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ABSTRACT: 
 
LiDAR is an effective technology for obtaining detailed and accurate terrain models from airborne platforms. High-performance 
integrated GPS/IMU systems provide the navigation data for the LiDAR data acquisition platform, therefore, the proper calibration 
of this Mobile Mapping System (MMS) is a must to determine the accurate spatial relationship of the involved sensors. This work 
investigates the determination of the misalignment between the IMU body frame and the LiDAR frame which is called boresight 
misalignment. The misalignment is determined by an adjustment during an evaluation of using a QA/QC technique (Quality 
Assurance/Quality Control). The processing scheme of the algorithm is based on the least squares estimation principles, and includes 
testing the validity, accuracy, and precision of different statistical tests for outlier detection in positioning and attitude data. In this 
paper, the theoretical model, results based on simulated data and a performance analysis obtained from the implementation of the 
algorithm, are presented. The prototype system is implemented in a Matlab environment.  
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1. INTRODUCTION 

LiDAR (Light Detection And Ranging, also known as Airborne 
Laser Scanning – ALS) is a highly automated technology, with 
excellent vertical accuracy of point measurements, and is still 
improving. Although LiDAR has many benefits, and is also 
becoming the prime technology for large-scale acquisition of 
elevation data due to its capability to directly measure 3D 
coordinates of a huge number of points, some restrictions with 
regards to calibration should be strictly taken into account. 
LiDAR systems are complex multi-sensory systems and include 
at least three main sensors, GPS (Global Positioning System), 
and IMU (Inertial Measurement Unit, also known as INS 
Inertial Navigation System) navigation sensors, and the Laser-
scanning device. LiDAR is assumed as a basic component of 
airborne Mobile Mapping Systems. 
 
The concept of Mobile Mapping System (MMS) dates back to 
the late 1980s, when the Ohio State University Center for 
Mapping initiated the GPSVanTM project, leading to the 
development of the first directly georeferenced and fully digital 
land-based mapping system in 1991 (Bossler and Toth, 1995), 
and the University of Calgary started a joint project with 
GEOFIT Inc., aimed at the development of the VISAT system 
designed for mobile highway mapping (Schwarz et al., 1993, 
El-Sheimy et al., 1995). Following the proliferation of 
GPS/IMU integrated technology in the mid 1990s, the quality 
of the Direct Platform Orientation (DPO) reached the level 
needed to support the demanding requirements of airborne 
mapping. A variety of highly specialized systems based on 
modern imaging sensors, such as CCD cameras, LiDAR, and 
hyper/multi-spectral scanners, have been developed in the last 
decade (Grejner-Brzezinska et al., 2002).  
 

The factors affecting laser-target position accuracy are 
numerous (Schenk, 2001). Apart from the target reflectivity 
properties and laser beam incidence angle, the main limiting 
factors are the accuracy of the platform position and orientation 
derived from the carrier-phase differential GPS/IMU data and 
uncompensated effects in system calibration. The overall 
system calibration is a very complex task and includes 
individual sensor calibration, as well as the determination of the 
sensors’ spatial relationships. High-performance integrated 
GPS/IMU systems provide the navigation data for LiDAR data 
acquisition platforms, and thus, the quality of the navigation 
solution is the primary factor to define the lower accuracy 
bound of the LiDAR point cloud. To achieve or approach the 
performance level of the navigation, however, the spatial 
relationship between the navigation sensor and the laser 
scanner, called the mounting bias (or offset) and the boresight, 
must be known with high accuracy (Toth, 2002). In most 
installations, the lever arms between LiDAR/GPS/IMU sensors 
can be determined separately by independent means, at good 
accuracy. In sharp contrast, the determination of the boresight 
angles is only possible in-flight once the GPS/IMU derived 
orientation becomes sufficiently accurate (Skaloud and Lichti, 
2006). The misalignment between the IMU system and the 
scanner is the largest source of systematic error in a LiDAR and 
must be addressed before the sensor can be effectively deployed 
(Burman, 2000). In summary, the boresight misalignment is a 
systematic error and so should be detected and eliminated. 
 
