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ABSTRACT: 
 
In the context of mapping and mobile vision services, the recognition of objects of the urban infrastructure plays an important role. 
E.g., the recognition of buildings can foster pointers to relevant information spaces, such as, annotation services, it can provide a 
semantic index for scene understanding, and can enable more efficient navigation by direct reference to landmark buildings. The 
presented work provides a generic technology for the recognition of urban objects, i.e., buildings, in terms of a reliable mobile vision 
service. The presented detection system grounds recognition on a Maximum A Posteriori based decision making on weak object 
hypotheses from local descriptor responses in the mobile imagery. We present an improvement over standard image descriptors by 
selecting only informative keys for descriptor matching. Selection is applied first to reduce the complexity of the object model and 
second to accelerate detection by selective attention. We trained a decision tree to rapidly and efficiently estimate an image 
descriptor’s posterior entropy value, retaining only those keys for thorough analysis and voting with high information content. The 
experiments were performed on typical, low quality mobile phone imagery on urban tourist sights under varying environment 
conditions (changes in scale, viewpoint, illumination, varying degrees of partial occlusion). We demonstrate in this challenging 
outdoor object detection task the superiority in using informative keys to standard descriptors using a publicly available mobile 
phone image database, reporting increased reliability in object/background separation, accurate object identification, and providing a 
confidence quality measure that enables a highly stable mobile vision service. We show further results on imagery captured from a 
mobile mapping van that demonstrate the capability to localize complex objects of interest in un-calibrated imagery within urban 
environments. 
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1. INTRODUCTION 

With the industrial miniaturization of cameras and mobile 
devices, the generation of and access to digital visual 
information has become ubiquitous. Today, most cameras are 
sold within mobile phones, accompanying the nomadic 
pedestrian through everyday life, in particular, in its urban 
environment. Computer vision could play a key role in using 
billions of images as a cue for context and object awareness, 
positioning, inspection, and annotation in general. The original 
contribution of this paper is to provide a generic technology for 
the recognition of urban objects, i.e., buildings, in terms of a 
reliable mobile vision service in tourist information systems. A 
mobile user directing its mobile camera to an object of interest 
(Fig. 1) will receive annotation about location relevance (e.g., 
tourist sight) and the identity of the building, enabling the user 
to access choices on more detailed, object specific information. 
Urban recognition has been approached with respect to 
categorical detection of architecture from line based features 
proposed by [6]. [1] presented a framework for structure 
recovery that aims at the same time towards posterior building 
recognition. [13] provided the first innovative attempt on 
building identification proposing local affine features for object 
matching. [15] introduced image retrieval methodology for the 
indexing of visually relevant information from the web for 
mobile location recognition. Following these merely conceptual 
approaches we propose an accurately and reliably working 
recognition service, providing detailed information on 
performance evaluation, both on mobile phone imagery and a 
reference building image database (Sec. 5). 
Our detection system grounds recognition on a MAP decision 
making on weak object hypotheses from local descriptor 
responses in the mobile imagery. We present an improvement 

over the standard SIFT key detector [7] by selecting only 
informative (i-SIFTs) keys for descriptor matching (Sec. 3). 
Selection is applied first to reduce the complexity of the object 
model and second to accelerate detection by selective attention. 
We trained a decision tree to rapidly and efficiently estimate a 
SIFT’s posterior entropy value, retaining only those keys for 
thorough analysis and voting with high information content 
(Sec. 4). 
The experiments were performed on typical, low quality mobile 
phone imagery on urban tourist sights under varying 
environment conditions (changes in scale, viewpoint, 
illumination, varying degrees of partial occlusion). We 
demonstrate in this challenging outdoor object detection task 
the superiority in using informative SIFT (i-SIFT) keys to 
standard SIFT using the MPG-20 mobile phone image database, 
reporting increased reliability in object/background separation, 
accurate object identification, and providing a confidence 
quality measure that enables a highly stable mobile vision 
service. 
 

2. MOBILE COMPUTER VISION SYSTEM 

Image based recognition provides the technology for both 
object awareness and positioning. Outdoor geo-referencing still 
mainly relies on satellite based signals where problems arise 
when the user enters urban canyons and the availability of 
satellite signals dramatically decreases due to various 
shadowing effects [5]. Alternative concepts for localization are 
economically not affordable, such as, INS and markers that 
need to be massively distributed across the urban area. Fig. 1 
depicts the technical concept and the three major stages in 
situated mobile object recognition and annotation. The system 
consists of an off-the-shelf camera-equipped smart phone, a  



 

GPS device (built-in, e.g., A-GPS, or Bluetooth externally 
connected), and a server accessible trough mobile services that 
runs the object recognition and annotation software. This 
specific client-server architecture enables large-scale 
application of urban object awareness, using GPS to index into 
the geo-referenced object database, and leaving object 
recognition restricted to a local urban area on the server. In the 
future, mobile clients might run the application even faster. 
 
