to 

compare the original and reconstructed surfaces. The conducted 

tests for this experiment utilize control patches, which are 

readily available (i.e., for these tests, we directly use control 

patches for LIDAR calibration).  

 

The performance of the calibration process while considering 

LIDAR and photogrammetric data will be discussed in section  

4. Figure 7 shows the accuracy of the reconstructed coordinates 

using the recovered bore-sighting parameters from five well-

distributed control patches along the LIDAR swath with varying 

slopes. Figure 8 shows the discrepancies between the true bore-

sighting parameters and recovered ones. As it can be seen in 

Figure 7 and Figure 8, if the slope of the planes is very small 

(e.g., less than 10 deg), the three planar patches are almost 



 

parallel, and the RMSE of the reconstructed coordinates of 

LIDAR points are very high. It is also seen that for such a case, 

the derived bore-sighting parameters are not close to the true 

parameters. Therefore, it is recommended that some of the 

control patches should have slopes that exceed 10 degrees. 

Moreover, the patches should have different orientation in space 

(i.e., different aspect angles).  

 

 
Figure 7. Slope of planar patches and accuracies of 

reconstructed surface 

 

 
Figure 8. Differences between true bore-sighting parameters and 

derived ones 

 

Before the calibration, we need to analyze the error coming 

from each system parameter that is related to the LIDAR 

calibration. In particular, the errors in the bore-sighting 

parameters significantly affect the final positions of LIDAR 

points. This paper defines biasω , biasφ and biasκ  as errors in the 

rotational bore-sighting offset and ∆X, ∆Y and ∆Z as errors in 

the bore-sighting spatial offset with respect to the GNSS/INS 

coordinate system. One of the significant difficulties in system 

calibration is that some parameters’ correlations are high. The 

following discussion explains the correlation problems and how 

to avoid this problem. First, to simplify the problem, we assume 

flat terrain and constant platform attitude. Under this idealized 

condition, the rotational bore-sighting offset error biasω  and 

bore-sighting spatial offset error ∆Y are tightly coupled with 

each other. 

 

Figure 9 show the errors in ground coordinates for one cycle (or 

scan) of data, whose errors are due to spatial offset (∆X, ∆Y and 

∆Z), angular offset biasω  in a linear scanner system and 

elliptical scanner system, respectively. The X axis represents the 

location of the point along the scan line and the Y axis of the 

figure displays the differences, in meters, between true 

coordinates and distorted coordinates resulting from the offset 

errors. As shown in Figure 9.a, bore-sighting spatial offset 

values generate constant errors on the ground. And the effect of 

the spatial offset is same in the both system: linear scanner 

system and elliptical scanner system, because the effect of the 

spatial bore-sighting offset on the ground coordinates is 

independent of the scan angles as shown in the LIDAR system 

geometric model. On the other hand, angular offset biasω  

produces different error patterns in both systems. In Figure 9.b, 

the error graph of linear scanner system shows the constant 

errors like the error pattern of spatial offset and the error pattern 

of biasω in the elliptical scanner system is different from the case 

of the linear scanner system. 

 

The point to which we give attention in these graphs is to the 

pattern effect of the error due to angular offset (Figure 9.b and 

Figure 9.c), which is seen to be similar to the pattern in Figure 

9.a, which shows the error effect due to spatial offsets. This 

means that angular offsets can be correlated with spatial offsets.  

 

 
Figure 9. Error patterns occurred by bore-sighting spatial offsets, 

∆X, ∆Y and ∆Z, in linear and elliptical scanner 

system (a), bore-sighting rotational offset, biasω , in 

linear scanner system (b), and bore-sighting 

rotational offset, biasω , in elliptical scanner system 

(c) 

 

In the elliptical scanner system, to avoid the correlation between 

biasω and ∆Y, we should ensure that the maximum error 

( maxdZ ) in the Z coordinates is larger than the size of the 

random error (Figure 10). If this value is not larger than the size 

of the random error, this curved error pattern caused by the 

effect of the rotational bore-sighting offset error biasω can not be 

distinguished from the constant error pattern caused by the 

effect of the spatial bore-sighting offset error ∆Y. Using 

Equation 4 which is derived form the LIDAR geometric model 

(Equation 1), we can calculate the optimal flying height to 

avoid the correlation between biasω  and ∆Y in the elliptical 

scanner system.  

 



 

maxdZ

 
Figure 10. Z coordinate error pattern caused by biasω along the 

scan line in elliptical scanner system 
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biasTbias
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edZ
H
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>
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where rande is size of random error, and 

 optH is optimal flying height from the ground. 