While several well-developed approaches for boresight 
estimation of Camera-IMU installations exist (see for example: 
El-Sheimy et al., 1995, Toth and Grejner-Brzezinska, 1998, 
Grejner-Brzezinska, 1999, Scaloud, 1999, Cramer et al., 2000, 
Kruck, 2001, Skaloud and Schaer, 2003), the correct recovery 
of the LiDAR-IMU misalignment still remains somewhat 



 

 

elusive. Nowadays, boresight estimation between LiDAR and 
IMU is still heavily researched. Baltsavias, (1999) presents an 
overview of basic relations and error formulas concerning 
airborne laser scanning. Also a large number of publications 
report the existence of systematic errors (Schenk, 2001, Filin, 
2001). The solution for dealing with and eliminating the effect 
of systematic errors can be categorized into two groups. One 
approach is based on the introduction of a correction 
transformation of the laser points to minimize the difference 
between the corresponding LiDAR points and ground truth; for 
instance, Kilian et. al., (1996) uses surface patches while 
Csanyi and Toth (2007) propose LiDAR-specific ground 
targets. The other technique attempts to rigorously model the 
system to recover the systematic errors (Burman, 2000) and 
treats the discrepancies between overlapping strips as 
orientation errors, including navigation and sensor calibration 
errors. Since the ground surfaces are not always known, or not 
at the required accuracy level, preference has been given to 
techniques which do not require a priori knowledge of the 
surface. An alternative solution, proposed by Toth and Csanyi, 
(2001), and by Toth, (2002), independent from ground control, 
can determine the boresight misalignment angles using 
overlapping LiDAR strips, flown in different directions, 
collected over an unknown surface (ground truth information 
can also be incorporated, if available). More specifically, it was 
based on the observed differences between the overlapping 
LiDAR strips and the required precise navigation data. More 
recently, Friess, (2006) reported a rigorous method which is 
also based on block adjustment principles with the goal to 
geometrically correct laser point cloud. Skaloud and Lichti, 
(2006) modelled the systematic effects in the direct 
georeferencing equation and used planar features to recover the 
calibration parameters in a combined rigorous adjustment 
model. 
 
Earlier methods, related to LiDAR strip adjustment, also 
approached the effects of systematic errors in the registration 
between overlapping point clouds (Vosselman and Maas, 2001, 
Filin and Vosselman, 2004). Various investigations on 
registration (it is also assumed as DEM matching) have been 
presented (Ebner and Mueller, 1986, Ebner and Strunz, 1988). 
Schenk et al., (2000) referred to two mathematical methods 
related to the registration of LiDAR data to surfaces derived by 
photogrammetric means. One, minimizing the distance (min D) 
between a point of one surface and a surface patch of the other 
surface (Habib and Schenk, 1999), and the second, minimizing 
the remaining difference along the Ζ-axis (min Z) (Postolov et 
al., 1999). Burman, 2000, and Maas, 2000, worked on the 
integration of point clouds by adjustment. Surface patch 
matching has been performed as a straight extension of least 
squares matching (LS3D) by Gruen and Akca, (2004). An 
extended literature review about co-registration between two 
point datasets can be found in Pothou et al. 2006a. 
 
Currently the most common method of calibrating a LiDAR 
sensor is also the least rigorous: profiles of overlapping strips 
are compared and an experienced operator manually adjusts the 
misalignment angles until the strips appear to visually fit. 
Although practical, this approach is time consuming and labor 
intensive and the results do not immediately provide any 
statistical measure on the quality of the calibration (Morin and 
El-Sheimy, 2002). Furthermore, the existing methods often 
cannot reliably recover all three of the angular mounting 
parameters. The undetermined parameter(s) propagate into the 
subsequently captured data, therefore compromising its 
accuracy and any derived product. Thus, much research effort is 

still devoted to improve these processes. The adopted 
approaches are usually based on either physical boundaries or 
cross-sections (Schenk, 2001) or DTM/DSM gradients 
(Burman, 2000).  
 
In this paper not only a new algorithm is proposed for the same 
objective, but also an extensive analysis of the statistical tests 
for QA/QC (Quality Assurance/Quality Control) will be 
provided. A prototype algorithm already presented (in Pothou et 
al., 2006b, called ‘Algorithm B’) as a registration algorithm 
between two surfaces (point datasets) is used here for 
observing, and subsequently determining, the boresight 
misalignment of LiDAR–IMU. This algorithm takes place 
minimizing the distances between points of one surface and 
surface patches of the other surface, along to the corresponding 
surface normals. The originality of this algorithm is mainly 
based on the inclusion of the transformation parameters, in the 
iterative least square procedure.  
 