2.1 Mobile recognition system 

In the first stage (Fig. 1-1), the user captures an image about an 
object of interest in its field of view, and a software client 
initiates submission of the image to the server. The transfer of 
the visual information to the server is performed either via 
GPRS, UMTS, WLAN (PDAs), or MMS (multimedia 
messaging service). If a GPS device (Bluetooth or built-in A-
GPS) is available, the smart phone reads the actual position 
estimate together with a corresponding uncertainty measure, 
and sends this together with the image to the server. In the 
second stage (Fig. 1-2), the web-service reads the message and 
analyzes the geo-referenced image. Based on a current quality 
of service and the given decision for object detection and 
identification, the server prepares the associated annotation 
information from the content database and sends it back to the 
client for visualization (Fig. 1-3). 
 
2.2 Geo-contextual Cuing  

 Global object search in urban environments – comprising 
thousands of buildings – is a challenging research issue. 
However, within most application scenarios, positions would be 
available from GPS based geo- referencing, which can be used 
to index into an otherwise huge set of object hypotheses. Geo-
reference indexing for selected object hypotheses first requires 
a database containing on-site captured geo-referenced imagery 
about objects. ’Ground truth’ geo-referencing can be performed 
manually, e.g., on corresponding air-borne imagery (Fig. 2). 
From the differences between ’true’ and on-site measured 
positions we can determine the average positioning errorη . 
Based on this quantity, we partition the complete set of object 
hypotheses into subsets of hypotheses (’neighbourhood cell’) of 
local context within a neighbourhood δη +  for further 
processing. For each of these neighbourhoods, we would learn 
the informative features and an attentive mapping to saliency 
(Sec. 3). 
 

2.3 Situated object recognition 

 In recognition mode, the GPS signal receiver firstly returns an 
on-site position estimate. We add then the radial distance of the 
uncertainty estimate ε to receive the urban area that most 
probably will contain the object under investigation (Fig. 2). 
We index now into the geo-referenced object database and 
receive the corresponding ’neighbourhood cell’ from which we 
derive the set of object hypotheses for accurate object 
identification.  
The methodology is described as follows, Sec. 3 will present 
object representations by informative descriptors, Sec. 4 
describes attentive detection and identification, and Sec. 5 
presents experimental results on mobile imagery with varying 
viewpoints and illumination conditions. 
 

3. INFORMATIVE LOCAL DESCRIPTORS 

Research on visual object detection has recently focused on the 
development of local interest operators [8, 11, 14, 7] and the 
integration of local information into robust object recognition 
[3, 14, 7]. Recognition from local information serves several 
purposes, such as, improved tolerance to occlusion effects, or to 
provide initial evidence on object hypotheses in terms of 
providing starting points in cascaded object detection. The SIFT 
(Scale Invariant Feature Transformation) descriptor [7] is 
widely used for its capabilities for robust matching to the 
recordings in the database [9, 10], despite viewpoint, 
illumination and scale changes in the object image captures. 
Therefore SIFT is the choice for implementation in urban 

Figure 1: Client-server architecture for object awareness in urban environments. (1) Images from the mobile devices are 
transferred to the server for (2) recognition and content information. (3) User receives annotation about object and locations. 
 

Figure 2 Object hypothesis selection using geo-contextual 
information (overlaid on airborne image) from GPS based 
measurements (M). Positions of image acquisition of objects in 
the MPG-20 database (crosses) are indexed using the radial 
distance of the mean geo-referencing error. 
 



 

environments where illumination and scale changes are usually 
the cause for degrading performances. [4] proposed the 
Informative Features Approach following previous work on 
informative patches for recognition [14] by using local density 
estimations to determine the posterior entropy, making local 
information content explicit with respect to object 
discrimination. In contrast to [14, 2] who model mutual 
information between features and objects, the posterior entropy 
measure would be tolerant to include features with few 
occurrences, enabling to represent objects by single images. 
This approach seems particularly suited for the mobile vision 
tasks in the proposed application, and if attentive recognition 
and fast response times are requested under real world 
conditions. 
 