 

More significant correlation can be occurred in the linear 

scanner system. As shown in Figure 9.a and 9.c, rotational bore-

sighting offset biasω produce constant errors, and this error 

pattern look like errors caused by spatial bore-sighting offset. 

The spatial bore-sighting offset produces the same errors in 

ground coordinate even when the swath width is changed by 

using different flying height and different scan angles. On the 

other hand, errors introduced by rotational bore-sighting offset 

change for different flying heights or scan angles. For this 

reason, we can avoid the correlation in the linear scanner system 

when we use at least two different overlap strips, which are 

captured by using two different strips captured at different 

flying heights. The optimal flying height difference between 

two strips can be obtained when the size of the Y coordinate 

difference between two different strips is large than the size of 

the random error and Equation 5 represents a formula used in 

calculating the optimal flying height difference.  

 

( )
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rand
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ω

>
=

−
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where dY is a maximum Y coordinate difference between 

two different strips, and 

 optdH is optimal flying height from the ground. 

 

A similar situation can occur for an angular offset biasφ  and a 

spatial offset ∆X. Figure 11 shows the error pattern caused by 

the rotational bore-sighting offset error biasφ in the linear 

scanner (Figure 11.a) and the elliptical scanner (Figure 11.b). 

The difference of this error pattern in comparison with the error 

pattern caused by the spatial bore-sighting offset errors 

(constant errors) is most significant in the values of dZ. 

Therefore, we have to be sure that maxdZ is larger than the 

random error size (Figure 12). The optimal flying height to 

avoid the correlation can be obtained by Equation 6. 

 

3.2 Optimal Flight Plan Test 

For the investigation of the optimal flight plan, thirteen 

configurations are tested (refer to Table 2 for the specifications 

of such flight plans). Tests 1 and 2 use only a single strip, Tests 

3 ~ 8 use two strips with different flying directions but with the 

same flying height, and Tests 9 ~ 13 involve two or three strip 

with different flying heights and different flying directions. In 

addition, Test 8 has two strips with 75% overlap. 

 

 
Figure 11. Error patterns occurred by bore-sighting rotational 

offset biasφ in linear scanner system (a), and elliptical 

scanner system (b) 
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Figure 12. Z coordinate error pattern caused by 

biasφ along the 

scan line in linear scanner system 
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where Tβ is an total angular field of view of the laser 

scanner around flight direction. 

 
Test 

No # 
1 2 3 4 5 6 

Flying 

direction 

& 

Flying 

height 

S2N 

500m 

E2W 

1500m 

S2N 

2500m 

E2W 

2500m 

S2N 

500m 

N2S 

500m 

S2N 

2500m 

N2S 

2500m 

E2W 

500m 

S2N 

500m 

Overlap N/A N/A 100% 100% 100% 100% 

Flying 

height 
500m 1500m 2500 500m 2500 

500m 

500m 

*TAFOV 40deg 

Scan rate 200Hz 

Laser 

pulse rate 
33.33 kHz 

Test 
No # 

7 8 9 10 11 12 13 

Flying 

direction 

& 

Flying 

height 

S2N 

2500m 

N2S 

2500m 

S2N 

2500m 

N2S 

2500m 

S2N 

500m 

S2N 

1500m 

S2N 

500m 

S2N 

2500m 

S2N 

500m 

S2N 

1500m 

S2N 

2500m 

E2W 

500m 

S2N 

2500m 

E2W 

2500m 

S2N 

500m 

Overlap 100% 75% 100% 100% 100% 100% 100% 

Flying 

height 

2500m 

2500m 

2500m 

2500m 

500m 

1500m 

500m 

2500m 

500m 

1500m 

2500m 

500m 

2500m 

2500m 

500m 

Trajectory Constant velocity and attitudes 

GNSS 

random 

error 

±5cm 

INS 

random 

error 

±0.005deg 

*TAFOV 40deg 

Scan rate 200Hz 

Laser 

pulse rate 
33.33 kHz 

Table 2. Description of the flight patterns for the LIDAR 

calibration (*TAFOV: Total Angular Field Of View) 

 

For the calibration, 25 patches are used for each strip and these 

planar patches are simulated under the above mentioned optimal 



 

configuration. Each planar patch is a right-angled triangle of 

which each side is 5.0m while the slopes range from 0 deg 

(parallel to ground) to 30 deg (for the tilted patches). There are 

two kinds of tilted patches, one is parallel to the X axis and the 

other is parallel to Y axis. It can be seen that they are regularly 

distributed throughout the scanned area.  