In Section 2, a short review of the status of multi-sensor 
calibration and boresight misalignment of LiDAR-IMU is 
provided. In Section 3, the choice of the suitable shape and the 
construction of a simulated dataset, which is used in this 
research, is described. Section 4 outlines the proposed 
implementation of the algorithm for the boresight 
misalignment, and the underlying mathematical model. In 
Section 5, the QA/QC techniques supported by LiDAR–IMU 
boresight misalignment calculation are presented. The 
experimental results, as well as their statistical analysis and 
their effects on LiDAR points, are described in Section 6. 
Section 7 concludes the research with suggestions for future 
work. 
 
 

2. MULTI SENSOR CALIBRATION - BORESIGHT 
MISALIGNMENT 

The IMU frame is usually considered as the local reference 
system of the MMS system, and thus, the navigation solution is 
computed within this frame. The spatial relationship between 
the laser scanner and the IMU is defined by the offset and 
rotation between the two systems. The critical component here 
is the rotation since the object distance amplifies the effect of 
an angular inaccuracy, while the effect of an inaccuracy in the 
offset does not depend on the flying height. The description of 
the effects of the different boresight misalignment angles is 
omitted here; for details see (Baltsavias, 1999). In Figure 1, the 
components which are included in a LiDAR system are 
highlighted. 
 
To obtain the local object coordinates of a LiDAR point, the 
laser range vector has to be reduced to the IMU system by 
applying the offset and rotation between the two systems, which 
provides the coordinates of the LiDAR point in the IMU 
system. The GPS/IMU based navigation provides the 
orientation of the IMU frame, including position and attitude, 
and thus, the mapping frame coordinates can be subsequently 
derived. In our discussion, the determination of the boresight 
offset and the boresight matrix between the IMU and the laser 
frame is addressed, provided that sufficient ground control is 
available. The boresight rotation can be described by three 
rotation angles, ω rotation around the x-axis, ϕ rotation around 
the y-axis, and κ around the z-axis in the laser sensor frame. A 
discrepancy in their values results in a misfit between the 
LiDAR points and the ground surface, and the calculated 
coordinates of the LiDAR points are not correct (Toth, 2002). 



 

 

Ideally, the calibration parameters should stay constant for 
subsequent missions. 

 
Figure 1. LiDAR System Components 
 
Individual sensor calibrations, as well as sensor inter-
calibration, are crucial for accurate and reliable operations of 
any MMS, especially when the highest accuracy is required. 
The multi-sensor calibration includes GPS/IMU lever arm 
(usually obtained from precision surveying, but can also be 
corrected during the positioning adjustment), and boresight 
calibration between IMU and the LiDAR sensor. Boresight 
calibration is referred to boresight offset (also obtained from 
precision surveying, usually) and boresight angle misalignment. 
In this project, the boresight offset is assumed as an unknown 
value and is included in the adjustment as three (3) more 
parameters, but it has to be mentioned that in case of being 
accurately measured it could be included in the adjustment as a 
constraint. 
 

3. SIMULATION DATA 

The objective of this simulation was to experimentally validate 
the theoretical basis of the QA/QC techniques for the boresight 
parameters using an ideal geometrical object. Shown in Figure 
2, a “truncated” pyramid lying on a box (the base which 
includes 4 vertical faces) is chosen as a symmetrical 
shape/object in order to develop a simulated dataset similar to 
man-made structures, such as buildings. The size of the pyramid 
is: 10m x 10m base, 5m x 5m top, 5m height, and the height of 
the box is 5m. The whole symmetrical shape of the object and 
the dimensions were chosen to be similar to that of a building. 
By linearly interpolating this object’s skeleton, a regularly-
spaced TINs model was created with a point spacing of 20cm. 
This was used as the control point dataset, symbolized as 
P={p1, p2,…, pn}. In Pothou et.al., 2006b, one can find the 
descriptions of the processing steps which are performed to the 
control dataset to overcome the 2D Delaunay’s triangulation 
limitations and to produce a dense TINs model. In addition, an 
irregularly-spaced simulated LiDAR point cloud, with density 
of 5-10 points/m2 was created, referenced as Q={q1, q2,…, qm}. 
 