3.1 Informative Descriptors 

We propose here as innovative step to extend the Informative 
Features Approach [4] to local descriptors. From a given 
descriptor we determine the information content from a 
posterior distribution with respect to given task specific 
hypotheses. In contrast to costly global optimization, one 
expects that it is sufficiently accurate to estimate a local 
information content, by computing it from the posterior 
distribution within a sample test point’s local neighbourhood in 
descriptor space. We are primarily interested to get the 
information content of any sample local descriptor id in 

descriptor space ||, D
i RD ∈d , with respect to the task of object 

recognition, where io denotes an object hypothesis from a 

given object set OS . For this we need to estimate the entropy 

)|( iOH d of the posterior distribution 

ΩΩ= ,1),|( LkoP ik d  is the number of instantiations of the 
object class variable O . The Shannon conditional entropy 
denotes  
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One approximates the posterior at id using only samples 

ig inside a Parzen window of a local neighbourhood ε, 

Jjji L1,|||| =≤− εdd . Fig. 3 depict discriminative 

descriptors in an entropy-encoded representation of local SIFT 
features id . From discriminative descriptors we proceed to 
entropy thresholded object representations, providing 
increasingly sparse representation with increasing recognition 
accuracy, in terms of storing only selected descriptor 
information that is relevant for classification purposes, i.e., 
those id with Θ≤ HOH i )|(ˆ d (Fig. 5.a). A specific choice on 

the threshold ΘH consequently determines both storage 
requirements and recognition accuracy (Sec.5). To speed up the 
matching we use efficient memory indexing of nearest 
neighbour candidates described by the adaptive K-d tree 
method. 
 
3.2 i-SIFT Descriptor 

We apply the Informative Feature Approach on Scale Invariant 
Feature Transform (SIFT [7]) based descriptors that are among 
the best local descriptors with respect to invariance to 
illumination changes, matching distinctiveness, image rotation, 
and blur [10]. The i-SIFT approach tackles three key 
bottlenecks in SIFT estimation: i-SIFT will (i) improve the 
recognition accuracy with respect to class membership, iii) 
provide an entropy sensitive matching method to reject non-
informative outliers and more efficiently reject background, (iii) 
obtain an informative and sparse object representation, reducing 
the high dimensionality (128 features) of the SIFT keypoint 
descriptor and thin out the number of training keypoints using 
posterior entropy thresholding, as follows, 

1. Information theoretic selection of representation 
candidates. We exclusively select informative SIFT 
descriptors for object representation. The degree of 
reduction in the number of training descriptors is 
determined by threshold ΘH for accepting 
sufficiently informative descriptors, practically 
reducing the representation size by up to one order of 
magnitude. 

2. Entropy sensitive matching in nearest neighbour 
indexing is then necessary as a means to reject 
outliers in analyzing test images. Any test descriptor 

*d  will be rejected from matching if it comes not 

Figure 3: Concept for recognition from informative local descriptors. (I) First, standard SIFT descriptors are extracted within the test 
image. (II) Decision making analyzes the descriptor voting for MAP decision. (III) In i-SIFT attentive processing, a decision tree 
estimates the SIFT specific entropy, and only informative descriptors are attended for decision making (II). 
 



 

close enough to any training descriptor id , i.e., if 

,|:| * ε<−∀ ddd ii and ε was determined so as to 
optimize posterior distributions with respect to overall 
recognition accuracy. 

3. Reduction of high feature dimensionality (128 
features) of the SIFT descriptor is crucial to keep 
nearest neighbour indexing computationally feasible. 
Possible solutions are K-d and Best-Bin-First search 
[7] that practically perform by O(ND), with N training 
prototypes composed of D features. To discard 
statistically irrelevant feature dimensions, we applied 
Principal Component Analysis (PCA) on the SIFT 
descriptors. This is in contrast to the PCA-SIFT 
method, where PCA is applied to the normalized 
gradient pattern, but that also becomes more 
errorprone under illumination changes [10]. 

 
4. ATTENTIVE OBJECT DETECTION 

i-SIFT based object detection (Sec. 3) can achieve a significant 
speedup from attentive filtering for the rejection of less 
promising candidate descriptors. This rapid attentive mapping is 
proposed here in terms of a decision tree which learns its tree  
structure from examples, requiring very few attribute 
comparisons to decide upon acceptance or rejection of a SIFT 
descriptor for investigation. 
 