 

Figure 13 shows the RMSE of the reconstructed coordinates of 

LIDAR points using the estimated bore-sighting parameters 

from the various tests. The random errors in the simulated test 

data are about ±5 cm for GNSS position and ±0.005deg for the 

INS orientation (which is equivalent to ±22cm at a flying height 

of 2500m). The RMSE of the reconstructed coordinates using 

the estimated bores-sighting parameters from the various tests 

are smaller than these random errors for all the flight patterns. 

These results were proven by the slope tests above, where it was 

seen that for a slope greater than 20 deg and a good distribution 

of planar patches, the RMSE are smaller than the size of the 

random errors, Figure 13.  

 

 
Figure 13. RMSE of reconstructed coordinates of LIDAR points 

under different flight patterns 

 

However, we need to give attention to Figure 14, which shows 

the differences between the derived bore-sighting parameters 

and the true ones. Even though the RMSE of the reconstructed 

coordinates of the LIDAR points are smaller than the size of 

system random errors, the accuracy of the derived parameters 

might not be good enough to recover the ground coordinates of 

the LIDAR points under different flying configurations. 

 

In summary, horizontal and sloping planar patches are essential 

for reliable estimation of the bore-sighting parameters. 

Moreover, the flight pattern of the LIDAR system plays a 

significant role. It is preferred to have two overlapping strips 

from two different flying heights (refer to experiments 9 – 13). 

In addition, flying in cross and/or opposite strips will lead to 

slightly better results. Having established the feasibility of using 

control patches for LIDAR calibration, the focus will be shifted 

towards the analysis of the integration of photogrammetric and 

LIDAR data while considering direct and indirect geo-

referencing alternatives. 

 

 
Figure 14. Differences between true and estimated bore-sighting 

parameters from different flight patterns 

4. BUNDLE ADJUSTMENT FOR LIDAR 

CALIBRATION 

The following tests deal with photogrammetric data as well as 

LIDAR point cloud with the planar patches derived from 

photogrammetric intersection using bundle adjustment. The test 

data used contains two overlapping photos and two LIDAR 

strips from different flying heights. The photogrammetric geo-

referencing is indirectly established using few ground control 

points (GCPs) or directly derived from an onboard GNSS/INS 

unit. For the indirect geo-referencing, 12 tie points and 4 GCPs 

are used, and for the direct geo-referencing 16 tie points and 

GNSS/INS data are used. Table 3 shows the simulation 

parameters for the photogrammetric data. For the LIDAR 

simulation, two different flying heights, 500m and 2,500m, are 

used with parallel flying directions in order to avoid correlation 

between the bore-sighting parameters. 

 

Table 4 to Table 7 show the result and quality of the LIDAR 

calibration using simulation data under the above conditions. 

The first test has two strips with parallel flight directions and 

different flying heights, for which the image geo-referencing is 

performed indirectly (see Table 4 and Table 5). The second test 

is identical to the first one; with the exception that the image 

geo-referencing is performed directly (see Table 6 and Table 7). 

Table 4 and Table 6 show the result of the calibration and 

recovered bore-sighting parameters. A check strip is chosen in 

order to check the accuracy of the recovered parameters. This 

check strips is chosen to have a different flying height than 

those used in the calibration, but which covers the same area. 

Table 5 and Table 7 show the RMSE of the reconstructed 

LIDAR footprints in this strip. The check strip has a flying 

height of 1500m and is generated by a linear LIDAR system 

over the same area. It is clearly evident that the direct and 

indirect geo-referencing of the involved imagery yield 

comparable results.  
 

Item Descriptions 

Overlap rate About 60% 

Image Size 9”x 9” 

Focal length 150mm 

Flying height 2500m 

Image point measurement errors -5um ~ +5um 

GCP precision (indirect geo-referencing) -5cm ~ +5cm 

INS precision (direct geo-referencing) 
-0.008deg~ 

+0.008deg 

GNSS precision (direct geo-referencing) -10cm ~ +10cm 

Table 3. Description of the simulation parameters of the 

photogrammetric data 

 
σ  5.92E-01 

Xb(M) Yb(M) Zb(M) 

3.9713371474e-4 -3.2689161448e-3 3.1413554246e-5 

Ob(deg) Pb(deg) Kb(deg) 

5.0412193483e-4 2.5096596059e-4 1.2095043584e-3 

Table 4. LIDAR calibration with bundle adjustment (Test A: 

Indirect geo-referencing case)  

 
RMSE_X[M] RMSE_Y[M] RMSE_Z[M] 

6. 0649805475e-03 1. 0958787364e-02 1. 2618518246e-03 

Table 5. Surface reconstruction result for the check strip (Test 

A: Indirect geo-referencing case) 

 

 

 

 

 



 

σ  5.92E-01 

Xb(M) Yb(M) Zb(M) 