In subsequent processing, the boresight misalignment values 
were assumed to be comparable to the LiDAR sensor’s and 
IMU device’s uncertainties. The actual values were equal to 
20cm of offset (bx=20cm, by=-20cm and bz=20cm), and 5’’ of 
rotation (ω=5’’, φ=-5’’ and κ=5’’). Therefore, this offset and 
rotation were applied to the observations simulating the LiDAR 
points. Also, different levels of noise have been added to the 
observed LiDAR points for testing the algorithm, and different 
uncertainty values of outliers were added at the end to check the 
algorithm’s ability for accurate detecting and eliminating 
blunders.  

 
Figure 2. Simulated datasets (no noise and outliers added) 

 

4. IMPLEMENTATION OF THE ALGORITHM 

The surface on which the local surface patches (TINs) were 
created is referred to as the control surface (usually derived by 
photogrammetric means). In this investigation, a 6-parameter 
3D transformation is used including translations and rotations 
(bx, by, bz, ω, φ, κ). The scale was assumed to be equal to c=1. 
In our method, the distances between points of one surface 
(LiDAR point cloud) and surface patches of the other surface 
(TINs) are being minimized along the corresponding surface 
normals. One advantage is that the technique requires no 
interpolation of the LiDAR points, which would limit the 
pointing accuracy and, hence, the calibration accuracy. The P 
surface was chosen as the control reference system while the Q 
surface, generated by the LiDAR, was registered allowing the 
surfaces to be transformed to a common coordinate system as 
shown in Figure 3. A short presentation of the algorithm is 
presented in this section; the details are discussed in Pothou et 
al. 2006b. 

 
Figure 3. Point qi is a point of surface Q that is transformed to 
surface patch of P surface as qi΄. The shortest distance from qi 
to the surface is used for determining the 3D transformation 
 
Mathematical Model of the Algorithm: Assuming both the 
datasets as point clouds P (xpi, ypi, zpi) (pi= 1,…, n) and Q (xqi, 
yqi, zqi) (qi= 1,…, m) are captured by different technologies, 
they must be transformed into a common system. As illustrated, 
in Figure 3, the surface patch of the control surface P can be 
defined by 3 points (pm, pk, pl), and one point of Q point cloud 
has to be transformed to the closest surface patch. The 
projection of point qi (xqi, yqi, zqi) to the surface patch is 
described as qi΄ (xqi΄, yqi΄, zqi΄). A 6-parameter 3D 
transformation is used for minimizing the distance between a 
point of Q surface and a TIN surface patch of P surface. In 
Equation 1, points of surface Q are transformed into the system 
P of the control surface. 
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Where R (ω, φ, κ) is the orthogonal rotation matrix, defined in 
Equation 2, bx, by, bz are the elements of the translation vector. 
Since the functional model is non-linear, it is solved using an 
iterative least squares adjustment. 
 
To perform least squares estimation, Equation 1 must be 
linearized by Taylor expansion, creating Equation 3, in matrix 
notation. Using the stochastic Gauss Markov model, related to a 
linear combination of the parameters, the observations are 
assumed as non-correlated. The solution of Equation 3 is 
developed by Equation 4, where W is the diagonal weight 
matrix of the observations. The best estimation of the vector x̂  
of the parameters is given by Equation 5.  
 

vδxA +=δ l  (3) 
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Where A is the design matrix, which includes as many rows as 
the number of observation equations that are created 
corresponding to the number of points in Q point cloud, and as 
many columns as the number of parameters. Moreover, δx is 
the vector of the corrections of the approximation values xο of 
the unknown parameter vector x, δl=l-lο is the second part of 
the observation equation, and v the residual vector. The vector 
δl is calculated by the subtraction of the right part from the left 
part of Equation 1 using the approximation values xο.  
 
The parameters of the plane’s equation, which is passed from 
the 3 known points (pm, pk, pl), are given by the 4 derivatives in 
Equation 6. 
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Based on Equation 6, the coordinates of qi΄ (xqi΄, yqi΄, zqi΄), 
projection of point qi (xqi, yqi, zqi) on the plane (pm, pk, pl), are 
given by Equation 7.  
 