4.1 Object Detection and Recognition 

Detection tasks require the rejection of images whenever they 
do not contain any objects of interest. For this we consider to 
estimate the entropy in the posterior distribution – obtained 
from a normalized histogram of the object votes – and reject 
images with posterior entropies above a predefined threshold 
(Fig. 5b). The proposed recognition process is characterized by 
an entropy driven selection of image regions for classification, 
and a voting operation, as follows (Fig. 3), 
 

1. SIFT Extraction and mapping into PCA based 
descriptor subspace. 

2. Attentive Mapping from subspace to an associated 
estimated entropy value via decision tree. 

3. Rejection of descriptors contributing to ambiguous 
information (focus of attention). 

4. Nearest neighbor analysis for selected descriptor 
hypotheses (global posterior I). 

5. Posterior estimation from the histogram of 
hypothesis specific descriptors (global posterior 2). 

6. Background rejection for high entropy posteriors. 
7. MAP classification for object identifications. 

 
From a given test image, SIFT descriptors are extracted and 
mapped to an entropy value (see below). An entropy threshold 

ΘH  for rejecting ambiguous, i.e., high entropy descriptors is 
most easily identical with the corresponding threshold applied 
to get a sparse model of reference points (Sec. 3). For retained 
descriptors, we search for the object hypothesis of the nearest 
neighbour training descriptor. All hypotheses of an image feed 
into a global histogram which is normalized to give the 
posterior with respect to object hypotheses. Background 
rejection is efficiently operated by using a predefined threshold 
either on the maximum confidence of the MAP hypothesis or 
the entropy in the posterior. 
 

4.2 Attention using Decision Tree 

For a rapid estimation of SIFT entropy values, the descriptor 
attribute values are fed into the decision tree which maps SIFT 
descriptors id into entropy estimates )|(ˆ,ˆ

ii OHH dd a . The 
C4.5 algorithm [12] builds a decision tree using the standard top 
down induction of decision trees approach, recursively 
partitioning the data into smaller subsets, based on the value of 
an attribute. At each step in the construction of the decision 
tree, C4.5 selects the attribute that maximizes the information 
gain ratio. Table 1 gives the example of a confusion table that 
illustrates the quality of mapping PCA encoded SIFT 
descriptors to entropy values. The extraction of informative 
SIFTs (i.e., i-SIFTS) in the image is performed in two stages 
(Fig. 3). First, the decision tree based entropy estimator 
provides a rapid estimate of local information content of a SIFT 
key under investigation. Only descriptors id  with an associated 

entropy below a predefined threshold Θ≤ HOH i )|(ˆ d are 
considered for recognition. Only these selected discriminative 
descriptors are then processed by nearest neighbour analysis 
with respect to the object model, and interpreted via MAP 
decision analysis. 
 
 

maps a  1Ĥ  2Ĥ  3Ĥ  4Ĥ  5Ĥ  

1H  1017 451 197 57 10

2H  314 1114 196 92 16

3H  150 185 1171 185 41

4H  57 125 194 1205 151

5H  10 15 64 163 1480

 
Table 1 Confusion map of the C4.5 based decision tree learned 
on the MPG-20 images (Sec. 4a). Individual entropy intervals – 
by classes 51 HH L – partition [0,Hmax] into equally large 
intervals (Sec. 5) and are mapped well to output classes. 
 
4.3 Computational Complexity 

There are several practical issues in using i-SIFT attentive 
matching that significantly ease the overall computational load, 
showing improvements along several dimensions. Firstly, 
information theoretic selection of candidates for object 
representation experimentally reduces the size of the object 
representation of up to one order of magnitude (Table 2), thus 
supporting sparse representations on devices with limited 
resources, such as, mobile vision enhanced devices. Secondly, 
the reduction of dimensionality in the SIFT descriptor 
representation practically decreases computational load down 
to << 30% (< 5% in ZuBuD recognition, Sec. 5). Finally, the 
attentive decision tree based mapping is applied to reject SIFT-
descriptors, thereby retaining only about ≤ 20% SIFT 
descriptors for further analysis. These performance differences 
do hold regardless of using exact (in a k-d tree) or approximate 
(Best-Bin-First) nearest neighbour search [7]. 
 