3.9713371453e-4 -3.2689161421e-3 3.1413554248e-5 

Ob(deg) Pb(deg) Kb(deg) 

5.0412193485e-4 2.5096596057e-4 1.2095043588e-3 

Table 6. LIDAR calibration with bundle adjustment (Test B: 

Direct geo-referencing case) 

 
RMSE_X[M] RMSE_Y[M] RMSE_Z[M] 

6. 0649805472e-03 1. 0958787365e-02 1. 2618518245e-03 

Table 7. Surface reconstruction result for the check strip (Test 

B: Direct geo-referencing case)  

 

This experiment addresses the feasibility of the 

photogrammetric data integration with LIDAR raw data for 

LIDAR system calibration. By using the imagery data for the 

LIDAR calibration, we can reduce the quantity of ground 

control patches that are required, and have a good distribution 

of the control patches over the whole area that is covered by the 

LIDAR data and the imagery. In summary, the conclusion that 

can be drawn is that LIDAR calibration can be done using the 

integration of raw LIDAR data in a photogrammetric bundle 

adjustment. The advantage of this procedure is that it allows for 

a cost effective calibration method without the need for ground 

surveying of the control planar patches. 

 

5. CONCLUSIONS 

This paper addresses a new method for LIDAR system 

calibration while using raw LIDAR data. It has been established 

that the bore-sighting parameters can cause serious errors if 

their accuracy is not good enough. Control planar patches were 

used since ground control points which are traditionally used 

for the photogrammetric data are not distinguishable in irregular 

points such as those provided by a LIDAR system. In this work, 

photogrammetric data is used to derive the control patches, 

which are simultaneously incorporated for the calibration of the 

LIDAR system. In addition to the mathematical model for the 

LIDAR system calibration, the optimal configurations for the 

flight conditions and the distribution of planar patches have also 

been discussed. 

 

As shown in the results of the calibration tests, we can recover 

the bore-sighting parameters using two strips with different 

flying heights. It is worth noting that in order to recover the 

correct bore-sighting parameters under varying conditions; we 

have to avoid any correlation between the rotational and spatial 

bore-sighting parameters. These correlations distort the system 

parameters, and thus even though the quality of the ground 

reconstruction is accurate for one case, these distorted 

parameters might negatively affect the reconstructed ground 

coordinate accuracy if used for strips which are captured with 

different flight condition (e.g., different flying heights and/or 

different scan angles). Finally, the bundle adjustment with raw 

LIDAR data successfully recovers the bore-sighting parameters 

and this quality is as good as the case of LIDAR calibration 

with control patches observed by field surveying. The success 

that has been achieved in this challenging issue opens the door 

to new possibilities for the development of effective calibration 

methods such as an automated procedure for the calibration, in 

addition to offering a cost effective method for LIDAR data 

quality assurance. Current research is focusing on verifying 

these results by using real data. 

 

Acknowledgement 

This research work has been conducted with partial funding 

from the GEOIDE Research Network (SII 43). The authors are 

grateful for Terrapoint Canada Inc. for the valuable feedback. 

 
REFERENCES 

Brenner, C.(2006), Aerial Laser Scanning, International 

Summer School “Dital Recording and 3D Modeling”, ISPRS 

commission VI Special Interest Group “Technology Transfer 

Caravan”, Crete, Greece 

El-Sheimy N., Valeo, C., Habib, A., 2005. Digital Terrain 

Modeling: Acquisition, Manipulation And Applications, Artech 

House Remote Sensing Library, 200 pages. 

Ghannma, M.(2006), Integration of Photogrammetry and 

LIDAR, Ph.D. thesis, University of Calgary 

Filin, S.(2003), Recovery of Systematic Biases in Laser 

Altimetry Data Using Natural Surfaces, PE&RS, Vol. 69, No. 

11 

Habib, A., Jennifer Lay, Carmen Wong (2006), Specifications 

for the Quality Assurance And Quality Control of LIDAR 

Systems, Geomatics Engineering UofC 

Hanjin Information System & Telecommunication Co., Ltd 

(2006), Computing Determinant method for Calibrating 

Airbornelaser Surveying System, Patent Document 

(http://patent2.kipris.or.kr/patent/KP/KPDI1010.jsp#Book10) 

Morin, K.W.(2002), Calibration of Airborne Laser Scanners, 

M.S. thesis, Geomatics Engineering UofC 

Optech, ALTM Technical Overview (2006) 

http://www.optech.ca/altmhow.htm 

Schenk, T.(2001), Modeling and Analyzing Systematic Errors 

in Airborne Laser Scanners, the Ohio Sate University 

 