The initial approximation values of the unknown parameters are 
set equal to zero. The transformation is applied providing the 
coordinates of qi' point by the already transformed point in the P 
surface. As a result, the coordinates of qi' point are represented 
as a function of the 6 transformation parameters (Equation 7). 
In matrix notation, Equation 8 can represent the entire system, 
where one can easily realize that in the observation equation the 
plane’s parameters are also included. 
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Equation 8 is developed by importing Equation 1 to Equation 7. 
Where Τ represents the symmetrical transformation matrix of x, 
y, z, and L is the matrix of constant values. In order to make the 
distance qi-qi' equal to zero, Equation 8 should satisfy Equation 
1, for any qi point, according to Equation 9. This Equation 9 is 
the new observation equation for any point. It must be 
linearized by Taylor expansion (regarding the 6 parameters: bx, 
by, bz, ω, φ, κ) while l=0 and lο is the result of Equation 9 using 
approximation values of 6 parameters.  
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The contribution of this algorithm, given by Equations 8 and 9, 
is that both are functions of Τ and L matrices. Therefore, they 
depend on the surface, which is approximated by the points. In 
this research the plane was this surface. With the same 
methodology corresponding equations can also be developed 
for different kinds of surfaces. 
 

5. ON USING QA/QC TECHNIQUES 

To assure the quality of the data (QA-Quality Assurance), 
independent measurements are used to check the accuracy of 
the solution. If the differences are significant, an iterative 
correction procedure can be applied to reduce the error (QC-
Quality Control). In this investigation, simulated datasets were 
used, and therefore, the parameters’ real values were always 
known for accurate checking of the QA. In addition, outliers 
were added for the statistical quality analysis. 
 
Through the iterative adjustment algorithm, QA/QC tests are 
simultaneously performed to check the internal reliability of the 
model. Due to the huge number of observations, a significant 
degree of freedom (r) exists. Firstly, a χ2 test is performed, in 
the whole model, checking the ratio 

2
o

2
oˆ

σ
σ  with a 99% level of 

confidence. If the results are acceptable, the data snooping takes 
place. Each observation is tested separately, checking the ratio 

v

v
σ

, in the normal distribution, with a 99% level of confidence. 

Sequentially, some observations should be eliminated and the 
adjustment is repeated.  
 



 

 

6. EXPERIMENTS AND RESULTS 

The developed method for boresight misalignment was 
implemented in a Matlab environment and simulated data was 
used to test the adjustment model and to assess its performance. 
Various parameter values were used in several tests. A 
boresight misalignment of 20cm of offset (bx=20cm, by=-20cm 
and bz=20cm) and 5’’ of rotation (ω=5’’, φ=-5’’ and κ=5’’) was 
decided as realistic, and consequently, used as offset and 
rotation applied to the observations simulating the uncertainties 
of the LiDAR points. 
 
In the first phase, when no noise or outliers were added, the 
results for both offset and rotation were satisfactory. The offset 
and rotation were almost totally recovered in three iterations 
(sequentially 80%, 19% and 1% of the offset was recovered in 
each iteration). Therefore, it could be said that the implemented 
algorithm works correctly. 
 
Different levels of noise were added at the simulation of the 
LiDAR points to check the model’s ability. Based on 
Baltsavias, 1999, LiDAR’s uncertainty is, in general, defined in 
the range of 5-20cm. Table 1 shows five different noise levels 
as well as the results obtained for each case.  
 

Table 1. Standard Deviation of boresight parameters 
 

Offset parameters’ 
standard deviation 

Rotation parameters’ 
standard deviation 

σx σy σz σω σφ σκ 
Noise σx=σy=σz=20cm  
2.5mm 2.5mm 2.1mm 2’ 2’ 1.5’ 
Noise σx=σy=σz=5cm  
0.9mm 0.9mm 0.7mm 0.5’ 0.5’ 0.5’ 
Noise σx=σy=σz=10cm   
1.7mm 1.7mm 1.4mm 1’ 1’ 0.9’ 
Noise σx=σy=20cm, σx=10cm  

3mm 3mm 2mm 2’ 2’ 1’ 
Noise σx=σy=10cm, σz=5cm  
1.6mm 1.5mm 1.2mm 1’ 1’ 0.7’ 

 
Based on these results, the following statement could be made: 
• Both offset’s and rotations’ direction (with the sign) are 

detected with standard deviation of 0.9-3mm and 0.5’-2’ 
respectively. 

• The difference between the real values (the real values are 
known because of the simulated data here) and the 
recovered values of boresight parameters are in the range of 
0.1-2cm and 0.5’-8’, respectively.  