 
 
 



 

recognition method MAP accuracy MPG 20 [%] PF [%] PF [%] obj avg 
H 

bgd. avg. 
H 

obj avg 
MAP 

bgd avg. 
MAP 

SIFT 95.0 82.5 0.1 3.0 3.4 43.9 18.7 
i-SIFT 97.5 100.0 0.0 0.5 4.1 88.0 10.6 

 
Table 2: Object detection results on the MPG-20 mobile imagery (Sec. 5), comparing standard SIFT keypoint matching [7] and i-
SIFT attentive matching. i-SIFT provides better MAP accuracy, provides a better detection rate (PT) with less false alarms (PF), and 
achieves significantly better avg. posterior entropy H and avg. MAP confidences. 
 

recognition method descriptor recognition stages total no. keys 
SIFT 1.8 sec 7.48 sec (ratio method) 9.28 sec 28873 
i-SIFT 1.8 sec 0.08 sec (M1) 0.01 sec (M2) 0.91 sec (M3) 2.80 sec 3501 

 
Table 3: Runtime performance results for the MPG-20 experiments. The i-SIFT method (modules M1: PCA projection, M2:decision 
tree, M3: nearest-neighbour search) required on avg. ≈ 2.8sec per image for object identification, being ≈ 8 times faster than SIFT 
recognition, requiring only ≈ 12% storage. 
 
 

5. EXPERIMENTS 

Targeting emerging technology applications using computer 
vision on mobile devices, we perform the performance tests 
using the i-SIFT approach on mobile phone imagery captured 
about tourist sights in the urban environment of the city of 
Graz, Austria, i.e., from the MPG-20 database (Fig. 4a), and 
illustrate performance improvements gained from the i-SIFT 
approach in comparison to standard SIFT matching. We present 
results proving a reliable mobile vision service for urban object 
detection. 
 
5.1 MPG 20 Database 

TheMPG-20 database2 includes images about 20 objects, i.e., 
front sides of buildings from the city of Graz, Austria, captured 
in a user test trial by students. Most of these images contain a 
tourist sight, some containing non-planar structure (o3, o5, o16, 
Fig. 4a), together with ’background’ information from 
surrounding buildings, pedestrians, etc. The images of 640 × 
480 pixels were captured from an off-the-shelf camera-
equipped phone (Nokia 6230), containing changes in 3D 
viewpoint, partial occlusions, scale changes by varying 
distances for exposure, and various illumination changes due to 
different weather situations and changes in daytime and date. 
For each object, we then selected two images taken by a 
viewpoint change of ≈ ±30◦ and of similar distance to the object 
for training to determine the i-SIFT based object representation. 
two additional views - two different front views of distinct 
distance and significant scale change - were taken for test 
purposes, giving 40 test images in total. Additional test images 
were obtained (i) from other ’non-sight’ buildings and natural 
landscapes which are not part of MPG-20, i.e., ’background’, 
and (ii) about MPG-20 objects under extreme illumination 
conditions (e.g., in the evening twilight, Fig. 4b). 
 
5.2 SIFT based Key Matching 

The gray valued training images (colour was assumed too 
sensitive to illumination changes) were bit-masked by hand, 
such that SIFT descriptors on background information 
(surrounding buildings, pedestrians) were discarded. In total 

                                                                 
2 The MPG-20 (Mobile Phone imagery Graz) database can be 

downloaded at the URL http://dib.joanneum.at/cape/MPG-
20. 

28873 SIFT descriptors were determined for the 40 training 
images, 722 on average. The 40 (non-masked) test images 
generated a similar number of SIFT descriptors per image. 
Object recognition is then performed using MAP decision 
making (Sec. 4). The average entropy in the posterior of the 
normalized voting histograms was 0.3≈avgH . A threshold of 

25% in the MAP hypothesis confidence was used as decision 
criterion to discriminate between object (> 25%) and 
background (≤ 25%) images (for both SIFT and i-SIFT, see Fig. 
6). For the training of the i-SIFT selection, the descriptors were 
first projected to an eigenspace of dimension 40, thereby 
decreasing the original descriptor input dimensionality (128 
features) by a factor of three. A decision tree [12] of depth 52 
was learned for the attentive matching, defining the threshold 
for attentive matching by 0.1=≤ ΘHH  (Fig. 5a). In total, 
the number of attended SIFT descriptors was 3500, i.e., ≈ 
12.1% of the total number that had to be processed by standard 
SIFT matching. The recognition accuracy according to MAP 
(Maximum A Posteriori) classification was 97.5% (SIFT: 95%), 
the average entropy in the posterior distribution was 

5.0≈avgH . 

 
5.3 MPG-20 Performance Results 

Table 2 depicts results of the MPG-20 experiments, and 
comparing SIFT vs. i-SIFT keypoint matching. i-SIFT provides 
better MAP accuracy, better detection rate (PT) with less false 
alarms than using SIFT, being able to provide robust 
discrimination between object and background images, by using 
either an entropy (Fig. 5b) or (d) a MAP confidence threshold 
to accept/reject object hypotheses. Most importantly for object 
detection, the receiver operator characteristic (ROC) curve in 
(c) shows near-optimal discrimination behaviour for the i- SIFT 
(line) while the (standard) SIFT (dashed) suffers from false 
alarms even for lower detection sensitivity (i.e., detection rates). 
The runtime for single image recognition (PC Pentium IV, 2.4 
GHz, C++ non-optimized code) was 2.80sec using i-SIFT (in 
contrast to 9.82sec with standard SIFT), demonstrating that i-
SIFT should be preferred for mobile object awareness (Table 
3). Note that SIFT based recognition with i-SIFT-like model 
complexity (retaining only 12% of SIFT training keys by 
random selection) decreases to 32.5% – i-SIFT is truly 
informative! An important issue for mobile services represents 
the guarantee for reliable quality of service. From the 
challenging experiments with 80 object images under extreme 



 

illumination conditions (Fig. 4b), we finally derived a threshold 
on the minimum number of keypoint votes (>> 4) required for 
detection decisions to be communicated to a user (otherwise, 
the system would inform uncertain conditions). Based on this 
threshold the system provided a trustworthy mobile service, 
achieving 100% accuracy – even under the extreme conditions 
reported in Fig. 4b – for accepted (50%) object images, 
rejecting (50%) for annotation otherwise. 
 
5.4 ZuBuD Performance Results 

In similar manner, we applied i-SIFT key matching to the 
ZuBuD database3 (201 buildings, 5 views each, 115 query 
images [13]). While [13] achieved only moderate performance 
(≈ 86% accuracy), our i-SIFT system achieved ≈ 91% correct 
identifications. Note that the avg. runtime per image for i-SIFT 
based recognition was 4.8sec in contrast to 115sec by standard 
SIFT (due to the large search list), making i-SIFT ≈ 24 times 
faster than SIFT ! 

 
 
Figure 4: The MPG-20 database, consisting of mobile phone 
images from 20 buildings (numbered o1–o20 from top-left to 
bottom-right) in the city of Graz (displayed images were used 
for training, see Sec. 5). 
 

6. SUMMARY AND CONCLUSIONS 

A methodology for reliable urban object detection was 
presented using off-the-shelf camera-equipped mobile devices. 
The Informative Descriptor Approach was applied to SIFT 
keys, resulting in significant performance improvements in 
object detection, with respect to detection rates, efficient use of 
memory resources and speedup in the recognition process. This 

                                                                 
3 http://www.vision.ee.ethz.ch/showroom/zubud/index.en.html 

paper also introduced attentive matching for descriptors, 
applying an information theoretic criterion for the selection of 
discriminative SIFT descriptors for recognition matching and 
representation. This innovative local descriptor is most 
appropriate for sensitive operation under limited resources, such 
as, in applications using mobile vision services. We evaluated 
the detection system on the public available MPG-20 database, 
including images from 20 building objects, ’non-object’ images, 
and extreme illumination conditions about Graz urban 
environment. 
The proposed urban object detection system could have a strong 
impact on many areas of m-commerce, such as, tourist 
information systems, navigation aids for the visually impaired, 
mobile learning, mobile inspection, etc. Future work goes in the 
direction of exploiting geometric relations between informative 
descriptors to provide robust grouping and segmentation of 
categorical object information.  
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Figure 5: Performance results on MPG-20 imagery. (a) Histogram of entropy values of training imagery with 
selection criterion HΘ (vertical line). (b) Entropy based discrimination on test imagery (i-SIFT). (c,d) i-SIFT 
outperforming SIFT supported MAP confidence based discrimination between object and background. 



 

OBJECT o19 
 

(a) train / background image 

(b) test images, SIFT descriptor 

(c) test images, i-SIFT descriptor 

(d) posteriors, SIFT 
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Figure 6: Sample object detection results for object object o19 (left) and background (right). (a) Depicting train and bgd. 
images. (b) SIFT descriptor locations on test images. (c) Selected i-SIFT descriptor locations. (d) Posterior distribution on 
object hypotheses from SIFT and (e) i-SIFT descriptors, respectively, demonstrating more discriminative results for i-SIFT 
based interpretation. 