• The lesser the noise the better the recovery of boresight 
parameters. 

 
In the next experience, various uncertainty levels of outliers 
were added to check the proposed method’s ability for accurate 
boresight parameter detection and elimination of blunders. 
Adding outliers in the amount of 2% (100 random outliers in 
our case) of the total LiDAR number points, the following two 
QA/QC tests were performed. The first dataset, shown in Figure 
4, had outliers of σoutliers=2m, and the second one had outliers of 
σoutliers=5m. Note that the σoutliers=5m gives a few points over 
10-15m (3σ), which actually is a big variation, and similarly 
σoutliers=2m gives a few points over to 4-5m. A priori σo=1, and 
σ=0.2m (for the observations) were assumed. The σ is changed 
in every test in order to make the χ2 test acceptable. 
 

Outliers were removed sequentially (groups of outliers); the 
adjustment process had to start all over again. In Figures 6 and 
7, one can see that the results were getting better as more 
outliers were removed. In particular, after having removed 50-
60% of the outliers, the offset’s and rotation’s standard 
deviation are in the range of 2-1.3mm and 2’-0.7’, respectively. 
The offset’s difference is 0-2cm and the rotation’s difference is 
1’-8’. This indicates that the method works even if a limited 
number of small outliers are present.  
 

 
Figure 4. Pyramid with outliers of σ=2m 
 

 
Figure 5. Having removed over 60% of outliers, sequentially 
 
In the second case with the outliers of σoutliers=5m, the results of 
boresight rotation are unacceptable; even the smaller number of 
outliers are causing problems as their value is still big (almost 
5m). As far as boresight offset is concerned, however, the 
parameter values can be detected at 100% level. In the diagrams 
of Figures 6 and 7, the correlation between the standard 
deviations of boresight parameters and the number of removed 
outliers is shown. Note, the diagrams are referred to as the best 
case of adding noise (σx=σy=10cm, σz=5cm) and of adding 
outliers (σoutliers=2m). In Figure 6, the exponential curves 
represent σx, σy, and σz in blue, green, and red, respectively. In 
Figure 7, the blue, green, red curves represent the σω, σφ, σκ 
respectively. In both diagrams, the black curve shows the mean 
standard deviation.  
 



 

 

7. CONCLUSIONS – FUTURE WORK 

The misalignment between the IMU and LiDAR systems is the 
largest source of systematic errors in airborne MMS, and must 
be addressed before the sensor can be effectively utilized. The 
aim of this research is not only to develop an algorithm for 
boresight misalignment estimation, but also to provide an 
extensive analysis of the QA/QC statistical tests.  
 
Simulated datasets were constructed for evaluating the 
algorithm. The proposed method was implemented, tested, and 
evaluated for detecting the boresight vector and the boresight 
attitude misalignment. Using simulated data, various LiDAR 
noise were used for the performance evaluation. Generally, the 
achievable accuracy depends on the density and the shape of 
TINs. In other words, it depends on how well the object can be 
described by the TINs.  
 
For the QA/QC process, outliers were added and the internal 
reliability of the model, by χ2 test, was checked. Moreover, the 
ability of the algorithm to detect and remove outliers was 
examined. As the big outliers are being removed from the 
dataset, the final parameters’ results are quickly improving. 
Also, results are becoming smoother when all the big outliers 
are removed. Having removed more than 50-60% of the 
outliers, the convergence is quickly achieved and the results are 
acceptable. This indicates that the method works even if a 
limited number of small outliers are present. Note outliers with 
σoutliers=2m (or less) are capable of being detected and 
eliminated accurately. 
 

In the near future additional tests will be conducted using real 
data. Of particular interest is the introduction of a filter for 
detecting planar surface patches that could be used for the 
subsequent application of the boresight determination method. 
The contribution of the optimum number and positions of flat 
areas (as roofs), for calculating the boresight misalignment 
accurately will be investigated. 
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Figure 6. Standard deviation of boresight parameters (bx, by, bz) for noise σx=σy=10cm, σz=5cm (adding outliers σ=2m) 
 



 

 

 
Figure 7. Standard deviation of boresight parameters (ω, φ, κ) for noise σx=σy=10 cm, σz=5cm (adding outliers σ=2m) 
 
 


